1 //===- AArch64.cpp --------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "Symbols.h"
10 #include "SyntheticSections.h"
11 #include "Target.h"
12 #include "Thunks.h"
13 #include "lld/Common/ErrorHandler.h"
14 #include "llvm/Object/ELF.h"
15 #include "llvm/Support/Endian.h"
16
17 using namespace llvm;
18 using namespace llvm::support::endian;
19 using namespace llvm::ELF;
20
21 namespace lld {
22 namespace elf {
23
24 // Page(Expr) is the page address of the expression Expr, defined
25 // as (Expr & ~0xFFF). (This applies even if the machine page size
26 // supported by the platform has a different value.)
getAArch64Page(uint64_t expr)27 uint64_t getAArch64Page(uint64_t expr) {
28 return expr & ~static_cast<uint64_t>(0xFFF);
29 }
30
31 namespace {
32 class AArch64 : public TargetInfo {
33 public:
34 AArch64();
35 RelExpr getRelExpr(RelType type, const Symbol &s,
36 const uint8_t *loc) const override;
37 RelType getDynRel(RelType type) const override;
38 void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
39 void writePltHeader(uint8_t *buf) const override;
40 void writePlt(uint8_t *buf, const Symbol &sym,
41 uint64_t pltEntryAddr) const override;
42 bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
43 uint64_t branchAddr, const Symbol &s,
44 int64_t a) const override;
45 uint32_t getThunkSectionSpacing() const override;
46 bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
47 bool usesOnlyLowPageBits(RelType type) const override;
48 void relocateOne(uint8_t *loc, RelType type, uint64_t val) const override;
49 RelExpr adjustRelaxExpr(RelType type, const uint8_t *data,
50 RelExpr expr) const override;
51 void relaxTlsGdToLe(uint8_t *loc, RelType type, uint64_t val) const override;
52 void relaxTlsGdToIe(uint8_t *loc, RelType type, uint64_t val) const override;
53 void relaxTlsIeToLe(uint8_t *loc, RelType type, uint64_t val) const override;
54 };
55 } // namespace
56
AArch64()57 AArch64::AArch64() {
58 copyRel = R_AARCH64_COPY;
59 relativeRel = R_AARCH64_RELATIVE;
60 iRelativeRel = R_AARCH64_IRELATIVE;
61 gotRel = R_AARCH64_GLOB_DAT;
62 noneRel = R_AARCH64_NONE;
63 pltRel = R_AARCH64_JUMP_SLOT;
64 symbolicRel = R_AARCH64_ABS64;
65 tlsDescRel = R_AARCH64_TLSDESC;
66 tlsGotRel = R_AARCH64_TLS_TPREL64;
67 pltHeaderSize = 32;
68 pltEntrySize = 16;
69 ipltEntrySize = 16;
70 defaultMaxPageSize = 65536;
71
72 // Align to the 2 MiB page size (known as a superpage or huge page).
73 // FreeBSD automatically promotes 2 MiB-aligned allocations.
