1 //===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass promotes "by reference" arguments to be "by value" arguments.  In
10 // practice, this means looking for internal functions that have pointer
11 // arguments.  If it can prove, through the use of alias analysis, that an
12 // argument is *only* loaded, then it can pass the value into the function
13 // instead of the address of the value.  This can cause recursive simplification
14 // of code and lead to the elimination of allocas (especially in C++ template
15 // code like the STL).
16 //
17 // This pass also handles aggregate arguments that are passed into a function,
18 // scalarizing them if the elements of the aggregate are only loaded.  Note that
19 // by default it refuses to scalarize aggregates which would require passing in
20 // more than three operands to the function, because passing thousands of
21 // operands for a large array or structure is unprofitable! This limit can be
22 // configured or disabled, however.
23 //
24 // Note that this transformation could also be done for arguments that are only
25 // stored to (returning the value instead), but does not currently.  This case
26 // would be best handled when and if LLVM begins supporting multiple return
27 // values from functions.
28 //
29 //===----------------------------------------------------------------------===//
30 
31 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
32 #include "llvm/ADT/DepthFirstIterator.h"
33 #include "llvm/ADT/None.h"
34 #include "llvm/ADT/Optional.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/ADT/SmallPtrSet.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/ADT/Statistic.h"
39 #include "llvm/ADT/StringExtras.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/AliasAnalysis.h"
42 #include "llvm/Analysis/AssumptionCache.h"
43 #include "llvm/Analysis/BasicAliasAnalysis.h"
44 #include "llvm/Analysis/CGSCCPassManager.h"
45 #include "llvm/Analysis/CallGraph.h"
46 #include "llvm/Analysis/CallGraphSCCPass.h"
47 #include "llvm/Analysis/LazyCallGraph.h"
48 #include "llvm/Analysis/Loads.h"
49 #include "llvm/Analysis/MemoryLocation.h"
50 #include "llvm/Analysis/TargetLibraryInfo.h"
51 #include "llvm/Analysis/TargetTransformInfo.h"
52 #include "llvm/IR/Argument.h"
53 #include "llvm/IR/Attributes.h"
54 #include "llvm/IR/BasicBlock.h"
55 #include "llvm/IR/CFG.h"
56 #include "llvm/IR/CallSite.h"
57 #include "llvm/IR/Constants.h"
58 #include "llvm/IR/DataLayout.h"
59 #include "llvm/IR/DerivedTypes.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/IRBuilder.h"
62 #include "llvm/IR/InstrTypes.h"
63 #include "llvm/IR/Instruction.h"
64 #include "llvm/IR/Instructions.h"
65 #include "llvm/IR/Metadata.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/NoFolder.h"
68 #include "llvm/IR/PassManager.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/Use.h"
71 #include "llvm/IR/User.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/InitializePasses.h"
74 #include "llvm/Pass.h"
75 #include "llvm/Support/Casting.h"
76 #include "llvm/Support/Debug.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Transforms/IPO.h"
79 #include <algorithm>
80 #include <cassert>
81 #include <cstdint>
82 #include <functional>
83 #include <iterator>
84 #include <map>
85 #include <set>
86 #include <string>
87 #include <utility>
88 #include <vector>
89 
90 using namespace llvm;
91 
92 #define DEBUG_TYPE "argpromotion"
93 
94 STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted");
95 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
96 STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted");
97 STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated");
98 
99 /// A vector used to hold the indices of a single GEP instruction
100 using IndicesVector = std::vector<uint64_t>;
101 
102 /// DoPromotion - This method actually performs the promotion of the specified
103 /// arguments, and returns the new function.  At this point, we know that it's
104 /// safe to do so.
105 static Function *
doPromotion(Function * F,SmallPtrSetImpl<Argument * > & ArgsToPromote,SmallPtrSetImpl<Argument * > & ByValArgsToTransform,Optional<function_ref<void (CallSite OldCS,CallSite NewCS)>> ReplaceCallSite)106 doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote,
107             SmallPtrSetImpl<Argument *> &ByValArgsToTransform,
108             Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>>
109                 ReplaceCallSite) {
110   // Start by computing a new prototype for the function, which is the same as
111   // the old function, but has modified arguments.
112   FunctionType *FTy = F->getFunctionType();
113   std::vector<Type *> Params;
114 
115   using ScalarizeTable = std::set<std::pair<Type *, IndicesVector>>;
116 
117   // ScalarizedElements - If we are promoting a pointer that has elements
118   // accessed out of it, keep track of which elements are accessed so that we
119   // can add one argument for each.
120   //
121   // Arguments that are directly loaded will have a zero element value here, to
122   // handle cases where there are both a direct load and GEP accesses.
123   std::map<Argument *, ScalarizeTable> ScalarizedElements;
124 
125   // OriginalLoads - Keep track of a representative load instruction from the
126   // original function so that we can tell the alias analysis implementation
127   // what the new GEP/Load instructions we are inserting look like.
128   // We need to keep the original loads for each argument and the elements
129   // of the argument that are accessed.
130   std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads;
131 
132   // Attribute - Keep track of the parameter attributes for the arguments
133   // that we are *not* promoting. For the ones that we do promote, the parameter
134   // attributes are lost
135   SmallVector<AttributeSet, 8> ArgAttrVec;
136   AttributeList PAL = F->getAttributes();
137 
138   // First, determine the new argument list
139   unsigned ArgNo = 0;
140   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
141        ++I, ++ArgNo) {
142     if (ByValArgsToTransform.count(&*I)) {
143       // Simple byval argument? Just add all the struct element types.
