1 //===- LoadStoreVectorizer.cpp - GPU Load & Store Vectorizer --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass merges loads/stores to/from sequential memory addresses into vector
10 // loads/stores.  Although there's nothing GPU-specific in here, this pass is
11 // motivated by the microarchitectural quirks of nVidia and AMD GPUs.
12 //
13 // (For simplicity below we talk about loads only, but everything also applies
14 // to stores.)
15 //
16 // This pass is intended to be run late in the pipeline, after other
17 // vectorization opportunities have been exploited.  So the assumption here is
18 // that immediately following our new vector load we'll need to extract out the
19 // individual elements of the load, so we can operate on them individually.
20 //
21 // On CPUs this transformation is usually not beneficial, because extracting the
22 // elements of a vector register is expensive on most architectures.  It's
23 // usually better just to load each element individually into its own scalar
24 // register.
25 //
26 // However, nVidia and AMD GPUs don't have proper vector registers.  Instead, a
27 // "vector load" loads directly into a series of scalar registers.  In effect,
28 // extracting the elements of the vector is free.  It's therefore always
29 // beneficial to vectorize a sequence of loads on these architectures.
30 //
31 // Vectorizing (perhaps a better name might be "coalescing") loads can have
32 // large performance impacts on GPU kernels, and opportunities for vectorizing
33 // are common in GPU code.  This pass tries very hard to find such
34 // opportunities; its runtime is quadratic in the number of loads in a BB.
35 //
36 // Some CPU architectures, such as ARM, have instructions that load into
37 // multiple scalar registers, similar to a GPU vectorized load.  In theory ARM
38 // could use this pass (with some modifications), but currently it implements
39 // its own pass to do something similar to what we do here.
40 
41 #include "llvm/Transforms/Vectorize/LoadStoreVectorizer.h"
42 #include "llvm/ADT/APInt.h"
43 #include "llvm/ADT/ArrayRef.h"
44 #include "llvm/ADT/MapVector.h"
45 #include "llvm/ADT/PostOrderIterator.h"
46 #include "llvm/ADT/STLExtras.h"
47 #include "llvm/ADT/SmallPtrSet.h"
48 #include "llvm/ADT/SmallVector.h"
49 #include "llvm/ADT/Statistic.h"
50 #include "llvm/ADT/iterator_range.h"
51 #include "llvm/Analysis/AliasAnalysis.h"
52 #include "llvm/Analysis/MemoryLocation.h"
53 #include "llvm/Analysis/OrderedBasicBlock.h"
54 #include "llvm/Analysis/ScalarEvolution.h"
55 #include "llvm/Analysis/TargetTransformInfo.h"
56 #include "llvm/Analysis/ValueTracking.h"
57 #include "llvm/Analysis/VectorUtils.h"
58 #include "llvm/IR/Attributes.h"
59 #include "llvm/IR/BasicBlock.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DerivedTypes.h"
63 #include "llvm/IR/Dominators.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/IRBuilder.h"
66 #include "llvm/IR/InstrTypes.h"
67 #include "llvm/IR/Instruction.h"
68 #include "llvm/IR/Instructions.h"
69 #include "llvm/IR/IntrinsicInst.h"
70 #include "llvm/IR/Module.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/User.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/InitializePasses.h"
75 #include "llvm/Pass.h"
76 #include "llvm/Support/Casting.h"
77 #include "llvm/Support/Debug.h"
78 #include "llvm/Support/KnownBits.h"
79 #include "llvm/Support/MathExtras.h"
80 #include "llvm/Support/raw_ostream.h"
81 #include "llvm/Transforms/Utils/Local.h"
82 #include "llvm/Transforms/Vectorize.h"
83 #include <algorithm>
84 #include <cassert>
85 #include <cstdlib>
86 #include <tuple>
87 #include <utility>
88 
89 using namespace llvm;
90 
91 #define DEBUG_TYPE "load-store-vectorizer"
92 
93 STATISTIC(NumVectorInstructions, "Number of vector accesses generated");
94 STATISTIC(NumScalarsVectorized, "Number of scalar accesses vectorized");
95 
96 // FIXME: Assuming stack alignment of 4 is always good enough
97 static const unsigned StackAdjustedAlignment = 4;
98 
99 namespace {
100 
101 /// ChainID is an arbitrary token that is allowed to be different only for the
102 /// accesses that are guaranteed to be considered non-consecutive by
103 /// Vectorizer::isConsecutiveAccess. It's used for grouping instructions
104 /// together and reducing the number of instructions the main search operates on
105 /// at a time, i.e. this is to reduce compile time and nothing else as the main
106 /// search has O(n^2) time complexity. The underlying type of ChainID should not
107 /// be relied upon.
108 using ChainID = const Value *;
109 using InstrList = SmallVector<Instruction *, 8>;
110 using InstrListMap = MapVector<ChainID, InstrList>;
111 
112 class Vectorizer {
113   Function &F;
114   AliasAnalysis &AA;
115   DominatorTree &DT;
116   ScalarEvolution &SE;
117   TargetTransformInfo &TTI;
118   const DataLayout &DL;
119   IRBuilder<> Builder;
120 
121 public:
Vectorizer(Function & F,AliasAnalysis & AA,DominatorTree & DT,ScalarEvolution & SE,TargetTransformInfo & TTI)122   Vectorizer(Function &F, AliasAnalysis &AA, DominatorTree &DT,
123              ScalarEvolution &SE, TargetTransformInfo &TTI)
124       : F(F), AA(AA), DT(DT), SE(SE), TTI(TTI),
125         DL(F.getParent()->getDataLayout()), Builder(SE.getContext()) {}
126 
127   bool run();
128 
129 private:
130   unsigned getPointerAddressSpace(Value *I);
131 
getAlignment(LoadInst * LI) const132   unsigned getAlignment(LoadInst *LI) const {
133     unsigned Align = LI->getAlignment();
134     if (Align != 0)
135       return Align;
136 
137     return DL.getABITypeAlignment(LI->getType());
138   }
139 
getAlignment(StoreInst * SI) const140   unsigned getAlignment(StoreInst *SI) const {
141     unsigned Align = SI->getAlignment();
142     if (Align != 0)
143       return Align;
144 
145     return DL.getABITypeAlignment(SI->getValueOperand()->getType());
146   }
147 
148   static const unsigned MaxDepth = 3;
149 
150   bool isConsecutiveAccess(Value *A, Value *B);
151   bool areConsecutivePointers(Value *PtrA, Value *PtrB, APInt PtrDelta,
152                               unsigned Depth = 0) const;
153   bool lookThroughComplexAddresses(Value *PtrA, Value *PtrB, APInt PtrDelta,
154                                    unsigned Depth) const;
155   bool lookThroughSelects(Value *PtrA, Value *PtrB, const APInt &PtrDelta,
156                           unsigned Depth) const;
157 
158   /// After vectorization, reorder the instructions that I depends on
159   /// (the instructions defining its operands), to ensure they dominate I.
160   void reorder(Instruction *I);
161 
162   /// Returns the first and the last instructions in Chain.