74 defaultImageBase = 0x200000;
75
76 needsThunks = true;
77 }
78
getRelExpr(RelType type,const Symbol & s,const uint8_t * loc) const79 RelExpr AArch64::getRelExpr(RelType type, const Symbol &s,
80 const uint8_t *loc) const {
81 switch (type) {
82 case R_AARCH64_ABS16:
83 case R_AARCH64_ABS32:
84 case R_AARCH64_ABS64:
85 case R_AARCH64_ADD_ABS_LO12_NC:
86 case R_AARCH64_LDST128_ABS_LO12_NC:
87 case R_AARCH64_LDST16_ABS_LO12_NC:
88 case R_AARCH64_LDST32_ABS_LO12_NC:
89 case R_AARCH64_LDST64_ABS_LO12_NC:
90 case R_AARCH64_LDST8_ABS_LO12_NC:
91 case R_AARCH64_MOVW_SABS_G0:
92 case R_AARCH64_MOVW_SABS_G1:
93 case R_AARCH64_MOVW_SABS_G2:
94 case R_AARCH64_MOVW_UABS_G0:
95 case R_AARCH64_MOVW_UABS_G0_NC:
96 case R_AARCH64_MOVW_UABS_G1:
97 case R_AARCH64_MOVW_UABS_G1_NC:
98 case R_AARCH64_MOVW_UABS_G2:
99 case R_AARCH64_MOVW_UABS_G2_NC:
100 case R_AARCH64_MOVW_UABS_G3:
101 return R_ABS;
102 case R_AARCH64_TLSDESC_ADR_PAGE21:
103 return R_AARCH64_TLSDESC_PAGE;
104 case R_AARCH64_TLSDESC_LD64_LO12:
105 case R_AARCH64_TLSDESC_ADD_LO12:
106 return R_TLSDESC;
107 case R_AARCH64_TLSDESC_CALL:
108 return R_TLSDESC_CALL;
109 case R_AARCH64_TLSLE_ADD_TPREL_HI12:
110 case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
111 case R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
112 case R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
113 case R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
114 case R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
115 case R_AARCH64_TLSLE_LDST128_TPREL_LO12_NC:
116 case R_AARCH64_TLSLE_MOVW_TPREL_G0:
117 case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
118 case R_AARCH64_TLSLE_MOVW_TPREL_G1:
119 case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
120 case R_AARCH64_TLSLE_MOVW_TPREL_G2:
121 return R_TLS;
122 case R_AARCH64_CALL26:
123 case R_AARCH64_CONDBR19:
124 case R_AARCH64_JUMP26:
125 case R_AARCH64_TSTBR14:
126 return R_PLT_PC;
127 case R_AARCH64_PREL16:
128 case R_AARCH64_PREL32:
129 case R_AARCH64_PREL64:
130 case R_AARCH64_ADR_PREL_LO21:
131 case R_AARCH64_LD_PREL_LO19:
132 case R_AARCH64_MOVW_PREL_G0:
133 case R_AARCH64_MOVW_PREL_G0_NC:
134 case R_AARCH64_MOVW_PREL_G1:
135 case R_AARCH64_MOVW_PREL_G1_NC:
136 case R_AARCH64_MOVW_PREL_G2:
137 case R_AARCH64_MOVW_PREL_G2_NC:
138 case R_AARCH64_MOVW_PREL_G3:
139 return R_PC;
140 case R_AARCH64_ADR_PREL_PG_HI21:
141 case R_AARCH64_ADR_PREL_PG_HI21_NC:
142 return R_AARCH64_PAGE_PC;
143 case R_AARCH64_LD64_GOT_LO12_NC:
144 case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
145 return R_GOT;
146 case R_AARCH64_ADR_GOT_PAGE:
147 case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
148 return R_AARCH64_GOT_PAGE_PC;
149 case R_AARCH64_NONE:
150 return R_NONE;
151 default:
152 error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
153 ") against symbol " + toString(s));
154 return R_NONE;
155 }
156 }
157
adjustRelaxExpr(RelType type,const uint8_t * data,RelExpr expr) const158 RelExpr AArch64::adjustRelaxExpr(RelType type, const uint8_t *data,
159 RelExpr expr) const {
160 if (expr == R_RELAX_TLS_GD_TO_IE) {
161 if (type == R_AARCH64_TLSDESC_ADR_PAGE21)
162 return R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC;
163 return R_RELAX_TLS_GD_TO_IE_ABS;
164 }
165 return expr;
166 }
167
usesOnlyLowPageBits(RelType type) const168 bool AArch64::usesOnlyLowPageBits(RelType type) const {
169 switch (type) {
170 default:
171 return false;
172 case R_AARCH64_ADD_ABS_LO12_NC:
173 case R_AARCH64_LD64_GOT_LO12_NC:
174 case R_AARCH64_LDST128_ABS_LO12_NC:
175 case R_AARCH64_LDST16_ABS_LO12_NC:
176 case R_AARCH64_LDST32_ABS_LO12_NC:
177 case R_AARCH64_LDST64_ABS_LO12_NC:
178 case R_AARCH64_LDST8_ABS_LO12_NC:
179 case R_AARCH64_TLSDESC_ADD_LO12:
180 case R_AARCH64_TLSDESC_LD64_LO12:
181 case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
182 return true;
183 }
184 }
185
getDynRel(RelType type) const186 RelType AArch64::getDynRel(RelType type) const {
187 if (type == R_AARCH64_ABS64)
188 return type;
189 return R_AARCH64_NONE;
190 }
191
writeGotPlt(uint8_t * buf,const Symbol &) const192 void AArch64::writeGotPlt(uint8_t *buf, const Symbol &) const {
193 write64le(buf, in.plt->getVA());
194 }
195
writePltHeader(uint8_t * buf) const196 void AArch64::writePltHeader(uint8_t *buf) const {
197 const uint8_t pltData[] = {
198 0xf0, 0x7b, 0xbf, 0xa9, // stp x16, x30, [sp,#-16]!
