1 //===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass promotes "by reference" arguments to be "by value" arguments. In
10 // practice, this means looking for internal functions that have pointer
11 // arguments. If it can prove, through the use of alias analysis, that an
12 // argument is *only* loaded, then it can pass the value into the function
13 // instead of the address of the value. This can cause recursive simplification
14 // of code and lead to the elimination of allocas (especially in C++ template
15 // code like the STL).
16 //
17 // This pass also handles aggregate arguments that are passed into a function,
18 // scalarizing them if the elements of the aggregate are only loaded. Note that
19 // by default it refuses to scalarize aggregates which would require passing in
20 // more than three operands to the function, because passing thousands of
21 // operands for a large array or structure is unprofitable! This limit can be
22 // configured or disabled, however.
23 //
24 // Note that this transformation could also be done for arguments that are only
25 // stored to (returning the value instead), but does not currently. This case
26 // would be best handled when and if LLVM begins supporting multiple return
27 // values from functions.
28 //
29 //===----------------------------------------------------------------------===//
30
31 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
32 #include "llvm/ADT/DepthFirstIterator.h"
33 #include "llvm/ADT/None.h"
34 #include "llvm/ADT/Optional.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/ADT/SmallPtrSet.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/ADT/Statistic.h"
39 #include "llvm/ADT/StringExtras.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/AliasAnalysis.h"
42 #include "llvm/Analysis/AssumptionCache.h"
43 #include "llvm/Analysis/BasicAliasAnalysis.h"
44 #include "llvm/Analysis/CGSCCPassManager.h"
45 #include "llvm/Analysis/CallGraph.h"
46 #include "llvm/Analysis/CallGraphSCCPass.h"
47 #include "llvm/Analysis/LazyCallGraph.h"
48 #include "llvm/Analysis/Loads.h"
49 #include "llvm/Analysis/MemoryLocation.h"
50 #include "llvm/Analysis/TargetLibraryInfo.h"
51 #include "llvm/Analysis/TargetTransformInfo.h"
52 #include "llvm/IR/Argument.h"
53 #include "llvm/IR/Attributes.h"
54 #include "llvm/IR/BasicBlock.h"
55 #include "llvm/IR/CFG.h"
56 #include "llvm/IR/CallSite.h"
57 #include "llvm/IR/Constants.h"
58 #include "llvm/IR/DataLayout.h"
59 #include "llvm/IR/DerivedTypes.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/IRBuilder.h"
62 #include "llvm/IR/InstrTypes.h"
63 #include "llvm/IR/Instruction.h"
64 #include "llvm/IR/Instructions.h"
65 #include "llvm/IR/Metadata.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/NoFolder.h"
68 #include "llvm/IR/PassManager.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/Use.h"
71 #include "llvm/IR/User.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/InitializePasses.h"
74 #include "llvm/Pass.h"
75 #include "llvm/Support/Casting.h"
76 #include "llvm/Support/Debug.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Transforms/IPO.h"
79 #include <algorithm>
80 #include <cassert>
81 #include <cstdint>
82 #include <functional>
83 #include <iterator>
84 #include <map>
85 #include <set>
86 #include <string>
87 #include <utility>
88 #include <vector>
89
90 using namespace llvm;
91
92 #define DEBUG_TYPE "argpromotion"
93
94 STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted");
95 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
96 STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted");
97 STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated");
98
99 /// A vector used to hold the indices of a single GEP instruction
100 using IndicesVector = std::vector<uint64_t>;
101
102 /// DoPromotion - This method actually performs the promotion of the specified
103 /// arguments, and returns the new function. At this point, we know that it's
104 /// safe to do so.
105 static Function *
doPromotion(Function * F,SmallPtrSetImpl<Argument * > & ArgsToPromote,SmallPtrSetImpl<Argument * > & ByValArgsToTransform,Optional<function_ref<void (CallSite OldCS,CallSite NewCS)>> ReplaceCallSite)106 doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote,
107 SmallPtrSetImpl<Argument *> &ByValArgsToTransform,
108 Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>>
109 ReplaceCallSite) {
110 // Start by computing a new prototype for the function, which is the same as
111 // the old function, but has modified arguments.
112 FunctionType *FTy = F->getFunctionType();
113 std::vector<Type *> Params;
114
115 using ScalarizeTable = std::set<std::pair<Type *, IndicesVector>>;
116
117 // ScalarizedElements - If we are promoting a pointer that has elements
118 // accessed out of it, keep track of which elements are accessed so that we
119 // can add one argument for each.
120 //
121 // Arguments that are directly loaded will have a zero element value here, to
122 // handle cases where there are both a direct load and GEP accesses.
123 std::map<Argument *, ScalarizeTable> ScalarizedElements;
124
125 // OriginalLoads - Keep track of a representative load instruction from the
126 // original function so that we can tell the alias analysis implementation
127 // what the new GEP/Load instructions we are inserting look like.
128 // We need to keep the original loads for each argument and the elements
129 // of the argument that are accessed.
130 std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads;
131
132 // Attribute - Keep track of the parameter attributes for the arguments
133 // that we are *not* promoting. For the ones that we do promote, the parameter
134 // attributes are lost
135 SmallVector<AttributeSet, 8> ArgAttrVec;
136 AttributeList PAL = F->getAttributes();
137
138 // First, determine the new argument list
139 unsigned ArgNo = 0;
140 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
141 ++I, ++ArgNo) {
142 if (ByValArgsToTransform.count(&*I)) {
143 // Simple byval argument? Just add all the struct element types.
