1 //===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the ARM implementation of TargetFrameLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "ARMFrameLowering.h"
14 #include "ARMBaseInstrInfo.h"
15 #include "ARMBaseRegisterInfo.h"
16 #include "ARMConstantPoolValue.h"
17 #include "ARMMachineFunctionInfo.h"
18 #include "ARMSubtarget.h"
19 #include "MCTargetDesc/ARMAddressingModes.h"
20 #include "MCTargetDesc/ARMBaseInfo.h"
21 #include "Utils/ARMBaseInfo.h"
22 #include "llvm/ADT/BitVector.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineJumpTableInfo.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/RegisterScavenging.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetOpcodes.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/IR/Attributes.h"
42 #include "llvm/IR/CallingConv.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/MC/MCContext.h"
46 #include "llvm/MC/MCDwarf.h"
47 #include "llvm/MC/MCInstrDesc.h"
48 #include "llvm/MC/MCRegisterInfo.h"
49 #include "llvm/Support/CodeGen.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Compiler.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/MathExtras.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Target/TargetMachine.h"
57 #include "llvm/Target/TargetOptions.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <cstddef>
61 #include <cstdint>
62 #include <iterator>
63 #include <utility>
64 #include <vector>
65 
66 #define DEBUG_TYPE "arm-frame-lowering"
67 
68 using namespace llvm;
69 
70 static cl::opt<bool>
71 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true),
72                      cl::desc("Align ARM NEON spills in prolog and epilog"));
73 
74 static MachineBasicBlock::iterator
75 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
76                         unsigned NumAlignedDPRCS2Regs);
77 
ARMFrameLowering(const ARMSubtarget & sti)78 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti)
79     : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, Align(4)),
80       STI(sti) {}
81 
keepFramePointer(const MachineFunction & MF) const82 bool ARMFrameLowering::keepFramePointer(const MachineFunction &MF) const {
83   // iOS always has a FP for backtracking, force other targets to keep their FP
84   // when doing FastISel. The emitted code is currently superior, and in cases
85   // like test-suite's lencod FastISel isn't quite correct when FP is eliminated.
86   return MF.getSubtarget<ARMSubtarget>().useFastISel();
87 }
88 
89 /// Returns true if the target can safely skip saving callee-saved registers
90 /// for noreturn nounwind functions.
enableCalleeSaveSkip(const MachineFunction & MF) const91 bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction &MF) const {
92   assert(MF.getFunction().hasFnAttribute(Attribute::NoReturn) &&
93          MF.getFunction().hasFnAttribute(Attribute::NoUnwind) &&
94          !MF.getFunction().hasFnAttribute(Attribute::UWTable));
95 
96   // Frame pointer and link register are not treated as normal CSR, thus we
97   // can always skip CSR saves for nonreturning functions.
98   return true;
99 }
100 
101 /// hasFP - Return true if the specified function should have a dedicated frame
102 /// pointer register.  This is true if the function has variable sized allocas
103 /// or if frame pointer elimination is disabled.
hasFP(const MachineFunction & MF) const104 bool ARMFrameLowering::hasFP(const MachineFunction &MF) const {
105   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
106   const MachineFrameInfo &MFI = MF.getFrameInfo();
107 
108   // ABI-required frame pointer.
109   if (MF.getTarget().Options.DisableFramePointerElim(MF))
110     return true;
111 
112   // Frame pointer required for use within this function.
113   return (RegInfo->needsStackRealignment(MF) ||
114           MFI.hasVarSizedObjects() ||
115           MFI.isFrameAddressTaken());
116 }
117 
118 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
119 /// not required, we reserve argument space for call sites in the function
120 /// immediately on entry to the current function.  This eliminates the need for
121 /// add/sub sp brackets around call sites.  Returns true if the call frame is
122 /// included as part of the stack frame.
hasReservedCallFrame(const MachineFunction & MF) const123 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
124   const MachineFrameInfo &MFI = MF.getFrameInfo();
125   unsigned CFSize = MFI.getMaxCallFrameSize();
126   // It's not always a good idea to include the call frame as part of the
127   // stack frame. ARM (especially Thumb) has small immediate offset to
128   // address the stack frame. So a large call frame can cause poor codegen
129   // and may even makes it impossible to scavenge a register.
130   if (CFSize >= ((1 << 12) - 1) / 2)  // Half of imm12
131     return false;
132 
133   return !MFI.hasVarSizedObjects();
134 }
135 
136 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
137 /// call frame pseudos can be simplified.  Unlike most targets, having a FP
138 /// is not sufficient here since we still may reference some objects via SP
139 /// even when FP is available in Thumb2 mode.
140 bool
canSimplifyCallFramePseudos(const MachineFunction & MF) const141 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
142   return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects();
143 }
144 
emitRegPlusImmediate(bool isARM,MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,const DebugLoc & dl,const ARMBaseInstrInfo & TII,unsigned DestReg,unsigned SrcReg,int NumBytes,unsigned MIFlags=MachineInstr::NoFlags,ARMCC::CondCodes Pred=ARMCC::AL,unsigned PredReg=0)145 static void emitRegPlusImmediate(
146     bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
147     const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg,
148     unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags,
149     ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) {
150   if (isARM)
151     emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
152                             Pred, PredReg, TII, MIFlags);
153   else
154     emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
155                            Pred, PredReg, TII, MIFlags);
156 }
157 
emitSPUpdate(bool isARM,MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,const DebugLoc & dl,const ARMBaseInstrInfo & TII,int NumBytes,unsigned MIFlags=MachineInstr::NoFlags,ARMCC::CondCodes Pred=ARMCC::AL,unsigned PredReg=0)158 static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB,
159                          MachineBasicBlock::iterator &MBBI, const DebugLoc &dl,
160                          const ARMBaseInstrInfo &TII, int NumBytes,
161                          unsigned MIFlags = MachineInstr::NoFlags,
162                          ARMCC::CondCodes Pred = ARMCC::AL,
163                          unsigned PredReg = 0) {
164   emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes,
165                        MIFlags, Pred, PredReg);
166 }
167 
sizeOfSPAdjustment(const MachineInstr & MI)168 static int sizeOfSPAdjustment(const MachineInstr &MI) {
169   int RegSize;
170   switch (MI.getOpcode()) {
171   case ARM::VSTMDDB_UPD:
172     RegSize = 8;
173     break;
174   case ARM::STMDB_UPD:
175   case ARM::t2STMDB_UPD:
176     RegSize = 4;
177     break;
178   case ARM::t2STR_PRE:
179   case ARM::STR_PRE_IMM:
180     return 4;
181   default:
182     llvm_unreachable("Unknown push or pop like instruction");
183   }
184 
185   int count = 0;
186   // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
187   // pred) so the list starts at 4.
