1 //===- llvm/unittest/IR/InstructionsTest.cpp - Instructions unit tests ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/AsmParser/Parser.h"
10 #include "llvm/IR/Instructions.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/Analysis/ValueTracking.h"
13 #include "llvm/IR/BasicBlock.h"
14 #include "llvm/IR/Constants.h"
15 #include "llvm/IR/DataLayout.h"
16 #include "llvm/IR/DerivedTypes.h"
17 #include "llvm/IR/Function.h"
18 #include "llvm/IR/IRBuilder.h"
19 #include "llvm/IR/LLVMContext.h"
20 #include "llvm/IR/MDBuilder.h"
21 #include "llvm/IR/Module.h"
22 #include "llvm/IR/NoFolder.h"
23 #include "llvm/IR/Operator.h"
24 #include "llvm/Support/SourceMgr.h"
25 #include "gmock/gmock-matchers.h"
26 #include "gtest/gtest.h"
27 #include <memory>
28 
29 namespace llvm {
30 namespace {
31 
parseIR(LLVMContext & C,const char * IR)32 static std::unique_ptr<Module> parseIR(LLVMContext &C, const char *IR) {
33   SMDiagnostic Err;
34   std::unique_ptr<Module> Mod = parseAssemblyString(IR, Err, C);
35   if (!Mod)
36     Err.print("InstructionsTests", errs());
37   return Mod;
38 }
39 
TEST(InstructionsTest,ReturnInst)40 TEST(InstructionsTest, ReturnInst) {
41   LLVMContext C;
42 
43   // test for PR6589
44   const ReturnInst* r0 = ReturnInst::Create(C);
45   EXPECT_EQ(r0->getNumOperands(), 0U);
46   EXPECT_EQ(r0->op_begin(), r0->op_end());
47 
48   IntegerType* Int1 = IntegerType::get(C, 1);
49   Constant* One = ConstantInt::get(Int1, 1, true);
50   const ReturnInst* r1 = ReturnInst::Create(C, One);
51   EXPECT_EQ(1U, r1->getNumOperands());
52   User::const_op_iterator b(r1->op_begin());
53   EXPECT_NE(r1->op_end(), b);
54   EXPECT_EQ(One, *b);
55   EXPECT_EQ(One, r1->getOperand(0));
56   ++b;
57   EXPECT_EQ(r1->op_end(), b);
58 
59   // clean up
60   delete r0;
61   delete r1;
62 }
63 
64 // Test fixture that provides a module and a single function within it. Useful
65 // for tests that need to refer to the function in some way.
66 class ModuleWithFunctionTest : public testing::Test {
67 protected:
ModuleWithFunctionTest()68   ModuleWithFunctionTest() : M(new Module("MyModule", Ctx)) {
69     FArgTypes.push_back(Type::getInt8Ty(Ctx));
70     FArgTypes.push_back(Type::getInt32Ty(Ctx));
71     FArgTypes.push_back(Type::getInt64Ty(Ctx));
72     FunctionType *FTy =
73         FunctionType::get(Type::getVoidTy(Ctx), FArgTypes, false);
74     F = Function::Create(FTy, Function::ExternalLinkage, "", M.get());
75   }
76 
77   LLVMContext Ctx;
78   std::unique_ptr<Module> M;
79   SmallVector<Type *, 3> FArgTypes;
80   Function *F;
81 };
82 
TEST_F(ModuleWithFunctionTest,CallInst)83 TEST_F(ModuleWithFunctionTest, CallInst) {
84   Value *Args[] = {ConstantInt::get(Type::getInt8Ty(Ctx), 20),
85                    ConstantInt::get(Type::getInt32Ty(Ctx), 9999),
86                    ConstantInt::get(Type::getInt64Ty(Ctx), 42)};
87   std::unique_ptr<CallInst> Call(CallInst::Create(F, Args));
88 
89   // Make sure iteration over a call's arguments works as expected.
90   unsigned Idx = 0;
91   for (Value *Arg : Call->arg_operands()) {
92     EXPECT_EQ(FArgTypes[Idx], Arg->getType());
93     EXPECT_EQ(Call->getArgOperand(Idx)->getType(), Arg->getType());
94     Idx++;
95   }
96 }
97 
TEST_F(ModuleWithFunctionTest,InvokeInst)98 TEST_F(ModuleWithFunctionTest, InvokeInst) {
99   BasicBlock *BB1 = BasicBlock::Create(Ctx, "", F);
100   BasicBlock *BB2 = BasicBlock::Create(Ctx, "", F);
101 
102   Value *Args[] = {ConstantInt::get(Type::getInt8Ty(Ctx), 20),
103                    ConstantInt::get(Type::getInt32Ty(Ctx), 9999),
104                    ConstantInt::get(Type::getInt64Ty(Ctx), 42)};
105   std::unique_ptr<InvokeInst> Invoke(InvokeInst::Create(F, BB1, BB2, Args));
106 
107   // Make sure iteration over invoke's arguments works as expected.
108   unsigned Idx = 0;
109   for (Value *Arg : Invoke->arg_operands()) {
110     EXPECT_EQ(FArgTypes[Idx], Arg->getType());
111     EXPECT_EQ(Invoke->getArgOperand(Idx)->getType(), Arg->getType());
112     Idx++;
113   }
114 }
115 
TEST(InstructionsTest,BranchInst)116 TEST(InstructionsTest, BranchInst) {
117   LLVMContext C;
118 
119   // Make a BasicBlocks
120   BasicBlock* bb0 = BasicBlock::Create(C);
121   BasicBlock* bb1 = BasicBlock::Create(C);
122 
123   // Mandatory BranchInst
124   const BranchInst* b0 = BranchInst::Create(bb0);
125 
126   EXPECT_TRUE(b0->isUnconditional());
127   EXPECT_FALSE(b0->isConditional());
128   EXPECT_EQ(1U, b0->getNumSuccessors());
129 
130   // check num operands
131   EXPECT_EQ(1U, b0->getNumOperands());
132 
133   EXPECT_NE(b0->op_begin(), b0->op_end());
134   EXPECT_EQ(b0->op_end(), std::next(b0->op_begin()));
135 
136   EXPECT_EQ(b0->op_end(), std::next(b0->op_begin()));
137 
138   IntegerType* Int1 = IntegerType::get(C, 1);
139   Constant* One = ConstantInt::get(Int1, 1, true);
140 
141   // Conditional BranchInst
142   BranchInst* b1 = BranchInst::Create(bb0, bb1, One);
143 
144   EXPECT_FALSE(b1->isUnconditional());
145   EXPECT_TRUE(b1->isConditional());
146   EXPECT_EQ(2U, b1->getNumSuccessors());
147 
148   // check num operands
149   EXPECT_EQ(3U, b1->getNumOperands());
150 
151   User::const_op_iterator b(b1->op_begin());
152 
153   // check COND
154   EXPECT_NE(b, b1->op_end());
155   EXPECT_EQ(One, *b);
156   EXPECT_EQ(One, b1->getOperand(0));
157   EXPECT_EQ(One, b1->getCondition());
158   ++b;
159 
160   // check ELSE
161   EXPECT_EQ(bb1, *b);
162   EXPECT_EQ(bb1, b1->getOperand(1));
163   EXPECT_EQ(bb1, b1->getSuccessor(1));
164   ++b;
165 
166   // check THEN
167   EXPECT_EQ(bb0, *b);
168   EXPECT_EQ(bb0, b1->getOperand(2));
169   EXPECT_EQ(bb0, b1->getSuccessor(0));
170   ++b;
171 
172   EXPECT_EQ(b1->op_end(), b);
173 
174   // clean up
175   delete b0;
176   delete b1;
177 
178   delete bb0;
179   delete bb1;
180 }
181 
TEST(InstructionsTest,CastInst)182 TEST(InstructionsTest, CastInst) {
183   LLVMContext C;
184 
185   Type *Int8Ty = Type::getInt8Ty(C);
186   Type *Int16Ty = Type::getInt16Ty(C);
187   Type *Int32Ty = Type::getInt32Ty(C);
188   Type *Int64Ty = Type::getInt64Ty(C);
189   Type *V8x8Ty = VectorType::get(Int8Ty, 8);
190   Type *V8x64Ty = VectorType::get(Int64Ty, 8);
191   Type *X86MMXTy = Type::getX86_MMXTy(C);
192 
193   Type *HalfTy = Type::getHalfTy(C);
194   Type *FloatTy = Type::getFloatTy(C);
195   Type *DoubleTy = Type::getDoubleTy(C);
196 
197   Type *V2Int32Ty = VectorType::get(Int32Ty, 2);
198   Type *V2Int64Ty = VectorType::get(Int64Ty, 2);
199   Type *V4Int16Ty = VectorType::get(Int16Ty, 4);
200 
201   Type *Int32PtrTy = PointerType::get(Int32Ty, 0);
202   Type *Int64PtrTy = PointerType::get(Int64Ty, 0);
203 