144 Type *AgTy = cast<PointerType>(I->getType())->getElementType();
145 StructType *STy = cast<StructType>(AgTy);
146 Params.insert(Params.end(), STy->element_begin(), STy->element_end());
147 ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(),
148 AttributeSet());
149 ++NumByValArgsPromoted;
150 } else if (!ArgsToPromote.count(&*I)) {
151 // Unchanged argument
152 Params.push_back(I->getType());
153 ArgAttrVec.push_back(PAL.getParamAttributes(ArgNo));
154 } else if (I->use_empty()) {
155 // Dead argument (which are always marked as promotable)
156 ++NumArgumentsDead;
157
158 // There may be remaining metadata uses of the argument for things like
159 // llvm.dbg.value. Replace them with undef.
160 I->replaceAllUsesWith(UndefValue::get(I->getType()));
161 } else {
162 // Okay, this is being promoted. This means that the only uses are loads
163 // or GEPs which are only used by loads
164
165 // In this table, we will track which indices are loaded from the argument
166 // (where direct loads are tracked as no indices).
167 ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
168 for (User *U : I->users()) {
169 Instruction *UI = cast<Instruction>(U);
170 Type *SrcTy;
171 if (LoadInst *L = dyn_cast<LoadInst>(UI))
172 SrcTy = L->getType();
173 else
174 SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType();
175 IndicesVector Indices;
176 Indices.reserve(UI->getNumOperands() - 1);
177 // Since loads will only have a single operand, and GEPs only a single
178 // non-index operand, this will record direct loads without any indices,
179 // and gep+loads with the GEP indices.
180 for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end();
181 II != IE; ++II)
182 Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
183 // GEPs with a single 0 index can be merged with direct loads
184 if (Indices.size() == 1 && Indices.front() == 0)
185 Indices.clear();
186 ArgIndices.insert(std::make_pair(SrcTy, Indices));
187 LoadInst *OrigLoad;
188 if (LoadInst *L = dyn_cast<LoadInst>(UI))
189 OrigLoad = L;
190 else
191 // Take any load, we will use it only to update Alias Analysis
192 OrigLoad = cast<LoadInst>(UI->user_back());
193 OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad;
194 }
195
196 // Add a parameter to the function for each element passed in.
197 for (const auto &ArgIndex : ArgIndices) {
198 // not allowed to dereference ->begin() if size() is 0
199 Params.push_back(GetElementPtrInst::getIndexedType(
200 cast<PointerType>(I->getType()->getScalarType())->getElementType(),
201 ArgIndex.second));
202 ArgAttrVec.push_back(AttributeSet());
203 assert(Params.back());
204 }
205
206 if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty())
207 ++NumArgumentsPromoted;
208 else
209 ++NumAggregatesPromoted;
210 }
211 }
212
213 Type *RetTy = FTy->getReturnType();
214
215 // Construct the new function type using the new arguments.
216 FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
217
218 // Create the new function body and insert it into the module.
219 Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace(),
220 F->getName());
221 NF->copyAttributesFrom(F);
222
223 // Patch the pointer to LLVM function in debug info descriptor.
224 NF->setSubprogram(F->getSubprogram());
225 F->setSubprogram(nullptr);
226
227 LLVM_DEBUG(dbgs() << "ARG PROMOTION: Promoting to:" << *NF << "\n"
228 << "From: " << *F);
229
230 // Recompute the parameter attributes list based on the new arguments for
231 // the function.
232 NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttributes(),
233 PAL.getRetAttributes(), ArgAttrVec));
234 ArgAttrVec.clear();
235
236 F->getParent()->getFunctionList().insert(F->getIterator(), NF);
237 NF->takeName(F);
238
239 // Loop over all of the callers of the function, transforming the call sites
240 // to pass in the loaded pointers.
241 //
242 SmallVector<Value *, 16> Args;
243 while (!F->use_empty()) {
244 CallSite CS(F->user_back());
245 assert(CS.getCalledFunction() == F);
246 Instruction *Call = CS.getInstruction();
247 const AttributeList &CallPAL = CS.getAttributes();
248 IRBuilder<NoFolder> IRB(Call);
249
250 // Loop over the operands, inserting GEP and loads in the caller as
251 // appropriate.
252 CallSite::arg_iterator AI = CS.arg_begin();
253 ArgNo = 0;
254 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
255 ++I, ++AI, ++ArgNo)
256 if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
257 Args.push_back(*AI); // Unmodified argument
258 ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
259 } else if (ByValArgsToTransform.count(&*I)) {
260 // Emit a GEP and load for each element of the struct.
261 Type *AgTy = cast<PointerType>(I->getType())->getElementType();
262 StructType *STy = cast<StructType>(AgTy);
263 Value *Idxs[2] = {
264 ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr};
265 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
266 Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
267 auto *Idx =
268 IRB.CreateGEP(STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i));
269 // TODO: Tell AA about the new values?
270 Args.push_back(IRB.CreateLoad(STy->getElementType(i), Idx,
271 Idx->getName() + ".val"));
272 ArgAttrVec.push_back(AttributeSet());
273 }
274 } else if (!I->use_empty()) {
275 // Non-dead argument: insert GEPs and loads as appropriate.
276 ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
277 // Store the Value* version of the indices in here, but declare it now
278 // for reuse.
279 std::vector<Value *> Ops;
280 for (const auto &ArgIndex : ArgIndices) {
281 Value *V = *AI;
282 LoadInst *OrigLoad =
283 OriginalLoads[std::make_pair(&*I, ArgIndex.second)];
284 if (!ArgIndex.second.empty()) {
285 Ops.reserve(ArgIndex.second.size());
286 Type *ElTy = V->getType();
287 for (auto II : ArgIndex.second) {
288 // Use i32 to index structs, and i64 for others (pointers/arrays).