188   for (int i = MI.getNumOperands() - 1; i >= 4; --i)
189     count += RegSize;
190   return count;
191 }
192 
WindowsRequiresStackProbe(const MachineFunction & MF,size_t StackSizeInBytes)193 static bool WindowsRequiresStackProbe(const MachineFunction &MF,
194                                       size_t StackSizeInBytes) {
195   const MachineFrameInfo &MFI = MF.getFrameInfo();
196   const Function &F = MF.getFunction();
197   unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096;
198   if (F.hasFnAttribute("stack-probe-size"))
199     F.getFnAttribute("stack-probe-size")
200         .getValueAsString()
201         .getAsInteger(0, StackProbeSize);
202   return (StackSizeInBytes >= StackProbeSize) &&
203          !F.hasFnAttribute("no-stack-arg-probe");
204 }
205 
206 namespace {
207 
208 struct StackAdjustingInsts {
209   struct InstInfo {
210     MachineBasicBlock::iterator I;
211     unsigned SPAdjust;
212     bool BeforeFPSet;
213   };
214 
215   SmallVector<InstInfo, 4> Insts;
216 
addInst__anon361d50ef0111::StackAdjustingInsts217   void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust,
218                bool BeforeFPSet = false) {
219     InstInfo Info = {I, SPAdjust, BeforeFPSet};
220     Insts.push_back(Info);
221   }
222 
addExtraBytes__anon361d50ef0111::StackAdjustingInsts223   void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) {
224     auto Info =
225         llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; });
226     assert(Info != Insts.end() && "invalid sp adjusting instruction");
227     Info->SPAdjust += ExtraBytes;
228   }
229 
emitDefCFAOffsets__anon361d50ef0111::StackAdjustingInsts230   void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl,
231                          const ARMBaseInstrInfo &TII, bool HasFP) {
232     MachineFunction &MF = *MBB.getParent();
233     unsigned CFAOffset = 0;
234     for (auto &Info : Insts) {
235       if (HasFP && !Info.BeforeFPSet)
236         return;
237 
238       CFAOffset += Info.SPAdjust;
239       unsigned CFIIndex = MF.addFrameInst(
240           MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset));
241       BuildMI(MBB, std::next(Info.I), dl,
242               TII.get(TargetOpcode::CFI_INSTRUCTION))
243               .addCFIIndex(CFIIndex)
244               .setMIFlags(MachineInstr::FrameSetup);
245     }
246   }
247 };
248 
249 } // end anonymous namespace
250 
251 /// Emit an instruction sequence that will align the address in
252 /// register Reg by zero-ing out the lower bits.  For versions of the
253 /// architecture that support Neon, this must be done in a single
254 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a
255 /// single instruction. That function only gets called when optimizing
256 /// spilling of D registers on a core with the Neon instruction set
257 /// present.
emitAligningInstructions(MachineFunction & MF,ARMFunctionInfo * AFI,const TargetInstrInfo & TII,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,const unsigned Reg,const Align Alignment,const bool MustBeSingleInstruction)258 static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI,
259                                      const TargetInstrInfo &TII,
260                                      MachineBasicBlock &MBB,
261                                      MachineBasicBlock::iterator MBBI,
262                                      const DebugLoc &DL, const unsigned Reg,
263                                      const Align Alignment,
264                                      const bool MustBeSingleInstruction) {
265   const ARMSubtarget &AST =
266       static_cast<const ARMSubtarget &>(MF.getSubtarget());
267   const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops();
268   const unsigned AlignMask = Alignment.value() - 1U;
269   const unsigned NrBitsToZero = Log2(Alignment);
270   assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported");
271   if (!AFI->isThumbFunction()) {
272     // if the BFC instruction is available, use that to zero the lower
273     // bits:
274     //   bfc Reg, #0, log2(Alignment)
275     // otherwise use BIC, if the mask to zero the required number of bits
276     // can be encoded in the bic immediate field
277     //   bic Reg, Reg, Alignment-1
278     // otherwise, emit
279     //   lsr Reg, Reg, log2(Alignment)
280     //   lsl Reg, Reg, log2(Alignment)
281     if (CanUseBFC) {
282       BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg)
283           .addReg(Reg, RegState::Kill)
284           .addImm(~AlignMask)
285           .add(predOps(ARMCC::AL));
286     } else if (AlignMask <= 255) {
287       BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg)
288           .addReg(Reg, RegState::Kill)
289           .addImm(AlignMask)
290           .add(predOps(ARMCC::AL))
291           .add(condCodeOp());
292     } else {
293       assert(!MustBeSingleInstruction &&
294              "Shouldn't call emitAligningInstructions demanding a single "
295              "instruction to be emitted for large stack alignment for a target "
296              "without BFC.");
297       BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
298           .addReg(Reg, RegState::Kill)
299           .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero))
300           .add(predOps(ARMCC::AL))
301           .add(condCodeOp());
302       BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
303           .addReg(Reg, RegState::Kill)
304           .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero))
305           .add(predOps(ARMCC::AL))
306           .add(condCodeOp());
307     }
308   } else {
309     // Since this is only reached for Thumb-2 targets, the BFC instruction
310     // should always be available.
