1 //=- WebAssemblyFixIrreducibleControlFlow.cpp - Fix irreducible control flow -//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements a pass that removes irreducible control flow.
11 /// Irreducible control flow means multiple-entry loops, which this pass
12 /// transforms to have a single entry.
13 ///
14 /// Note that LLVM has a generic pass that lowers irreducible control flow, but
15 /// it linearizes control flow, turning diamonds into two triangles, which is
16 /// both unnecessary and undesirable for WebAssembly.
17 ///
18 /// The big picture: We recursively process each "region", defined as a group
19 /// of blocks with a single entry and no branches back to that entry. A region
20 /// may be the entire function body, or the inner part of a loop, i.e., the
21 /// loop's body without branches back to the loop entry. In each region we fix
22 /// up multi-entry loops by adding a new block that can dispatch to each of the
23 /// loop entries, based on the value of a label "helper" variable, and we
24 /// replace direct branches to the entries with assignments to the label
25 /// variable and a branch to the dispatch block. Then the dispatch block is the
26 /// single entry in the loop containing the previous multiple entries. After
27 /// ensuring all the loops in a region are reducible, we recurse into them. The
28 /// total time complexity of this pass is:
29 ///
30 ///   O(NumBlocks * NumNestedLoops * NumIrreducibleLoops +
31 ///     NumLoops * NumLoops)
32 ///
33 /// This pass is similar to what the Relooper [1] does. Both identify looping
34 /// code that requires multiple entries, and resolve it in a similar way (in
35 /// Relooper terminology, we implement a Multiple shape in a Loop shape). Note
36 /// also that like the Relooper, we implement a "minimal" intervention: we only
37 /// use the "label" helper for the blocks we absolutely must and no others. We
38 /// also prioritize code size and do not duplicate code in order to resolve
39 /// irreducibility. The graph algorithms for finding loops and entries and so
40 /// forth are also similar to the Relooper. The main differences between this
41 /// pass and the Relooper are:
42 ///
43 ///  * We just care about irreducibility, so we just look at loops.
44 ///  * The Relooper emits structured control flow (with ifs etc.), while we
45 ///    emit a CFG.
46 ///
47 /// [1] Alon Zakai. 2011. Emscripten: an LLVM-to-JavaScript compiler. In
48 /// Proceedings of the ACM international conference companion on Object oriented
49 /// programming systems languages and applications companion (SPLASH '11). ACM,
50 /// New York, NY, USA, 301-312. DOI=10.1145/2048147.2048224
51 /// http://doi.acm.org/10.1145/2048147.2048224
52 ///
53 //===----------------------------------------------------------------------===//
54 
55 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
56 #include "WebAssembly.h"
57 #include "WebAssemblySubtarget.h"
58 #include "llvm/CodeGen/MachineInstrBuilder.h"
59 #include "llvm/Support/Debug.h"
60 using namespace llvm;
61 
62 #define DEBUG_TYPE "wasm-fix-irreducible-control-flow"
63 
64 namespace {
65 
66 using BlockVector = SmallVector<MachineBasicBlock *, 4>;
67 using BlockSet = SmallPtrSet<MachineBasicBlock *, 4>;
68 
69 // Calculates reachability in a region. Ignores branches to blocks outside of
70 // the region, and ignores branches to the region entry (for the case where
71 // the region is the inner part of a loop).
72 class ReachabilityGraph {
73 public:
ReachabilityGraph(MachineBasicBlock * Entry,const BlockSet & Blocks)74   ReachabilityGraph(MachineBasicBlock *Entry, const BlockSet &Blocks)
75       : Entry(Entry), Blocks(Blocks) {
76 #ifndef NDEBUG
77     // The region must have a single entry.
78     for (auto *MBB : Blocks) {
79       if (MBB != Entry) {
80         for (auto *Pred : MBB->predecessors()) {
81           assert(inRegion(Pred));
82         }
83       }
84     }
85 #endif
86     calculate();
87   }
88 
canReach(MachineBasicBlock * From,MachineBasicBlock * To) const89   bool canReach(MachineBasicBlock *From, MachineBasicBlock *To) const {
90     assert(inRegion(From) && inRegion(To));
91     auto I = Reachable.find(From);
92     if (I == Reachable.end())
93       return false;
94     return I->second.count(To);
95   }
96 
97   // "Loopers" are blocks that are in a loop. We detect these by finding blocks
98   // that can reach themselves.