204   Type *Int32PtrAS1Ty = PointerType::get(Int32Ty, 1);
205   Type *Int64PtrAS1Ty = PointerType::get(Int64Ty, 1);
206 
207   Type *V2Int32PtrAS1Ty = VectorType::get(Int32PtrAS1Ty, 2);
208   Type *V2Int64PtrAS1Ty = VectorType::get(Int64PtrAS1Ty, 2);
209   Type *V4Int32PtrAS1Ty = VectorType::get(Int32PtrAS1Ty, 4);
210   Type *V4Int64PtrAS1Ty = VectorType::get(Int64PtrAS1Ty, 4);
211 
212   Type *V2Int64PtrTy = VectorType::get(Int64PtrTy, 2);
213   Type *V2Int32PtrTy = VectorType::get(Int32PtrTy, 2);
214   Type *V4Int32PtrTy = VectorType::get(Int32PtrTy, 4);
215 
216   const Constant* c8 = Constant::getNullValue(V8x8Ty);
217   const Constant* c64 = Constant::getNullValue(V8x64Ty);
218 
219   const Constant *v2ptr32 = Constant::getNullValue(V2Int32PtrTy);
220 
221   EXPECT_TRUE(CastInst::isCastable(V8x8Ty, X86MMXTy));
222   EXPECT_TRUE(CastInst::isCastable(X86MMXTy, V8x8Ty));
223   EXPECT_FALSE(CastInst::isCastable(Int64Ty, X86MMXTy));
224   EXPECT_TRUE(CastInst::isCastable(V8x64Ty, V8x8Ty));
225   EXPECT_TRUE(CastInst::isCastable(V8x8Ty, V8x64Ty));
226   EXPECT_EQ(CastInst::Trunc, CastInst::getCastOpcode(c64, true, V8x8Ty, true));
227   EXPECT_EQ(CastInst::SExt, CastInst::getCastOpcode(c8, true, V8x64Ty, true));
228 
229   EXPECT_FALSE(CastInst::isBitCastable(V8x8Ty, X86MMXTy));
230   EXPECT_FALSE(CastInst::isBitCastable(X86MMXTy, V8x8Ty));
231   EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, X86MMXTy));
232   EXPECT_FALSE(CastInst::isBitCastable(V8x64Ty, V8x8Ty));
233   EXPECT_FALSE(CastInst::isBitCastable(V8x8Ty, V8x64Ty));
234 
235   // Check address space casts are rejected since we don't know the sizes here
236   EXPECT_FALSE(CastInst::isBitCastable(Int32PtrTy, Int32PtrAS1Ty));
237   EXPECT_FALSE(CastInst::isBitCastable(Int32PtrAS1Ty, Int32PtrTy));
238   EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, V2Int32PtrAS1Ty));
239   EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V2Int32PtrTy));
240   EXPECT_TRUE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V2Int64PtrAS1Ty));
241   EXPECT_TRUE(CastInst::isCastable(V2Int32PtrAS1Ty, V2Int32PtrTy));
242   EXPECT_EQ(CastInst::AddrSpaceCast, CastInst::getCastOpcode(v2ptr32, true,
243                                                              V2Int32PtrAS1Ty,
244                                                              true));
245 
246   // Test mismatched number of elements for pointers
247   EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V4Int64PtrAS1Ty));
248   EXPECT_FALSE(CastInst::isBitCastable(V4Int64PtrAS1Ty, V2Int32PtrAS1Ty));
249   EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V4Int32PtrAS1Ty));
250   EXPECT_FALSE(CastInst::isBitCastable(Int32PtrTy, V2Int32PtrTy));
251   EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, Int32PtrTy));
252 
253   EXPECT_TRUE(CastInst::isBitCastable(Int32PtrTy, Int64PtrTy));
254   EXPECT_FALSE(CastInst::isBitCastable(DoubleTy, FloatTy));
255   EXPECT_FALSE(CastInst::isBitCastable(FloatTy, DoubleTy));
256   EXPECT_TRUE(CastInst::isBitCastable(FloatTy, FloatTy));
257   EXPECT_TRUE(CastInst::isBitCastable(FloatTy, FloatTy));
258   EXPECT_TRUE(CastInst::isBitCastable(FloatTy, Int32Ty));
259   EXPECT_TRUE(CastInst::isBitCastable(Int16Ty, HalfTy));
260   EXPECT_TRUE(CastInst::isBitCastable(Int32Ty, FloatTy));
261   EXPECT_TRUE(CastInst::isBitCastable(V2Int32Ty, Int64Ty));
262 
263   EXPECT_TRUE(CastInst::isBitCastable(V2Int32Ty, V4Int16Ty));
264   EXPECT_FALSE(CastInst::isBitCastable(Int32Ty, Int64Ty));
265   EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, Int32Ty));
266 
267   EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, Int64Ty));
268   EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, V2Int32PtrTy));
269   EXPECT_TRUE(CastInst::isBitCastable(V2Int64PtrTy, V2Int32PtrTy));
270   EXPECT_TRUE(CastInst::isBitCastable(V2Int32PtrTy, V2Int64PtrTy));
271   EXPECT_FALSE(CastInst::isBitCastable(V2Int32Ty, V2Int64Ty));
272   EXPECT_FALSE(CastInst::isBitCastable(V2Int64Ty, V2Int32Ty));
273 
274 
275   EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
276                                      Constant::getNullValue(V4Int32PtrTy),
277                                      V2Int32PtrTy));
278   EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
279                                      Constant::getNullValue(V2Int32PtrTy),
280                                      V4Int32PtrTy));
281 
282   EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast,
283                                      Constant::getNullValue(V4Int32PtrAS1Ty),
284                                      V2Int32PtrTy));
285   EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast,
286                                      Constant::getNullValue(V2Int32PtrTy),
287                                      V4Int32PtrAS1Ty));
288 
289 
290   // Check that assertion is not hit when creating a cast with a vector of
291   // pointers
292   // First form
293   BasicBlock *BB = BasicBlock::Create(C);
294   Constant *NullV2I32Ptr = Constant::getNullValue(V2Int32PtrTy);
295   auto Inst1 = CastInst::CreatePointerCast(NullV2I32Ptr, V2Int32Ty, "foo", BB);
296 
297   // Second form
298   auto Inst2 = CastInst::CreatePointerCast(NullV2I32Ptr, V2Int32Ty);
299 
300   delete Inst2;
301   Inst1->eraseFromParent();
302   delete BB;
303 }
304 
TEST(InstructionsTest,VectorGep)305 TEST(InstructionsTest, VectorGep) {
306   LLVMContext C;
307 
308   // Type Definitions
309   Type *I8Ty = IntegerType::get(C, 8);
310   Type *I32Ty = IntegerType::get(C, 32);
311   PointerType *Ptri8Ty = PointerType::get(I8Ty, 0);
312   PointerType *Ptri32Ty = PointerType::get(I32Ty, 0);
313 
314   VectorType *V2xi8PTy = VectorType::get(Ptri8Ty, 2);
315   VectorType *V2xi32PTy = VectorType::get(Ptri32Ty, 2);
316 
317   // Test different aspects of the vector-of-pointers type
318   // and GEPs which use this type.
319   ConstantInt *Ci32a = ConstantInt::get(C, APInt(32, 1492));
320   ConstantInt *Ci32b = ConstantInt::get(C, APInt(32, 1948));
321   std::vector<Constant*> ConstVa(2, Ci32a);
322   std::vector<Constant*> ConstVb(2, Ci32b);
323   Constant *C2xi32a = ConstantVector::get(ConstVa);
324   Constant *C2xi32b = ConstantVector::get(ConstVb);
325 
326   CastInst *PtrVecA = new IntToPtrInst(C2xi32a, V2xi32PTy);
327   CastInst *PtrVecB = new IntToPtrInst(C2xi32b, V2xi32PTy);
328 
329   ICmpInst *ICmp0 = new ICmpInst(ICmpInst::ICMP_SGT, PtrVecA, PtrVecB);
330   ICmpInst *ICmp1 = new ICmpInst(ICmpInst::ICMP_ULT, PtrVecA, PtrVecB);
331   EXPECT_NE(ICmp0, ICmp1); // suppress warning.
332 
333   BasicBlock* BB0 = BasicBlock::Create(C);
334   // Test InsertAtEnd ICmpInst constructor.