311     assert(CanUseBFC);
312     BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg)
313         .addReg(Reg, RegState::Kill)
314         .addImm(~AlignMask)
315         .add(predOps(ARMCC::AL));
316   }
317 }
318 
319 /// We need the offset of the frame pointer relative to other MachineFrameInfo
320 /// offsets which are encoded relative to SP at function begin.
321 /// See also emitPrologue() for how the FP is set up.
322 /// Unfortunately we cannot determine this value in determineCalleeSaves() yet
323 /// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use
324 /// this to produce a conservative estimate that we check in an assert() later.
getMaxFPOffset(const ARMSubtarget & STI,const ARMFunctionInfo & AFI)325 static int getMaxFPOffset(const ARMSubtarget &STI, const ARMFunctionInfo &AFI) {
326   // For Thumb1, push.w isn't available, so the first push will always push
327   // r7 and lr onto the stack first.
328   if (AFI.isThumb1OnlyFunction())
329     return -AFI.getArgRegsSaveSize() - (2 * 4);
330   // This is a conservative estimation: Assume the frame pointer being r7 and
331   // pc("r15") up to r8 getting spilled before (= 8 registers).
332   int FPCXTSaveSize = (STI.hasV8_1MMainlineOps() && AFI.isCmseNSEntryFunction()) ? 4 : 0;
333   return - FPCXTSaveSize - AFI.getArgRegsSaveSize() - (8 * 4);
334 }
335 
emitPrologue(MachineFunction & MF,MachineBasicBlock & MBB) const336 void ARMFrameLowering::emitPrologue(MachineFunction &MF,
337                                     MachineBasicBlock &MBB) const {
338   MachineBasicBlock::iterator MBBI = MBB.begin();
339   MachineFrameInfo  &MFI = MF.getFrameInfo();
340   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
341   MachineModuleInfo &MMI = MF.getMMI();
342   MCContext &Context = MMI.getContext();
343   const TargetMachine &TM = MF.getTarget();
344   const MCRegisterInfo *MRI = Context.getRegisterInfo();
345   const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo();
346   const ARMBaseInstrInfo &TII = *STI.getInstrInfo();
347   assert(!AFI->isThumb1OnlyFunction() &&
348          "This emitPrologue does not support Thumb1!");
349   bool isARM = !AFI->isThumbFunction();
350   Align Alignment = STI.getFrameLowering()->getStackAlign();
351   unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize();
352   unsigned NumBytes = MFI.getStackSize();
353   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
354   int FPCXTSaveSize = 0;
355 
356   // Debug location must be unknown since the first debug location is used
357   // to determine the end of the prologue.
358   DebugLoc dl;
359 
360   Register FramePtr = RegInfo->getFrameRegister(MF);
361 
362   // Determine the sizes of each callee-save spill areas and record which frame
363   // belongs to which callee-save spill areas.
364   unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0;
365   int FramePtrSpillFI = 0;
366   int D8SpillFI = 0;
367 
368   // All calls are tail calls in GHC calling conv, and functions have no
369   // prologue/epilogue.
370   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
371     return;
372 
373   StackAdjustingInsts DefCFAOffsetCandidates;
374   bool HasFP = hasFP(MF);
375 
376   // Allocate the vararg register save area.
377   if (ArgRegsSaveSize) {
378     emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize,
379                  MachineInstr::FrameSetup);
380     DefCFAOffsetCandidates.addInst(std::prev(MBBI), ArgRegsSaveSize, true);
381   }
382 
383   if (!AFI->hasStackFrame() &&
384       (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) {
385     if (NumBytes - ArgRegsSaveSize != 0) {
386       emitSPUpdate(isARM, MBB, MBBI, dl, TII, -(NumBytes - ArgRegsSaveSize),
387                    MachineInstr::FrameSetup);
388       DefCFAOffsetCandidates.addInst(std::prev(MBBI),
389                                      NumBytes - ArgRegsSaveSize, true);
390     }
391     DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
392     return;
393   }
394 
395   // Determine spill area sizes.
396   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
397     unsigned Reg = CSI[i].getReg();
398     int FI = CSI[i].getFrameIdx();
399     switch (Reg) {
400     case ARM::R8:
401     case ARM::R9:
402     case ARM::R10:
403     case ARM::R11:
404     case ARM::R12:
405       if (STI.splitFramePushPop(MF)) {
406         GPRCS2Size += 4;
407         break;
408       }
409       LLVM_FALLTHROUGH;
410     case ARM::R0:
411     case ARM::R1:
412     case ARM::R2:
413     case ARM::R3:
414     case ARM::R4:
415     case ARM::R5:
416     case ARM::R6:
417     case ARM::R7:
418     case ARM::LR:
419       if (Reg == FramePtr)
420         FramePtrSpillFI = FI;
421       GPRCS1Size += 4;
422       break;
423     case ARM::FPCXTNS:
424       FPCXTSaveSize = 4;
425       break;
426     default:
427       // This is a DPR. Exclude the aligned DPRCS2 spills.
428       if (Reg == ARM::D8)
429         D8SpillFI = FI;
430       if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())
431         DPRCSSize += 8;
432     }
433   }
434 
435   // Move past FPCXT area.
436   MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push;
437   if (FPCXTSaveSize > 0) {
438     LastPush = MBBI++;
439     DefCFAOffsetCandidates.addInst(LastPush, FPCXTSaveSize, true);
440   }
441 
442   // Move past area 1.
443   if (GPRCS1Size > 0) {
444     GPRCS1Push = LastPush = MBBI++;
445     DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true);
446   }
447 
448   // Determine starting offsets of spill areas.