144       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
145       StructType *STy = cast<StructType>(AgTy);
146       Params.insert(Params.end(), STy->element_begin(), STy->element_end());
147       ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(),
148                         AttributeSet());
149       ++NumByValArgsPromoted;
150     } else if (!ArgsToPromote.count(&*I)) {
151       // Unchanged argument
152       Params.push_back(I->getType());
153       ArgAttrVec.push_back(PAL.getParamAttributes(ArgNo));
154     } else if (I->use_empty()) {
155       // Dead argument (which are always marked as promotable)
156       ++NumArgumentsDead;
157 
158       // There may be remaining metadata uses of the argument for things like
159       // llvm.dbg.value. Replace them with undef.
160       I->replaceAllUsesWith(UndefValue::get(I->getType()));
161     } else {
162       // Okay, this is being promoted. This means that the only uses are loads
163       // or GEPs which are only used by loads
164 
165       // In this table, we will track which indices are loaded from the argument
166       // (where direct loads are tracked as no indices).
167       ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
168       for (User *U : I->users()) {
169         Instruction *UI = cast<Instruction>(U);
170         Type *SrcTy;
171         if (LoadInst *L = dyn_cast<LoadInst>(UI))
172           SrcTy = L->getType();
173         else
174           SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType();
175         IndicesVector Indices;
176         Indices.reserve(UI->getNumOperands() - 1);
177         // Since loads will only have a single operand, and GEPs only a single
178         // non-index operand, this will record direct loads without any indices,
179         // and gep+loads with the GEP indices.
180         for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end();
181              II != IE; ++II)
182           Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
183         // GEPs with a single 0 index can be merged with direct loads
184         if (Indices.size() == 1 && Indices.front() == 0)
185           Indices.clear();
186         ArgIndices.insert(std::make_pair(SrcTy, Indices));
187         LoadInst *OrigLoad;
188         if (LoadInst *L = dyn_cast<LoadInst>(UI))
189           OrigLoad = L;
190         else
191           // Take any load, we will use it only to update Alias Analysis
192           OrigLoad = cast<LoadInst>(UI->user_back());
193         OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad;
194       }
195 
196       // Add a parameter to the function for each element passed in.
197       for (const auto &ArgIndex : ArgIndices) {
198         // not allowed to dereference ->begin() if size() is 0
199         Params.push_back(GetElementPtrInst::getIndexedType(
200             cast<PointerType>(I->getType()->getScalarType())->getElementType(),
201             ArgIndex.second));
202         ArgAttrVec.push_back(AttributeSet());
203         assert(Params.back());
204       }
205 
206       if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty())
207         ++NumArgumentsPromoted;
208       else
209         ++NumAggregatesPromoted;
210     }
211   }
212 
213   Type *RetTy = FTy->getReturnType();
214 
215   // Construct the new function type using the new arguments.
216   FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
217 
218   // Create the new function body and insert it into the module.
219   Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace(),
220                                   F->getName());
221   NF->copyAttributesFrom(F);
222 
223   // Patch the pointer to LLVM function in debug info descriptor.
224   NF->setSubprogram(F->getSubprogram());
225   F->setSubprogram(nullptr);
226 
227   LLVM_DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
228                     << "From: " << *F);
229 
230   // Recompute the parameter attributes list based on the new arguments for
231   // the function.
232   NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttributes(),
233                                        PAL.getRetAttributes(), ArgAttrVec));
234   ArgAttrVec.clear();
235 
236   F->getParent()->getFunctionList().insert(F->getIterator(), NF);
237   NF->takeName(F);
238 
239   // Loop over all of the callers of the function, transforming the call sites
240   // to pass in the loaded pointers.
241   //
242   SmallVector<Value *, 16> Args;
243   while (!F->use_empty()) {
244     CallSite CS(F->user_back());
245     assert(CS.getCalledFunction() == F);
246     Instruction *Call = CS.getInstruction();
247     const AttributeList &CallPAL = CS.getAttributes();
248     IRBuilder<NoFolder> IRB(Call);
249 
250     // Loop over the operands, inserting GEP and loads in the caller as
251     // appropriate.
252     CallSite::arg_iterator AI = CS.arg_begin();
253     ArgNo = 0;
254     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
255          ++I, ++AI, ++ArgNo)
256       if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
257         Args.push_back(*AI); // Unmodified argument
258         ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
259       } else if (ByValArgsToTransform.count(&*I)) {
260         // Emit a GEP and load for each element of the struct.
261         Type *AgTy = cast<PointerType>(I->getType())->getElementType();
262         StructType *STy = cast<StructType>(AgTy);
263         Value *Idxs[2] = {
264             ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr};
265         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
266           Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
267           auto *Idx =
268               IRB.CreateGEP(STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i));
269           // TODO: Tell AA about the new values?
270           Args.push_back(IRB.CreateLoad(STy->getElementType(i), Idx,
271                                         Idx->getName() + ".val"));
272           ArgAttrVec.push_back(AttributeSet());
273         }
274       } else if (!I->use_empty()) {
275         // Non-dead argument: insert GEPs and loads as appropriate.
276         ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
277         // Store the Value* version of the indices in here, but declare it now
278         // for reuse.
279         std::vector<Value *> Ops;
280         for (const auto &ArgIndex : ArgIndices) {
281           Value *V = *AI;
282           LoadInst *OrigLoad =
283               OriginalLoads[std::make_pair(&*I, ArgIndex.second)];
284           if (!ArgIndex.second.empty()) {
285             Ops.reserve(ArgIndex.second.size());
286             Type *ElTy = V->getType();
287             for (auto II : ArgIndex.second) {
288               // Use i32 to index structs, and i64 for others (pointers/arrays).
289               // This satisfies GEP constraints.