335   ICmpInst *ICmp2 = new ICmpInst(*BB0, ICmpInst::ICMP_SGE, PtrVecA, PtrVecB);
336   EXPECT_NE(ICmp0, ICmp2); // suppress warning.
337 
338   GetElementPtrInst *Gep0 = GetElementPtrInst::Create(I32Ty, PtrVecA, C2xi32a);
339   GetElementPtrInst *Gep1 = GetElementPtrInst::Create(I32Ty, PtrVecA, C2xi32b);
340   GetElementPtrInst *Gep2 = GetElementPtrInst::Create(I32Ty, PtrVecB, C2xi32a);
341   GetElementPtrInst *Gep3 = GetElementPtrInst::Create(I32Ty, PtrVecB, C2xi32b);
342 
343   CastInst *BTC0 = new BitCastInst(Gep0, V2xi8PTy);
344   CastInst *BTC1 = new BitCastInst(Gep1, V2xi8PTy);
345   CastInst *BTC2 = new BitCastInst(Gep2, V2xi8PTy);
346   CastInst *BTC3 = new BitCastInst(Gep3, V2xi8PTy);
347 
348   Value *S0 = BTC0->stripPointerCasts();
349   Value *S1 = BTC1->stripPointerCasts();
350   Value *S2 = BTC2->stripPointerCasts();
351   Value *S3 = BTC3->stripPointerCasts();
352 
353   EXPECT_NE(S0, Gep0);
354   EXPECT_NE(S1, Gep1);
355   EXPECT_NE(S2, Gep2);
356   EXPECT_NE(S3, Gep3);
357 
358   int64_t Offset;
359   DataLayout TD("e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f3"
360                 "2:32:32-f64:64:64-v64:64:64-v128:128:128-a:0:64-s:64:64-f80"
361                 ":128:128-n8:16:32:64-S128");
362   // Make sure we don't crash
363   GetPointerBaseWithConstantOffset(Gep0, Offset, TD);
364   GetPointerBaseWithConstantOffset(Gep1, Offset, TD);
365   GetPointerBaseWithConstantOffset(Gep2, Offset, TD);
366   GetPointerBaseWithConstantOffset(Gep3, Offset, TD);
367 
368   // Gep of Geps
369   GetElementPtrInst *GepII0 = GetElementPtrInst::Create(I32Ty, Gep0, C2xi32b);
370   GetElementPtrInst *GepII1 = GetElementPtrInst::Create(I32Ty, Gep1, C2xi32a);
371   GetElementPtrInst *GepII2 = GetElementPtrInst::Create(I32Ty, Gep2, C2xi32b);
372   GetElementPtrInst *GepII3 = GetElementPtrInst::Create(I32Ty, Gep3, C2xi32a);
373 
374   EXPECT_EQ(GepII0->getNumIndices(), 1u);
375   EXPECT_EQ(GepII1->getNumIndices(), 1u);
376   EXPECT_EQ(GepII2->getNumIndices(), 1u);
377   EXPECT_EQ(GepII3->getNumIndices(), 1u);
378 
379   EXPECT_FALSE(GepII0->hasAllZeroIndices());
380   EXPECT_FALSE(GepII1->hasAllZeroIndices());
381   EXPECT_FALSE(GepII2->hasAllZeroIndices());
382   EXPECT_FALSE(GepII3->hasAllZeroIndices());
383 
384   delete GepII0;
385   delete GepII1;
386   delete GepII2;
387   delete GepII3;
388 
389   delete BTC0;
390   delete BTC1;
391   delete BTC2;
392   delete BTC3;
393 
394   delete Gep0;
395   delete Gep1;
396   delete Gep2;
397   delete Gep3;
398 
399   ICmp2->eraseFromParent();
400   delete BB0;
401 
402   delete ICmp0;
403   delete ICmp1;
404   delete PtrVecA;
405   delete PtrVecB;
406 }
407 
TEST(InstructionsTest,FPMathOperator)408 TEST(InstructionsTest, FPMathOperator) {
409   LLVMContext Context;
410   IRBuilder<> Builder(Context);
411   MDBuilder MDHelper(Context);
412   Instruction *I = Builder.CreatePHI(Builder.getDoubleTy(), 0);
413   MDNode *MD1 = MDHelper.createFPMath(1.0);
414   Value *V1 = Builder.CreateFAdd(I, I, "", MD1);
415   EXPECT_TRUE(isa<FPMathOperator>(V1));
416   FPMathOperator *O1 = cast<FPMathOperator>(V1);
417   EXPECT_EQ(O1->getFPAccuracy(), 1.0);
418   V1->deleteValue();
419   I->deleteValue();
420 }
421 
422 
TEST(InstructionsTest,isEliminableCastPair)423 TEST(InstructionsTest, isEliminableCastPair) {
424   LLVMContext C;
425 
426   Type* Int16Ty = Type::getInt16Ty(C);
427   Type* Int32Ty = Type::getInt32Ty(C);
428   Type* Int64Ty = Type::getInt64Ty(C);
429   Type* Int64PtrTy = Type::getInt64PtrTy(C);
430 
431   // Source and destination pointers have same size -> bitcast.
432   EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt,
433                                            CastInst::IntToPtr,
434                                            Int64PtrTy, Int64Ty, Int64PtrTy,
435                                            Int32Ty, nullptr, Int32Ty),
436             CastInst::BitCast);
437 
438   // Source and destination have unknown sizes, but the same address space and
439   // the intermediate int is the maximum pointer size -> bitcast
440   EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt,
441                                            CastInst::IntToPtr,
442                                            Int64PtrTy, Int64Ty, Int64PtrTy,
443                                            nullptr, nullptr, nullptr),
444             CastInst::BitCast);
445 
446   // Source and destination have unknown sizes, but the same address space and
447   // the intermediate int is not the maximum pointer size -> nothing
448   EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt,
449                                            CastInst::IntToPtr,
450                                            Int64PtrTy, Int32Ty, Int64PtrTy,
451                                            nullptr, nullptr, nullptr),
452             0U);
453 
454   // Middle pointer big enough -> bitcast.
455   EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
456                                            CastInst::PtrToInt,
457                                            Int64Ty, Int64PtrTy, Int64Ty,
458                                            nullptr, Int64Ty, nullptr),
459             CastInst::BitCast);
460 
461   // Middle pointer too small -> fail.
462   EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
463                                            CastInst::PtrToInt,
464                                            Int64Ty, Int64PtrTy, Int64Ty,
465                                            nullptr, Int32Ty, nullptr),
466             0U);
467 
468   // Test that we don't eliminate bitcasts between different address spaces,
469   // or if we don't have available pointer size information.
470   DataLayout DL("e-p:32:32:32-p1:16:16:16-p2:64:64:64-i1:8:8-i8:8:8-i16:16:16"
471                 "-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64"
472                 "-v128:128:128-a:0:64-s:64:64-f80:128:128-n8:16:32:64-S128");
473 
474   Type* Int64PtrTyAS1 = Type::getInt64PtrTy(C, 1);
475   Type* Int64PtrTyAS2 = Type::getInt64PtrTy(C, 2);
476 
477   IntegerType *Int16SizePtr = DL.getIntPtrType(C, 1);
478   IntegerType *Int64SizePtr = DL.getIntPtrType(C, 2);
479 
480   // Cannot simplify inttoptr, addrspacecast
481   EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
482                                            CastInst::AddrSpaceCast,
483                                            Int16Ty, Int64PtrTyAS1, Int64PtrTyAS2,
484                                            nullptr, Int16SizePtr, Int64SizePtr),
485             0U);
486 
487   // Cannot simplify addrspacecast, ptrtoint
488   EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::AddrSpaceCast,
489                                            CastInst::PtrToInt,
490                                            Int64PtrTyAS1, Int64PtrTyAS2, Int16Ty,
491                                            Int64SizePtr, Int16SizePtr, nullptr),
492             0U);
493 
494   // Pass since the bitcast address spaces are the same
495   EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
496                                            CastInst::BitCast,
497                                            Int16Ty, Int64PtrTyAS1, Int64PtrTyAS1,
498                                            nullptr, nullptr, nullptr),
499             CastInst::IntToPtr);
500 
501 }
502 
TEST(InstructionsTest,CloneCall)503 TEST(InstructionsTest, CloneCall) {
504   LLVMContext C;
505   Type *Int32Ty = Type::getInt32Ty(C);
506   Type *ArgTys[] = {Int32Ty, Int32Ty, Int32Ty};
507   FunctionType *FnTy = FunctionType::get(Int32Ty, ArgTys, /*isVarArg=*/false);
508   Value *Callee = Constant::getNullValue(FnTy->getPointerTo());
509   Value *Args[] = {
510     ConstantInt::get(Int32Ty, 1),
511     ConstantInt::get(Int32Ty, 2),
512     ConstantInt::get(Int32Ty, 3)
513   };
514   std::unique_ptr<CallInst> Call(
515       CallInst::Create(FnTy, Callee, Args, "result"));
516 
517   // Test cloning the tail call kind.