199 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.plt.got[2]))
200 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.plt.got[2]))]
201 0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.plt.got[2]))
202 0x20, 0x02, 0x1f, 0xd6, // br x17
203 0x1f, 0x20, 0x03, 0xd5, // nop
204 0x1f, 0x20, 0x03, 0xd5, // nop
205 0x1f, 0x20, 0x03, 0xd5 // nop
206 };
207 memcpy(buf, pltData, sizeof(pltData));
208
209 uint64_t got = in.gotPlt->getVA();
210 uint64_t plt = in.plt->getVA();
211 relocateOne(buf + 4, R_AARCH64_ADR_PREL_PG_HI21,
212 getAArch64Page(got + 16) - getAArch64Page(plt + 4));
213 relocateOne(buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, got + 16);
214 relocateOne(buf + 12, R_AARCH64_ADD_ABS_LO12_NC, got + 16);
215 }
216
writePlt(uint8_t * buf,const Symbol & sym,uint64_t pltEntryAddr) const217 void AArch64::writePlt(uint8_t *buf, const Symbol &sym,
218 uint64_t pltEntryAddr) const {
219 const uint8_t inst[] = {
220 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.plt.got[n]))
221 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.plt.got[n]))]
222 0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.plt.got[n]))
223 0x20, 0x02, 0x1f, 0xd6 // br x17
224 };
225 memcpy(buf, inst, sizeof(inst));
226
227 uint64_t gotPltEntryAddr = sym.getGotPltVA();
228 relocateOne(buf, R_AARCH64_ADR_PREL_PG_HI21,
229 getAArch64Page(gotPltEntryAddr) - getAArch64Page(pltEntryAddr));
230 relocateOne(buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, gotPltEntryAddr);
231 relocateOne(buf + 8, R_AARCH64_ADD_ABS_LO12_NC, gotPltEntryAddr);
232 }
233
needsThunk(RelExpr expr,RelType type,const InputFile * file,uint64_t branchAddr,const Symbol & s,int64_t a) const234 bool AArch64::needsThunk(RelExpr expr, RelType type, const InputFile *file,
235 uint64_t branchAddr, const Symbol &s,
236 int64_t a) const {
237 // If s is an undefined weak symbol and does not have a PLT entry then it
238 // will be resolved as a branch to the next instruction.
239 if (s.isUndefWeak() && !s.isInPlt())
240 return false;
241 // ELF for the ARM 64-bit architecture, section Call and Jump relocations
242 // only permits range extension thunks for R_AARCH64_CALL26 and
243 // R_AARCH64_JUMP26 relocation types.
244 if (type != R_AARCH64_CALL26 && type != R_AARCH64_JUMP26)
245 return false;
246 uint64_t dst = expr == R_PLT_PC ? s.getPltVA() : s.getVA(a);
247 return !inBranchRange(type, branchAddr, dst);
248 }
249
getThunkSectionSpacing() const250 uint32_t AArch64::getThunkSectionSpacing() const {
251 // See comment in Arch/ARM.cpp for a more detailed explanation of
252 // getThunkSectionSpacing(). For AArch64 the only branches we are permitted to
253 // Thunk have a range of +/- 128 MiB
254 return (128 * 1024 * 1024) - 0x30000;
255 }
256
inBranchRange(RelType type,uint64_t src,uint64_t dst) const257 bool AArch64::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
258 if (type != R_AARCH64_CALL26 && type != R_AARCH64_JUMP26)
259 return true;
260 // The AArch64 call and unconditional branch instructions have a range of
261 // +/- 128 MiB.