290               Type *IdxTy =
291                   (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext())
292                                       : Type::getInt64Ty(F->getContext()));
293               Ops.push_back(ConstantInt::get(IdxTy, II));
294               // Keep track of the type we're currently indexing.
295               if (auto *ElPTy = dyn_cast<PointerType>(ElTy))
296                 ElTy = ElPTy->getElementType();
297               else
298                 ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(II);
299             }
300             // And create a GEP to extract those indices.
301             V = IRB.CreateGEP(ArgIndex.first, V, Ops, V->getName() + ".idx");
302             Ops.clear();
303           }
304           // Since we're replacing a load make sure we take the alignment
305           // of the previous load.
306           LoadInst *newLoad =
307               IRB.CreateLoad(OrigLoad->getType(), V, V->getName() + ".val");
308           newLoad->setAlignment(MaybeAlign(OrigLoad->getAlignment()));
309           // Transfer the AA info too.
310           AAMDNodes AAInfo;
311           OrigLoad->getAAMetadata(AAInfo);
312           newLoad->setAAMetadata(AAInfo);
313 
314           Args.push_back(newLoad);
315           ArgAttrVec.push_back(AttributeSet());
316         }
317       }
318 
319     // Push any varargs arguments on the list.
320     for (; AI != CS.arg_end(); ++AI, ++ArgNo) {
321       Args.push_back(*AI);
322       ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
323     }
324 
325     SmallVector<OperandBundleDef, 1> OpBundles;
326     CS.getOperandBundlesAsDefs(OpBundles);
327 
328     CallSite NewCS;
329     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
330       NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
331                                  Args, OpBundles, "", Call);
332     } else {
333       auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", Call);
334       NewCall->setTailCallKind(cast<CallInst>(Call)->getTailCallKind());
335       NewCS = NewCall;
336     }
337     NewCS.setCallingConv(CS.getCallingConv());
338     NewCS.setAttributes(
339         AttributeList::get(F->getContext(), CallPAL.getFnAttributes(),
340                            CallPAL.getRetAttributes(), ArgAttrVec));
341     NewCS->setDebugLoc(Call->getDebugLoc());
342     uint64_t W;
343     if (Call->extractProfTotalWeight(W))
344       NewCS->setProfWeight(W);
345     Args.clear();
346     ArgAttrVec.clear();
347 
348     // Update the callgraph to know that the callsite has been transformed.
349     if (ReplaceCallSite)
350       (*ReplaceCallSite)(CS, NewCS);
351 
352     if (!Call->use_empty()) {
353       Call->replaceAllUsesWith(NewCS.getInstruction());
354       NewCS->takeName(Call);
355     }
356 
357     // Finally, remove the old call from the program, reducing the use-count of
358     // F.
359     Call->eraseFromParent();
360   }
361 
362   const DataLayout &DL = F->getParent()->getDataLayout();
363 
364   // Since we have now created the new function, splice the body of the old
365   // function right into the new function, leaving the old rotting hulk of the
366   // function empty.
367   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
368 
369   // Loop over the argument list, transferring uses of the old arguments over to
370   // the new arguments, also transferring over the names as well.
371   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
372                               I2 = NF->arg_begin();
373        I != E; ++I) {
374     if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
375       // If this is an unmodified argument, move the name and users over to the
376       // new version.
377       I->replaceAllUsesWith(&*I2);
378       I2->takeName(&*I);
379       ++I2;
380       continue;
381     }
382 
383     if (ByValArgsToTransform.count(&*I)) {
384       // In the callee, we create an alloca, and store each of the new incoming
385       // arguments into the alloca.
386       Instruction *InsertPt = &NF->begin()->front();
387 
388       // Just add all the struct element types.
389       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
390       Value *TheAlloca =
391           new AllocaInst(AgTy, DL.getAllocaAddrSpace(), nullptr,
392                          MaybeAlign(I->getParamAlignment()), "", InsertPt);
393       StructType *STy = cast<StructType>(AgTy);
394       Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0),
395                         nullptr};
396 
397       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
398         Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
399         Value *Idx = GetElementPtrInst::Create(
400             AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i),
401             InsertPt);
402         I2->setName(I->getName() + "." + Twine(i));
403         new StoreInst(&*I2++, Idx, InsertPt);
404       }
405 
406       // Anything that used the arg should now use the alloca.
407       I->replaceAllUsesWith(TheAlloca);
408       TheAlloca->takeName(&*I);
409 
410       // If the alloca is used in a call, we must clear the tail flag since
411       // the callee now uses an alloca from the caller.
412       for (User *U : TheAlloca->users()) {
413         CallInst *Call = dyn_cast<CallInst>(U);
414         if (!Call)
415           continue;
416         Call->setTailCall(false);
417       }
418       continue;
419     }
420 
421     if (I->use_empty())
422       continue;
423 
424     // Otherwise, if we promoted this argument, then all users are load
425     // instructions (or GEPs with only load users), and all loads should be
426     // using the new argument that we added.
427     ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
428 
429     while (!I->use_empty()) {
430       if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) {
431         assert(ArgIndices.begin()->second.empty() &&
432                "Load element should sort to front!");
433         I2->setName(I->getName() + ".val");
434         LI->replaceAllUsesWith(&*I2);
435         LI->eraseFromParent();
436         LLVM_DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
437                           << "' in function '" << F->getName() << "'\n");
438       } else {
439         GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back());
440         IndicesVector Operands;
441         Operands.reserve(GEP->getNumIndices());
442         for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
443              II != IE; ++II)
444           Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
445 
446         // GEPs with a single 0 index can be merged with direct loads
447         if (Operands.size() == 1 && Operands.front() == 0)
448           Operands.clear();
449 
450         Function::arg_iterator TheArg = I2;
451         for (ScalarizeTable::iterator It = ArgIndices.begin();
452              It->second != Operands; ++It, ++TheArg) {
453           assert(It != ArgIndices.end() && "GEP not handled??");
454         }
455 
456         std::string NewName = I->getName();
457         for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
458           NewName += "." + utostr(Operands[i]);
459         }
460         NewName += ".val";
461         TheArg->setName(NewName);
462 
463         LLVM_DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
464                           << "' of function '" << NF->getName() << "'\n");
465 
466         // All of the uses must be load instructions.  Replace them all with
467         // the argument specified by ArgNo.