518   CallInst::TailCallKind Kinds[] = {CallInst::TCK_None, CallInst::TCK_Tail,
519                                     CallInst::TCK_MustTail};
520   for (CallInst::TailCallKind TCK : Kinds) {
521     Call->setTailCallKind(TCK);
522     std::unique_ptr<CallInst> Clone(cast<CallInst>(Call->clone()));
523     EXPECT_EQ(Call->getTailCallKind(), Clone->getTailCallKind());
524   }
525   Call->setTailCallKind(CallInst::TCK_None);
526 
527   // Test cloning an attribute.
528   {
529     AttrBuilder AB;
530     AB.addAttribute(Attribute::ReadOnly);
531     Call->setAttributes(
532         AttributeList::get(C, AttributeList::FunctionIndex, AB));
533     std::unique_ptr<CallInst> Clone(cast<CallInst>(Call->clone()));
534     EXPECT_TRUE(Clone->onlyReadsMemory());
535   }
536 }
537 
TEST(InstructionsTest,AlterCallBundles)538 TEST(InstructionsTest, AlterCallBundles) {
539   LLVMContext C;
540   Type *Int32Ty = Type::getInt32Ty(C);
541   FunctionType *FnTy = FunctionType::get(Int32Ty, Int32Ty, /*isVarArg=*/false);
542   Value *Callee = Constant::getNullValue(FnTy->getPointerTo());
543   Value *Args[] = {ConstantInt::get(Int32Ty, 42)};
544   OperandBundleDef OldBundle("before", UndefValue::get(Int32Ty));
545   std::unique_ptr<CallInst> Call(
546       CallInst::Create(FnTy, Callee, Args, OldBundle, "result"));
547   Call->setTailCallKind(CallInst::TailCallKind::TCK_NoTail);
548   AttrBuilder AB;
549   AB.addAttribute(Attribute::Cold);
550   Call->setAttributes(AttributeList::get(C, AttributeList::FunctionIndex, AB));
551   Call->setDebugLoc(DebugLoc(MDNode::get(C, None)));
552 
553   OperandBundleDef NewBundle("after", ConstantInt::get(Int32Ty, 7));
554   std::unique_ptr<CallInst> Clone(CallInst::Create(Call.get(), NewBundle));
555   EXPECT_EQ(Call->getNumArgOperands(), Clone->getNumArgOperands());
556   EXPECT_EQ(Call->getArgOperand(0), Clone->getArgOperand(0));
557   EXPECT_EQ(Call->getCallingConv(), Clone->getCallingConv());
558   EXPECT_EQ(Call->getTailCallKind(), Clone->getTailCallKind());
559   EXPECT_TRUE(Clone->hasFnAttr(Attribute::AttrKind::Cold));
560   EXPECT_EQ(Call->getDebugLoc(), Clone->getDebugLoc());
561   EXPECT_EQ(Clone->getNumOperandBundles(), 1U);
562   EXPECT_TRUE(Clone->getOperandBundle("after").hasValue());
563 }
564 
TEST(InstructionsTest,AlterInvokeBundles)565 TEST(InstructionsTest, AlterInvokeBundles) {
566   LLVMContext C;
567   Type *Int32Ty = Type::getInt32Ty(C);
568   FunctionType *FnTy = FunctionType::get(Int32Ty, Int32Ty, /*isVarArg=*/false);
569   Value *Callee = Constant::getNullValue(FnTy->getPointerTo());
570   Value *Args[] = {ConstantInt::get(Int32Ty, 42)};
571   std::unique_ptr<BasicBlock> NormalDest(BasicBlock::Create(C));
572   std::unique_ptr<BasicBlock> UnwindDest(BasicBlock::Create(C));
573   OperandBundleDef OldBundle("before", UndefValue::get(Int32Ty));
574   std::unique_ptr<InvokeInst> Invoke(
575       InvokeInst::Create(FnTy, Callee, NormalDest.get(), UnwindDest.get(), Args,
576                          OldBundle, "result"));
577   AttrBuilder AB;
578   AB.addAttribute(Attribute::Cold);
579   Invoke->setAttributes(
580       AttributeList::get(C, AttributeList::FunctionIndex, AB));
581   Invoke->setDebugLoc(DebugLoc(MDNode::get(C, None)));
582 
583   OperandBundleDef NewBundle("after", ConstantInt::get(Int32Ty, 7));
584   std::unique_ptr<InvokeInst> Clone(
585       InvokeInst::Create(Invoke.get(), NewBundle));
586   EXPECT_EQ(Invoke->getNormalDest(), Clone->getNormalDest());
587   EXPECT_EQ(Invoke->getUnwindDest(), Clone->getUnwindDest());
588   EXPECT_EQ(Invoke->getNumArgOperands(), Clone->getNumArgOperands());
589   EXPECT_EQ(Invoke->getArgOperand(0), Clone->getArgOperand(0));
590   EXPECT_EQ(Invoke->getCallingConv(), Clone->getCallingConv());
591   EXPECT_TRUE(Clone->hasFnAttr(Attribute::AttrKind::Cold));
592   EXPECT_EQ(Invoke->getDebugLoc(), Clone->getDebugLoc());
593   EXPECT_EQ(Clone->getNumOperandBundles(), 1U);
594   EXPECT_TRUE(Clone->getOperandBundle("after").hasValue());
595 }
596 
TEST_F(ModuleWithFunctionTest,DropPoisonGeneratingFlags)597 TEST_F(ModuleWithFunctionTest, DropPoisonGeneratingFlags) {
598   auto *OnlyBB = BasicBlock::Create(Ctx, "bb", F);
599   auto *Arg0 = &*F->arg_begin();
600 
601   IRBuilder<NoFolder> B(Ctx);
602   B.SetInsertPoint(OnlyBB);
603 
604   {
605     auto *UI =
606         cast<Instruction>(B.CreateUDiv(Arg0, Arg0, "", /*isExact*/ true));
607     ASSERT_TRUE(UI->isExact());
608     UI->dropPoisonGeneratingFlags();
609     ASSERT_FALSE(UI->isExact());
610   }
611 
612   {
613     auto *ShrI =
614         cast<Instruction>(B.CreateLShr(Arg0, Arg0, "", /*isExact*/ true));
615     ASSERT_TRUE(ShrI->isExact());
616     ShrI->dropPoisonGeneratingFlags();
617     ASSERT_FALSE(ShrI->isExact());
618   }
619 
620   {
621     auto *AI = cast<Instruction>(
622         B.CreateAdd(Arg0, Arg0, "", /*HasNUW*/ true, /*HasNSW*/ false));
623     ASSERT_TRUE(AI->hasNoUnsignedWrap());
624     AI->dropPoisonGeneratingFlags();
625     ASSERT_FALSE(AI->hasNoUnsignedWrap());
626     ASSERT_FALSE(AI->hasNoSignedWrap());
627   }
628 
629   {
630     auto *SI = cast<Instruction>(
631         B.CreateAdd(Arg0, Arg0, "", /*HasNUW*/ false, /*HasNSW*/ true));
632     ASSERT_TRUE(SI->hasNoSignedWrap());
633     SI->dropPoisonGeneratingFlags();
634     ASSERT_FALSE(SI->hasNoUnsignedWrap());
635     ASSERT_FALSE(SI->hasNoSignedWrap());
636   }
637 
638   {
639     auto *ShlI = cast<Instruction>(
640         B.CreateShl(Arg0, Arg0, "", /*HasNUW*/ true, /*HasNSW*/ true));
641     ASSERT_TRUE(ShlI->hasNoSignedWrap());
642     ASSERT_TRUE(ShlI->hasNoUnsignedWrap());
643     ShlI->dropPoisonGeneratingFlags();
644     ASSERT_FALSE(ShlI->hasNoUnsignedWrap());
645     ASSERT_FALSE(ShlI->hasNoSignedWrap());
646   }
647 
648   {
649     Value *GEPBase = Constant::getNullValue(B.getInt8PtrTy());
650     auto *GI = cast<GetElementPtrInst>(
651         B.CreateInBoundsGEP(B.getInt8Ty(), GEPBase, Arg0));
652     ASSERT_TRUE(GI->isInBounds());
653     GI->dropPoisonGeneratingFlags();
654     ASSERT_FALSE(GI->isInBounds());
655   }
656 }
657 
TEST(InstructionsTest,GEPIndices)658 TEST(InstructionsTest, GEPIndices) {