289 // This satisfies GEP constraints.
290 Type *IdxTy =
291 (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext())
292 : Type::getInt64Ty(F->getContext()));
293 Ops.push_back(ConstantInt::get(IdxTy, II));
294 // Keep track of the type we're currently indexing.
295 if (auto *ElPTy = dyn_cast<PointerType>(ElTy))
296 ElTy = ElPTy->getElementType();
297 else
298 ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(II);
299 }
300 // And create a GEP to extract those indices.
301 V = IRB.CreateGEP(ArgIndex.first, V, Ops, V->getName() + ".idx");
302 Ops.clear();
303 }
304 // Since we're replacing a load make sure we take the alignment
305 // of the previous load.
306 LoadInst *newLoad =
307 IRB.CreateLoad(OrigLoad->getType(), V, V->getName() + ".val");
308 newLoad->setAlignment(MaybeAlign(OrigLoad->getAlignment()));
309 // Transfer the AA info too.
310 AAMDNodes AAInfo;
311 OrigLoad->getAAMetadata(AAInfo);
312 newLoad->setAAMetadata(AAInfo);
313
314 Args.push_back(newLoad);
315 ArgAttrVec.push_back(AttributeSet());
316 }
317 }
318
319 // Push any varargs arguments on the list.
320 for (; AI != CS.arg_end(); ++AI, ++ArgNo) {
321 Args.push_back(*AI);
322 ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
323 }
324
325 SmallVector<OperandBundleDef, 1> OpBundles;
326 CS.getOperandBundlesAsDefs(OpBundles);
327
328 CallSite NewCS;
329 if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
330 NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
331 Args, OpBundles, "", Call);
332 } else {
333 auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", Call);
334 NewCall->setTailCallKind(cast<CallInst>(Call)->getTailCallKind());
335 NewCS = NewCall;
336 }
337 NewCS.setCallingConv(CS.getCallingConv());
338 NewCS.setAttributes(
339 AttributeList::get(F->getContext(), CallPAL.getFnAttributes(),
340 CallPAL.getRetAttributes(), ArgAttrVec));
341 NewCS->setDebugLoc(Call->getDebugLoc());
342 uint64_t W;
343 if (Call->extractProfTotalWeight(W))
344 NewCS->setProfWeight(W);
345 Args.clear();
346 ArgAttrVec.clear();
347
348 // Update the callgraph to know that the callsite has been transformed.
349 if (ReplaceCallSite)
350 (*ReplaceCallSite)(CS, NewCS);
351
352 if (!Call->use_empty()) {
353 Call->replaceAllUsesWith(NewCS.getInstruction());
354 NewCS->takeName(Call);
355 }
356
357 // Finally, remove the old call from the program, reducing the use-count of
358 // F.
359 Call->eraseFromParent();
360 }
361
362 const DataLayout &DL = F->getParent()->getDataLayout();
363
364 // Since we have now created the new function, splice the body of the old
365 // function right into the new function, leaving the old rotting hulk of the
366 // function empty.
367 NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
368
369 // Loop over the argument list, transferring uses of the old arguments over to
370 // the new arguments, also transferring over the names as well.
371 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
372 I2 = NF->arg_begin();
373 I != E; ++I) {
374 if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
375 // If this is an unmodified argument, move the name and users over to the
376 // new version.
377 I->replaceAllUsesWith(&*I2);
378 I2->takeName(&*I);
379 ++I2;
380 continue;
381 }
382
383 if (ByValArgsToTransform.count(&*I)) {
384 // In the callee, we create an alloca, and store each of the new incoming
385 // arguments into the alloca.
386 Instruction *InsertPt = &NF->begin()->front();
387
388 // Just add all the struct element types.
389 Type *AgTy = cast<PointerType>(I->getType())->getElementType();
390 Value *TheAlloca =
391 new AllocaInst(AgTy, DL.getAllocaAddrSpace(), nullptr,
392 MaybeAlign(I->getParamAlignment()), "", InsertPt);
393 StructType *STy = cast<StructType>(AgTy);
394 Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0),
395 nullptr};
396
397 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
398 Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
399 Value *Idx = GetElementPtrInst::Create(
400 AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i),
401 InsertPt);
402 I2->setName(I->getName() + "." + Twine(i));
403 new StoreInst(&*I2++, Idx, InsertPt);
404 }
405
406 // Anything that used the arg should now use the alloca.
407 I->replaceAllUsesWith(TheAlloca);
408 TheAlloca->takeName(&*I);
409
410 // If the alloca is used in a call, we must clear the tail flag since
411 // the callee now uses an alloca from the caller.
412 for (User *U : TheAlloca->users()) {
413 CallInst *Call = dyn_cast<CallInst>(U);
414 if (!Call)
415 continue;
416 Call->setTailCall(false);
417 }
418 continue;
419 }
420
421 if (I->use_empty())
422 continue;
423
424 // Otherwise, if we promoted this argument, then all users are load
425 // instructions (or GEPs with only load users), and all loads should be
426 // using the new argument that we added.