468         while (!GEP->use_empty()) {
469           LoadInst *L = cast<LoadInst>(GEP->user_back());
470           L->replaceAllUsesWith(&*TheArg);
471           L->eraseFromParent();
472         }
473         GEP->eraseFromParent();
474       }
475     }
476 
477     // Increment I2 past all of the arguments added for this promoted pointer.
478     std::advance(I2, ArgIndices.size());
479   }
480 
481   return NF;
482 }
483 
484 /// Return true if we can prove that all callees pass in a valid pointer for the
485 /// specified function argument.
allCallersPassValidPointerForArgument(Argument * Arg,Type * Ty)486 static bool allCallersPassValidPointerForArgument(Argument *Arg, Type *Ty) {
487   Function *Callee = Arg->getParent();
488   const DataLayout &DL = Callee->getParent()->getDataLayout();
489 
490   unsigned ArgNo = Arg->getArgNo();
491 
492   // Look at all call sites of the function.  At this point we know we only have
493   // direct callees.
494   for (User *U : Callee->users()) {
495     CallSite CS(U);
496     assert(CS && "Should only have direct calls!");
497 
498     if (!isDereferenceablePointer(CS.getArgument(ArgNo), Ty, DL))
499       return false;
500   }
501   return true;
502 }
503 
504 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size
505 /// that is greater than or equal to the size of prefix, and each of the
506 /// elements in Prefix is the same as the corresponding elements in Longer.
507 ///
508 /// This means it also returns true when Prefix and Longer are equal!
isPrefix(const IndicesVector & Prefix,const IndicesVector & Longer)509 static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) {
510   if (Prefix.size() > Longer.size())
511     return false;
512   return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
513 }
514 
515 /// Checks if Indices, or a prefix of Indices, is in Set.
prefixIn(const IndicesVector & Indices,std::set<IndicesVector> & Set)516 static bool prefixIn(const IndicesVector &Indices,
517                      std::set<IndicesVector> &Set) {
518   std::set<IndicesVector>::iterator Low;
519   Low = Set.upper_bound(Indices);
520   if (Low != Set.begin())
521     Low--;
522   // Low is now the last element smaller than or equal to Indices. This means
523   // it points to a prefix of Indices (possibly Indices itself), if such
524   // prefix exists.
525   //
526   // This load is safe if any prefix of its operands is safe to load.
527   return Low != Set.end() && isPrefix(*Low, Indices);
528 }
529 
530 /// Mark the given indices (ToMark) as safe in the given set of indices
531 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
532 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe
533 /// already. Furthermore, any indices that Indices is itself a prefix of, are
534 /// removed from Safe (since they are implicitely safe because of Indices now).
markIndicesSafe(const IndicesVector & ToMark,std::set<IndicesVector> & Safe)535 static void markIndicesSafe(const IndicesVector &ToMark,
536                             std::set<IndicesVector> &Safe) {
537   std::set<IndicesVector>::iterator Low;
538   Low = Safe.upper_bound(ToMark);
539   // Guard against the case where Safe is empty
540   if (Low != Safe.begin())
541     Low--;
542   // Low is now the last element smaller than or equal to Indices. This
543   // means it points to a prefix of Indices (possibly Indices itself), if
544   // such prefix exists.
545   if (Low != Safe.end()) {
546     if (isPrefix(*Low, ToMark))
547       // If there is already a prefix of these indices (or exactly these
548       // indices) marked a safe, don't bother adding these indices
549       return;
550 
551     // Increment Low, so we can use it as a "insert before" hint
552     ++Low;
553   }
554   // Insert
555   Low = Safe.insert(Low, ToMark);
556   ++Low;
557   // If there we're a prefix of longer index list(s), remove those
558   std::set<IndicesVector>::iterator End = Safe.end();
559   while (Low != End && isPrefix(ToMark, *Low)) {
560     std::set<IndicesVector>::iterator Remove = Low;
561     ++Low;
562     Safe.erase(Remove);
563   }
564 }
565 
566 /// isSafeToPromoteArgument - As you might guess from the name of this method,
567 /// it checks to see if it is both safe and useful to promote the argument.
568 /// This method limits promotion of aggregates to only promote up to three
569 /// elements of the aggregate in order to avoid exploding the number of
570 /// arguments passed in.
isSafeToPromoteArgument(Argument * Arg,Type * ByValTy,AAResults & AAR,unsigned MaxElements)571 static bool isSafeToPromoteArgument(Argument *Arg, Type *ByValTy, AAResults &AAR,
572                                     unsigned MaxElements) {
573   using GEPIndicesSet = std::set<IndicesVector>;
574 
575   // Quick exit for unused arguments
576   if (Arg->use_empty())
577     return true;
578 
579   // We can only promote this argument if all of the uses are loads, or are GEP
580   // instructions (with constant indices) that are subsequently loaded.
581   //
582   // Promoting the argument causes it to be loaded in the caller
583   // unconditionally. This is only safe if we can prove that either the load
584   // would have happened in the callee anyway (ie, there is a load in the entry
585   // block) or the pointer passed in at every call site is guaranteed to be
586   // valid.