659   LLVMContext Context;
660   IRBuilder<NoFolder> Builder(Context);
661   Type *ElementTy = Builder.getInt8Ty();
662   Type *ArrTy = ArrayType::get(ArrayType::get(ElementTy, 64), 64);
663   Value *Indices[] = {
664     Builder.getInt32(0),
665     Builder.getInt32(13),
666     Builder.getInt32(42) };
667 
668   Value *V = Builder.CreateGEP(ArrTy, UndefValue::get(PointerType::getUnqual(ArrTy)),
669                                Indices);
670   ASSERT_TRUE(isa<GetElementPtrInst>(V));
671 
672   auto *GEPI = cast<GetElementPtrInst>(V);
673   ASSERT_NE(GEPI->idx_begin(), GEPI->idx_end());
674   ASSERT_EQ(GEPI->idx_end(), std::next(GEPI->idx_begin(), 3));
675   EXPECT_EQ(Indices[0], GEPI->idx_begin()[0]);
676   EXPECT_EQ(Indices[1], GEPI->idx_begin()[1]);
677   EXPECT_EQ(Indices[2], GEPI->idx_begin()[2]);
678   EXPECT_EQ(GEPI->idx_begin(), GEPI->indices().begin());
679   EXPECT_EQ(GEPI->idx_end(), GEPI->indices().end());
680 
681   const auto *CGEPI = GEPI;
682   ASSERT_NE(CGEPI->idx_begin(), CGEPI->idx_end());
683   ASSERT_EQ(CGEPI->idx_end(), std::next(CGEPI->idx_begin(), 3));
684   EXPECT_EQ(Indices[0], CGEPI->idx_begin()[0]);
685   EXPECT_EQ(Indices[1], CGEPI->idx_begin()[1]);
686   EXPECT_EQ(Indices[2], CGEPI->idx_begin()[2]);
687   EXPECT_EQ(CGEPI->idx_begin(), CGEPI->indices().begin());
688   EXPECT_EQ(CGEPI->idx_end(), CGEPI->indices().end());
689 
690   delete GEPI;
691 }
692 
TEST(InstructionsTest,SwitchInst)693 TEST(InstructionsTest, SwitchInst) {
694   LLVMContext C;
695 
696   std::unique_ptr<BasicBlock> BB1, BB2, BB3;
697   BB1.reset(BasicBlock::Create(C));
698   BB2.reset(BasicBlock::Create(C));
699   BB3.reset(BasicBlock::Create(C));
700 
701   // We create block 0 after the others so that it gets destroyed first and
702   // clears the uses of the other basic blocks.
703   std::unique_ptr<BasicBlock> BB0(BasicBlock::Create(C));
704 
705   auto *Int32Ty = Type::getInt32Ty(C);
706 
707   SwitchInst *SI =
708       SwitchInst::Create(UndefValue::get(Int32Ty), BB0.get(), 3, BB0.get());
709   SI->addCase(ConstantInt::get(Int32Ty, 1), BB1.get());
710   SI->addCase(ConstantInt::get(Int32Ty, 2), BB2.get());
711   SI->addCase(ConstantInt::get(Int32Ty, 3), BB3.get());
712 
713   auto CI = SI->case_begin();
714   ASSERT_NE(CI, SI->case_end());
715   EXPECT_EQ(1, CI->getCaseValue()->getSExtValue());
716   EXPECT_EQ(BB1.get(), CI->getCaseSuccessor());
717   EXPECT_EQ(2, (CI + 1)->getCaseValue()->getSExtValue());
718   EXPECT_EQ(BB2.get(), (CI + 1)->getCaseSuccessor());
719   EXPECT_EQ(3, (CI + 2)->getCaseValue()->getSExtValue());
720   EXPECT_EQ(BB3.get(), (CI + 2)->getCaseSuccessor());
721   EXPECT_EQ(CI + 1, std::next(CI));
722   EXPECT_EQ(CI + 2, std::next(CI, 2));
723   EXPECT_EQ(CI + 3, std::next(CI, 3));
724   EXPECT_EQ(SI->case_end(), CI + 3);
725   EXPECT_EQ(0, CI - CI);
726   EXPECT_EQ(1, (CI + 1) - CI);
727   EXPECT_EQ(2, (CI + 2) - CI);
728   EXPECT_EQ(3, SI->case_end() - CI);
729   EXPECT_EQ(3, std::distance(CI, SI->case_end()));
730 
731   auto CCI = const_cast<const SwitchInst *>(SI)->case_begin();
732   SwitchInst::ConstCaseIt CCE = SI->case_end();
733   ASSERT_NE(CCI, SI->case_end());
734   EXPECT_EQ(1, CCI->getCaseValue()->getSExtValue());
735   EXPECT_EQ(BB1.get(), CCI->getCaseSuccessor());
736   EXPECT_EQ(2, (CCI + 1)->getCaseValue()->getSExtValue());
737   EXPECT_EQ(BB2.get(), (CCI + 1)->getCaseSuccessor());
738   EXPECT_EQ(3, (CCI + 2)->getCaseValue()->getSExtValue());
739   EXPECT_EQ(BB3.get(), (CCI + 2)->getCaseSuccessor());
740   EXPECT_EQ(CCI + 1, std::next(CCI));
741   EXPECT_EQ(CCI + 2, std::next(CCI, 2));
742   EXPECT_EQ(CCI + 3, std::next(CCI, 3));
743   EXPECT_EQ(CCE, CCI + 3);
744   EXPECT_EQ(0, CCI - CCI);
745   EXPECT_EQ(1, (CCI + 1) - CCI);
746   EXPECT_EQ(2, (CCI + 2) - CCI);
747   EXPECT_EQ(3, CCE - CCI);
748   EXPECT_EQ(3, std::distance(CCI, CCE));
749 
750   // Make sure that the const iterator is compatible with a const auto ref.
751   const auto &Handle = *CCI;
752   EXPECT_EQ(1, Handle.getCaseValue()->getSExtValue());
753   EXPECT_EQ(BB1.get(), Handle.getCaseSuccessor());
754 }
755 
TEST(InstructionsTest,SwitchInstProfUpdateWrapper)756 TEST(InstructionsTest, SwitchInstProfUpdateWrapper) {
757   LLVMContext C;
758 
759   std::unique_ptr<BasicBlock> BB1, BB2, BB3;
760   BB1.reset(BasicBlock::Create(C));
761   BB2.reset(BasicBlock::Create(C));
762   BB3.reset(BasicBlock::Create(C));
763 
764   // We create block 0 after the others so that it gets destroyed first and
765   // clears the uses of the other basic blocks.
766   std::unique_ptr<BasicBlock> BB0(BasicBlock::Create(C));
767 
768   auto *Int32Ty = Type::getInt32Ty(C);
769 
770   SwitchInst *SI =
771       SwitchInst::Create(UndefValue::get(Int32Ty), BB0.get(), 4, BB0.get());
772   SI->addCase(ConstantInt::get(Int32Ty, 1), BB1.get());
773   SI->addCase(ConstantInt::get(Int32Ty, 2), BB2.get());
774   SI->setMetadata(LLVMContext::MD_prof,
775                   MDBuilder(C).createBranchWeights({ 9, 1, 22 }));
776 
777   {
778     SwitchInstProfUpdateWrapper SIW(*SI);
779     EXPECT_EQ(*SIW.getSuccessorWeight(0), 9u);
780     EXPECT_EQ(*SIW.getSuccessorWeight(1), 1u);
781     EXPECT_EQ(*SIW.getSuccessorWeight(2), 22u);
782     SIW.setSuccessorWeight(0, 99u);
783     SIW.setSuccessorWeight(1, 11u);
784     EXPECT_EQ(*SIW.getSuccessorWeight(0), 99u);
785     EXPECT_EQ(*SIW.getSuccessorWeight(1), 11u);
786     EXPECT_EQ(*SIW.getSuccessorWeight(2), 22u);
787   }
788 
789   { // Create another wrapper and check that the data persist.
790     SwitchInstProfUpdateWrapper SIW(*SI);
791     EXPECT_EQ(*SIW.getSuccessorWeight(0), 99u);
792     EXPECT_EQ(*SIW.getSuccessorWeight(1), 11u);
793     EXPECT_EQ(*SIW.getSuccessorWeight(2), 22u);
794   }
795 }
796 
TEST(InstructionsTest,CommuteShuffleMask)797 TEST(InstructionsTest, CommuteShuffleMask) {
798   SmallVector<int, 16> Indices({-1, 0, 7});
799   ShuffleVectorInst::commuteShuffleMask(Indices, 4);
800   EXPECT_THAT(Indices, testing::ContainerEq(ArrayRef<int>({-1, 4, 3})));
801 }
802 
TEST(InstructionsTest,ShuffleMaskQueries)803 TEST(InstructionsTest, ShuffleMaskQueries) {
804   // Create the elements for various constant vectors.