427 ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
428
429 while (!I->use_empty()) {
430 if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) {
431 assert(ArgIndices.begin()->second.empty() &&
432 "Load element should sort to front!");
433 I2->setName(I->getName() + ".val");
434 LI->replaceAllUsesWith(&*I2);
435 LI->eraseFromParent();
436 LLVM_DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
437 << "' in function '" << F->getName() << "'\n");
438 } else {
439 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back());
440 IndicesVector Operands;
441 Operands.reserve(GEP->getNumIndices());
442 for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
443 II != IE; ++II)
444 Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
445
446 // GEPs with a single 0 index can be merged with direct loads
447 if (Operands.size() == 1 && Operands.front() == 0)
448 Operands.clear();
449
450 Function::arg_iterator TheArg = I2;
451 for (ScalarizeTable::iterator It = ArgIndices.begin();
452 It->second != Operands; ++It, ++TheArg) {
453 assert(It != ArgIndices.end() && "GEP not handled??");
454 }
455
456 std::string NewName = I->getName();
457 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
458 NewName += "." + utostr(Operands[i]);
459 }
460 NewName += ".val";
461 TheArg->setName(NewName);
462
463 LLVM_DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
464 << "' of function '" << NF->getName() << "'\n");
465
466 // All of the uses must be load instructions. Replace them all with
467 // the argument specified by ArgNo.
468 while (!GEP->use_empty()) {
469 LoadInst *L = cast<LoadInst>(GEP->user_back());
470 L->replaceAllUsesWith(&*TheArg);
471 L->eraseFromParent();
472 }
473 GEP->eraseFromParent();
474 }
475 }
476
477 // Increment I2 past all of the arguments added for this promoted pointer.
478 std::advance(I2, ArgIndices.size());
479 }
480
481 return NF;
482 }
483
484 /// Return true if we can prove that all callees pass in a valid pointer for the
485 /// specified function argument.
allCallersPassValidPointerForArgument(Argument * Arg,Type * Ty)486 static bool allCallersPassValidPointerForArgument(Argument *Arg, Type *Ty) {
487 Function *Callee = Arg->getParent();
488 const DataLayout &DL = Callee->getParent()->getDataLayout();
489
490 unsigned ArgNo = Arg->getArgNo();
491
492 // Look at all call sites of the function. At this point we know we only have
493 // direct callees.
494 for (User *U : Callee->users()) {
495 CallSite CS(U);
496 assert(CS && "Should only have direct calls!");
497
498 if (!isDereferenceablePointer(CS.getArgument(ArgNo), Ty, DL))
499 return false;
500 }
501 return true;
502 }
503
504 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size
505 /// that is greater than or equal to the size of prefix, and each of the
506 /// elements in Prefix is the same as the corresponding elements in Longer.
507 ///
508 /// This means it also returns true when Prefix and Longer are equal!
isPrefix(const IndicesVector & Prefix,const IndicesVector & Longer)509 static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) {
510 if (Prefix.size() > Longer.size())
511 return false;
512 return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
513 }
514
515 /// Checks if Indices, or a prefix of Indices, is in Set.
prefixIn(const IndicesVector & Indices,std::set<IndicesVector> & Set)516 static bool prefixIn(const IndicesVector &Indices,
517 std::set<IndicesVector> &Set) {
518 std::set<IndicesVector>::iterator Low;
519 Low = Set.upper_bound(Indices);
520 if (Low != Set.begin())
521 Low--;
522 // Low is now the last element smaller than or equal to Indices. This means
523 // it points to a prefix of Indices (possibly Indices itself), if such
524 // prefix exists.
525 //
526 // This load is safe if any prefix of its operands is safe to load.
527 return Low != Set.end() && isPrefix(*Low, Indices);
528 }
529
530 /// Mark the given indices (ToMark) as safe in the given set of indices
531 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
532 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe
533 /// already. Furthermore, any indices that Indices is itself a prefix of, are
534 /// removed from Safe (since they are implicitely safe because of Indices now).
markIndicesSafe(const IndicesVector & ToMark,std::set<IndicesVector> & Safe)535 static void markIndicesSafe(const IndicesVector &ToMark,
536 std::set<IndicesVector> &Safe) {
537 std::set<IndicesVector>::iterator Low;
538 Low = Safe.upper_bound(ToMark);
539 // Guard against the case where Safe is empty
540 if (Low != Safe.begin())
541 Low--;
542 // Low is now the last element smaller than or equal to Indices. This
543 // means it points to a prefix of Indices (possibly Indices itself), if
544 // such prefix exists.
545 if (Low != Safe.end()) {
546 if (isPrefix(*Low, ToMark))
547 // If there is already a prefix of these indices (or exactly these
548 // indices) marked a safe, don't bother adding these indices
549 return;
550
551 // Increment Low, so we can use it as a "insert before" hint
552 ++Low;
553 }
554 // Insert
555 Low = Safe.insert(Low, ToMark);
556 ++Low;
557 // If there we're a prefix of longer index list(s), remove those
558 std::set<IndicesVector>::iterator End = Safe.end();
559 while (Low != End && isPrefix(ToMark, *Low)) {
560 std::set<IndicesVector>::iterator Remove = Low;
561 ++Low;
562 Safe.erase(Remove);
563 }
564 }
565
566 /// isSafeToPromoteArgument - As you might guess from the name of this method,
567 /// it checks to see if it is both safe and useful to promote the argument.
568 /// This method limits promotion of aggregates to only promote up to three
569 /// elements of the aggregate in order to avoid exploding the number of
570 /// arguments passed in.
isSafeToPromoteArgument(Argument * Arg,Type * ByValTy,AAResults & AAR,unsigned MaxElements)571 static bool isSafeToPromoteArgument(Argument *Arg, Type *ByValTy, AAResults &AAR,
572 unsigned MaxElements) {
573 using GEPIndicesSet = std::set<IndicesVector>;
574
575 // Quick exit for unused arguments
576 if (Arg->use_empty())
577 return true;
578
579 // We can only promote this argument if all of the uses are loads, or are GEP
580 // instructions (with constant indices) that are subsequently loaded.