587   // In the former case, invalid loads can happen, but would have happened
588   // anyway, in the latter case, invalid loads won't happen. This prevents us
589   // from introducing an invalid load that wouldn't have happened in the
590   // original code.
591   //
592   // This set will contain all sets of indices that are loaded in the entry
593   // block, and thus are safe to unconditionally load in the caller.
594   GEPIndicesSet SafeToUnconditionallyLoad;
595 
596   // This set contains all the sets of indices that we are planning to promote.
597   // This makes it possible to limit the number of arguments added.
598   GEPIndicesSet ToPromote;
599 
600   // If the pointer is always valid, any load with first index 0 is valid.
601 
602   if (ByValTy)
603     SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
604 
605   // Whenever a new underlying type for the operand is found, make sure it's
606   // consistent with the GEPs and loads we've already seen and, if necessary,
607   // use it to see if all incoming pointers are valid (which implies the 0-index
608   // is safe).
609   Type *BaseTy = ByValTy;
610   auto UpdateBaseTy = [&](Type *NewBaseTy) {
611     if (BaseTy)
612       return BaseTy == NewBaseTy;
613 
614     BaseTy = NewBaseTy;
615     if (allCallersPassValidPointerForArgument(Arg, BaseTy)) {
616       assert(SafeToUnconditionallyLoad.empty());
617       SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
618     }
619 
620     return true;
621   };
622 
623   // First, iterate the entry block and mark loads of (geps of) arguments as
624   // safe.
625   BasicBlock &EntryBlock = Arg->getParent()->front();
626   // Declare this here so we can reuse it
627   IndicesVector Indices;
628   for (Instruction &I : EntryBlock)
629     if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
630       Value *V = LI->getPointerOperand();
631       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
632         V = GEP->getPointerOperand();
633         if (V == Arg) {
634           // This load actually loads (part of) Arg? Check the indices then.
635           Indices.reserve(GEP->getNumIndices());
636           for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
637                II != IE; ++II)
638             if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
639               Indices.push_back(CI->getSExtValue());
640             else
641               // We found a non-constant GEP index for this argument? Bail out
642               // right away, can't promote this argument at all.
643               return false;
644 
645           if (!UpdateBaseTy(GEP->getSourceElementType()))
646             return false;
647 
648           // Indices checked out, mark them as safe
649           markIndicesSafe(Indices, SafeToUnconditionallyLoad);
650           Indices.clear();
651         }
652       } else if (V == Arg) {
653         // Direct loads are equivalent to a GEP with a single 0 index.
654         markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
655 
656         if (BaseTy && LI->getType() != BaseTy)
657           return false;
658 
659         BaseTy = LI->getType();
660       }
661     }
662 
663   // Now, iterate all uses of the argument to see if there are any uses that are
664   // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
665   SmallVector<LoadInst *, 16> Loads;
666   IndicesVector Operands;
667   for (Use &U : Arg->uses()) {
668     User *UR = U.getUser();
669     Operands.clear();
670     if (LoadInst *LI = dyn_cast<LoadInst>(UR)) {
671       // Don't hack volatile/atomic loads
672       if (!LI->isSimple())
673         return false;
674       Loads.push_back(LI);
675       // Direct loads are equivalent to a GEP with a zero index and then a load.
676       Operands.push_back(0);
677 
678       if (!UpdateBaseTy(LI->getType()))
679         return false;
680     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) {
681       if (GEP->use_empty()) {
682         // Dead GEP's cause trouble later.  Just remove them if we run into
683         // them.
684         GEP->eraseFromParent();
685         // TODO: This runs the above loop over and over again for dead GEPs
686         // Couldn't we just do increment the UI iterator earlier and erase the
687         // use?
688         return isSafeToPromoteArgument(Arg, ByValTy, AAR, MaxElements);
689       }
690 
691       if (!UpdateBaseTy(GEP->getSourceElementType()))
692         return false;
693 
694       // Ensure that all of the indices are constants.
695       for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end(); i != e;
696            ++i)
697         if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
698           Operands.push_back(C->getSExtValue());
699         else
700           return false; // Not a constant operand GEP!
701 
702       // Ensure that the only users of the GEP are load instructions.
703       for (User *GEPU : GEP->users())
704         if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) {
705           // Don't hack volatile/atomic loads
706           if (!LI->isSimple())
707             return false;
708           Loads.push_back(LI);
709         } else {
710           // Other uses than load?
711           return false;
712         }
713     } else {
714       return false; // Not a load or a GEP.
715     }
716 
717     // Now, see if it is safe to promote this load / loads of this GEP. Loading
718     // is safe if Operands, or a prefix of Operands, is marked as safe.
719     if (!prefixIn(Operands, SafeToUnconditionallyLoad))
720       return false;
721 
722     // See if we are already promoting a load with these indices. If not, check
723     // to make sure that we aren't promoting too many elements.  If so, nothing
724     // to do.
725     if (ToPromote.find(Operands) == ToPromote.end()) {
726       if (MaxElements > 0 && ToPromote.size() == MaxElements) {
727         LLVM_DEBUG(dbgs() << "argpromotion not promoting argument '"
728                           << Arg->getName()
729                           << "' because it would require adding more "
730                           << "than " << MaxElements
731                           << " arguments to the function.\n");
732         // We limit aggregate promotion to only promoting up to a fixed number
733         // of elements of the aggregate.
734         return false;
735       }
736       ToPromote.insert(std::move(Operands));
737     }
738   }
739 
740   if (Loads.empty())
741     return true; // No users, this is a dead argument.