805   LLVMContext Ctx;
806   Type *Int32Ty = Type::getInt32Ty(Ctx);
807   Constant *CU = UndefValue::get(Int32Ty);
808   Constant *C0 = ConstantInt::get(Int32Ty, 0);
809   Constant *C1 = ConstantInt::get(Int32Ty, 1);
810   Constant *C2 = ConstantInt::get(Int32Ty, 2);
811   Constant *C3 = ConstantInt::get(Int32Ty, 3);
812   Constant *C4 = ConstantInt::get(Int32Ty, 4);
813   Constant *C5 = ConstantInt::get(Int32Ty, 5);
814   Constant *C6 = ConstantInt::get(Int32Ty, 6);
815   Constant *C7 = ConstantInt::get(Int32Ty, 7);
816 
817   Constant *Identity = ConstantVector::get({C0, CU, C2, C3, C4});
818   EXPECT_TRUE(ShuffleVectorInst::isIdentityMask(Identity));
819   EXPECT_FALSE(ShuffleVectorInst::isSelectMask(Identity)); // identity is distinguished from select
820   EXPECT_FALSE(ShuffleVectorInst::isReverseMask(Identity));
821   EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(Identity)); // identity is always single source
822   EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(Identity));
823   EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(Identity));
824 
825   Constant *Select = ConstantVector::get({CU, C1, C5});
826   EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(Select));
827   EXPECT_TRUE(ShuffleVectorInst::isSelectMask(Select));
828   EXPECT_FALSE(ShuffleVectorInst::isReverseMask(Select));
829   EXPECT_FALSE(ShuffleVectorInst::isSingleSourceMask(Select));
830   EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(Select));
831   EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(Select));
832 
833   Constant *Reverse = ConstantVector::get({C3, C2, C1, CU});
834   EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(Reverse));
835   EXPECT_FALSE(ShuffleVectorInst::isSelectMask(Reverse));
836   EXPECT_TRUE(ShuffleVectorInst::isReverseMask(Reverse));
837   EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(Reverse)); // reverse is always single source
838   EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(Reverse));
839   EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(Reverse));
840 
841   Constant *SingleSource = ConstantVector::get({C2, C2, C0, CU});
842   EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(SingleSource));
843   EXPECT_FALSE(ShuffleVectorInst::isSelectMask(SingleSource));
844   EXPECT_FALSE(ShuffleVectorInst::isReverseMask(SingleSource));
845   EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(SingleSource));
846   EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(SingleSource));
847   EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(SingleSource));
848 
849   Constant *ZeroEltSplat = ConstantVector::get({C0, C0, CU, C0});
850   EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(ZeroEltSplat));
851   EXPECT_FALSE(ShuffleVectorInst::isSelectMask(ZeroEltSplat));
852   EXPECT_FALSE(ShuffleVectorInst::isReverseMask(ZeroEltSplat));
853   EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(ZeroEltSplat)); // 0-splat is always single source
854   EXPECT_TRUE(ShuffleVectorInst::isZeroEltSplatMask(ZeroEltSplat));
855   EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(ZeroEltSplat));
856 
857   Constant *Transpose = ConstantVector::get({C0, C4, C2, C6});
858   EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(Transpose));
859   EXPECT_FALSE(ShuffleVectorInst::isSelectMask(Transpose));
860   EXPECT_FALSE(ShuffleVectorInst::isReverseMask(Transpose));
861   EXPECT_FALSE(ShuffleVectorInst::isSingleSourceMask(Transpose));
862   EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(Transpose));
863   EXPECT_TRUE(ShuffleVectorInst::isTransposeMask(Transpose));
864 
865   // More tests to make sure the logic is/stays correct...
866   EXPECT_TRUE(ShuffleVectorInst::isIdentityMask(ConstantVector::get({CU, C1, CU, C3})));
867   EXPECT_TRUE(ShuffleVectorInst::isIdentityMask(ConstantVector::get({C4, CU, C6, CU})));
868 
869   EXPECT_TRUE(ShuffleVectorInst::isSelectMask(ConstantVector::get({C4, C1, C6, CU})));
870   EXPECT_TRUE(ShuffleVectorInst::isSelectMask(ConstantVector::get({CU, C1, C6, C3})));
871 
872   EXPECT_TRUE(ShuffleVectorInst::isReverseMask(ConstantVector::get({C7, C6, CU, C4})));
873   EXPECT_TRUE(ShuffleVectorInst::isReverseMask(ConstantVector::get({C3, CU, C1, CU})));
874 
875   EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(ConstantVector::get({C7, C5, CU, C7})));
876   EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(ConstantVector::get({C3, C0, CU, C3})));
877 
878   EXPECT_TRUE(ShuffleVectorInst::isZeroEltSplatMask(ConstantVector::get({C4, CU, CU, C4})));
879   EXPECT_TRUE(ShuffleVectorInst::isZeroEltSplatMask(ConstantVector::get({CU, C0, CU, C0})));
880 
881   EXPECT_TRUE(ShuffleVectorInst::isTransposeMask(ConstantVector::get({C1, C5, C3, C7})));
882   EXPECT_TRUE(ShuffleVectorInst::isTransposeMask(ConstantVector::get({C1, C3})));
883 
884   // Nothing special about the values here - just re-using inputs to reduce code.
885   Constant *V0 = ConstantVector::get({C0, C1, C2, C3});
886   Constant *V1 = ConstantVector::get({C3, C2, C1, C0});
887 
888   // Identity with undef elts.
889   ShuffleVectorInst *Id1 = new ShuffleVectorInst(V0, V1,
890                                                  ConstantVector::get({C0, C1, CU, CU}));
891   EXPECT_TRUE(Id1->isIdentity());
892   EXPECT_FALSE(Id1->isIdentityWithPadding());
893   EXPECT_FALSE(Id1->isIdentityWithExtract());
894   EXPECT_FALSE(Id1->isConcat());
895   delete Id1;
896 
897   // Result has less elements than operands.
898   ShuffleVectorInst *Id2 = new ShuffleVectorInst(V0, V1,
899                                                  ConstantVector::get({C0, C1, C2}));
900   EXPECT_FALSE(Id2->isIdentity());
901   EXPECT_FALSE(Id2->isIdentityWithPadding());
902   EXPECT_TRUE(Id2->isIdentityWithExtract());
903   EXPECT_FALSE(Id2->isConcat());
904   delete Id2;
905 
906   // Result has less elements than operands; choose from Op1.
907   ShuffleVectorInst *Id3 = new ShuffleVectorInst(V0, V1,
908                                                  ConstantVector::get({C4, CU, C6}));
909   EXPECT_FALSE(Id3->isIdentity());
910   EXPECT_FALSE(Id3->isIdentityWithPadding());
911   EXPECT_TRUE(Id3->isIdentityWithExtract());
912   EXPECT_FALSE(Id3->isConcat());
913   delete Id3;
914 
915   // Result has less elements than operands; choose from Op0 and Op1 is not identity.
916   ShuffleVectorInst *Id4 = new ShuffleVectorInst(V0, V1,
917                                                  ConstantVector::get({C4, C1, C6}));
918   EXPECT_FALSE(Id4->isIdentity());
919   EXPECT_FALSE(Id4->isIdentityWithPadding());
920   EXPECT_FALSE(Id4->isIdentityWithExtract());
921   EXPECT_FALSE(Id4->isConcat());
922   delete Id4;
923 
924   // Result has more elements than operands, and extra elements are undef.
925   ShuffleVectorInst *Id5 = new ShuffleVectorInst(V0, V1,
926                                                  ConstantVector::get({CU, C1, C2, C3, CU, CU}));
927   EXPECT_FALSE(Id5->isIdentity());
928   EXPECT_TRUE(Id5->isIdentityWithPadding());
929   EXPECT_FALSE(Id5->isIdentityWithExtract());
930   EXPECT_FALSE(Id5->isConcat());
931   delete Id5;
932 
933   // Result has more elements than operands, and extra elements are undef; choose from Op1.
934   ShuffleVectorInst *Id6 = new ShuffleVectorInst(V0, V1,
935                                                  ConstantVector::get({C4, C5, C6, CU, CU, CU}));
936   EXPECT_FALSE(Id6->isIdentity());
937   EXPECT_TRUE(Id6->isIdentityWithPadding());
938   EXPECT_FALSE(Id6->isIdentityWithExtract());
939   EXPECT_FALSE(Id6->isConcat());
940   delete Id6;
941 
942   // Result has more elements than operands, but extra elements are not undef.