163   std::pair<BasicBlock::iterator, BasicBlock::iterator>
164   getBoundaryInstrs(ArrayRef<Instruction *> Chain);
165 
166   /// Erases the original instructions after vectorizing.
167   void eraseInstructions(ArrayRef<Instruction *> Chain);
168 
169   /// "Legalize" the vector type that would be produced by combining \p
170   /// ElementSizeBits elements in \p Chain. Break into two pieces such that the
171   /// total size of each piece is 1, 2 or a multiple of 4 bytes. \p Chain is
172   /// expected to have more than 4 elements.
173   std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>>
174   splitOddVectorElts(ArrayRef<Instruction *> Chain, unsigned ElementSizeBits);
175 
176   /// Finds the largest prefix of Chain that's vectorizable, checking for
177   /// intervening instructions which may affect the memory accessed by the
178   /// instructions within Chain.
179   ///
180   /// The elements of \p Chain must be all loads or all stores and must be in
181   /// address order.
182   ArrayRef<Instruction *> getVectorizablePrefix(ArrayRef<Instruction *> Chain);
183 
184   /// Collects load and store instructions to vectorize.
185   std::pair<InstrListMap, InstrListMap> collectInstructions(BasicBlock *BB);
186 
187   /// Processes the collected instructions, the \p Map. The values of \p Map
188   /// should be all loads or all stores.
189   bool vectorizeChains(InstrListMap &Map);
190 
191   /// Finds the load/stores to consecutive memory addresses and vectorizes them.
192   bool vectorizeInstructions(ArrayRef<Instruction *> Instrs);
193 
194   /// Vectorizes the load instructions in Chain.
195   bool
196   vectorizeLoadChain(ArrayRef<Instruction *> Chain,
197                      SmallPtrSet<Instruction *, 16> *InstructionsProcessed);
198 
199   /// Vectorizes the store instructions in Chain.
200   bool
201   vectorizeStoreChain(ArrayRef<Instruction *> Chain,
202                       SmallPtrSet<Instruction *, 16> *InstructionsProcessed);
203 
204   /// Check if this load/store access is misaligned accesses.
205   bool accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace,
206                           unsigned Alignment);
207 };
208 
209 class LoadStoreVectorizerLegacyPass : public FunctionPass {
210 public:
211   static char ID;
212 
LoadStoreVectorizerLegacyPass()213   LoadStoreVectorizerLegacyPass() : FunctionPass(ID) {
214     initializeLoadStoreVectorizerLegacyPassPass(*PassRegistry::getPassRegistry());
215   }
216 
217   bool runOnFunction(Function &F) override;
218 
getPassName() const219   StringRef getPassName() const override {
220     return "GPU Load and Store Vectorizer";
221   }
222 
getAnalysisUsage(AnalysisUsage & AU) const223   void getAnalysisUsage(AnalysisUsage &AU) const override {
224     AU.addRequired<AAResultsWrapperPass>();
225     AU.addRequired<ScalarEvolutionWrapperPass>();
226     AU.addRequired<DominatorTreeWrapperPass>();
227     AU.addRequired<TargetTransformInfoWrapperPass>();
228     AU.setPreservesCFG();
229   }
230 };
231 
232 } // end anonymous namespace
233 
234 char LoadStoreVectorizerLegacyPass::ID = 0;
235 
236 INITIALIZE_PASS_BEGIN(LoadStoreVectorizerLegacyPass, DEBUG_TYPE,
237                       "Vectorize load and Store instructions", false, false)
INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)238 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
239 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
240 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
241 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
242 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
243 INITIALIZE_PASS_END(LoadStoreVectorizerLegacyPass, DEBUG_TYPE,
244                     "Vectorize load and store instructions", false, false)
245 
246 Pass *llvm::createLoadStoreVectorizerPass() {
247   return new LoadStoreVectorizerLegacyPass();
248 }
249 
runOnFunction(Function & F)250 bool LoadStoreVectorizerLegacyPass::runOnFunction(Function &F) {
251   // Don't vectorize when the attribute NoImplicitFloat is used.
252   if (skipFunction(F) || F.hasFnAttribute(Attribute::NoImplicitFloat))
253     return false;
254 
255   AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
256   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
257   ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
258   TargetTransformInfo &TTI =
259       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
260 
261   Vectorizer V(F, AA, DT, SE, TTI);
262   return V.run();
263 }
264 
run(Function & F,FunctionAnalysisManager & AM)265 PreservedAnalyses LoadStoreVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
266   // Don't vectorize when the attribute NoImplicitFloat is used.
267   if (F.hasFnAttribute(Attribute::NoImplicitFloat))
268     return PreservedAnalyses::all();
269 
270   AliasAnalysis &AA = AM.getResult<AAManager>(F);
271   DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
272   ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
273   TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
274 
275   Vectorizer V(F, AA, DT, SE, TTI);
276   bool Changed = V.run();
277   PreservedAnalyses PA;
278   PA.preserveSet<CFGAnalyses>();
279   return Changed ? PA : PreservedAnalyses::all();
280 }
281 
282 // The real propagateMetadata expects a SmallVector<Value*>, but we deal in
283 // vectors of Instructions.
propagateMetadata(Instruction * I,ArrayRef<Instruction * > IL)284 static void propagateMetadata(Instruction *I, ArrayRef<Instruction *> IL) {
285   SmallVector<Value *, 8> VL(IL.begin(), IL.end());
286   propagateMetadata(I, VL);
287 }
288 
289 // Vectorizer Implementation
run()290 bool Vectorizer::run() {
291   bool Changed = false;
292 
293   // Scan the blocks in the function in post order.
294   for (BasicBlock *BB : post_order(&F)) {
295     InstrListMap LoadRefs, StoreRefs;
296     std::tie(LoadRefs, StoreRefs) = collectInstructions(BB);
297     Changed |= vectorizeChains(LoadRefs);
298     Changed |= vectorizeChains(StoreRefs);
299   }
300 
301   return Changed;
302 }
303 
getPointerAddressSpace(Value * I)304 unsigned Vectorizer::getPointerAddressSpace(Value *I) {
305   if (LoadInst *L = dyn_cast<LoadInst>(I))
306     return L->getPointerAddressSpace();
307   if (StoreInst *S = dyn_cast<StoreInst>(I))
308     return S->getPointerAddressSpace();
309   return -1;
310 }
311 
312 // FIXME: Merge with llvm::isConsecutiveAccess
isConsecutiveAccess(Value * A,Value * B)313 bool Vectorizer::isConsecutiveAccess(Value *A, Value *B) {
314   Value *PtrA = getLoadStorePointerOperand(A);
315   Value *PtrB = getLoadStorePointerOperand(B);
316   unsigned ASA = getPointerAddressSpace(A);
317   unsigned ASB = getPointerAddressSpace(B);
318 
319   // Check that the address spaces match and that the pointers are valid.
320   if (!PtrA || !PtrB || (ASA != ASB))
321     return false;
322 
323   // Make sure that A and B are different pointers of the same size type.