742 
743   // Okay, now we know that the argument is only used by load instructions and
744   // it is safe to unconditionally perform all of them. Use alias analysis to
745   // check to see if the pointer is guaranteed to not be modified from entry of
746   // the function to each of the load instructions.
747 
748   // Because there could be several/many load instructions, remember which
749   // blocks we know to be transparent to the load.
750   df_iterator_default_set<BasicBlock *, 16> TranspBlocks;
751 
752   for (LoadInst *Load : Loads) {
753     // Check to see if the load is invalidated from the start of the block to
754     // the load itself.
755     BasicBlock *BB = Load->getParent();
756 
757     MemoryLocation Loc = MemoryLocation::get(Load);
758     if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod))
759       return false; // Pointer is invalidated!
760 
761     // Now check every path from the entry block to the load for transparency.
762     // To do this, we perform a depth first search on the inverse CFG from the
763     // loading block.
764     for (BasicBlock *P : predecessors(BB)) {
765       for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
766         if (AAR.canBasicBlockModify(*TranspBB, Loc))
767           return false;
768     }
769   }
770 
771   // If the path from the entry of the function to each load is free of
772   // instructions that potentially invalidate the load, we can make the
773   // transformation!
774   return true;
775 }
776 
777 /// Checks if a type could have padding bytes.
isDenselyPacked(Type * type,const DataLayout & DL)778 static bool isDenselyPacked(Type *type, const DataLayout &DL) {
779   // There is no size information, so be conservative.
780   if (!type->isSized())
781     return false;
782 
783   // If the alloc size is not equal to the storage size, then there are padding
784   // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
785   if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type))
786     return false;
787 
788   if (!isa<CompositeType>(type))
789     return true;
790 
791   // For homogenous sequential types, check for padding within members.
792   if (SequentialType *seqTy = dyn_cast<SequentialType>(type))
793     return isDenselyPacked(seqTy->getElementType(), DL);
794 
795   // Check for padding within and between elements of a struct.
796   StructType *StructTy = cast<StructType>(type);
797   const StructLayout *Layout = DL.getStructLayout(StructTy);
798   uint64_t StartPos = 0;
799   for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) {
800     Type *ElTy = StructTy->getElementType(i);
801     if (!isDenselyPacked(ElTy, DL))
802       return false;
803     if (StartPos != Layout->getElementOffsetInBits(i))
804       return false;
805     StartPos += DL.getTypeAllocSizeInBits(ElTy);
806   }
807 
808   return true;
809 }
810 
811 /// Checks if the padding bytes of an argument could be accessed.
canPaddingBeAccessed(Argument * arg)812 static bool canPaddingBeAccessed(Argument *arg) {
813   assert(arg->hasByValAttr());
814 
815   // Track all the pointers to the argument to make sure they are not captured.
816   SmallPtrSet<Value *, 16> PtrValues;
817   PtrValues.insert(arg);
818 
819   // Track all of the stores.
820   SmallVector<StoreInst *, 16> Stores;
821 
822   // Scan through the uses recursively to make sure the pointer is always used
823   // sanely.
824   SmallVector<Value *, 16> WorkList;
825   WorkList.insert(WorkList.end(), arg->user_begin(), arg->user_end());
826   while (!WorkList.empty()) {
827     Value *V = WorkList.back();
828     WorkList.pop_back();
829     if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) {
830       if (PtrValues.insert(V).second)
831         WorkList.insert(WorkList.end(), V->user_begin(), V->user_end());
832     } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) {
833       Stores.push_back(Store);
834     } else if (!isa<LoadInst>(V)) {
835       return true;
836     }
837   }
838 
839   // Check to make sure the pointers aren't captured
840   for (StoreInst *Store : Stores)
841     if (PtrValues.count(Store->getValueOperand()))
842       return true;
843 
844   return false;
845 }
846 
areFunctionArgsABICompatible(const Function & F,const TargetTransformInfo & TTI,SmallPtrSetImpl<Argument * > & ArgsToPromote,SmallPtrSetImpl<Argument * > & ByValArgsToTransform)847 static bool areFunctionArgsABICompatible(
848     const Function &F, const TargetTransformInfo &TTI,
849     SmallPtrSetImpl<Argument *> &ArgsToPromote,
850     SmallPtrSetImpl<Argument *> &ByValArgsToTransform) {
851   for (const Use &U : F.uses()) {
852     CallSite CS(U.getUser());
853     const Function *Caller = CS.getCaller();
854     const Function *Callee = CS.getCalledFunction();
855     if (!TTI.areFunctionArgsABICompatible(Caller, Callee, ArgsToPromote) ||
856         !TTI.areFunctionArgsABICompatible(Caller, Callee, ByValArgsToTransform))
857       return false;
858   }
859   return true;
860 }
861 
862 /// PromoteArguments - This method checks the specified function to see if there
863 /// are any promotable arguments and if it is safe to promote the function (for
864 /// example, all callers are direct).  If safe to promote some arguments, it
865 /// calls the DoPromotion method.
866 static Function *
promoteArguments(Function * F,function_ref<AAResults & (Function & F)> AARGetter,unsigned MaxElements,Optional<function_ref<void (CallSite OldCS,CallSite NewCS)>> ReplaceCallSite,const TargetTransformInfo & TTI)867 promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter,
868                  unsigned MaxElements,
869                  Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>>
870                      ReplaceCallSite,
871                  const TargetTransformInfo &TTI) {
872   // Don't perform argument promotion for naked functions; otherwise we can end
873   // up removing parameters that are seemingly 'not used' as they are referred
874   // to in the assembly.
875   if(F->hasFnAttribute(Attribute::Naked))
876     return nullptr;
877 
878   // Make sure that it is local to this module.