262 uint64_t range = 128 * 1024 * 1024;
263 if (dst > src) {
264 // Immediate of branch is signed.
265 range -= 4;
266 return dst - src <= range;
267 }
268 return src - dst <= range;
269 }
270
write32AArch64Addr(uint8_t * l,uint64_t imm)271 static void write32AArch64Addr(uint8_t *l, uint64_t imm) {
272 uint32_t immLo = (imm & 0x3) << 29;
273 uint32_t immHi = (imm & 0x1FFFFC) << 3;
274 uint64_t mask = (0x3 << 29) | (0x1FFFFC << 3);
275 write32le(l, (read32le(l) & ~mask) | immLo | immHi);
276 }
277
278 // Return the bits [Start, End] from Val shifted Start bits.
279 // For instance, getBits(0xF0, 4, 8) returns 0xF.
getBits(uint64_t val,int start,int end)280 static uint64_t getBits(uint64_t val, int start, int end) {
281 uint64_t mask = ((uint64_t)1 << (end + 1 - start)) - 1;
282 return (val >> start) & mask;
283 }
284
or32le(uint8_t * p,int32_t v)285 static void or32le(uint8_t *p, int32_t v) { write32le(p, read32le(p) | v); }
286
287 // Update the immediate field in a AARCH64 ldr, str, and add instruction.
or32AArch64Imm(uint8_t * l,uint64_t imm)288 static void or32AArch64Imm(uint8_t *l, uint64_t imm) {
289 or32le(l, (imm & 0xFFF) << 10);
290 }
291
292 // Update the immediate field in an AArch64 movk, movn or movz instruction
293 // for a signed relocation, and update the opcode of a movn or movz instruction
294 // to match the sign of the operand.
writeSMovWImm(uint8_t * loc,uint32_t imm)295 static void writeSMovWImm(uint8_t *loc, uint32_t imm) {
296 uint32_t inst = read32le(loc);
297 // Opcode field is bits 30, 29, with 10 = movz, 00 = movn and 11 = movk.
298 if (!(inst & (1 << 29))) {
299 // movn or movz.
300 if (imm & 0x10000) {
301 // Change opcode to movn, which takes an inverted operand.
302 imm ^= 0xFFFF;
303 inst &= ~(1 << 30);
304 } else {
305 // Change opcode to movz.
306 inst |= 1 << 30;
307 }
308 }
309 write32le(loc, inst | ((imm & 0xFFFF) << 5));
310 }
311
relocateOne(uint8_t * loc,RelType type,uint64_t val) const312 void AArch64::relocateOne(uint8_t *loc, RelType type, uint64_t val) const {
313 switch (type) {
314 case R_AARCH64_ABS16:
315 case R_AARCH64_PREL16:
316 checkIntUInt(loc, val, 16, type);
317 write16le(loc, val);
318 break;
319 case R_AARCH64_ABS32:
320 case R_AARCH64_PREL32:
321 checkIntUInt(loc, val, 32, type);
322 write32le(loc, val);
323 break;
324 case R_AARCH64_ABS64:
325 case R_AARCH64_PREL64:
326 write64le(loc, val);
327 break;
328 case R_AARCH64_ADD_ABS_LO12_NC:
329 or32AArch64Imm(loc, val);
330 break;
331 case R_AARCH64_ADR_GOT_PAGE:
332 case R_AARCH64_ADR_PREL_PG_HI21:
333 case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
334 case R_AARCH64_TLSDESC_ADR_PAGE21:
335 checkInt(loc, val, 33, type);
336 LLVM_FALLTHROUGH;
337 case R_AARCH64_ADR_PREL_PG_HI21_NC:
338 write32AArch64Addr(loc, val >> 12);
339 break;
340 case R_AARCH64_ADR_PREL_LO21:
341 checkInt(loc, val, 21, type);
342 write32AArch64Addr(loc, val);
343 break;
344 case R_AARCH64_JUMP26:
345 // Normally we would just write the bits of the immediate field, however
346 // when patching instructions for the cpu errata fix -fix-cortex-a53-843419
347 // we want to replace a non-branch instruction with a branch immediate
348 // instruction. By writing all the bits of the instruction including the
349 // opcode and the immediate (0 001 | 01 imm26) we can do this
350 // transformation by placing a R_AARCH64_JUMP26 relocation at the offset of
351 // the instruction we want to patch.