449   unsigned FPCXTOffset = NumBytes - ArgRegsSaveSize - FPCXTSaveSize;
450   unsigned GPRCS1Offset = FPCXTOffset - GPRCS1Size;
451   unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size;
452   Align DPRAlign = DPRCSSize ? std::min(Align(8), Alignment) : Align(4);
453   unsigned DPRGapSize =
454       (GPRCS1Size + GPRCS2Size + FPCXTSaveSize + ArgRegsSaveSize) %
455       DPRAlign.value();
456 
457   unsigned DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize;
458   int FramePtrOffsetInPush = 0;
459   if (HasFP) {
460     int FPOffset = MFI.getObjectOffset(FramePtrSpillFI);
461     assert(getMaxFPOffset(STI, *AFI) <= FPOffset &&
462            "Max FP estimation is wrong");
463     FramePtrOffsetInPush = FPOffset + ArgRegsSaveSize + FPCXTSaveSize;
464     AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) +
465                                 NumBytes);
466   }
467   AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset);
468   AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset);
469   AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset);
470 
471   // Move past area 2.
472   if (GPRCS2Size > 0) {
473     GPRCS2Push = LastPush = MBBI++;
474     DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size);
475   }
476 
477   // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our
478   // .cfi_offset operations will reflect that.
479   if (DPRGapSize) {
480     assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs");
481     if (LastPush != MBB.end() &&
482         tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize))
483       DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize);
484     else {
485       emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize,
486                    MachineInstr::FrameSetup);
487       DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize);
488     }
489   }
490 
491   // Move past area 3.
492   if (DPRCSSize > 0) {
493     // Since vpush register list cannot have gaps, there may be multiple vpush
494     // instructions in the prologue.
495     while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VSTMDDB_UPD) {
496       DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI));
497       LastPush = MBBI++;
498     }
499   }
500 
501   // Move past the aligned DPRCS2 area.
502   if (AFI->getNumAlignedDPRCS2Regs() > 0) {
503     MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs());
504     // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and
505     // leaves the stack pointer pointing to the DPRCS2 area.
506     //
507     // Adjust NumBytes to represent the stack slots below the DPRCS2 area.
508     NumBytes += MFI.getObjectOffset(D8SpillFI);
509   } else
510     NumBytes = DPRCSOffset;
511 
512   if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) {
513     uint32_t NumWords = NumBytes >> 2;
514 
515     if (NumWords < 65536)
516       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4)
517           .addImm(NumWords)
518           .setMIFlags(MachineInstr::FrameSetup)
519           .add(predOps(ARMCC::AL));
520     else
521       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R4)
522         .addImm(NumWords)
523         .setMIFlags(MachineInstr::FrameSetup);
524 
525     switch (TM.getCodeModel()) {
526     case CodeModel::Tiny:
527       llvm_unreachable("Tiny code model not available on ARM.");
528     case CodeModel::Small:
529     case CodeModel::Medium:
530     case CodeModel::Kernel:
531       BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL))
532           .add(predOps(ARMCC::AL))
533           .addExternalSymbol("__chkstk")
534           .addReg(ARM::R4, RegState::Implicit)
535           .setMIFlags(MachineInstr::FrameSetup);
536       break;
537     case CodeModel::Large:
538       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12)
539         .addExternalSymbol("__chkstk")
540         .setMIFlags(MachineInstr::FrameSetup);
541 
542       BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr))
543           .add(predOps(ARMCC::AL))
544           .addReg(ARM::R12, RegState::Kill)
545           .addReg(ARM::R4, RegState::Implicit)
546           .setMIFlags(MachineInstr::FrameSetup);
547       break;
548     }
549 
550     BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP)
551         .addReg(ARM::SP, RegState::Kill)
552         .addReg(ARM::R4, RegState::Kill)
553         .setMIFlags(MachineInstr::FrameSetup)
554         .add(predOps(ARMCC::AL))
555         .add(condCodeOp());
556     NumBytes = 0;
557   }
558 
559   if (NumBytes) {
560     // Adjust SP after all the callee-save spills.
561     if (AFI->getNumAlignedDPRCS2Regs() == 0 &&
562         tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes))
563       DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes);
564     else {
565       emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes,
566                    MachineInstr::FrameSetup);
567       DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes);
568     }
569 
570     if (HasFP && isARM)
571       // Restore from fp only in ARM mode: e.g. sub sp, r7, #24
572       // Note it's not safe to do this in Thumb2 mode because it would have
573       // taken two instructions:
574       // mov sp, r7
575       // sub sp, #24
576       // If an interrupt is taken between the two instructions, then sp is in
577       // an inconsistent state (pointing to the middle of callee-saved area).
578       // The interrupt handler can end up clobbering the registers.
579       AFI->setShouldRestoreSPFromFP(true);
580   }
581 
582   // Set FP to point to the stack slot that contains the previous FP.
583   // For iOS, FP is R7, which has now been stored in spill area 1.
584   // Otherwise, if this is not iOS, all the callee-saved registers go
585   // into spill area 1, including the FP in R11.  In either case, it
586   // is in area one and the adjustment needs to take place just after
587   // that push.