879   if (!F->hasLocalLinkage())
880     return nullptr;
881 
882   // Don't promote arguments for variadic functions. Adding, removing, or
883   // changing non-pack parameters can change the classification of pack
884   // parameters. Frontends encode that classification at the call site in the
885   // IR, while in the callee the classification is determined dynamically based
886   // on the number of registers consumed so far.
887   if (F->isVarArg())
888     return nullptr;
889 
890   // Don't transform functions that receive inallocas, as the transformation may
891   // not be safe depending on calling convention.
892   if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca))
893     return nullptr;
894 
895   // First check: see if there are any pointer arguments!  If not, quick exit.
896   SmallVector<Argument *, 16> PointerArgs;
897   for (Argument &I : F->args())
898     if (I.getType()->isPointerTy())
899       PointerArgs.push_back(&I);
900   if (PointerArgs.empty())
901     return nullptr;
902 
903   // Second check: make sure that all callers are direct callers.  We can't
904   // transform functions that have indirect callers.  Also see if the function
905   // is self-recursive and check that target features are compatible.
906   bool isSelfRecursive = false;
907   for (Use &U : F->uses()) {
908     CallSite CS(U.getUser());
909     // Must be a direct call.
910     if (CS.getInstruction() == nullptr || !CS.isCallee(&U))
911       return nullptr;
912 
913     // Can't change signature of musttail callee
914     if (CS.isMustTailCall())
915       return nullptr;
916 
917     if (CS.getInstruction()->getParent()->getParent() == F)
918       isSelfRecursive = true;
919   }
920 
921   // Can't change signature of musttail caller
922   // FIXME: Support promoting whole chain of musttail functions
923   for (BasicBlock &BB : *F)
924     if (BB.getTerminatingMustTailCall())
925       return nullptr;
926 
927   const DataLayout &DL = F->getParent()->getDataLayout();
928 
929   AAResults &AAR = AARGetter(*F);
930 
931   // Check to see which arguments are promotable.  If an argument is promotable,
932   // add it to ArgsToPromote.
933   SmallPtrSet<Argument *, 8> ArgsToPromote;
934   SmallPtrSet<Argument *, 8> ByValArgsToTransform;
935   for (Argument *PtrArg : PointerArgs) {
936     Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
937 
938     // Replace sret attribute with noalias. This reduces register pressure by
939     // avoiding a register copy.
940     if (PtrArg->hasStructRetAttr()) {
941       unsigned ArgNo = PtrArg->getArgNo();
942       F->removeParamAttr(ArgNo, Attribute::StructRet);
943       F->addParamAttr(ArgNo, Attribute::NoAlias);
944       for (Use &U : F->uses()) {
945         CallSite CS(U.getUser());
946         CS.removeParamAttr(ArgNo, Attribute::StructRet);
947         CS.addParamAttr(ArgNo, Attribute::NoAlias);
948       }
949     }
950 
951     // If this is a byval argument, and if the aggregate type is small, just
952     // pass the elements, which is always safe, if the passed value is densely
953     // packed or if we can prove the padding bytes are never accessed.
954     bool isSafeToPromote =
955         PtrArg->hasByValAttr() &&
956         (isDenselyPacked(AgTy, DL) || !canPaddingBeAccessed(PtrArg));
957     if (isSafeToPromote) {
958       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
959         if (MaxElements > 0 && STy->getNumElements() > MaxElements) {
960           LLVM_DEBUG(dbgs() << "argpromotion disable promoting argument '"
961                             << PtrArg->getName()
962                             << "' because it would require adding more"
963                             << " than " << MaxElements
964                             << " arguments to the function.\n");
965           continue;
966         }
967 
968         // If all the elements are single-value types, we can promote it.
969         bool AllSimple = true;
970         for (const auto *EltTy : STy->elements()) {
971           if (!EltTy->isSingleValueType()) {
972             AllSimple = false;
973             break;
974           }
975         }
976 
977         // Safe to transform, don't even bother trying to "promote" it.
978         // Passing the elements as a scalar will allow sroa to hack on
979         // the new alloca we introduce.
980         if (AllSimple) {
981           ByValArgsToTransform.insert(PtrArg);
982           continue;
983         }
984       }
985     }
986 
987     // If the argument is a recursive type and we're in a recursive
988     // function, we could end up infinitely peeling the function argument.
989     if (isSelfRecursive) {
990       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
991         bool RecursiveType = false;
992         for (const auto *EltTy : STy->elements()) {
993           if (EltTy == PtrArg->getType()) {
994             RecursiveType = true;
995             break;
996           }
997         }
998         if (RecursiveType)
999           continue;
1000       }
1001     }
1002 
1003     // Otherwise, see if we can promote the pointer to its value.
1004     Type *ByValTy =
1005         PtrArg->hasByValAttr() ? PtrArg->getParamByValType() : nullptr;
1006     if (isSafeToPromoteArgument(PtrArg, ByValTy, AAR, MaxElements))
1007       ArgsToPromote.insert(PtrArg);
1008   }
1009 
1010   // No promotable pointer arguments.
1011   if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
1012     return nullptr;
1013 
1014   if (!areFunctionArgsABICompatible(*F, TTI, ArgsToPromote,
1015                                     ByValArgsToTransform))
1016     return nullptr;
1017 
1018   return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite);
1019 }
1020 
run(LazyCallGraph::SCC & C,CGSCCAnalysisManager & AM,LazyCallGraph & CG,CGSCCUpdateResult & UR)1021 PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C,
1022                                              CGSCCAnalysisManager &AM,
1023                                              LazyCallGraph &CG,
1024                                              CGSCCUpdateResult &UR) {
1025   bool Changed = false, LocalChange;
1026 
1027   // Iterate until we stop promoting from this SCC.