324   Type *PtrATy = PtrA->getType()->getPointerElementType();
325   Type *PtrBTy = PtrB->getType()->getPointerElementType();
326   if (PtrA == PtrB ||
327       PtrATy->isVectorTy() != PtrBTy->isVectorTy() ||
328       DL.getTypeStoreSize(PtrATy) != DL.getTypeStoreSize(PtrBTy) ||
329       DL.getTypeStoreSize(PtrATy->getScalarType()) !=
330           DL.getTypeStoreSize(PtrBTy->getScalarType()))
331     return false;
332 
333   unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
334   APInt Size(PtrBitWidth, DL.getTypeStoreSize(PtrATy));
335 
336   return areConsecutivePointers(PtrA, PtrB, Size);
337 }
338 
areConsecutivePointers(Value * PtrA,Value * PtrB,APInt PtrDelta,unsigned Depth) const339 bool Vectorizer::areConsecutivePointers(Value *PtrA, Value *PtrB,
340                                         APInt PtrDelta, unsigned Depth) const {
341   unsigned PtrBitWidth = DL.getPointerTypeSizeInBits(PtrA->getType());
342   APInt OffsetA(PtrBitWidth, 0);
343   APInt OffsetB(PtrBitWidth, 0);
344   PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
345   PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
346 
347   unsigned NewPtrBitWidth = DL.getTypeStoreSizeInBits(PtrA->getType());
348 
349   if (NewPtrBitWidth != DL.getTypeStoreSizeInBits(PtrB->getType()))
350     return false;
351 
352   // In case if we have to shrink the pointer
353   // stripAndAccumulateInBoundsConstantOffsets should properly handle a
354   // possible overflow and the value should fit into a smallest data type
355   // used in the cast/gep chain.
356   assert(OffsetA.getMinSignedBits() <= NewPtrBitWidth &&
357          OffsetB.getMinSignedBits() <= NewPtrBitWidth);
358 
359   OffsetA = OffsetA.sextOrTrunc(NewPtrBitWidth);
360   OffsetB = OffsetB.sextOrTrunc(NewPtrBitWidth);
361   PtrDelta = PtrDelta.sextOrTrunc(NewPtrBitWidth);
362 
363   APInt OffsetDelta = OffsetB - OffsetA;
364 
365   // Check if they are based on the same pointer. That makes the offsets
366   // sufficient.
367   if (PtrA == PtrB)
368     return OffsetDelta == PtrDelta;
369 
370   // Compute the necessary base pointer delta to have the necessary final delta
371   // equal to the pointer delta requested.
372   APInt BaseDelta = PtrDelta - OffsetDelta;
373 
374   // Compute the distance with SCEV between the base pointers.
375   const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
376   const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
377   const SCEV *C = SE.getConstant(BaseDelta);
378   const SCEV *X = SE.getAddExpr(PtrSCEVA, C);
379   if (X == PtrSCEVB)
380     return true;
381 
382   // The above check will not catch the cases where one of the pointers is
383   // factorized but the other one is not, such as (C + (S * (A + B))) vs
384   // (AS + BS). Get the minus scev. That will allow re-combining the expresions
385   // and getting the simplified difference.
386   const SCEV *Dist = SE.getMinusSCEV(PtrSCEVB, PtrSCEVA);
387   if (C == Dist)
388     return true;
389 
390   // Sometimes even this doesn't work, because SCEV can't always see through
391   // patterns that look like (gep (ext (add (shl X, C1), C2))). Try checking
392   // things the hard way.
393   return lookThroughComplexAddresses(PtrA, PtrB, BaseDelta, Depth);
394 }
395 
lookThroughComplexAddresses(Value * PtrA,Value * PtrB,APInt PtrDelta,unsigned Depth) const396 bool Vectorizer::lookThroughComplexAddresses(Value *PtrA, Value *PtrB,
397                                              APInt PtrDelta,
398                                              unsigned Depth) const {
399   auto *GEPA = dyn_cast<GetElementPtrInst>(PtrA);
400   auto *GEPB = dyn_cast<GetElementPtrInst>(PtrB);
401   if (!GEPA || !GEPB)
402     return lookThroughSelects(PtrA, PtrB, PtrDelta, Depth);
403 
404   // Look through GEPs after checking they're the same except for the last
405   // index.
406   if (GEPA->getNumOperands() != GEPB->getNumOperands() ||
407       GEPA->getPointerOperand() != GEPB->getPointerOperand())
408     return false;
409   gep_type_iterator GTIA = gep_type_begin(GEPA);
410   gep_type_iterator GTIB = gep_type_begin(GEPB);
411   for (unsigned I = 0, E = GEPA->getNumIndices() - 1; I < E; ++I) {
412     if (GTIA.getOperand() != GTIB.getOperand())
413       return false;
414     ++GTIA;
415     ++GTIB;
416   }
417 
418   Instruction *OpA = dyn_cast<Instruction>(GTIA.getOperand());
419   Instruction *OpB = dyn_cast<Instruction>(GTIB.getOperand());
420   if (!OpA || !OpB || OpA->getOpcode() != OpB->getOpcode() ||
421       OpA->getType() != OpB->getType())
422     return false;
423 
424   if (PtrDelta.isNegative()) {
425     if (PtrDelta.isMinSignedValue())
426       return false;
427     PtrDelta.negate();
428     std::swap(OpA, OpB);
429   }
430   uint64_t Stride = DL.getTypeAllocSize(GTIA.getIndexedType());
431   if (PtrDelta.urem(Stride) != 0)
432     return false;
433   unsigned IdxBitWidth = OpA->getType()->getScalarSizeInBits();
434   APInt IdxDiff = PtrDelta.udiv(Stride).zextOrSelf(IdxBitWidth);
435 
436   // Only look through a ZExt/SExt.
437   if (!isa<SExtInst>(OpA) && !isa<ZExtInst>(OpA))
438     return false;
439 
440   bool Signed = isa<SExtInst>(OpA);
441 
442   // At this point A could be a function parameter, i.e. not an instruction
443   Value *ValA = OpA->getOperand(0);
444   OpB = dyn_cast<Instruction>(OpB->getOperand(0));
445   if (!OpB || ValA->getType() != OpB->getType())
446     return false;
447 
448   // Now we need to prove that adding IdxDiff to ValA won't overflow.
449   bool Safe = false;
450   // First attempt: if OpB is an add with NSW/NUW, and OpB is IdxDiff added to
451   // ValA, we're okay.
452   if (OpB->getOpcode() == Instruction::Add &&
453       isa<ConstantInt>(OpB->getOperand(1)) &&
454       IdxDiff.sle(cast<ConstantInt>(OpB->getOperand(1))->getSExtValue())) {
455     if (Signed)
456       Safe = cast<BinaryOperator>(OpB)->hasNoSignedWrap();
457     else
458       Safe = cast<BinaryOperator>(OpB)->hasNoUnsignedWrap();
459   }
460 
461   unsigned BitWidth = ValA->getType()->getScalarSizeInBits();
462 
463   // Second attempt:
464   // If all set bits of IdxDiff or any higher order bit other than the sign bit
465   // are known to be zero in ValA, we can add Diff to it while guaranteeing no
466   // overflow of any sort.