getLoopers() const99   const BlockSet &getLoopers() const { return Loopers; }
100 
101   // Get all blocks that are loop entries.
getLoopEntries() const102   const BlockSet &getLoopEntries() const { return LoopEntries; }
103 
104   // Get all blocks that enter a particular loop from outside.
getLoopEnterers(MachineBasicBlock * LoopEntry) const105   const BlockSet &getLoopEnterers(MachineBasicBlock *LoopEntry) const {
106     assert(inRegion(LoopEntry));
107     auto I = LoopEnterers.find(LoopEntry);
108     assert(I != LoopEnterers.end());
109     return I->second;
110   }
111 
112 private:
113   MachineBasicBlock *Entry;
114   const BlockSet &Blocks;
115 
116   BlockSet Loopers, LoopEntries;
117   DenseMap<MachineBasicBlock *, BlockSet> LoopEnterers;
118 
inRegion(MachineBasicBlock * MBB) const119   bool inRegion(MachineBasicBlock *MBB) const { return Blocks.count(MBB); }
120 
121   // Maps a block to all the other blocks it can reach.
122   DenseMap<MachineBasicBlock *, BlockSet> Reachable;
123 
calculate()124   void calculate() {
125     // Reachability computation work list. Contains pairs of recent additions
126     // (A, B) where we just added a link A => B.
127     using BlockPair = std::pair<MachineBasicBlock *, MachineBasicBlock *>;
128     SmallVector<BlockPair, 4> WorkList;
129 
130     // Add all relevant direct branches.
131     for (auto *MBB : Blocks) {
132       for (auto *Succ : MBB->successors()) {
133         if (Succ != Entry && inRegion(Succ)) {
134           Reachable[MBB].insert(Succ);
135           WorkList.emplace_back(MBB, Succ);
136         }
137       }
138     }
139 
140     while (!WorkList.empty()) {
141       MachineBasicBlock *MBB, *Succ;
142       std::tie(MBB, Succ) = WorkList.pop_back_val();
143       assert(inRegion(MBB) && Succ != Entry && inRegion(Succ));
144       if (MBB != Entry) {
145         // We recently added MBB => Succ, and that means we may have enabled
146         // Pred => MBB => Succ.
147         for (auto *Pred : MBB->predecessors()) {
148           if (Reachable[Pred].insert(Succ).second) {
149             WorkList.emplace_back(Pred, Succ);
150           }
151         }
152       }
153     }
154 
155     // Blocks that can return to themselves are in a loop.
156     for (auto *MBB : Blocks) {
157       if (canReach(MBB, MBB)) {
158         Loopers.insert(MBB);
159       }
160     }
161     assert(!Loopers.count(Entry));
162 
163     // Find the loop entries - loopers reachable from blocks not in that loop -
164     // and those outside blocks that reach them, the "loop enterers".
165     for (auto *Looper : Loopers) {
166       for (auto *Pred : Looper->predecessors()) {
167         // Pred can reach Looper. If Looper can reach Pred, it is in the loop;
168         // otherwise, it is a block that enters into the loop.
169         if (!canReach(Looper, Pred)) {
170           LoopEntries.insert(Looper);
171           LoopEnterers[Looper].insert(Pred);
172         }
173       }
174     }
175   }
176 };
177 
178 // Finds the blocks in a single-entry loop, given the loop entry and the
179 // list of blocks that enter the loop.
180 class LoopBlocks {
181 public:
LoopBlocks(MachineBasicBlock * Entry,const BlockSet & Enterers)182   LoopBlocks(MachineBasicBlock *Entry, const BlockSet &Enterers)
183       : Entry(Entry), Enterers(Enterers) {
184     calculate();
185   }
186 
getBlocks()187   BlockSet &getBlocks() { return Blocks; }
188 
189 private:
190   MachineBasicBlock *Entry;
191   const BlockSet &Enterers;
192 
193   BlockSet Blocks;
194 
calculate()195   void calculate() {
196     // Going backwards from the loop entry, if we ignore the blocks entering
197     // from outside, we will traverse all the blocks in the loop.