943   ShuffleVectorInst *Id7 = new ShuffleVectorInst(V0, V1,
944                                                  ConstantVector::get({C0, C1, C2, C3, CU, C1}));
945   EXPECT_FALSE(Id7->isIdentity());
946   EXPECT_FALSE(Id7->isIdentityWithPadding());
947   EXPECT_FALSE(Id7->isIdentityWithExtract());
948   EXPECT_FALSE(Id7->isConcat());
949   delete Id7;
950 
951   // Result has more elements than operands; choose from Op0 and Op1 is not identity.
952   ShuffleVectorInst *Id8 = new ShuffleVectorInst(V0, V1,
953                                                  ConstantVector::get({C4, CU, C2, C3, CU, CU}));
954   EXPECT_FALSE(Id8->isIdentity());
955   EXPECT_FALSE(Id8->isIdentityWithPadding());
956   EXPECT_FALSE(Id8->isIdentityWithExtract());
957   EXPECT_FALSE(Id8->isConcat());
958   delete Id8;
959 
960   // Result has twice as many elements as operands; choose consecutively from Op0 and Op1 is concat.
961   ShuffleVectorInst *Id9 = new ShuffleVectorInst(V0, V1,
962                                                  ConstantVector::get({C0, CU, C2, C3, CU, CU, C6, C7}));
963   EXPECT_FALSE(Id9->isIdentity());
964   EXPECT_FALSE(Id9->isIdentityWithPadding());
965   EXPECT_FALSE(Id9->isIdentityWithExtract());
966   EXPECT_TRUE(Id9->isConcat());
967   delete Id9;
968 
969   // Result has less than twice as many elements as operands, so not a concat.
970   ShuffleVectorInst *Id10 = new ShuffleVectorInst(V0, V1,
971                                                   ConstantVector::get({C0, CU, C2, C3, CU, CU, C6}));
972   EXPECT_FALSE(Id10->isIdentity());
973   EXPECT_FALSE(Id10->isIdentityWithPadding());
974   EXPECT_FALSE(Id10->isIdentityWithExtract());
975   EXPECT_FALSE(Id10->isConcat());
976   delete Id10;
977 
978   // Result has more than twice as many elements as operands, so not a concat.
979   ShuffleVectorInst *Id11 = new ShuffleVectorInst(V0, V1,
980                                                   ConstantVector::get({C0, CU, C2, C3, CU, CU, C6, C7, CU}));
981   EXPECT_FALSE(Id11->isIdentity());
982   EXPECT_FALSE(Id11->isIdentityWithPadding());
983   EXPECT_FALSE(Id11->isIdentityWithExtract());
984   EXPECT_FALSE(Id11->isConcat());
985   delete Id11;
986 
987   // If an input is undef, it's not a concat.
988   // TODO: IdentityWithPadding should be true here even though the high mask values are not undef.
989   ShuffleVectorInst *Id12 = new ShuffleVectorInst(V0, ConstantVector::get({CU, CU, CU, CU}),
990                                                   ConstantVector::get({C0, CU, C2, C3, CU, CU, C6, C7}));
991   EXPECT_FALSE(Id12->isIdentity());
992   EXPECT_FALSE(Id12->isIdentityWithPadding());
993   EXPECT_FALSE(Id12->isIdentityWithExtract());
994   EXPECT_FALSE(Id12->isConcat());
995   delete Id12;
996 }
997 
TEST(InstructionsTest,GetSplat)998 TEST(InstructionsTest, GetSplat) {
999   // Create the elements for various constant vectors.
1000   LLVMContext Ctx;
1001   Type *Int32Ty = Type::getInt32Ty(Ctx);
1002   Constant *CU = UndefValue::get(Int32Ty);
1003   Constant *C0 = ConstantInt::get(Int32Ty, 0);
1004   Constant *C1 = ConstantInt::get(Int32Ty, 1);
1005 
1006   Constant *Splat0 = ConstantVector::get({C0, C0, C0, C0});
1007   Constant *Splat1 = ConstantVector::get({C1, C1, C1, C1 ,C1});
1008   Constant *Splat0Undef = ConstantVector::get({C0, CU, C0, CU});
1009   Constant *Splat1Undef = ConstantVector::get({CU, CU, C1, CU});
1010   Constant *NotSplat = ConstantVector::get({C1, C1, C0, C1 ,C1});
1011   Constant *NotSplatUndef = ConstantVector::get({CU, C1, CU, CU ,C0});
1012 
1013   // Default - undefs are not allowed.
1014   EXPECT_EQ(Splat0->getSplatValue(), C0);
1015   EXPECT_EQ(Splat1->getSplatValue(), C1);
1016   EXPECT_EQ(Splat0Undef->getSplatValue(), nullptr);
1017   EXPECT_EQ(Splat1Undef->getSplatValue(), nullptr);
1018   EXPECT_EQ(NotSplat->getSplatValue(), nullptr);
1019   EXPECT_EQ(NotSplatUndef->getSplatValue(), nullptr);
1020 
1021   // Disallow undefs explicitly.
1022   EXPECT_EQ(Splat0->getSplatValue(false), C0);
1023   EXPECT_EQ(Splat1->getSplatValue(false), C1);
1024   EXPECT_EQ(Splat0Undef->getSplatValue(false), nullptr);
1025   EXPECT_EQ(Splat1Undef->getSplatValue(false), nullptr);
1026   EXPECT_EQ(NotSplat->getSplatValue(false), nullptr);
1027   EXPECT_EQ(NotSplatUndef->getSplatValue(false), nullptr);
1028 
1029   // Allow undefs.
1030   EXPECT_EQ(Splat0->getSplatValue(true), C0);
1031   EXPECT_EQ(Splat1->getSplatValue(true), C1);
1032   EXPECT_EQ(Splat0Undef->getSplatValue(true), C0);
1033   EXPECT_EQ(Splat1Undef->getSplatValue(true), C1);
1034   EXPECT_EQ(NotSplat->getSplatValue(true), nullptr);
1035   EXPECT_EQ(NotSplatUndef->getSplatValue(true), nullptr);
1036 }
1037 
TEST(InstructionsTest,SkipDebug)1038 TEST(InstructionsTest, SkipDebug) {
1039   LLVMContext C;
1040   std::unique_ptr<Module> M = parseIR(C,
1041                                       R"(
1042       declare void @llvm.dbg.value(metadata, metadata, metadata)
1043 
1044       define void @f() {
1045       entry:
1046         call void @llvm.dbg.value(metadata i32 0, metadata !11, metadata !DIExpression()), !dbg !13
1047         ret void
1048       }
1049 
1050       !llvm.dbg.cu = !{!0}
1051       !llvm.module.flags = !{!3, !4}
1052       !0 = distinct !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang version 6.0.0", isOptimized: false, runtimeVersion: 0, emissionKind: FullDebug, enums: !2)
1053       !1 = !DIFile(filename: "t2.c", directory: "foo")
1054       !2 = !{}
1055       !3 = !{i32 2, !"Dwarf Version", i32 4}
1056       !4 = !{i32 2, !"Debug Info Version", i32 3}
1057       !8 = distinct !DISubprogram(name: "f", scope: !1, file: !1, line: 1, type: !9, isLocal: false, isDefinition: true, scopeLine: 1, isOptimized: false, unit: !0, retainedNodes: !2)
1058       !9 = !DISubroutineType(types: !10)
1059       !10 = !{null}
1060       !11 = !DILocalVariable(name: "x", scope: !8, file: !1, line: 2, type: !12)
1061       !12 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
1062       !13 = !DILocation(line: 2, column: 7, scope: !8)
1063   )");
1064   ASSERT_TRUE(M);
1065   Function *F = cast<Function>(M->getNamedValue("f"));
1066   BasicBlock &BB = F->front();
1067 
1068   // The first non-debug instruction is the terminator.
1069   auto *Term = BB.getTerminator();
1070   EXPECT_EQ(Term, BB.begin()->getNextNonDebugInstruction());
1071   EXPECT_EQ(Term->getIterator(), skipDebugIntrinsics(BB.begin()));
1072 
1073   // After the terminator, there are no non-debug instructions.