467   if (!Safe) {
468     OpA = dyn_cast<Instruction>(ValA);
469     if (!OpA)
470       return false;
471     KnownBits Known(BitWidth);
472     computeKnownBits(OpA, Known, DL, 0, nullptr, OpA, &DT);
473     APInt BitsAllowedToBeSet = Known.Zero.zext(IdxDiff.getBitWidth());
474     if (Signed)
475       BitsAllowedToBeSet.clearBit(BitWidth - 1);
476     if (BitsAllowedToBeSet.ult(IdxDiff))
477       return false;
478   }
479 
480   const SCEV *OffsetSCEVA = SE.getSCEV(ValA);
481   const SCEV *OffsetSCEVB = SE.getSCEV(OpB);
482   const SCEV *C = SE.getConstant(IdxDiff.trunc(BitWidth));
483   const SCEV *X = SE.getAddExpr(OffsetSCEVA, C);
484   return X == OffsetSCEVB;
485 }
486 
lookThroughSelects(Value * PtrA,Value * PtrB,const APInt & PtrDelta,unsigned Depth) const487 bool Vectorizer::lookThroughSelects(Value *PtrA, Value *PtrB,
488                                     const APInt &PtrDelta,
489                                     unsigned Depth) const {
490   if (Depth++ == MaxDepth)
491     return false;
492 
493   if (auto *SelectA = dyn_cast<SelectInst>(PtrA)) {
494     if (auto *SelectB = dyn_cast<SelectInst>(PtrB)) {
495       return SelectA->getCondition() == SelectB->getCondition() &&
496              areConsecutivePointers(SelectA->getTrueValue(),
497                                     SelectB->getTrueValue(), PtrDelta, Depth) &&
498              areConsecutivePointers(SelectA->getFalseValue(),
499                                     SelectB->getFalseValue(), PtrDelta, Depth);
500     }
501   }
502   return false;
503 }
504 
reorder(Instruction * I)505 void Vectorizer::reorder(Instruction *I) {
506   OrderedBasicBlock OBB(I->getParent());
507   SmallPtrSet<Instruction *, 16> InstructionsToMove;
508   SmallVector<Instruction *, 16> Worklist;
509 
510   Worklist.push_back(I);
511   while (!Worklist.empty()) {
512     Instruction *IW = Worklist.pop_back_val();
513     int NumOperands = IW->getNumOperands();
514     for (int i = 0; i < NumOperands; i++) {
515       Instruction *IM = dyn_cast<Instruction>(IW->getOperand(i));
516       if (!IM || IM->getOpcode() == Instruction::PHI)
517         continue;
518 
519       // If IM is in another BB, no need to move it, because this pass only
520       // vectorizes instructions within one BB.
521       if (IM->getParent() != I->getParent())
522         continue;
523 
524       if (!OBB.dominates(IM, I)) {
525         InstructionsToMove.insert(IM);
526         Worklist.push_back(IM);
527       }
528     }
529   }
530 
531   // All instructions to move should follow I. Start from I, not from begin().
532   for (auto BBI = I->getIterator(), E = I->getParent()->end(); BBI != E;
533        ++BBI) {
534     if (!InstructionsToMove.count(&*BBI))
535       continue;
536     Instruction *IM = &*BBI;
537     --BBI;
538     IM->removeFromParent();
539     IM->insertBefore(I);
540   }
541 }
542 
543 std::pair<BasicBlock::iterator, BasicBlock::iterator>
getBoundaryInstrs(ArrayRef<Instruction * > Chain)544 Vectorizer::getBoundaryInstrs(ArrayRef<Instruction *> Chain) {
545   Instruction *C0 = Chain[0];
546   BasicBlock::iterator FirstInstr = C0->getIterator();
547   BasicBlock::iterator LastInstr = C0->getIterator();
548 
549   BasicBlock *BB = C0->getParent();
550   unsigned NumFound = 0;
551   for (Instruction &I : *BB) {
552     if (!is_contained(Chain, &I))
553       continue;
554 
555     ++NumFound;
556     if (NumFound == 1) {
557       FirstInstr = I.getIterator();
558     }
559     if (NumFound == Chain.size()) {
560       LastInstr = I.getIterator();
561       break;
562     }
563   }
564 
565   // Range is [first, last).
566   return std::make_pair(FirstInstr, ++LastInstr);
567 }
568 
eraseInstructions(ArrayRef<Instruction * > Chain)569 void Vectorizer::eraseInstructions(ArrayRef<Instruction *> Chain) {
570   SmallVector<Instruction *, 16> Instrs;
571   for (Instruction *I : Chain) {
572     Value *PtrOperand = getLoadStorePointerOperand(I);
573     assert(PtrOperand && "Instruction must have a pointer operand.");
574     Instrs.push_back(I);
575     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(PtrOperand))
576       Instrs.push_back(GEP);
577   }
578 
579   // Erase instructions.
580   for (Instruction *I : Instrs)
581     if (I->use_empty())
582       I->eraseFromParent();
583 }
584 
585 std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>>
splitOddVectorElts(ArrayRef<Instruction * > Chain,unsigned ElementSizeBits)586 Vectorizer::splitOddVectorElts(ArrayRef<Instruction *> Chain,
587                                unsigned ElementSizeBits) {
588   unsigned ElementSizeBytes = ElementSizeBits / 8;
589   unsigned SizeBytes = ElementSizeBytes * Chain.size();
590   unsigned NumLeft = (SizeBytes - (SizeBytes % 4)) / ElementSizeBytes;
591   if (NumLeft == Chain.size()) {
592     if ((NumLeft & 1) == 0)
593       NumLeft /= 2; // Split even in half
594     else
595       --NumLeft;    // Split off last element
596   } else if (NumLeft == 0)
597     NumLeft = 1;
598   return std::make_pair(Chain.slice(0, NumLeft), Chain.slice(NumLeft));
599 }
600 
601 ArrayRef<Instruction *>
getVectorizablePrefix(ArrayRef<Instruction * > Chain)602 Vectorizer::getVectorizablePrefix(ArrayRef<Instruction *> Chain) {
603   // These are in BB order, unlike Chain, which is in address order.
604   SmallVector<Instruction *, 16> MemoryInstrs;
605   SmallVector<Instruction *, 16> ChainInstrs;
606 
607   bool IsLoadChain = isa<LoadInst>(Chain[0]);
608   LLVM_DEBUG({
609     for (Instruction *I : Chain) {
610       if (IsLoadChain)
611         assert(isa<LoadInst>(I) &&
612                "All elements of Chain must be loads, or all must be stores.");
613       else
614         assert(isa<StoreInst>(I) &&
615                "All elements of Chain must be loads, or all must be stores.");
616     }
617   });
618 
619   for (Instruction &I : make_range(getBoundaryInstrs(Chain))) {
620     if (isa<LoadInst>(I) || isa<StoreInst>(I)) {
621       if (!is_contained(Chain, &I))
622         MemoryInstrs.push_back(&I);
623       else
624         ChainInstrs.push_back(&I);
625     } else if (isa<IntrinsicInst>(&I) &&
626                cast<IntrinsicInst>(&I)->getIntrinsicID() ==
627                    Intrinsic::sideeffect) {
628       // Ignore llvm.sideeffect calls.