588   if (HasFP) {
589     MachineBasicBlock::iterator AfterPush = std::next(GPRCS1Push);
590     unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push);
591     emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush,
592                          dl, TII, FramePtr, ARM::SP,
593                          PushSize + FramePtrOffsetInPush,
594                          MachineInstr::FrameSetup);
595     if (FramePtrOffsetInPush + PushSize != 0) {
596       unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa(
597           nullptr, MRI->getDwarfRegNum(FramePtr, true),
598           FPCXTSaveSize + ArgRegsSaveSize - FramePtrOffsetInPush));
599       BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
600           .addCFIIndex(CFIIndex)
601           .setMIFlags(MachineInstr::FrameSetup);
602     } else {
603       unsigned CFIIndex =
604           MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(
605               nullptr, MRI->getDwarfRegNum(FramePtr, true)));
606       BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
607           .addCFIIndex(CFIIndex)
608           .setMIFlags(MachineInstr::FrameSetup);
609     }
610   }
611 
612   // Now that the prologue's actual instructions are finalised, we can insert
613   // the necessary DWARF cf instructions to describe the situation. Start by
614   // recording where each register ended up:
615   if (GPRCS1Size > 0) {
616     MachineBasicBlock::iterator Pos = std::next(GPRCS1Push);
617     int CFIIndex;
618     for (const auto &Entry : CSI) {
619       unsigned Reg = Entry.getReg();
620       int FI = Entry.getFrameIdx();
621       switch (Reg) {
622       case ARM::R8:
623       case ARM::R9:
624       case ARM::R10:
625       case ARM::R11:
626       case ARM::R12:
627         if (STI.splitFramePushPop(MF))
628           break;
629         LLVM_FALLTHROUGH;
630       case ARM::R0:
631       case ARM::R1:
632       case ARM::R2:
633       case ARM::R3:
634       case ARM::R4:
635       case ARM::R5:
636       case ARM::R6:
637       case ARM::R7:
638       case ARM::LR:
639         CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
640             nullptr, MRI->getDwarfRegNum(Reg, true), MFI.getObjectOffset(FI)));
641         BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
642             .addCFIIndex(CFIIndex)
643             .setMIFlags(MachineInstr::FrameSetup);
644         break;
645       }
646     }
647   }
648 
649   if (GPRCS2Size > 0) {
650     MachineBasicBlock::iterator Pos = std::next(GPRCS2Push);
651     for (const auto &Entry : CSI) {
652       unsigned Reg = Entry.getReg();
653       int FI = Entry.getFrameIdx();
654       switch (Reg) {
655       case ARM::R8:
656       case ARM::R9:
657       case ARM::R10:
658       case ARM::R11:
659       case ARM::R12:
660         if (STI.splitFramePushPop(MF)) {
661           unsigned DwarfReg =  MRI->getDwarfRegNum(Reg, true);
662           unsigned Offset = MFI.getObjectOffset(FI);
663           unsigned CFIIndex = MF.addFrameInst(
664               MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
665           BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
666               .addCFIIndex(CFIIndex)
667               .setMIFlags(MachineInstr::FrameSetup);
668         }
669         break;
670       }
671     }
672   }
673 
674   if (DPRCSSize > 0) {
675     // Since vpush register list cannot have gaps, there may be multiple vpush
676     // instructions in the prologue.
677     MachineBasicBlock::iterator Pos = std::next(LastPush);
678     for (const auto &Entry : CSI) {
679       unsigned Reg = Entry.getReg();
680       int FI = Entry.getFrameIdx();
681       if ((Reg >= ARM::D0 && Reg <= ARM::D31) &&
682           (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())) {
683         unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
684         unsigned Offset = MFI.getObjectOffset(FI);
685         unsigned CFIIndex = MF.addFrameInst(
686             MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
687         BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
688             .addCFIIndex(CFIIndex)
689             .setMIFlags(MachineInstr::FrameSetup);
690       }
691     }
692   }
693 
694   // Now we can emit descriptions of where the canonical frame address was
695   // throughout the process. If we have a frame pointer, it takes over the job
696   // half-way through, so only the first few .cfi_def_cfa_offset instructions
697   // actually get emitted.
698   DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
699 
700   if (STI.isTargetELF() && hasFP(MF))
701     MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() -
702                             AFI->getFramePtrSpillOffset());
703 
704   AFI->setFPCXTSaveAreaSize(FPCXTSaveSize);
705   AFI->setGPRCalleeSavedArea1Size(GPRCS1Size);
706   AFI->setGPRCalleeSavedArea2Size(GPRCS2Size);
707   AFI->setDPRCalleeSavedGapSize(DPRGapSize);
708   AFI->setDPRCalleeSavedAreaSize(DPRCSSize);
709 
710   // If we need dynamic stack realignment, do it here. Be paranoid and make
711   // sure if we also have VLAs, we have a base pointer for frame access.
712   // If aligned NEON registers were spilled, the stack has already been
713   // realigned.
714   if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->needsStackRealignment(MF)) {
715     Align MaxAlign = MFI.getMaxAlign();
716     assert(!AFI->isThumb1OnlyFunction());
717     if (!AFI->isThumbFunction()) {
718       emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign,
719                                false);
720     } else {
721       // We cannot use sp as source/dest register here, thus we're using r4 to
722       // perform the calculations. We're emitting the following sequence:
723       // mov r4, sp
724       // -- use emitAligningInstructions to produce best sequence to zero
725       // -- out lower bits in r4
726       // mov sp, r4
727       // FIXME: It will be better just to find spare register here.
728       BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4)
729           .addReg(ARM::SP, RegState::Kill)
730           .add(predOps(ARMCC::AL));
731       emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign,
732                                false);
733       BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
734           .addReg(ARM::R4, RegState::Kill)
735           .add(predOps(ARMCC::AL));
736     }
737 
738     AFI->setShouldRestoreSPFromFP(true);
739   }
740 
741   // If we need a base pointer, set it up here. It's whatever the value
742   // of the stack pointer is at this point. Any variable size objects
743   // will be allocated after this, so we can still use the base pointer
744   // to reference locals.
745   // FIXME: Clarify FrameSetup flags here.
746   if (RegInfo->hasBasePointer(MF)) {
747     if (isARM)
748       BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister())
749           .addReg(ARM::SP)
750           .add(predOps(ARMCC::AL))
751           .add(condCodeOp());
752     else
753       BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister())
754           .addReg(ARM::SP)
755           .add(predOps(ARMCC::AL));
756   }
757 
758   // If the frame has variable sized objects then the epilogue must restore
759   // the sp from fp. We can assume there's an FP here since hasFP already
760   // checks for hasVarSizedObjects.