581 //
582 // Promoting the argument causes it to be loaded in the caller
583 // unconditionally. This is only safe if we can prove that either the load
584 // would have happened in the callee anyway (ie, there is a load in the entry
585 // block) or the pointer passed in at every call site is guaranteed to be
586 // valid.
587 // In the former case, invalid loads can happen, but would have happened
588 // anyway, in the latter case, invalid loads won't happen. This prevents us
589 // from introducing an invalid load that wouldn't have happened in the
590 // original code.
591 //
592 // This set will contain all sets of indices that are loaded in the entry
593 // block, and thus are safe to unconditionally load in the caller.
594 GEPIndicesSet SafeToUnconditionallyLoad;
595
596 // This set contains all the sets of indices that we are planning to promote.
597 // This makes it possible to limit the number of arguments added.
598 GEPIndicesSet ToPromote;
599
600 // If the pointer is always valid, any load with first index 0 is valid.
601
602 if (ByValTy)
603 SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
604
605 // Whenever a new underlying type for the operand is found, make sure it's
606 // consistent with the GEPs and loads we've already seen and, if necessary,
607 // use it to see if all incoming pointers are valid (which implies the 0-index
608 // is safe).
609 Type *BaseTy = ByValTy;
610 auto UpdateBaseTy = [&](Type *NewBaseTy) {
611 if (BaseTy)
612 return BaseTy == NewBaseTy;
613
614 BaseTy = NewBaseTy;
615 if (allCallersPassValidPointerForArgument(Arg, BaseTy)) {
616 assert(SafeToUnconditionallyLoad.empty());
617 SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
618 }
619
620 return true;
621 };
622
623 // First, iterate the entry block and mark loads of (geps of) arguments as
624 // safe.
625 BasicBlock &EntryBlock = Arg->getParent()->front();
626 // Declare this here so we can reuse it
627 IndicesVector Indices;
628 for (Instruction &I : EntryBlock)
629 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
630 Value *V = LI->getPointerOperand();
631 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
632 V = GEP->getPointerOperand();
633 if (V == Arg) {
634 // This load actually loads (part of) Arg? Check the indices then.
635 Indices.reserve(GEP->getNumIndices());
636 for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
637 II != IE; ++II)
638 if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
639 Indices.push_back(CI->getSExtValue());
640 else
641 // We found a non-constant GEP index for this argument? Bail out
642 // right away, can't promote this argument at all.
643 return false;
644
645 if (!UpdateBaseTy(GEP->getSourceElementType()))
646 return false;
647
648 // Indices checked out, mark them as safe
649 markIndicesSafe(Indices, SafeToUnconditionallyLoad);
650 Indices.clear();
651 }
652 } else if (V == Arg) {
653 // Direct loads are equivalent to a GEP with a single 0 index.
654 markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
655
656 if (BaseTy && LI->getType() != BaseTy)
657 return false;
658
659 BaseTy = LI->getType();
660 }
661 }
662
663 // Now, iterate all uses of the argument to see if there are any uses that are
664 // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
665 SmallVector<LoadInst *, 16> Loads;
666 IndicesVector Operands;
667 for (Use &U : Arg->uses()) {
668 User *UR = U.getUser();
669 Operands.clear();
670 if (LoadInst *LI = dyn_cast<LoadInst>(UR)) {
671 // Don't hack volatile/atomic loads
672 if (!LI->isSimple())
673 return false;
674 Loads.push_back(LI);
675 // Direct loads are equivalent to a GEP with a zero index and then a load.
676 Operands.push_back(0);
677
678 if (!UpdateBaseTy(LI->getType()))
679 return false;
680 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) {
681 if (GEP->use_empty()) {
682 // Dead GEP's cause trouble later. Just remove them if we run into
683 // them.
684 GEP->eraseFromParent();
685 // TODO: This runs the above loop over and over again for dead GEPs
686 // Couldn't we just do increment the UI iterator earlier and erase the
687 // use?
688 return isSafeToPromoteArgument(Arg, ByValTy, AAR, MaxElements);
689 }
690
691 if (!UpdateBaseTy(GEP->getSourceElementType()))
692 return false;
693
694 // Ensure that all of the indices are constants.
695 for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end(); i != e;
696 ++i)
697 if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
698 Operands.push_back(C->getSExtValue());
699 else
700 return false; // Not a constant operand GEP!
701
702 // Ensure that the only users of the GEP are load instructions.
703 for (User *GEPU : GEP->users())
704 if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) {
705 // Don't hack volatile/atomic loads
706 if (!LI->isSimple())
707 return false;
708 Loads.push_back(LI);
709 } else {
710 // Other uses than load?
711 return false;
712 }
713 } else {
714 return false; // Not a load or a GEP.
715 }
716
717 // Now, see if it is safe to promote this load / loads of this GEP. Loading
718 // is safe if Operands, or a prefix of Operands, is marked as safe.
719 if (!prefixIn(Operands, SafeToUnconditionallyLoad))
720 return false;
721
722 // See if we are already promoting a load with these indices. If not, check
723 // to make sure that we aren't promoting too many elements. If so, nothing
724 // to do.
725 if (ToPromote.find(Operands) == ToPromote.end()) {
726 if (MaxElements > 0 && ToPromote.size() == MaxElements) {
727 LLVM_DEBUG(dbgs() << "argpromotion not promoting argument '"
728 << Arg->getName()
729 << "' because it would require adding more "
730 << "than " << MaxElements
731 << " arguments to the function.\n");
732 // We limit aggregate promotion to only promoting up to a fixed number
733 // of elements of the aggregate.
734 return false;
735 }
736 ToPromote.insert(std::move(Operands));
737 }
738 }
739
740 if (Loads.empty())
741 return true; // No users, this is a dead argument.