629     } else if (IsLoadChain && (I.mayWriteToMemory() || I.mayThrow())) {
630       LLVM_DEBUG(dbgs() << "LSV: Found may-write/throw operation: " << I
631                         << '\n');
632       break;
633     } else if (!IsLoadChain && (I.mayReadOrWriteMemory() || I.mayThrow())) {
634       LLVM_DEBUG(dbgs() << "LSV: Found may-read/write/throw operation: " << I
635                         << '\n');
636       break;
637     }
638   }
639 
640   OrderedBasicBlock OBB(Chain[0]->getParent());
641 
642   // Loop until we find an instruction in ChainInstrs that we can't vectorize.
643   unsigned ChainInstrIdx = 0;
644   Instruction *BarrierMemoryInstr = nullptr;
645 
646   for (unsigned E = ChainInstrs.size(); ChainInstrIdx < E; ++ChainInstrIdx) {
647     Instruction *ChainInstr = ChainInstrs[ChainInstrIdx];
648 
649     // If a barrier memory instruction was found, chain instructions that follow
650     // will not be added to the valid prefix.
651     if (BarrierMemoryInstr && OBB.dominates(BarrierMemoryInstr, ChainInstr))
652       break;
653 
654     // Check (in BB order) if any instruction prevents ChainInstr from being
655     // vectorized. Find and store the first such "conflicting" instruction.
656     for (Instruction *MemInstr : MemoryInstrs) {
657       // If a barrier memory instruction was found, do not check past it.
658       if (BarrierMemoryInstr && OBB.dominates(BarrierMemoryInstr, MemInstr))
659         break;
660 
661       auto *MemLoad = dyn_cast<LoadInst>(MemInstr);
662       auto *ChainLoad = dyn_cast<LoadInst>(ChainInstr);
663       if (MemLoad && ChainLoad)
664         continue;
665 
666       // We can ignore the alias if the we have a load store pair and the load
667       // is known to be invariant. The load cannot be clobbered by the store.
668       auto IsInvariantLoad = [](const LoadInst *LI) -> bool {
669         return LI->hasMetadata(LLVMContext::MD_invariant_load);
670       };
671 
672       // We can ignore the alias as long as the load comes before the store,
673       // because that means we won't be moving the load past the store to
674       // vectorize it (the vectorized load is inserted at the location of the
675       // first load in the chain).
676       if (isa<StoreInst>(MemInstr) && ChainLoad &&
677           (IsInvariantLoad(ChainLoad) || OBB.dominates(ChainLoad, MemInstr)))
678         continue;
679 
680       // Same case, but in reverse.
681       if (MemLoad && isa<StoreInst>(ChainInstr) &&
682           (IsInvariantLoad(MemLoad) || OBB.dominates(MemLoad, ChainInstr)))
683         continue;
684 
685       if (!AA.isNoAlias(MemoryLocation::get(MemInstr),
686                         MemoryLocation::get(ChainInstr))) {
687         LLVM_DEBUG({
688           dbgs() << "LSV: Found alias:\n"
689                     "  Aliasing instruction and pointer:\n"
690                  << "  " << *MemInstr << '\n'
691                  << "  " << *getLoadStorePointerOperand(MemInstr) << '\n'
692                  << "  Aliased instruction and pointer:\n"
693                  << "  " << *ChainInstr << '\n'
694                  << "  " << *getLoadStorePointerOperand(ChainInstr) << '\n';
695         });
696         // Save this aliasing memory instruction as a barrier, but allow other
697         // instructions that precede the barrier to be vectorized with this one.
698         BarrierMemoryInstr = MemInstr;
699         break;
700       }
701     }
702     // Continue the search only for store chains, since vectorizing stores that
703     // precede an aliasing load is valid. Conversely, vectorizing loads is valid
704     // up to an aliasing store, but should not pull loads from further down in
705     // the basic block.
706     if (IsLoadChain && BarrierMemoryInstr) {
707       // The BarrierMemoryInstr is a store that precedes ChainInstr.
708       assert(OBB.dominates(BarrierMemoryInstr, ChainInstr));
709       break;
710     }
711   }
712 
713   // Find the largest prefix of Chain whose elements are all in
714   // ChainInstrs[0, ChainInstrIdx).  This is the largest vectorizable prefix of
715   // Chain.  (Recall that Chain is in address order, but ChainInstrs is in BB
716   // order.)
717   SmallPtrSet<Instruction *, 8> VectorizableChainInstrs(
718       ChainInstrs.begin(), ChainInstrs.begin() + ChainInstrIdx);
719   unsigned ChainIdx = 0;
720   for (unsigned ChainLen = Chain.size(); ChainIdx < ChainLen; ++ChainIdx) {
721     if (!VectorizableChainInstrs.count(Chain[ChainIdx]))
722       break;
723   }
724   return Chain.slice(0, ChainIdx);
725 }
726 
getChainID(const Value * Ptr,const DataLayout & DL)727 static ChainID getChainID(const Value *Ptr, const DataLayout &DL) {
728   const Value *ObjPtr = GetUnderlyingObject(Ptr, DL);
729   if (const auto *Sel = dyn_cast<SelectInst>(ObjPtr)) {
730     // The select's themselves are distinct instructions even if they share the
731     // same condition and evaluate to consecutive pointers for true and false
732     // values of the condition. Therefore using the select's themselves for
733     // grouping instructions would put consecutive accesses into different lists
734     // and they won't be even checked for being consecutive, and won't be
735     // vectorized.
736     return Sel->getCondition();
737   }
738   return ObjPtr;
739 }
740 
741 std::pair<InstrListMap, InstrListMap>
collectInstructions(BasicBlock * BB)742 Vectorizer::collectInstructions(BasicBlock *BB) {
743   InstrListMap LoadRefs;
744   InstrListMap StoreRefs;
745 
746   for (Instruction &I : *BB) {
747     if (!I.mayReadOrWriteMemory())
748       continue;
749 
750     if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
751       if (!LI->isSimple())
752         continue;
753 
754       // Skip if it's not legal.
755       if (!TTI.isLegalToVectorizeLoad(LI))
756         continue;
757 
758       Type *Ty = LI->getType();
759       if (!VectorType::isValidElementType(Ty->getScalarType()))
760         continue;
761 
762       // Skip weird non-byte sizes. They probably aren't worth the effort of
763       // handling correctly.
764       unsigned TySize = DL.getTypeSizeInBits(Ty);
765       if ((TySize % 8) != 0)
766         continue;
767 
768       // Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain
769       // functions are currently using an integer type for the vectorized
770       // load/store, and does not support casting between the integer type and a
771       // vector of pointers (e.g. i64 to <2 x i16*>)
772       if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy())
773         continue;
774 
775       Value *Ptr = LI->getPointerOperand();
776       unsigned AS = Ptr->getType()->getPointerAddressSpace();
777       unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
778 
779       unsigned VF = VecRegSize / TySize;
780       VectorType *VecTy = dyn_cast<VectorType>(Ty);
781 
782       // No point in looking at these if they're too big to vectorize.