352 write32le(loc, 0x14000000);
353 LLVM_FALLTHROUGH;
354 case R_AARCH64_CALL26:
355 checkInt(loc, val, 28, type);
356 or32le(loc, (val & 0x0FFFFFFC) >> 2);
357 break;
358 case R_AARCH64_CONDBR19:
359 case R_AARCH64_LD_PREL_LO19:
360 checkAlignment(loc, val, 4, type);
361 checkInt(loc, val, 21, type);
362 or32le(loc, (val & 0x1FFFFC) << 3);
363 break;
364 case R_AARCH64_LDST8_ABS_LO12_NC:
365 case R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
366 or32AArch64Imm(loc, getBits(val, 0, 11));
367 break;
368 case R_AARCH64_LDST16_ABS_LO12_NC:
369 case R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
370 checkAlignment(loc, val, 2, type);
371 or32AArch64Imm(loc, getBits(val, 1, 11));
372 break;
373 case R_AARCH64_LDST32_ABS_LO12_NC:
374 case R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
375 checkAlignment(loc, val, 4, type);
376 or32AArch64Imm(loc, getBits(val, 2, 11));
377 break;
378 case R_AARCH64_LDST64_ABS_LO12_NC:
379 case R_AARCH64_LD64_GOT_LO12_NC:
380 case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
381 case R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
382 case R_AARCH64_TLSDESC_LD64_LO12:
383 checkAlignment(loc, val, 8, type);
384 or32AArch64Imm(loc, getBits(val, 3, 11));
385 break;
386 case R_AARCH64_LDST128_ABS_LO12_NC:
387 case R_AARCH64_TLSLE_LDST128_TPREL_LO12_NC:
388 checkAlignment(loc, val, 16, type);
389 or32AArch64Imm(loc, getBits(val, 4, 11));
390 break;
391 case R_AARCH64_MOVW_UABS_G0:
392 checkUInt(loc, val, 16, type);
393 LLVM_FALLTHROUGH;
394 case R_AARCH64_MOVW_UABS_G0_NC:
395 or32le(loc, (val & 0xFFFF) << 5);
396 break;
397 case R_AARCH64_MOVW_UABS_G1:
398 checkUInt(loc, val, 32, type);
399 LLVM_FALLTHROUGH;
400 case R_AARCH64_MOVW_UABS_G1_NC:
401 or32le(loc, (val & 0xFFFF0000) >> 11);
402 break;
403 case R_AARCH64_MOVW_UABS_G2:
404 checkUInt(loc, val, 48, type);
405 LLVM_FALLTHROUGH;
406 case R_AARCH64_MOVW_UABS_G2_NC:
407 or32le(loc, (val & 0xFFFF00000000) >> 27);
408 break;
409 case R_AARCH64_MOVW_UABS_G3:
410 or32le(loc, (val & 0xFFFF000000000000) >> 43);
411 break;
412 case R_AARCH64_MOVW_PREL_G0:
413 case R_AARCH64_MOVW_SABS_G0:
414 case R_AARCH64_TLSLE_MOVW_TPREL_G0:
415 checkInt(loc, val, 17, type);
416 LLVM_FALLTHROUGH;
417 case R_AARCH64_MOVW_PREL_G0_NC:
418 case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
419 writeSMovWImm(loc, val);
420 break;
421 case R_AARCH64_MOVW_PREL_G1:
422 case R_AARCH64_MOVW_SABS_G1:
423 case R_AARCH64_TLSLE_MOVW_TPREL_G1:
424 checkInt(loc, val, 33, type);
425 LLVM_FALLTHROUGH;
426 case R_AARCH64_MOVW_PREL_G1_NC:
427 case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
428 writeSMovWImm(loc, val >> 16);
429 break;
430 case R_AARCH64_MOVW_PREL_G2:
431 case R_AARCH64_MOVW_SABS_G2:
432 case R_AARCH64_TLSLE_MOVW_TPREL_G2:
433 checkInt(loc, val, 49, type);
434 LLVM_FALLTHROUGH;
435 case R_AARCH64_MOVW_PREL_G2_NC:
436 writeSMovWImm(loc, val >> 32);
437 break;
438 case R_AARCH64_MOVW_PREL_G3:
439 writeSMovWImm(loc, val >> 48);
440 break;
441 case R_AARCH64_TSTBR14:
442 checkInt(loc, val, 16, type);
443 or32le(loc, (val & 0xFFFC) << 3);
444 break;
445 case R_AARCH64_TLSLE_ADD_TPREL_HI12:
446 checkUInt(loc, val, 24, type);
447 or32AArch64Imm(loc, val >> 12);
448 break;
449 case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
450 case R_AARCH64_TLSDESC_ADD_LO12:
451 or32AArch64Imm(loc, val);
452 break;
453 default:
454 llvm_unreachable("unknown relocation");
455 }
456 }
457
relaxTlsGdToLe(uint8_t * loc,RelType type,uint64_t val) const458 void AArch64::relaxTlsGdToLe(uint8_t *loc, RelType type, uint64_t val) const {
459 // TLSDESC Global-Dynamic relocation are in the form:
460 // adrp x0, :tlsdesc:v [R_AARCH64_TLSDESC_ADR_PAGE21]
461 // ldr x1, [x0, #:tlsdesc_lo12:v [R_AARCH64_TLSDESC_LD64_LO12]
462 // add x0, x0, :tlsdesc_los:v [R_AARCH64_TLSDESC_ADD_LO12]
463 // .tlsdesccall [R_AARCH64_TLSDESC_CALL]
464 // blr x1
465 // And it can optimized to:
466 // movz x0, #0x0, lsl #16
467 // movk x0, #0x10
468 // nop
469 // nop
470 checkUInt(loc, val, 32, type);
471
472 switch (type) {
473 case R_AARCH64_TLSDESC_ADD_LO12:
474 case R_AARCH64_TLSDESC_CALL:
475 write32le(loc, 0xd503201f); // nop
476 return;
477 case R_AARCH64_TLSDESC_ADR_PAGE21:
478 write32le(loc, 0xd2a00000 | (((val >> 16) & 0xffff) << 5)); // movz
479 return;
480 case R_AARCH64_TLSDESC_LD64_LO12:
481 write32le(loc, 0xf2800000 | ((val & 0xffff) << 5)); // movk
482 return;
483 default:
484 llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
485 }
486 }
487
relaxTlsGdToIe(uint8_t * loc,RelType type,uint64_t val) const488 void AArch64::relaxTlsGdToIe(uint8_t *loc, RelType type, uint64_t val) const {
489 // TLSDESC Global-Dynamic relocation are in the form:
490 // adrp x0, :tlsdesc:v [R_AARCH64_TLSDESC_ADR_PAGE21]
491 // ldr x1, [x0, #:tlsdesc_lo12:v [R_AARCH64_TLSDESC_LD64_LO12]
492 // add x0, x0, :tlsdesc_los:v [R_AARCH64_TLSDESC_ADD_LO12]
493 // .tlsdesccall [R_AARCH64_TLSDESC_CALL]
494 // blr x1
495 // And it can optimized to:
496 // adrp x0, :gottprel:v
497 // ldr x0, [x0, :gottprel_lo12:v]
498 // nop
499 // nop
500
501 switch (type) {
502 case R_AARCH64_TLSDESC_ADD_LO12:
503 case R_AARCH64_TLSDESC_CALL:
504 write32le(loc, 0xd503201f); // nop
505 break;
506 case R_AARCH64_TLSDESC_ADR_PAGE21:
507 write32le(loc, 0x90000000); // adrp
508 relocateOne(loc, R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21, val);
509 break;
510 case R_AARCH64_TLSDESC_LD64_LO12:
511 write32le(loc, 0xf9400000); // ldr
512 relocateOne(loc, R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC, val);
513 break;
514 default:
515 llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
516 }
517 }
518
relaxTlsIeToLe(uint8_t * loc,RelType type,uint64_t val) const519 void AArch64::relaxTlsIeToLe(uint8_t *loc, RelType type, uint64_t val) const {
520 checkUInt(loc, val, 32, type);
521
522 if (type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21) {
523 // Generate MOVZ.