742
743 // Okay, now we know that the argument is only used by load instructions and
744 // it is safe to unconditionally perform all of them. Use alias analysis to
745 // check to see if the pointer is guaranteed to not be modified from entry of
746 // the function to each of the load instructions.
747
748 // Because there could be several/many load instructions, remember which
749 // blocks we know to be transparent to the load.
750 df_iterator_default_set<BasicBlock *, 16> TranspBlocks;
751
752 for (LoadInst *Load : Loads) {
753 // Check to see if the load is invalidated from the start of the block to
754 // the load itself.
755 BasicBlock *BB = Load->getParent();
756
757 MemoryLocation Loc = MemoryLocation::get(Load);
758 if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod))
759 return false; // Pointer is invalidated!
760
761 // Now check every path from the entry block to the load for transparency.
762 // To do this, we perform a depth first search on the inverse CFG from the
763 // loading block.
764 for (BasicBlock *P : predecessors(BB)) {
765 for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
766 if (AAR.canBasicBlockModify(*TranspBB, Loc))
767 return false;
768 }
769 }
770
771 // If the path from the entry of the function to each load is free of
772 // instructions that potentially invalidate the load, we can make the
773 // transformation!
774 return true;
775 }
776
777 /// Checks if a type could have padding bytes.
isDenselyPacked(Type * type,const DataLayout & DL)778 static bool isDenselyPacked(Type *type, const DataLayout &DL) {
779 // There is no size information, so be conservative.
780 if (!type->isSized())
781 return false;
782
783 // If the alloc size is not equal to the storage size, then there are padding
784 // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
785 if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type))
786 return false;
787
788 if (!isa<CompositeType>(type))
789 return true;
790
791 // For homogenous sequential types, check for padding within members.
792 if (SequentialType *seqTy = dyn_cast<SequentialType>(type))
793 return isDenselyPacked(seqTy->getElementType(), DL);
794
795 // Check for padding within and between elements of a struct.
796 StructType *StructTy = cast<StructType>(type);
797 const StructLayout *Layout = DL.getStructLayout(StructTy);
798 uint64_t StartPos = 0;
799 for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) {
800 Type *ElTy = StructTy->getElementType(i);
801 if (!isDenselyPacked(ElTy, DL))
802 return false;
803 if (StartPos != Layout->getElementOffsetInBits(i))
804 return false;
805 StartPos += DL.getTypeAllocSizeInBits(ElTy);
806 }
807
808 return true;
809 }
810
811 /// Checks if the padding bytes of an argument could be accessed.
canPaddingBeAccessed(Argument * arg)812 static bool canPaddingBeAccessed(Argument *arg) {
813 assert(arg->hasByValAttr());
814
815 // Track all the pointers to the argument to make sure they are not captured.
816 SmallPtrSet<Value *, 16> PtrValues;
817 PtrValues.insert(arg);
818
819 // Track all of the stores.
820 SmallVector<StoreInst *, 16> Stores;
821
822 // Scan through the uses recursively to make sure the pointer is always used
823 // sanely.
824 SmallVector<Value *, 16> WorkList;
825 WorkList.insert(WorkList.end(), arg->user_begin(), arg->user_end());
826 while (!WorkList.empty()) {
827 Value *V = WorkList.back();
828 WorkList.pop_back();
829 if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) {
830 if (PtrValues.insert(V).second)
831 WorkList.insert(WorkList.end(), V->user_begin(), V->user_end());
832 } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) {
833 Stores.push_back(Store);
834 } else if (!isa<LoadInst>(V)) {
835 return true;
836 }
837 }
838
839 // Check to make sure the pointers aren't captured
840 for (StoreInst *Store : Stores)
841 if (PtrValues.count(Store->getValueOperand()))
842 return true;
843
844 return false;
845 }
846
areFunctionArgsABICompatible(const Function & F,const TargetTransformInfo & TTI,SmallPtrSetImpl<Argument * > & ArgsToPromote,SmallPtrSetImpl<Argument * > & ByValArgsToTransform)847 static bool areFunctionArgsABICompatible(
848 const Function &F, const TargetTransformInfo &TTI,
849 SmallPtrSetImpl<Argument *> &ArgsToPromote,
850 SmallPtrSetImpl<Argument *> &ByValArgsToTransform) {
851 for (const Use &U : F.uses()) {
852 CallSite CS(U.getUser());
853 const Function *Caller = CS.getCaller();
854 const Function *Callee = CS.getCalledFunction();
855 if (!TTI.areFunctionArgsABICompatible(Caller, Callee, ArgsToPromote) ||
856 !TTI.areFunctionArgsABICompatible(Caller, Callee, ByValArgsToTransform))
857 return false;
858 }
859 return true;
860 }
861
862 /// PromoteArguments - This method checks the specified function to see if there
863 /// are any promotable arguments and if it is safe to promote the function (for
864 /// example, all callers are direct). If safe to promote some arguments, it
865 /// calls the DoPromotion method.
866 static Function *
promoteArguments(Function * F,function_ref<AAResults & (Function & F)> AARGetter,unsigned MaxElements,Optional<function_ref<void (CallSite OldCS,CallSite NewCS)>> ReplaceCallSite,const TargetTransformInfo & TTI)867 promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter,
868 unsigned MaxElements,
869 Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>>
870 ReplaceCallSite,
871 const TargetTransformInfo &TTI) {
872 // Don't perform argument promotion for naked functions; otherwise we can end
873 // up removing parameters that are seemingly 'not used' as they are referred
874 // to in the assembly.
875 if(F->hasFnAttribute(Attribute::Naked))
876 return nullptr;
877
878 // Make sure that it is local to this module.