761   if (MFI.hasVarSizedObjects())
762     AFI->setShouldRestoreSPFromFP(true);
763 }
764 
emitEpilogue(MachineFunction & MF,MachineBasicBlock & MBB) const765 void ARMFrameLowering::emitEpilogue(MachineFunction &MF,
766                                     MachineBasicBlock &MBB) const {
767   MachineFrameInfo &MFI = MF.getFrameInfo();
768   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
769   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
770   const ARMBaseInstrInfo &TII =
771       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
772   assert(!AFI->isThumb1OnlyFunction() &&
773          "This emitEpilogue does not support Thumb1!");
774   bool isARM = !AFI->isThumbFunction();
775 
776   unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize();
777   int NumBytes = (int)MFI.getStackSize();
778   Register FramePtr = RegInfo->getFrameRegister(MF);
779 
780   // All calls are tail calls in GHC calling conv, and functions have no
781   // prologue/epilogue.
782   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
783     return;
784 
785   // First put ourselves on the first (from top) terminator instructions.
786   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
787   DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
788 
789   if (!AFI->hasStackFrame()) {
790     if (NumBytes - ArgRegsSaveSize != 0)
791       emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes - ArgRegsSaveSize,
792                    MachineInstr::FrameDestroy);
793   } else {
794     // Unwind MBBI to point to first LDR / VLDRD.
795     if (MBBI != MBB.begin()) {
796       do {
797         --MBBI;
798       } while (MBBI != MBB.begin() &&
799                MBBI->getFlag(MachineInstr::FrameDestroy));
800       if (!MBBI->getFlag(MachineInstr::FrameDestroy))
801         ++MBBI;
802     }
803 
804     // Move SP to start of FP callee save spill area.
805     NumBytes -= (ArgRegsSaveSize +
806                  AFI->getFPCXTSaveAreaSize() +
807                  AFI->getGPRCalleeSavedArea1Size() +
808                  AFI->getGPRCalleeSavedArea2Size() +
809                  AFI->getDPRCalleeSavedGapSize() +
810                  AFI->getDPRCalleeSavedAreaSize());
811 
812     // Reset SP based on frame pointer only if the stack frame extends beyond
813     // frame pointer stack slot or target is ELF and the function has FP.
814     if (AFI->shouldRestoreSPFromFP()) {
815       NumBytes = AFI->getFramePtrSpillOffset() - NumBytes;
816       if (NumBytes) {
817         if (isARM)
818           emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes,
819                                   ARMCC::AL, 0, TII,
820                                   MachineInstr::FrameDestroy);
821         else {
822           // It's not possible to restore SP from FP in a single instruction.
823           // For iOS, this looks like:
824           // mov sp, r7
825           // sub sp, #24
826           // This is bad, if an interrupt is taken after the mov, sp is in an
827           // inconsistent state.
828           // Use the first callee-saved register as a scratch register.
829           assert(!MFI.getPristineRegs(MF).test(ARM::R4) &&
830                  "No scratch register to restore SP from FP!");
831           emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes,
832                                  ARMCC::AL, 0, TII, MachineInstr::FrameDestroy);
833           BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
834               .addReg(ARM::R4)
835               .add(predOps(ARMCC::AL))
836               .setMIFlag(MachineInstr::FrameDestroy);
837         }
838       } else {
839         // Thumb2 or ARM.
840         if (isARM)
841           BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP)
842               .addReg(FramePtr)
843               .add(predOps(ARMCC::AL))
844               .add(condCodeOp())
845               .setMIFlag(MachineInstr::FrameDestroy);
846         else
847           BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
848               .addReg(FramePtr)
849               .add(predOps(ARMCC::AL))
850               .setMIFlag(MachineInstr::FrameDestroy);
851       }
852     } else if (NumBytes &&
853                !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes))
854       emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes,
855                    MachineInstr::FrameDestroy);
856 
857     // Increment past our save areas.
858     if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) {
859       MBBI++;
860       // Since vpop register list cannot have gaps, there may be multiple vpop
861       // instructions in the epilogue.
862       while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD)
863         MBBI++;
864     }
865     if (AFI->getDPRCalleeSavedGapSize()) {
866       assert(AFI->getDPRCalleeSavedGapSize() == 4 &&
867              "unexpected DPR alignment gap");
868       emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize(),
869                    MachineInstr::FrameDestroy);
870     }
871 
872     if (AFI->getGPRCalleeSavedArea2Size()) MBBI++;
873     if (AFI->getGPRCalleeSavedArea1Size()) MBBI++;
874     if (AFI->getFPCXTSaveAreaSize()) MBBI++;
875   }
876 
877   if (ArgRegsSaveSize)
878     emitSPUpdate(isARM, MBB, MBBI, dl, TII, ArgRegsSaveSize,
879                  MachineInstr::FrameDestroy);
880 }
881 
882 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for
883 /// debug info.  It's the same as what we use for resolving the code-gen
884 /// references for now.  FIXME: This can go wrong when references are
885 /// SP-relative and simple call frames aren't used.
getFrameIndexReference(const MachineFunction & MF,int FI,Register & FrameReg) const886 int ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
887                                              Register &FrameReg) const {
888   return ResolveFrameIndexReference(MF, FI, FrameReg, 0);
889 }
890 
ResolveFrameIndexReference(const MachineFunction & MF,int FI,Register & FrameReg,int SPAdj) const891 int ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF,
892                                                  int FI, Register &FrameReg,
893                                                  int SPAdj) const {
894   const MachineFrameInfo &MFI = MF.getFrameInfo();
895   const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
896       MF.getSubtarget().getRegisterInfo());
897   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
898   int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize();
899   int FPOffset = Offset - AFI->getFramePtrSpillOffset();
900   bool isFixed = MFI.isFixedObjectIndex(FI);
901 
902   FrameReg = ARM::SP;
903   Offset += SPAdj;
904 
905   // SP can move around if there are allocas.  We may also lose track of SP
906   // when emergency spilling inside a non-reserved call frame setup.
907   bool hasMovingSP = !hasReservedCallFrame(MF);
908 
909   // When dynamically realigning the stack, use the frame pointer for
910   // parameters, and the stack/base pointer for locals.