524 uint32_t regNo = read32le(loc) & 0x1f;
525 write32le(loc, (0xd2a00000 | regNo) | (((val >> 16) & 0xffff) << 5));
526 return;
527 }
528 if (type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC) {
529 // Generate MOVK.
530 uint32_t regNo = read32le(loc) & 0x1f;
531 write32le(loc, (0xf2800000 | regNo) | ((val & 0xffff) << 5));
532 return;
533 }
534 llvm_unreachable("invalid relocation for TLS IE to LE relaxation");
535 }
536
537 // AArch64 may use security features in variant PLT sequences. These are:
538 // Pointer Authentication (PAC), introduced in armv8.3-a and Branch Target
539 // Indicator (BTI) introduced in armv8.5-a. The additional instructions used
540 // in the variant Plt sequences are encoded in the Hint space so they can be
541 // deployed on older architectures, which treat the instructions as a nop.
542 // PAC and BTI can be combined leading to the following combinations:
543 // writePltHeader
544 // writePltHeaderBti (no PAC Header needed)
545 // writePlt
546 // writePltBti (BTI only)
547 // writePltPac (PAC only)
548 // writePltBtiPac (BTI and PAC)
549 //
550 // When PAC is enabled the dynamic loader encrypts the address that it places
551 // in the .got.plt using the pacia1716 instruction which encrypts the value in
552 // x17 using the modifier in x16. The static linker places autia1716 before the
553 // indirect branch to x17 to authenticate the address in x17 with the modifier
554 // in x16. This makes it more difficult for an attacker to modify the value in
555 // the .got.plt.
556 //
557 // When BTI is enabled all indirect branches must land on a bti instruction.
558 // The static linker must place a bti instruction at the start of any PLT entry
559 // that may be the target of an indirect branch. As the PLT entries call the
560 // lazy resolver indirectly this must have a bti instruction at start. In
561 // general a bti instruction is not needed for a PLT entry as indirect calls
562 // are resolved to the function address and not the PLT entry for the function.
563 // There are a small number of cases where the PLT address can escape, such as
564 // taking the address of a function or ifunc via a non got-generating
565 // relocation, and a shared library refers to that symbol.
566 //
567 // We use the bti c variant of the instruction which permits indirect branches
568 // (br) via x16/x17 and indirect function calls (blr) via any register. The ABI
569 // guarantees that all indirect branches from code requiring BTI protection
570 // will go via x16/x17
571
572 namespace {
573 class AArch64BtiPac final : public AArch64 {
574 public:
575 AArch64BtiPac();
576 void writePltHeader(uint8_t *buf) const override;
577 void writePlt(uint8_t *buf, const Symbol &sym,
578 uint64_t pltEntryAddr) const override;
579
580 private:
581 bool btiHeader; // bti instruction needed in PLT Header
582 bool btiEntry; // bti instruction needed in PLT Entry
583 bool pacEntry; // autia1716 instruction needed in PLT Entry
584 };
585 } // namespace
586
AArch64BtiPac()587 AArch64BtiPac::AArch64BtiPac() {
588 btiHeader = (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI);
589 // A BTI (Branch Target Indicator) Plt Entry is only required if the
590 // address of the PLT entry can be taken by the program, which permits an
591 // indirect jump to the PLT entry. This can happen when the address
592 // of the PLT entry for a function is canonicalised due to the address of
593 // the function in an executable being taken by a shared library.
594 // FIXME: There is a potential optimization to omit the BTI if we detect
595 // that the address of the PLT entry isn't taken.
596 btiEntry = btiHeader && !config->shared;
597 pacEntry = (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_PAC);
598
599 if (btiEntry || pacEntry) {
600 pltEntrySize = 24;
601 ipltEntrySize = 24;
602 }
603 }
604
writePltHeader(uint8_t * buf) const605 void AArch64BtiPac::writePltHeader(uint8_t *buf) const {
606 const uint8_t btiData[] = { 0x5f, 0x24, 0x03, 0xd5 }; // bti c
607 const uint8_t pltData[] = {
608 0xf0, 0x7b, 0xbf, 0xa9, // stp x16, x30, [sp,#-16]!