198     BlockVector WorkList;
199     BlockSet AddedToWorkList;
200     Blocks.insert(Entry);
201     for (auto *Pred : Entry->predecessors()) {
202       if (!Enterers.count(Pred)) {
203         WorkList.push_back(Pred);
204         AddedToWorkList.insert(Pred);
205       }
206     }
207 
208     while (!WorkList.empty()) {
209       auto *MBB = WorkList.pop_back_val();
210       assert(!Enterers.count(MBB));
211       if (Blocks.insert(MBB).second) {
212         for (auto *Pred : MBB->predecessors()) {
213           if (!AddedToWorkList.count(Pred)) {
214             WorkList.push_back(Pred);
215             AddedToWorkList.insert(Pred);
216           }
217         }
218       }
219     }
220   }
221 };
222 
223 class WebAssemblyFixIrreducibleControlFlow final : public MachineFunctionPass {
getPassName() const224   StringRef getPassName() const override {
225     return "WebAssembly Fix Irreducible Control Flow";
226   }
227 
228   bool runOnMachineFunction(MachineFunction &MF) override;
229 
230   bool processRegion(MachineBasicBlock *Entry, BlockSet &Blocks,
231                      MachineFunction &MF);
232 
233   void makeSingleEntryLoop(BlockSet &Entries, BlockSet &Blocks,
234                            MachineFunction &MF, const ReachabilityGraph &Graph);
235 
236 public:
237   static char ID; // Pass identification, replacement for typeid
WebAssemblyFixIrreducibleControlFlow()238   WebAssemblyFixIrreducibleControlFlow() : MachineFunctionPass(ID) {}
239 };
240 
processRegion(MachineBasicBlock * Entry,BlockSet & Blocks,MachineFunction & MF)241 bool WebAssemblyFixIrreducibleControlFlow::processRegion(
242     MachineBasicBlock *Entry, BlockSet &Blocks, MachineFunction &MF) {
243   bool Changed = false;
244 
245   // Remove irreducibility before processing child loops, which may take
246   // multiple iterations.
247   while (true) {
248     ReachabilityGraph Graph(Entry, Blocks);
249 
250     bool FoundIrreducibility = false;
251 
252     for (auto *LoopEntry : Graph.getLoopEntries()) {
253       // Find mutual entries - all entries which can reach this one, and
254       // are reached by it (that always includes LoopEntry itself). All mutual
255       // entries must be in the same loop, so if we have more than one, then we
256       // have irreducible control flow.
257       //
258       // Note that irreducibility may involve inner loops, e.g. imagine A
259       // starts one loop, and it has B inside it which starts an inner loop.
260       // If we add a branch from all the way on the outside to B, then in a
261       // sense B is no longer an "inner" loop, semantically speaking. We will
262       // fix that irreducibility by adding a block that dispatches to either
263       // either A or B, so B will no longer be an inner loop in our output.
264       // (A fancier approach might try to keep it as such.)
265       //
266       // Note that we still need to recurse into inner loops later, to handle
267       // the case where the irreducibility is entirely nested - we would not
268       // be able to identify that at this point, since the enclosing loop is
269       // a group of blocks all of whom can reach each other. (We'll see the
270       // irreducibility after removing branches to the top of that enclosing
271       // loop.)
272       BlockSet MutualLoopEntries;
273       MutualLoopEntries.insert(LoopEntry);
274       for (auto *OtherLoopEntry : Graph.getLoopEntries()) {
275         if (OtherLoopEntry != LoopEntry &&
276             Graph.canReach(LoopEntry, OtherLoopEntry) &&
277             Graph.canReach(OtherLoopEntry, LoopEntry)) {
278           MutualLoopEntries.insert(OtherLoopEntry);
279         }
280       }
281 
282       if (MutualLoopEntries.size() > 1) {
283         makeSingleEntryLoop(MutualLoopEntries, Blocks, MF, Graph);
284         FoundIrreducibility = true;
285         Changed = true;
286         break;
287       }
288     }
289     // Only go on to actually process the inner loops when we are done
290     // removing irreducible control flow and changing the graph. Modifying
291     // the graph as we go is possible, and that might let us avoid looking at
292     // the already-fixed loops again if we are careful, but all that is
293     // complex and bug-prone. Since irreducible loops are rare, just starting
294     // another iteration is best.
295     if (FoundIrreducibility) {
296       continue;
297     }
298 
299     for (auto *LoopEntry : Graph.getLoopEntries()) {
300       LoopBlocks InnerBlocks(LoopEntry, Graph.getLoopEnterers(LoopEntry));
301       // Each of these calls to processRegion may change the graph, but are
302       // guaranteed not to interfere with each other. The only changes we make
303       // to the graph are to add blocks on the way to a loop entry. As the
304       // loops are disjoint, that means we may only alter branches that exit
305       // another loop, which are ignored when recursing into that other loop
306       // anyhow.