1028   do {
1029     LocalChange = false;
1030 
1031     for (LazyCallGraph::Node &N : C) {
1032       Function &OldF = N.getFunction();
1033 
1034       FunctionAnalysisManager &FAM =
1035           AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
1036       // FIXME: This lambda must only be used with this function. We should
1037       // skip the lambda and just get the AA results directly.
1038       auto AARGetter = [&](Function &F) -> AAResults & {
1039         assert(&F == &OldF && "Called with an unexpected function!");
1040         return FAM.getResult<AAManager>(F);
1041       };
1042 
1043       const TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(OldF);
1044       Function *NewF =
1045           promoteArguments(&OldF, AARGetter, MaxElements, None, TTI);
1046       if (!NewF)
1047         continue;
1048       LocalChange = true;
1049 
1050       // Directly substitute the functions in the call graph. Note that this
1051       // requires the old function to be completely dead and completely
1052       // replaced by the new function. It does no call graph updates, it merely
1053       // swaps out the particular function mapped to a particular node in the
1054       // graph.
1055       C.getOuterRefSCC().replaceNodeFunction(N, *NewF);
1056       OldF.eraseFromParent();
1057     }
1058 
1059     Changed |= LocalChange;
1060   } while (LocalChange);
1061 
1062   if (!Changed)
1063     return PreservedAnalyses::all();
1064 
1065   return PreservedAnalyses::none();
1066 }
1067 
1068 namespace {
1069 
1070 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
1071 struct ArgPromotion : public CallGraphSCCPass {
1072   // Pass identification, replacement for typeid
1073   static char ID;
1074 
ArgPromotion__anonc11ec9d50311::ArgPromotion1075   explicit ArgPromotion(unsigned MaxElements = 3)
1076       : CallGraphSCCPass(ID), MaxElements(MaxElements) {
1077     initializeArgPromotionPass(*PassRegistry::getPassRegistry());
1078   }
1079 
getAnalysisUsage__anonc11ec9d50311::ArgPromotion1080   void getAnalysisUsage(AnalysisUsage &AU) const override {
1081     AU.addRequired<AssumptionCacheTracker>();
1082     AU.addRequired<TargetLibraryInfoWrapperPass>();
1083     AU.addRequired<TargetTransformInfoWrapperPass>();
1084     getAAResultsAnalysisUsage(AU);
1085     CallGraphSCCPass::getAnalysisUsage(AU);
1086   }
1087 
1088   bool runOnSCC(CallGraphSCC &SCC) override;
1089 
1090 private:
1091   using llvm::Pass::doInitialization;
1092 
1093   bool doInitialization(CallGraph &CG) override;
1094 
1095   /// The maximum number of elements to expand, or 0 for unlimited.
1096   unsigned MaxElements;
1097 };
1098 
1099 } // end anonymous namespace
1100 
1101 char ArgPromotion::ID = 0;
1102 
1103 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
1104                       "Promote 'by reference' arguments to scalars", false,
1105                       false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)1106 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1107 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1108 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1109 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1110 INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
1111                     "Promote 'by reference' arguments to scalars", false, false)
1112 
1113 Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) {
1114   return new ArgPromotion(MaxElements);
1115 }
1116 
runOnSCC(CallGraphSCC & SCC)1117 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
1118   if (skipSCC(SCC))
1119     return false;
1120 
1121   // Get the callgraph information that we need to update to reflect our
1122   // changes.
1123   CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
1124 
1125   LegacyAARGetter AARGetter(*this);
1126 
1127   bool Changed = false, LocalChange;
1128 
1129   // Iterate until we stop promoting from this SCC.
1130   do {
1131     LocalChange = false;
1132     // Attempt to promote arguments from all functions in this SCC.
1133     for (CallGraphNode *OldNode : SCC) {
1134       Function *OldF = OldNode->getFunction();
1135       if (!OldF)
1136         continue;
1137 
1138       auto ReplaceCallSite = [&](CallSite OldCS, CallSite NewCS) {
1139         Function *Caller = OldCS.getInstruction()->getParent()->getParent();
1140         CallGraphNode *NewCalleeNode =
1141             CG.getOrInsertFunction(NewCS.getCalledFunction());
1142         CallGraphNode *CallerNode = CG[Caller];
1143         CallerNode->replaceCallEdge(*cast<CallBase>(OldCS.getInstruction()),
1144                                     *cast<CallBase>(NewCS.getInstruction()),
1145                                     NewCalleeNode);
1146       };
1147 
1148       const TargetTransformInfo &TTI =
1149           getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*OldF);
1150       if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements,
1151                                             {ReplaceCallSite}, TTI)) {
1152         LocalChange = true;
1153 
1154         // Update the call graph for the newly promoted function.
1155         CallGraphNode *NewNode = CG.getOrInsertFunction(NewF);
1156         NewNode->stealCalledFunctionsFrom(OldNode);
1157         if (OldNode->getNumReferences() == 0)
1158           delete CG.removeFunctionFromModule(OldNode);
1159         else
1160           OldF->setLinkage(Function::ExternalLinkage);
1161 
1162         // And updat ethe SCC we're iterating as well.
1163         SCC.ReplaceNode(OldNode, NewNode);
1164       }
1165     }
1166     // Remember that we changed something.
1167     Changed |= LocalChange;
1168   } while (LocalChange);
1169 
1170   return Changed;
1171 }
1172 
doInitialization(CallGraph & CG)1173 bool ArgPromotion::doInitialization(CallGraph &CG) {
1174   return CallGraphSCCPass::doInitialization(CG);
1175 }
1176