1074   EXPECT_EQ(nullptr, Term->getNextNonDebugInstruction());
1075 }
1076 
TEST(InstructionsTest,PhiMightNotBeFPMathOperator)1077 TEST(InstructionsTest, PhiMightNotBeFPMathOperator) {
1078   LLVMContext Context;
1079   IRBuilder<> Builder(Context);
1080   MDBuilder MDHelper(Context);
1081   Instruction *I = Builder.CreatePHI(Builder.getInt32Ty(), 0);
1082   EXPECT_FALSE(isa<FPMathOperator>(I));
1083   I->deleteValue();
1084   Instruction *FP = Builder.CreatePHI(Builder.getDoubleTy(), 0);
1085   EXPECT_TRUE(isa<FPMathOperator>(FP));
1086   FP->deleteValue();
1087 }
1088 
TEST(InstructionsTest,FPCallIsFPMathOperator)1089 TEST(InstructionsTest, FPCallIsFPMathOperator) {
1090   LLVMContext C;
1091 
1092   Type *ITy = Type::getInt32Ty(C);
1093   FunctionType *IFnTy = FunctionType::get(ITy, {});
1094   Value *ICallee = Constant::getNullValue(IFnTy->getPointerTo());
1095   std::unique_ptr<CallInst> ICall(CallInst::Create(IFnTy, ICallee, {}, ""));
1096   EXPECT_FALSE(isa<FPMathOperator>(ICall));
1097 
1098   Type *VITy = VectorType::get(ITy, 2);
1099   FunctionType *VIFnTy = FunctionType::get(VITy, {});
1100   Value *VICallee = Constant::getNullValue(VIFnTy->getPointerTo());
1101   std::unique_ptr<CallInst> VICall(CallInst::Create(VIFnTy, VICallee, {}, ""));
1102   EXPECT_FALSE(isa<FPMathOperator>(VICall));
1103 
1104   Type *AITy = ArrayType::get(ITy, 2);
1105   FunctionType *AIFnTy = FunctionType::get(AITy, {});
1106   Value *AICallee = Constant::getNullValue(AIFnTy->getPointerTo());
1107   std::unique_ptr<CallInst> AICall(CallInst::Create(AIFnTy, AICallee, {}, ""));
1108   EXPECT_FALSE(isa<FPMathOperator>(AICall));
1109 
1110   Type *FTy = Type::getFloatTy(C);
1111   FunctionType *FFnTy = FunctionType::get(FTy, {});
1112   Value *FCallee = Constant::getNullValue(FFnTy->getPointerTo());
1113   std::unique_ptr<CallInst> FCall(CallInst::Create(FFnTy, FCallee, {}, ""));
1114   EXPECT_TRUE(isa<FPMathOperator>(FCall));
1115 
1116   Type *VFTy = VectorType::get(FTy, 2);
1117   FunctionType *VFFnTy = FunctionType::get(VFTy, {});
1118   Value *VFCallee = Constant::getNullValue(VFFnTy->getPointerTo());
1119   std::unique_ptr<CallInst> VFCall(CallInst::Create(VFFnTy, VFCallee, {}, ""));
1120   EXPECT_TRUE(isa<FPMathOperator>(VFCall));
1121 
1122   Type *AFTy = ArrayType::get(FTy, 2);
1123   FunctionType *AFFnTy = FunctionType::get(AFTy, {});
1124   Value *AFCallee = Constant::getNullValue(AFFnTy->getPointerTo());
1125   std::unique_ptr<CallInst> AFCall(CallInst::Create(AFFnTy, AFCallee, {}, ""));
1126   EXPECT_TRUE(isa<FPMathOperator>(AFCall));
1127 
1128   Type *AVFTy = ArrayType::get(VFTy, 2);
1129   FunctionType *AVFFnTy = FunctionType::get(AVFTy, {});
1130   Value *AVFCallee = Constant::getNullValue(AVFFnTy->getPointerTo());
1131   std::unique_ptr<CallInst> AVFCall(
1132       CallInst::Create(AVFFnTy, AVFCallee, {}, ""));
1133   EXPECT_TRUE(isa<FPMathOperator>(AVFCall));
1134 
1135   Type *AAVFTy = ArrayType::get(AVFTy, 2);
1136   FunctionType *AAVFFnTy = FunctionType::get(AAVFTy, {});
1137   Value *AAVFCallee = Constant::getNullValue(AAVFFnTy->getPointerTo());
1138   std::unique_ptr<CallInst> AAVFCall(
1139       CallInst::Create(AAVFFnTy, AAVFCallee, {}, ""));
1140   EXPECT_TRUE(isa<FPMathOperator>(AAVFCall));
1141 }
1142 
TEST(InstructionsTest,FNegInstruction)1143 TEST(InstructionsTest, FNegInstruction) {
1144   LLVMContext Context;
1145   Type *FltTy = Type::getFloatTy(Context);
1146   Constant *One = ConstantFP::get(FltTy, 1.0);
1147   BinaryOperator *FAdd = BinaryOperator::CreateFAdd(One, One);
1148   FAdd->setHasNoNaNs(true);
1149   UnaryOperator *FNeg = UnaryOperator::CreateFNegFMF(One, FAdd);
1150   EXPECT_TRUE(FNeg->hasNoNaNs());
1151   EXPECT_FALSE(FNeg->hasNoInfs());
1152   EXPECT_FALSE(FNeg->hasNoSignedZeros());
1153   EXPECT_FALSE(FNeg->hasAllowReciprocal());
1154   EXPECT_FALSE(FNeg->hasAllowContract());
1155   EXPECT_FALSE(FNeg->hasAllowReassoc());
1156   EXPECT_FALSE(FNeg->hasApproxFunc());
1157   FAdd->deleteValue();
1158   FNeg->deleteValue();
1159 }
1160 
TEST(InstructionsTest,CallBrInstruction)1161 TEST(InstructionsTest, CallBrInstruction) {
1162   LLVMContext Context;
1163   std::unique_ptr<Module> M = parseIR(Context, R"(
1164 define void @foo() {
1165 entry:
1166   callbr void asm sideeffect "// XXX: ${0:l}", "X"(i8* blockaddress(@foo, %branch_test.exit))
1167           to label %land.rhs.i [label %branch_test.exit]
1168 
1169 land.rhs.i:
1170   br label %branch_test.exit
1171 
1172 branch_test.exit:
1173   %0 = phi i1 [ true, %entry ], [ false, %land.rhs.i ]
1174   br i1 %0, label %if.end, label %if.then
1175 
1176 if.then:
1177   ret void
1178 
1179 if.end:
1180   ret void
1181 }
1182 )");
1183   Function *Foo = M->getFunction("foo");
1184   auto BBs = Foo->getBasicBlockList().begin();
1185   CallBrInst &CBI = cast<CallBrInst>(BBs->front());
1186   ++BBs;
1187   ++BBs;
1188   BasicBlock &BranchTestExit = *BBs;
1189   ++BBs;
1190   BasicBlock &IfThen = *BBs;
1191 
1192   // Test that setting the first indirect destination of callbr updates the dest
1193   EXPECT_EQ(&BranchTestExit, CBI.getIndirectDest(0));
1194   CBI.setIndirectDest(0, &IfThen);
1195   EXPECT_EQ(&IfThen, CBI.getIndirectDest(0));
1196 
1197   // Further, test that changing the indirect destination updates the arg
1198   // operand to use the block address of the new indirect destination basic
1199   // block. This is a critical invariant of CallBrInst.
1200   BlockAddress *IndirectBA = BlockAddress::get(CBI.getIndirectDest(0));
1201   BlockAddress *ArgBA = cast<BlockAddress>(CBI.getArgOperand(0));
1202   EXPECT_EQ(IndirectBA, ArgBA)
1203       << "After setting the indirect destination, callbr had an indirect "
1204          "destination of '"
1205       << CBI.getIndirectDest(0)->getName() << "', but a argument of '"
1206       << ArgBA->getBasicBlock()->getName() << "'. These should always match:\n"
1207       << CBI;
1208   EXPECT_EQ(IndirectBA->getBasicBlock(), &IfThen);
1209   EXPECT_EQ(ArgBA->getBasicBlock(), &IfThen);
1210 }
1211 
TEST(InstructionsTest,UnaryOperator)1212 TEST(InstructionsTest, UnaryOperator) {
1213   LLVMContext Context;
1214   IRBuilder<> Builder(Context);
1215   Instruction *I = Builder.CreatePHI(Builder.getDoubleTy(), 0);
1216   Value *F = Builder.CreateFNeg(I);
1217 
1218   EXPECT_TRUE(isa<Value>(F));
1219   EXPECT_TRUE(isa<Instruction>(F));
1220   EXPECT_TRUE(isa<UnaryInstruction>(F));
1221   EXPECT_TRUE(isa<UnaryOperator>(F));
1222   EXPECT_FALSE(isa<BinaryOperator>(F));
1223 
1224   F->deleteValue();
1225   I->deleteValue();
1226 }
1227 
1228 } // end anonymous namespace
1229 } // end namespace llvm
1230