783       if (TySize > VecRegSize / 2 ||
784           (VecTy && TTI.getLoadVectorFactor(VF, TySize, TySize / 8, VecTy) == 0))
785         continue;
786 
787       // Make sure all the users of a vector are constant-index extracts.
788       if (isa<VectorType>(Ty) && !llvm::all_of(LI->users(), [](const User *U) {
789             const ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(U);
790             return EEI && isa<ConstantInt>(EEI->getOperand(1));
791           }))
792         continue;
793 
794       // Save the load locations.
795       const ChainID ID = getChainID(Ptr, DL);
796       LoadRefs[ID].push_back(LI);
797     } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
798       if (!SI->isSimple())
799         continue;
800 
801       // Skip if it's not legal.
802       if (!TTI.isLegalToVectorizeStore(SI))
803         continue;
804 
805       Type *Ty = SI->getValueOperand()->getType();
806       if (!VectorType::isValidElementType(Ty->getScalarType()))
807         continue;
808 
809       // Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain
810       // functions are currently using an integer type for the vectorized
811       // load/store, and does not support casting between the integer type and a
812       // vector of pointers (e.g. i64 to <2 x i16*>)
813       if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy())
814         continue;
815 
816       // Skip weird non-byte sizes. They probably aren't worth the effort of
817       // handling correctly.
818       unsigned TySize = DL.getTypeSizeInBits(Ty);
819       if ((TySize % 8) != 0)
820         continue;
821 
822       Value *Ptr = SI->getPointerOperand();
823       unsigned AS = Ptr->getType()->getPointerAddressSpace();
824       unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
825 
826       unsigned VF = VecRegSize / TySize;
827       VectorType *VecTy = dyn_cast<VectorType>(Ty);
828 
829       // No point in looking at these if they're too big to vectorize.
830       if (TySize > VecRegSize / 2 ||
831           (VecTy && TTI.getStoreVectorFactor(VF, TySize, TySize / 8, VecTy) == 0))
832         continue;
833 
834       if (isa<VectorType>(Ty) && !llvm::all_of(SI->users(), [](const User *U) {
835             const ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(U);
836             return EEI && isa<ConstantInt>(EEI->getOperand(1));
837           }))
838         continue;
839 
840       // Save store location.
841       const ChainID ID = getChainID(Ptr, DL);
842       StoreRefs[ID].push_back(SI);
843     }
844   }
845 
846   return {LoadRefs, StoreRefs};
847 }
848 
vectorizeChains(InstrListMap & Map)849 bool Vectorizer::vectorizeChains(InstrListMap &Map) {
850   bool Changed = false;
851 
852   for (const std::pair<ChainID, InstrList> &Chain : Map) {
853     unsigned Size = Chain.second.size();
854     if (Size < 2)
855       continue;
856 
857     LLVM_DEBUG(dbgs() << "LSV: Analyzing a chain of length " << Size << ".\n");
858 
859     // Process the stores in chunks of 64.
860     for (unsigned CI = 0, CE = Size; CI < CE; CI += 64) {
861       unsigned Len = std::min<unsigned>(CE - CI, 64);
862       ArrayRef<Instruction *> Chunk(&Chain.second[CI], Len);
863       Changed |= vectorizeInstructions(Chunk);
864     }
865   }
866 
867   return Changed;
868 }
869 
vectorizeInstructions(ArrayRef<Instruction * > Instrs)870 bool Vectorizer::vectorizeInstructions(ArrayRef<Instruction *> Instrs) {
871   LLVM_DEBUG(dbgs() << "LSV: Vectorizing " << Instrs.size()
872                     << " instructions.\n");
873   SmallVector<int, 16> Heads, Tails;
874   int ConsecutiveChain[64];
875 
876   // Do a quadratic search on all of the given loads/stores and find all of the
877   // pairs of loads/stores that follow each other.
878   for (int i = 0, e = Instrs.size(); i < e; ++i) {
879     ConsecutiveChain[i] = -1;
880     for (int j = e - 1; j >= 0; --j) {
881       if (i == j)
882         continue;
883 
884       if (isConsecutiveAccess(Instrs[i], Instrs[j])) {
885         if (ConsecutiveChain[i] != -1) {
886           int CurDistance = std::abs(ConsecutiveChain[i] - i);
887           int NewDistance = std::abs(ConsecutiveChain[i] - j);
888           if (j < i || NewDistance > CurDistance)
889             continue; // Should not insert.
890         }
891 
892         Tails.push_back(j);
893         Heads.push_back(i);
894         ConsecutiveChain[i] = j;
895       }
896     }
897   }
898 
899   bool Changed = false;
900   SmallPtrSet<Instruction *, 16> InstructionsProcessed;
901 
902   for (int Head : Heads) {
903     if (InstructionsProcessed.count(Instrs[Head]))
904       continue;
905     bool LongerChainExists = false;
906     for (unsigned TIt = 0; TIt < Tails.size(); TIt++)
907       if (Head == Tails[TIt] &&
908           !InstructionsProcessed.count(Instrs[Heads[TIt]])) {
909         LongerChainExists = true;
910         break;
911       }
912     if (LongerChainExists)
913       continue;
914 
915     // We found an instr that starts a chain. Now follow the chain and try to
916     // vectorize it.
917     SmallVector<Instruction *, 16> Operands;
918     int I = Head;
919     while (I != -1 && (is_contained(Tails, I) || is_contained(Heads, I))) {
920       if (InstructionsProcessed.count(Instrs[I]))
921         break;
922 
923       Operands.push_back(Instrs[I]);
924       I = ConsecutiveChain[I];
925     }
926 
927     bool Vectorized = false;
928     if (isa<LoadInst>(*Operands.begin()))
929       Vectorized = vectorizeLoadChain(Operands, &InstructionsProcessed);
930     else
931       Vectorized = vectorizeStoreChain(Operands, &InstructionsProcessed);
932 
933     Changed |= Vectorized;
934   }
935 
936   return Changed;
937 }
938 
vectorizeStoreChain(ArrayRef<Instruction * > Chain,SmallPtrSet<Instruction *,16> * InstructionsProcessed)939 bool Vectorizer::vectorizeStoreChain(
940     ArrayRef<Instruction *> Chain,
941     SmallPtrSet<Instruction *, 16> *InstructionsProcessed) {
942   StoreInst *S0 = cast<StoreInst>(Chain[0]);
943 
944   // If the vector has an int element, default to int for the whole store.