911   if (RegInfo->needsStackRealignment(MF)) {
912     assert(hasFP(MF) && "dynamic stack realignment without a FP!");
913     if (isFixed) {
914       FrameReg = RegInfo->getFrameRegister(MF);
915       Offset = FPOffset;
916     } else if (hasMovingSP) {
917       assert(RegInfo->hasBasePointer(MF) &&
918              "VLAs and dynamic stack alignment, but missing base pointer!");
919       FrameReg = RegInfo->getBaseRegister();
920       Offset -= SPAdj;
921     }
922     return Offset;
923   }
924 
925   // If there is a frame pointer, use it when we can.
926   if (hasFP(MF) && AFI->hasStackFrame()) {
927     // Use frame pointer to reference fixed objects. Use it for locals if
928     // there are VLAs (and thus the SP isn't reliable as a base).
929     if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) {
930       FrameReg = RegInfo->getFrameRegister(MF);
931       return FPOffset;
932     } else if (hasMovingSP) {
933       assert(RegInfo->hasBasePointer(MF) && "missing base pointer!");
934       if (AFI->isThumb2Function()) {
935         // Try to use the frame pointer if we can, else use the base pointer
936         // since it's available. This is handy for the emergency spill slot, in
937         // particular.
938         if (FPOffset >= -255 && FPOffset < 0) {
939           FrameReg = RegInfo->getFrameRegister(MF);
940           return FPOffset;
941         }
942       }
943     } else if (AFI->isThumbFunction()) {
944       // Prefer SP to base pointer, if the offset is suitably aligned and in
945       // range as the effective range of the immediate offset is bigger when
946       // basing off SP.
947       // Use  add <rd>, sp, #<imm8>
948       //      ldr <rd>, [sp, #<imm8>]
949       if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020)
950         return Offset;
951       // In Thumb2 mode, the negative offset is very limited. Try to avoid
952       // out of range references. ldr <rt>,[<rn>, #-<imm8>]
953       if (AFI->isThumb2Function() && FPOffset >= -255 && FPOffset < 0) {
954         FrameReg = RegInfo->getFrameRegister(MF);
955         return FPOffset;
956       }
957     } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) {
958       // Otherwise, use SP or FP, whichever is closer to the stack slot.
959       FrameReg = RegInfo->getFrameRegister(MF);
960       return FPOffset;
961     }
962   }
963   // Use the base pointer if we have one.
964   // FIXME: Maybe prefer sp on Thumb1 if it's legal and the offset is cheaper?
965   // That can happen if we forced a base pointer for a large call frame.
966   if (RegInfo->hasBasePointer(MF)) {
967     FrameReg = RegInfo->getBaseRegister();
968     Offset -= SPAdj;
969   }
970   return Offset;
971 }
972 
emitPushInst(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,ArrayRef<CalleeSavedInfo> CSI,unsigned StmOpc,unsigned StrOpc,bool NoGap,bool (* Func)(unsigned,bool),unsigned NumAlignedDPRCS2Regs,unsigned MIFlags) const973 void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB,
974                                     MachineBasicBlock::iterator MI,
975                                     ArrayRef<CalleeSavedInfo> CSI,
976                                     unsigned StmOpc, unsigned StrOpc,
977                                     bool NoGap, bool (*Func)(unsigned, bool),
978                                     unsigned NumAlignedDPRCS2Regs,
979                                     unsigned MIFlags) const {
980   MachineFunction &MF = *MBB.getParent();
981   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
982   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
983 
984   DebugLoc DL;
985 
986   using RegAndKill = std::pair<unsigned, bool>;
987 
988   SmallVector<RegAndKill, 4> Regs;
989   unsigned i = CSI.size();
990   while (i != 0) {
991     unsigned LastReg = 0;
992     for (; i != 0; --i) {
993       unsigned Reg = CSI[i-1].getReg();
994       if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
995 
996       // D-registers in the aligned area DPRCS2 are NOT spilled here.
997       if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
998         continue;
999 
1000       const MachineRegisterInfo &MRI = MF.getRegInfo();
1001       bool isLiveIn = MRI.isLiveIn(Reg);
1002       if (!isLiveIn && !MRI.isReserved(Reg))
1003         MBB.addLiveIn(Reg);
1004       // If NoGap is true, push consecutive registers and then leave the rest
1005       // for other instructions. e.g.
1006       // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11}
1007       if (NoGap && LastReg && LastReg != Reg-1)
1008         break;
1009       LastReg = Reg;
1010       // Do not set a kill flag on values that are also marked as live-in. This
1011       // happens with the @llvm-returnaddress intrinsic and with arguments
1012       // passed in callee saved registers.
1013       // Omitting the kill flags is conservatively correct even if the live-in
1014       // is not used after all.
1015       Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn));
1016     }
1017 
1018     if (Regs.empty())
1019       continue;
1020 
1021     llvm::sort(Regs, [&](const RegAndKill &LHS, const RegAndKill &RHS) {
1022       return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first);
1023     });
1024 
1025     if (Regs.size() > 1 || StrOpc== 0) {
1026       MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP)
1027                                     .addReg(ARM::SP)
1028                                     .setMIFlags(MIFlags)
1029                                     .add(predOps(ARMCC::AL));
1030       for (unsigned i = 0, e = Regs.size(); i < e; ++i)
1031         MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second));
1032     } else if (Regs.size() == 1) {
1033       BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP)
1034           .addReg(Regs[0].first, getKillRegState(Regs[0].second))
1035           .addReg(ARM::SP)
1036           .setMIFlags(MIFlags)
1037           .addImm(-4)
1038           .add(predOps(ARMCC::AL));
1039     }
1040     Regs.clear();
1041 
1042     // Put any subsequent vpush instructions before this one: they will refer to
1043     // higher register numbers so need to be pushed first in order to preserve
1044     // monotonicity.