307       if (processRegion(LoopEntry, InnerBlocks.getBlocks(), MF)) {
308         Changed = true;
309       }
310     }
311 
312     return Changed;
313   }
314 }
315 
316 // Given a set of entries to a single loop, create a single entry for that
317 // loop by creating a dispatch block for them, routing control flow using
318 // a helper variable. Also updates Blocks with any new blocks created, so
319 // that we properly track all the blocks in the region. But this does not update
320 // ReachabilityGraph; this will be updated in the caller of this function as
321 // needed.
makeSingleEntryLoop(BlockSet & Entries,BlockSet & Blocks,MachineFunction & MF,const ReachabilityGraph & Graph)322 void WebAssemblyFixIrreducibleControlFlow::makeSingleEntryLoop(
323     BlockSet &Entries, BlockSet &Blocks, MachineFunction &MF,
324     const ReachabilityGraph &Graph) {
325   assert(Entries.size() >= 2);
326 
327   // Sort the entries to ensure a deterministic build.
328   BlockVector SortedEntries(Entries.begin(), Entries.end());
329   llvm::sort(SortedEntries,
330              [&](const MachineBasicBlock *A, const MachineBasicBlock *B) {
331                auto ANum = A->getNumber();
332                auto BNum = B->getNumber();
333                return ANum < BNum;
334              });
335 
336 #ifndef NDEBUG
337   for (auto Block : SortedEntries)
338     assert(Block->getNumber() != -1);
339   if (SortedEntries.size() > 1) {
340     for (auto I = SortedEntries.begin(), E = SortedEntries.end() - 1; I != E;
341          ++I) {
342       auto ANum = (*I)->getNumber();
343       auto BNum = (*(std::next(I)))->getNumber();
344       assert(ANum != BNum);
345     }
346   }
347 #endif
348 
349   // Create a dispatch block which will contain a jump table to the entries.
350   MachineBasicBlock *Dispatch = MF.CreateMachineBasicBlock();
351   MF.insert(MF.end(), Dispatch);
352   Blocks.insert(Dispatch);
353 
354   // Add the jump table.
355   const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
356   MachineInstrBuilder MIB =
357       BuildMI(Dispatch, DebugLoc(), TII.get(WebAssembly::BR_TABLE_I32));
358 
359   // Add the register which will be used to tell the jump table which block to
360   // jump to.
361   MachineRegisterInfo &MRI = MF.getRegInfo();
362   Register Reg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
363   MIB.addReg(Reg);
364 
365   // Compute the indices in the superheader, one for each bad block, and
366   // add them as successors.
367   DenseMap<MachineBasicBlock *, unsigned> Indices;
368   for (auto *Entry : SortedEntries) {
369     auto Pair = Indices.insert(std::make_pair(Entry, 0));
370     assert(Pair.second);
371 
372     unsigned Index = MIB.getInstr()->getNumExplicitOperands() - 1;
373     Pair.first->second = Index;
374 
375     MIB.addMBB(Entry);
376     Dispatch->addSuccessor(Entry);
377   }
378 
379   // Rewrite the problematic successors for every block that wants to reach
380   // the bad blocks. For simplicity, we just introduce a new block for every
381   // edge we need to rewrite. (Fancier things are possible.)
382 
383   BlockVector AllPreds;
384   for (auto *Entry : SortedEntries) {
385     for (auto *Pred : Entry->predecessors()) {
386       if (Pred != Dispatch) {
387         AllPreds.push_back(Pred);
388       }
389     }
390   }
391 
392   // This set stores predecessors within this loop.
393   DenseSet<MachineBasicBlock *> InLoop;
394   for (auto *Pred : AllPreds) {
395     for (auto *Entry : Pred->successors()) {
396       if (!Entries.count(Entry))
397         continue;
398       if (Graph.canReach(Entry, Pred)) {
399         InLoop.insert(Pred);
400         break;
401       }
402     }
403   }
404 
405   // Record if each entry has a layout predecessor. This map stores
406   // <<Predecessor is within the loop?, loop entry>, layout predecessor>
407   std::map<std::pair<bool, MachineBasicBlock *>, MachineBasicBlock *>
408       EntryToLayoutPred;
409   for (auto *Pred : AllPreds)
410     for (auto *Entry : Pred->successors())
411       if (Entries.count(Entry) && Pred->isLayoutSuccessor(Entry))
412         EntryToLayoutPred[std::make_pair(InLoop.count(Pred), Entry)] = Pred;
413 
414   // We need to create at most two routing blocks per entry: one for
415   // predecessors outside the loop and one for predecessors inside the loop.