879 if (!F->hasLocalLinkage())
880 return nullptr;
881
882 // Don't promote arguments for variadic functions. Adding, removing, or
883 // changing non-pack parameters can change the classification of pack
884 // parameters. Frontends encode that classification at the call site in the
885 // IR, while in the callee the classification is determined dynamically based
886 // on the number of registers consumed so far.
887 if (F->isVarArg())
888 return nullptr;
889
890 // Don't transform functions that receive inallocas, as the transformation may
891 // not be safe depending on calling convention.
892 if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca))
893 return nullptr;
894
895 // First check: see if there are any pointer arguments! If not, quick exit.
896 SmallVector<Argument *, 16> PointerArgs;
897 for (Argument &I : F->args())
898 if (I.getType()->isPointerTy())
899 PointerArgs.push_back(&I);
900 if (PointerArgs.empty())
901 return nullptr;
902
903 // Second check: make sure that all callers are direct callers. We can't
904 // transform functions that have indirect callers. Also see if the function
905 // is self-recursive and check that target features are compatible.
906 bool isSelfRecursive = false;
907 for (Use &U : F->uses()) {
908 CallSite CS(U.getUser());
909 // Must be a direct call.
910 if (CS.getInstruction() == nullptr || !CS.isCallee(&U))
911 return nullptr;
912
913 // Can't change signature of musttail callee
914 if (CS.isMustTailCall())
915 return nullptr;
916
917 if (CS.getInstruction()->getParent()->getParent() == F)
918 isSelfRecursive = true;
919 }
920
921 // Can't change signature of musttail caller
922 // FIXME: Support promoting whole chain of musttail functions
923 for (BasicBlock &BB : *F)
924 if (BB.getTerminatingMustTailCall())
925 return nullptr;
926
927 const DataLayout &DL = F->getParent()->getDataLayout();
928
929 AAResults &AAR = AARGetter(*F);
930
931 // Check to see which arguments are promotable. If an argument is promotable,
932 // add it to ArgsToPromote.
933 SmallPtrSet<Argument *, 8> ArgsToPromote;
934 SmallPtrSet<Argument *, 8> ByValArgsToTransform;
935 for (Argument *PtrArg : PointerArgs) {
936 Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
937
938 // Replace sret attribute with noalias. This reduces register pressure by
939 // avoiding a register copy.
940 if (PtrArg->hasStructRetAttr()) {
941 unsigned ArgNo = PtrArg->getArgNo();
942 F->removeParamAttr(ArgNo, Attribute::StructRet);
943 F->addParamAttr(ArgNo, Attribute::NoAlias);
944 for (Use &U : F->uses()) {
945 CallSite CS(U.getUser());
946 CS.removeParamAttr(ArgNo, Attribute::StructRet);
947 CS.addParamAttr(ArgNo, Attribute::NoAlias);
948 }
949 }
950
951 // If this is a byval argument, and if the aggregate type is small, just
952 // pass the elements, which is always safe, if the passed value is densely
953 // packed or if we can prove the padding bytes are never accessed.
954 bool isSafeToPromote =
955 PtrArg->hasByValAttr() &&
956 (isDenselyPacked(AgTy, DL) || !canPaddingBeAccessed(PtrArg));
957 if (isSafeToPromote) {
958 if (StructType *STy = dyn_cast<StructType>(AgTy)) {
959 if (MaxElements > 0 && STy->getNumElements() > MaxElements) {
960 LLVM_DEBUG(dbgs() << "argpromotion disable promoting argument '"
961 << PtrArg->getName()
962 << "' because it would require adding more"
963 << " than " << MaxElements
964 << " arguments to the function.\n");
965 continue;
966 }
967
968 // If all the elements are single-value types, we can promote it.
969 bool AllSimple = true;
970 for (const auto *EltTy : STy->elements()) {
971 if (!EltTy->isSingleValueType()) {
972 AllSimple = false;
973 break;
974 }
975 }
976
977 // Safe to transform, don't even bother trying to "promote" it.
978 // Passing the elements as a scalar will allow sroa to hack on
979 // the new alloca we introduce.
980 if (AllSimple) {
981 ByValArgsToTransform.insert(PtrArg);
982 continue;
983 }
984 }
985 }
986
987 // If the argument is a recursive type and we're in a recursive
988 // function, we could end up infinitely peeling the function argument.
989 if (isSelfRecursive) {
990 if (StructType *STy = dyn_cast<StructType>(AgTy)) {
991 bool RecursiveType = false;
992 for (const auto *EltTy : STy->elements()) {
993 if (EltTy == PtrArg->getType()) {
994 RecursiveType = true;
995 break;
996 }
997 }
998 if (RecursiveType)
999 continue;
1000 }
1001 }
1002
1003 // Otherwise, see if we can promote the pointer to its value.
1004 Type *ByValTy =
1005 PtrArg->hasByValAttr() ? PtrArg->getParamByValType() : nullptr;
1006 if (isSafeToPromoteArgument(PtrArg, ByValTy, AAR, MaxElements))
1007 ArgsToPromote.insert(PtrArg);
1008 }
1009
1010 // No promotable pointer arguments.
1011 if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
1012 return nullptr;
1013
1014 if (!areFunctionArgsABICompatible(*F, TTI, ArgsToPromote,
1015 ByValArgsToTransform))
1016 return nullptr;
1017
1018 return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite);
1019 }
1020
run(LazyCallGraph::SCC & C,CGSCCAnalysisManager & AM,LazyCallGraph & CG,CGSCCUpdateResult & UR)1021 PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C,
1022 CGSCCAnalysisManager &AM,
1023 LazyCallGraph &CG,
1024 CGSCCUpdateResult &UR) {
1025 bool Changed = false, LocalChange;
1026
1027 // Iterate until we stop promoting from this SCC.