945   Type *StoreTy = nullptr;
946   for (Instruction *I : Chain) {
947     StoreTy = cast<StoreInst>(I)->getValueOperand()->getType();
948     if (StoreTy->isIntOrIntVectorTy())
949       break;
950 
951     if (StoreTy->isPtrOrPtrVectorTy()) {
952       StoreTy = Type::getIntNTy(F.getParent()->getContext(),
953                                 DL.getTypeSizeInBits(StoreTy));
954       break;
955     }
956   }
957   assert(StoreTy && "Failed to find store type");
958 
959   unsigned Sz = DL.getTypeSizeInBits(StoreTy);
960   unsigned AS = S0->getPointerAddressSpace();
961   unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
962   unsigned VF = VecRegSize / Sz;
963   unsigned ChainSize = Chain.size();
964   unsigned Alignment = getAlignment(S0);
965 
966   if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) {
967     InstructionsProcessed->insert(Chain.begin(), Chain.end());
968     return false;
969   }
970 
971   ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain);
972   if (NewChain.empty()) {
973     // No vectorization possible.
974     InstructionsProcessed->insert(Chain.begin(), Chain.end());
975     return false;
976   }
977   if (NewChain.size() == 1) {
978     // Failed after the first instruction. Discard it and try the smaller chain.
979     InstructionsProcessed->insert(NewChain.front());
980     return false;
981   }
982 
983   // Update Chain to the valid vectorizable subchain.
984   Chain = NewChain;
985   ChainSize = Chain.size();
986 
987   // Check if it's legal to vectorize this chain. If not, split the chain and
988   // try again.
989   unsigned EltSzInBytes = Sz / 8;
990   unsigned SzInBytes = EltSzInBytes * ChainSize;
991 
992   VectorType *VecTy;
993   VectorType *VecStoreTy = dyn_cast<VectorType>(StoreTy);
994   if (VecStoreTy)
995     VecTy = VectorType::get(StoreTy->getScalarType(),
996                             Chain.size() * VecStoreTy->getNumElements());
997   else
998     VecTy = VectorType::get(StoreTy, Chain.size());
999 
1000   // If it's more than the max vector size or the target has a better
1001   // vector factor, break it into two pieces.
1002   unsigned TargetVF = TTI.getStoreVectorFactor(VF, Sz, SzInBytes, VecTy);
1003   if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) {
1004     LLVM_DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor."
1005                          " Creating two separate arrays.\n");
1006     return vectorizeStoreChain(Chain.slice(0, TargetVF),
1007                                InstructionsProcessed) |
1008            vectorizeStoreChain(Chain.slice(TargetVF), InstructionsProcessed);
1009   }
1010 
1011   LLVM_DEBUG({
1012     dbgs() << "LSV: Stores to vectorize:\n";
1013     for (Instruction *I : Chain)
1014       dbgs() << "  " << *I << "\n";
1015   });
1016 
1017   // We won't try again to vectorize the elements of the chain, regardless of
1018   // whether we succeed below.
1019   InstructionsProcessed->insert(Chain.begin(), Chain.end());
1020 
1021   // If the store is going to be misaligned, don't vectorize it.
1022   if (accessIsMisaligned(SzInBytes, AS, Alignment)) {
1023     if (S0->getPointerAddressSpace() != DL.getAllocaAddrSpace()) {
1024       auto Chains = splitOddVectorElts(Chain, Sz);
1025       return vectorizeStoreChain(Chains.first, InstructionsProcessed) |
1026              vectorizeStoreChain(Chains.second, InstructionsProcessed);
1027     }
1028 
1029     unsigned NewAlign = getOrEnforceKnownAlignment(S0->getPointerOperand(),
1030                                                    StackAdjustedAlignment,
1031                                                    DL, S0, nullptr, &DT);
1032     if (NewAlign != 0)
1033       Alignment = NewAlign;
1034   }
1035 
1036   if (!TTI.isLegalToVectorizeStoreChain(SzInBytes, Alignment, AS)) {
1037     auto Chains = splitOddVectorElts(Chain, Sz);
1038     return vectorizeStoreChain(Chains.first, InstructionsProcessed) |
1039            vectorizeStoreChain(Chains.second, InstructionsProcessed);
1040   }
1041 
1042   BasicBlock::iterator First, Last;
1043   std::tie(First, Last) = getBoundaryInstrs(Chain);
1044   Builder.SetInsertPoint(&*Last);
1045 
1046   Value *Vec = UndefValue::get(VecTy);
1047 
1048   if (VecStoreTy) {
1049     unsigned VecWidth = VecStoreTy->getNumElements();
1050     for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
1051       StoreInst *Store = cast<StoreInst>(Chain[I]);
1052       for (unsigned J = 0, NE = VecStoreTy->getNumElements(); J != NE; ++J) {
1053         unsigned NewIdx = J + I * VecWidth;
1054         Value *Extract = Builder.CreateExtractElement(Store->getValueOperand(),
1055                                                       Builder.getInt32(J));
1056         if (Extract->getType() != StoreTy->getScalarType())
1057           Extract = Builder.CreateBitCast(Extract, StoreTy->getScalarType());
1058 
1059         Value *Insert =
1060             Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(NewIdx));
1061         Vec = Insert;
1062       }
1063     }
1064   } else {
1065     for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
1066       StoreInst *Store = cast<StoreInst>(Chain[I]);
1067       Value *Extract = Store->getValueOperand();
1068       if (Extract->getType() != StoreTy->getScalarType())
1069         Extract =
1070             Builder.CreateBitOrPointerCast(Extract, StoreTy->getScalarType());
1071 
1072       Value *Insert =
1073           Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(I));
1074       Vec = Insert;
1075     }
1076   }
1077 
1078   StoreInst *SI = Builder.CreateAlignedStore(
1079     Vec,
1080     Builder.CreateBitCast(S0->getPointerOperand(), VecTy->getPointerTo(AS)),
1081     Alignment);
1082   propagateMetadata(SI, Chain);
1083 
1084   eraseInstructions(Chain);
1085   ++NumVectorInstructions;
1086   NumScalarsVectorized += Chain.size();
1087   return true;
1088 }
1089 
vectorizeLoadChain(ArrayRef<Instruction * > Chain,SmallPtrSet<Instruction *,16> * InstructionsProcessed)1090 bool Vectorizer::vectorizeLoadChain(
1091     ArrayRef<Instruction *> Chain,
1092     SmallPtrSet<Instruction *, 16> *InstructionsProcessed) {
1093   LoadInst *L0 = cast<LoadInst>(Chain[0]);
1094 
1095   // If the vector has an int element, default to int for the whole load.
1096   Type *LoadTy = nullptr;
1097   for (const auto &V : Chain) {
1098     LoadTy = cast<LoadInst>(V)->getType();
1099     if (LoadTy->isIntOrIntVectorTy())
1100       break;
1101 
1102     if (LoadTy->isPtrOrPtrVectorTy()) {
1103       LoadTy = Type::getIntNTy(F.getParent()->getContext(),
1104                                DL.getTypeSizeInBits(LoadTy));
1105       break;
1106     }
1107   }
1108   assert(LoadTy && "Can't determine LoadInst type from chain");
1109 
1110   unsigned Sz = DL.getTypeSizeInBits(LoadTy);
1111   unsigned AS = L0->getPointerAddressSpace();
1112   unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
1113   unsigned VF = VecRegSize / Sz;
1114   unsigned ChainSize = Chain.size();
1115   unsigned Alignment = getAlignment(L0);
1116 
1117   if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) {
1118     InstructionsProcessed->insert(Chain.begin(), Chain.end());
1119     return false;
1120   }
1121 
1122   ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain);
1123   if (NewChain.empty()) {
1124     // No vectorization possible.