416   // This map stores
417   // <<Predecessor is within the loop?, loop entry>, routing block>
418   std::map<std::pair<bool, MachineBasicBlock *>, MachineBasicBlock *> Map;
419   for (auto *Pred : AllPreds) {
420     bool PredInLoop = InLoop.count(Pred);
421     for (auto *Entry : Pred->successors()) {
422       if (!Entries.count(Entry) ||
423           Map.count(std::make_pair(InLoop.count(Pred), Entry)))
424         continue;
425       // If there exists a layout predecessor of this entry and this predecessor
426       // is not that, we rather create a routing block after that layout
427       // predecessor to save a branch.
428       if (EntryToLayoutPred.count(std::make_pair(PredInLoop, Entry)) &&
429           EntryToLayoutPred[std::make_pair(PredInLoop, Entry)] != Pred)
430         continue;
431 
432       // This is a successor we need to rewrite.
433       MachineBasicBlock *Routing = MF.CreateMachineBasicBlock();
434       MF.insert(Pred->isLayoutSuccessor(Entry)
435                     ? MachineFunction::iterator(Entry)
436                     : MF.end(),
437                 Routing);
438       Blocks.insert(Routing);
439 
440       // Set the jump table's register of the index of the block we wish to
441       // jump to, and jump to the jump table.
442       BuildMI(Routing, DebugLoc(), TII.get(WebAssembly::CONST_I32), Reg)
443           .addImm(Indices[Entry]);
444       BuildMI(Routing, DebugLoc(), TII.get(WebAssembly::BR)).addMBB(Dispatch);
445       Routing->addSuccessor(Dispatch);
446       Map[std::make_pair(PredInLoop, Entry)] = Routing;
447     }
448   }
449 
450   for (auto *Pred : AllPreds) {
451     bool PredInLoop = InLoop.count(Pred);
452     // Remap the terminator operands and the successor list.
453     for (MachineInstr &Term : Pred->terminators())
454       for (auto &Op : Term.explicit_uses())
455         if (Op.isMBB() && Indices.count(Op.getMBB()))
456           Op.setMBB(Map[std::make_pair(PredInLoop, Op.getMBB())]);
457 
458     for (auto *Succ : Pred->successors()) {
459       if (!Entries.count(Succ))
460         continue;
461       auto *Routing = Map[std::make_pair(PredInLoop, Succ)];
462       Pred->replaceSuccessor(Succ, Routing);
463     }
464   }
465 
466   // Create a fake default label, because br_table requires one.
467   MIB.addMBB(MIB.getInstr()
468                  ->getOperand(MIB.getInstr()->getNumExplicitOperands() - 1)
469                  .getMBB());
470 }
471 
472 } // end anonymous namespace
473 
474 char WebAssemblyFixIrreducibleControlFlow::ID = 0;
475 INITIALIZE_PASS(WebAssemblyFixIrreducibleControlFlow, DEBUG_TYPE,
476                 "Removes irreducible control flow", false, false)
477 
createWebAssemblyFixIrreducibleControlFlow()478 FunctionPass *llvm::createWebAssemblyFixIrreducibleControlFlow() {
479   return new WebAssemblyFixIrreducibleControlFlow();
480 }
481 
runOnMachineFunction(MachineFunction & MF)482 bool WebAssemblyFixIrreducibleControlFlow::runOnMachineFunction(
483     MachineFunction &MF) {
484   LLVM_DEBUG(dbgs() << "********** Fixing Irreducible Control Flow **********\n"
485                        "********** Function: "
486                     << MF.getName() << '\n');
487 
488   // Start the recursive process on the entire function body.
489   BlockSet AllBlocks;
490   for (auto &MBB : MF) {
491     AllBlocks.insert(&MBB);
492   }
493 
494   if (LLVM_UNLIKELY(processRegion(&*MF.begin(), AllBlocks, MF))) {
495     // We rewrote part of the function; recompute relevant things.
496     MF.getRegInfo().invalidateLiveness();
497     MF.RenumberBlocks();
498     return true;
499   }
500 
501   return false;
502 }
503