1028 do {
1029 LocalChange = false;
1030
1031 for (LazyCallGraph::Node &N : C) {
1032 Function &OldF = N.getFunction();
1033
1034 FunctionAnalysisManager &FAM =
1035 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
1036 // FIXME: This lambda must only be used with this function. We should
1037 // skip the lambda and just get the AA results directly.
1038 auto AARGetter = [&](Function &F) -> AAResults & {
1039 assert(&F == &OldF && "Called with an unexpected function!");
1040 return FAM.getResult<AAManager>(F);
1041 };
1042
1043 const TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(OldF);
1044 Function *NewF =
1045 promoteArguments(&OldF, AARGetter, MaxElements, None, TTI);
1046 if (!NewF)
1047 continue;
1048 LocalChange = true;
1049
1050 // Directly substitute the functions in the call graph. Note that this
1051 // requires the old function to be completely dead and completely
1052 // replaced by the new function. It does no call graph updates, it merely
1053 // swaps out the particular function mapped to a particular node in the
1054 // graph.
1055 C.getOuterRefSCC().replaceNodeFunction(N, *NewF);
1056 OldF.eraseFromParent();
1057 }
1058
1059 Changed |= LocalChange;
1060 } while (LocalChange);
1061
1062 if (!Changed)
1063 return PreservedAnalyses::all();
1064
1065 return PreservedAnalyses::none();
1066 }
1067
1068 namespace {
1069
1070 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
1071 struct ArgPromotion : public CallGraphSCCPass {
1072 // Pass identification, replacement for typeid
1073 static char ID;
1074
ArgPromotion__anonc11ec9d50311::ArgPromotion1075 explicit ArgPromotion(unsigned MaxElements = 3)
1076 : CallGraphSCCPass(ID), MaxElements(MaxElements) {
1077 initializeArgPromotionPass(*PassRegistry::getPassRegistry());
1078 }
1079
getAnalysisUsage__anonc11ec9d50311::ArgPromotion1080 void getAnalysisUsage(AnalysisUsage &AU) const override {
1081 AU.addRequired<AssumptionCacheTracker>();
1082 AU.addRequired<TargetLibraryInfoWrapperPass>();
1083 AU.addRequired<TargetTransformInfoWrapperPass>();
1084 getAAResultsAnalysisUsage(AU);
1085 CallGraphSCCPass::getAnalysisUsage(AU);
1086 }
1087
1088 bool runOnSCC(CallGraphSCC &SCC) override;
1089
1090 private:
1091 using llvm::Pass::doInitialization;
1092
1093 bool doInitialization(CallGraph &CG) override;
1094
1095 /// The maximum number of elements to expand, or 0 for unlimited.
1096 unsigned MaxElements;
1097 };
1098
1099 } // end anonymous namespace
1100
1101 char ArgPromotion::ID = 0;
1102
1103 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
1104 "Promote 'by reference' arguments to scalars", false,
1105 false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)1106 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1107 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1108 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1109 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1110 INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
1111 "Promote 'by reference' arguments to scalars", false, false)
1112
1113 Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) {
1114 return new ArgPromotion(MaxElements);
1115 }
1116
runOnSCC(CallGraphSCC & SCC)1117 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
1118 if (skipSCC(SCC))
1119 return false;
1120
1121 // Get the callgraph information that we need to update to reflect our
1122 // changes.
1123 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
1124
1125 LegacyAARGetter AARGetter(*this);
1126
1127 bool Changed = false, LocalChange;
1128
1129 // Iterate until we stop promoting from this SCC.
1130 do {
1131 LocalChange = false;
1132 // Attempt to promote arguments from all functions in this SCC.
1133 for (CallGraphNode *OldNode : SCC) {
1134 Function *OldF = OldNode->getFunction();
1135 if (!OldF)
1136 continue;
1137
1138 auto ReplaceCallSite = [&](CallSite OldCS, CallSite NewCS) {
1139 Function *Caller = OldCS.getInstruction()->getParent()->getParent();
1140 CallGraphNode *NewCalleeNode =
1141 CG.getOrInsertFunction(NewCS.getCalledFunction());
1142 CallGraphNode *CallerNode = CG[Caller];
1143 CallerNode->replaceCallEdge(*cast<CallBase>(OldCS.getInstruction()),
1144 *cast<CallBase>(NewCS.getInstruction()),
1145 NewCalleeNode);
1146 };
1147
1148 const TargetTransformInfo &TTI =
1149 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*OldF);
1150 if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements,
1151 {ReplaceCallSite}, TTI)) {
1152 LocalChange = true;
1153
1154 // Update the call graph for the newly promoted function.
1155 CallGraphNode *NewNode = CG.getOrInsertFunction(NewF);
1156 NewNode->stealCalledFunctionsFrom(OldNode);
1157 if (OldNode->getNumReferences() == 0)
1158 delete CG.removeFunctionFromModule(OldNode);
1159 else
1160 OldF->setLinkage(Function::ExternalLinkage);
1161
1162 // And updat ethe SCC we're iterating as well.
1163 SCC.ReplaceNode(OldNode, NewNode);
1164 }
1165 }
1166 // Remember that we changed something.
1167 Changed |= LocalChange;
1168 } while (LocalChange);
1169
1170 return Changed;
1171 }
1172
doInitialization(CallGraph & CG)1173 bool ArgPromotion::doInitialization(CallGraph &CG) {
1174 return CallGraphSCCPass::doInitialization(CG);
1175 }
1176