609 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.plt.got[2]))
610 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.plt.got[2]))]
611 0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.plt.got[2]))
612 0x20, 0x02, 0x1f, 0xd6, // br x17
613 0x1f, 0x20, 0x03, 0xd5, // nop
614 0x1f, 0x20, 0x03, 0xd5 // nop
615 };
616 const uint8_t nopData[] = { 0x1f, 0x20, 0x03, 0xd5 }; // nop
617
618 uint64_t got = in.gotPlt->getVA();
619 uint64_t plt = in.plt->getVA();
620
621 if (btiHeader) {
622 // PltHeader is called indirectly by plt[N]. Prefix pltData with a BTI C
623 // instruction.
624 memcpy(buf, btiData, sizeof(btiData));
625 buf += sizeof(btiData);
626 plt += sizeof(btiData);
627 }
628 memcpy(buf, pltData, sizeof(pltData));
629
630 relocateOne(buf + 4, R_AARCH64_ADR_PREL_PG_HI21,
631 getAArch64Page(got + 16) - getAArch64Page(plt + 8));
632 relocateOne(buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, got + 16);
633 relocateOne(buf + 12, R_AARCH64_ADD_ABS_LO12_NC, got + 16);
634 if (!btiHeader)
635 // We didn't add the BTI c instruction so round out size with NOP.
636 memcpy(buf + sizeof(pltData), nopData, sizeof(nopData));
637 }
638
writePlt(uint8_t * buf,const Symbol & sym,uint64_t pltEntryAddr) const639 void AArch64BtiPac::writePlt(uint8_t *buf, const Symbol &sym,
640 uint64_t pltEntryAddr) const {
641 // The PLT entry is of the form:
642 // [btiData] addrInst (pacBr | stdBr) [nopData]
643 const uint8_t btiData[] = { 0x5f, 0x24, 0x03, 0xd5 }; // bti c
644 const uint8_t addrInst[] = {
645 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.plt.got[n]))
646 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.plt.got[n]))]
647 0x10, 0x02, 0x00, 0x91 // add x16, x16, Offset(&(.plt.got[n]))
648 };
649 const uint8_t pacBr[] = {
650 0x9f, 0x21, 0x03, 0xd5, // autia1716
651 0x20, 0x02, 0x1f, 0xd6 // br x17
652 };
653 const uint8_t stdBr[] = {
654 0x20, 0x02, 0x1f, 0xd6, // br x17
655 0x1f, 0x20, 0x03, 0xd5 // nop
656 };
657 const uint8_t nopData[] = { 0x1f, 0x20, 0x03, 0xd5 }; // nop
658
659 if (btiEntry) {
660 memcpy(buf, btiData, sizeof(btiData));
661 buf += sizeof(btiData);
662 pltEntryAddr += sizeof(btiData);
663 }
664
665 uint64_t gotPltEntryAddr = sym.getGotPltVA();
666 memcpy(buf, addrInst, sizeof(addrInst));
667 relocateOne(buf, R_AARCH64_ADR_PREL_PG_HI21,
668 getAArch64Page(gotPltEntryAddr) -
669 getAArch64Page(pltEntryAddr));
670 relocateOne(buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, gotPltEntryAddr);
671 relocateOne(buf + 8, R_AARCH64_ADD_ABS_LO12_NC, gotPltEntryAddr);
672
673 if (pacEntry)
674 memcpy(buf + sizeof(addrInst), pacBr, sizeof(pacBr));
675 else
676 memcpy(buf + sizeof(addrInst), stdBr, sizeof(stdBr));
677 if (!btiEntry)
678 // We didn't add the BTI c instruction so round out size with NOP.
679 memcpy(buf + sizeof(addrInst) + sizeof(stdBr), nopData, sizeof(nopData));
680 }
681
getTargetInfo()682 static TargetInfo *getTargetInfo() {
683 if (config->andFeatures & (GNU_PROPERTY_AARCH64_FEATURE_1_BTI |
684 GNU_PROPERTY_AARCH64_FEATURE_1_PAC)) {
685 static AArch64BtiPac t;
686 return &t;
687 }
688 static AArch64 t;
689 return &t;
690 }
691
getAArch64TargetInfo()692 TargetInfo *getAArch64TargetInfo() { return getTargetInfo(); }
693
694 } // namespace elf
695 } // namespace lld
696