1125     InstructionsProcessed->insert(Chain.begin(), Chain.end());
1126     return false;
1127   }
1128   if (NewChain.size() == 1) {
1129     // Failed after the first instruction. Discard it and try the smaller chain.
1130     InstructionsProcessed->insert(NewChain.front());
1131     return false;
1132   }
1133 
1134   // Update Chain to the valid vectorizable subchain.
1135   Chain = NewChain;
1136   ChainSize = Chain.size();
1137 
1138   // Check if it's legal to vectorize this chain. If not, split the chain and
1139   // try again.
1140   unsigned EltSzInBytes = Sz / 8;
1141   unsigned SzInBytes = EltSzInBytes * ChainSize;
1142   VectorType *VecTy;
1143   VectorType *VecLoadTy = dyn_cast<VectorType>(LoadTy);
1144   if (VecLoadTy)
1145     VecTy = VectorType::get(LoadTy->getScalarType(),
1146                             Chain.size() * VecLoadTy->getNumElements());
1147   else
1148     VecTy = VectorType::get(LoadTy, Chain.size());
1149 
1150   // If it's more than the max vector size or the target has a better
1151   // vector factor, break it into two pieces.
1152   unsigned TargetVF = TTI.getLoadVectorFactor(VF, Sz, SzInBytes, VecTy);
1153   if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) {
1154     LLVM_DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor."
1155                          " Creating two separate arrays.\n");
1156     return vectorizeLoadChain(Chain.slice(0, TargetVF), InstructionsProcessed) |
1157            vectorizeLoadChain(Chain.slice(TargetVF), InstructionsProcessed);
1158   }
1159 
1160   // We won't try again to vectorize the elements of the chain, regardless of
1161   // whether we succeed below.
1162   InstructionsProcessed->insert(Chain.begin(), Chain.end());
1163 
1164   // If the load is going to be misaligned, don't vectorize it.
1165   if (accessIsMisaligned(SzInBytes, AS, Alignment)) {
1166     if (L0->getPointerAddressSpace() != DL.getAllocaAddrSpace()) {
1167       auto Chains = splitOddVectorElts(Chain, Sz);
1168       return vectorizeLoadChain(Chains.first, InstructionsProcessed) |
1169              vectorizeLoadChain(Chains.second, InstructionsProcessed);
1170     }
1171 
1172     Alignment = getOrEnforceKnownAlignment(
1173         L0->getPointerOperand(), StackAdjustedAlignment, DL, L0, nullptr, &DT);
1174   }
1175 
1176   if (!TTI.isLegalToVectorizeLoadChain(SzInBytes, Alignment, AS)) {
1177     auto Chains = splitOddVectorElts(Chain, Sz);
1178     return vectorizeLoadChain(Chains.first, InstructionsProcessed) |
1179            vectorizeLoadChain(Chains.second, InstructionsProcessed);
1180   }
1181 
1182   LLVM_DEBUG({
1183     dbgs() << "LSV: Loads to vectorize:\n";
1184     for (Instruction *I : Chain)
1185       I->dump();
1186   });
1187 
1188   // getVectorizablePrefix already computed getBoundaryInstrs.  The value of
1189   // Last may have changed since then, but the value of First won't have.  If it
1190   // matters, we could compute getBoundaryInstrs only once and reuse it here.
1191   BasicBlock::iterator First, Last;
1192   std::tie(First, Last) = getBoundaryInstrs(Chain);
1193   Builder.SetInsertPoint(&*First);
1194 
1195   Value *Bitcast =
1196       Builder.CreateBitCast(L0->getPointerOperand(), VecTy->getPointerTo(AS));
1197   LoadInst *LI = Builder.CreateAlignedLoad(VecTy, Bitcast, Alignment);
1198   propagateMetadata(LI, Chain);
1199 
1200   if (VecLoadTy) {
1201     SmallVector<Instruction *, 16> InstrsToErase;
1202 
1203     unsigned VecWidth = VecLoadTy->getNumElements();
1204     for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
1205       for (auto Use : Chain[I]->users()) {
1206         // All users of vector loads are ExtractElement instructions with
1207         // constant indices, otherwise we would have bailed before now.
1208         Instruction *UI = cast<Instruction>(Use);
1209         unsigned Idx = cast<ConstantInt>(UI->getOperand(1))->getZExtValue();
1210         unsigned NewIdx = Idx + I * VecWidth;
1211         Value *V = Builder.CreateExtractElement(LI, Builder.getInt32(NewIdx),
1212                                                 UI->getName());
1213         if (V->getType() != UI->getType())
1214           V = Builder.CreateBitCast(V, UI->getType());
1215 
1216         // Replace the old instruction.
1217         UI->replaceAllUsesWith(V);
1218         InstrsToErase.push_back(UI);
1219       }
1220     }
1221 
1222     // Bitcast might not be an Instruction, if the value being loaded is a
1223     // constant.  In that case, no need to reorder anything.
1224     if (Instruction *BitcastInst = dyn_cast<Instruction>(Bitcast))
1225       reorder(BitcastInst);
1226 
1227     for (auto I : InstrsToErase)
1228       I->eraseFromParent();
1229   } else {
1230     for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
1231       Value *CV = Chain[I];
1232       Value *V =
1233           Builder.CreateExtractElement(LI, Builder.getInt32(I), CV->getName());
1234       if (V->getType() != CV->getType()) {
1235         V = Builder.CreateBitOrPointerCast(V, CV->getType());
1236       }
1237 
1238       // Replace the old instruction.
1239       CV->replaceAllUsesWith(V);
1240     }
1241 
1242     if (Instruction *BitcastInst = dyn_cast<Instruction>(Bitcast))
1243       reorder(BitcastInst);
1244   }
1245 
1246   eraseInstructions(Chain);
1247 
1248   ++NumVectorInstructions;
1249   NumScalarsVectorized += Chain.size();
1250   return true;
1251 }
1252 
accessIsMisaligned(unsigned SzInBytes,unsigned AddressSpace,unsigned Alignment)1253 bool Vectorizer::accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace,
1254                                     unsigned Alignment) {
1255   if (Alignment % SzInBytes == 0)
1256     return false;
1257 
1258   bool Fast = false;
1259   bool Allows = TTI.allowsMisalignedMemoryAccesses(F.getParent()->getContext(),
1260                                                    SzInBytes * 8, AddressSpace,
1261                                                    Alignment, &Fast);
1262   LLVM_DEBUG(dbgs() << "LSV: Target said misaligned is allowed? " << Allows
1263                     << " and fast? " << Fast << "\n";);
1264   return !Allows || !Fast;
1265 }
1266