1045     if (MI != MBB.begin())
1046       --MI;
1047   }
1048 }
1049 
emitPopInst(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,MutableArrayRef<CalleeSavedInfo> CSI,unsigned LdmOpc,unsigned LdrOpc,bool isVarArg,bool NoGap,bool (* Func)(unsigned,bool),unsigned NumAlignedDPRCS2Regs) const1050 void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB,
1051                                    MachineBasicBlock::iterator MI,
1052                                    MutableArrayRef<CalleeSavedInfo> CSI,
1053                                    unsigned LdmOpc, unsigned LdrOpc,
1054                                    bool isVarArg, bool NoGap,
1055                                    bool (*Func)(unsigned, bool),
1056                                    unsigned NumAlignedDPRCS2Regs) const {
1057   MachineFunction &MF = *MBB.getParent();
1058   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1059   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
1060   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1061   DebugLoc DL;
1062   bool isTailCall = false;
1063   bool isInterrupt = false;
1064   bool isTrap = false;
1065   bool isCmseEntry = false;
1066   if (MBB.end() != MI) {
1067     DL = MI->getDebugLoc();
1068     unsigned RetOpcode = MI->getOpcode();
1069     isTailCall = (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri);
1070     isInterrupt =
1071         RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR;
1072     isTrap =
1073         RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl ||
1074         RetOpcode == ARM::tTRAP;
1075     isCmseEntry = (RetOpcode == ARM::tBXNS || RetOpcode == ARM::tBXNS_RET);
1076   }
1077 
1078   SmallVector<unsigned, 4> Regs;
1079   unsigned i = CSI.size();
1080   while (i != 0) {
1081     unsigned LastReg = 0;
1082     bool DeleteRet = false;
1083     for (; i != 0; --i) {
1084       CalleeSavedInfo &Info = CSI[i-1];
1085       unsigned Reg = Info.getReg();
1086       if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
1087 
1088       // The aligned reloads from area DPRCS2 are not inserted here.
1089       if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
1090         continue;
1091 
1092       if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt &&
1093           !isCmseEntry && !isTrap && STI.hasV5TOps()) {
1094         if (MBB.succ_empty()) {
1095           Reg = ARM::PC;
1096           // Fold the return instruction into the LDM.
1097           DeleteRet = true;
1098           LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET;
1099           // We 'restore' LR into PC so it is not live out of the return block:
1100           // Clear Restored bit.
1101           Info.setRestored(false);
1102         } else
1103           LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD;
1104       }
1105 
1106       // If NoGap is true, pop consecutive registers and then leave the rest
1107       // for other instructions. e.g.
1108       // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11}
1109       if (NoGap && LastReg && LastReg != Reg-1)
1110         break;
1111 
1112       LastReg = Reg;
1113       Regs.push_back(Reg);
1114     }
1115 
1116     if (Regs.empty())
1117       continue;
1118 
1119     llvm::sort(Regs, [&](unsigned LHS, unsigned RHS) {
1120       return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS);
1121     });
1122 
1123     if (Regs.size() > 1 || LdrOpc == 0) {
1124       MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP)
1125                                     .addReg(ARM::SP)
1126                                     .add(predOps(ARMCC::AL))
1127                                     .setMIFlags(MachineInstr::FrameDestroy);
1128       for (unsigned i = 0, e = Regs.size(); i < e; ++i)
1129         MIB.addReg(Regs[i], getDefRegState(true));
1130       if (DeleteRet) {
1131         if (MI != MBB.end()) {
1132           MIB.copyImplicitOps(*MI);
1133           MI->eraseFromParent();
1134         }
1135       }
1136       MI = MIB;
1137     } else if (Regs.size() == 1) {
1138       // If we adjusted the reg to PC from LR above, switch it back here. We
1139       // only do that for LDM.
1140       if (Regs[0] == ARM::PC)
1141         Regs[0] = ARM::LR;
1142       MachineInstrBuilder MIB =
1143         BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0])
1144           .addReg(ARM::SP, RegState::Define)
1145           .addReg(ARM::SP)
1146           .setMIFlags(MachineInstr::FrameDestroy);
1147       // ARM mode needs an extra reg0 here due to addrmode2. Will go away once
1148       // that refactoring is complete (eventually).
1149       if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) {
1150         MIB.addReg(0);
1151         MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift));
1152       } else
1153         MIB.addImm(4);
1154       MIB.add(predOps(ARMCC::AL));
1155     }
1156     Regs.clear();
1157 
1158     // Put any subsequent vpop instructions after this one: they will refer to
1159     // higher register numbers so need to be popped afterwards.
1160     if (MI != MBB.end())
1161       ++MI;
1162   }
1163 }
1164 
1165 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers
1166 /// starting from d8.  Also insert stack realignment code and leave the stack
1167 /// pointer pointing to the d8 spill slot.
emitAlignedDPRCS2Spills(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned NumAlignedDPRCS2Regs,ArrayRef<CalleeSavedInfo> CSI,const TargetRegisterInfo * TRI)1168 static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB,
1169                                     MachineBasicBlock::iterator MI,
1170                                     unsigned NumAlignedDPRCS2Regs,
1171                                     ArrayRef<CalleeSavedInfo> CSI,
1172                                     const TargetRegisterInfo *TRI) {
1173   MachineFunction &MF = *MBB.getParent();
1174   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1175   DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1176   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1177   MachineFrameInfo &MFI = MF.getFrameInfo();
1178 
1179   // Mark the D-register spill slots as properly aligned.  Since MFI computes
1180   // stack slot layout backwards, this can actually mean that the d-reg stack
1181   // slot offsets can be wrong. The offset for d8 will always be correct.
1182   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1183     unsigned DNum = CSI[i].getReg() - ARM::D8;
1184     if (DNum > NumAlignedDPRCS2Regs - 1)
1185       continue;
1186     int FI = CSI[i].getFrameIdx();
1187     // The even-numbered registers will be 16-byte aligned, the odd-numbered
1188     // registers will be 8-byte aligned.
1189     MFI.setObjectAlignment(FI, DNum % 2 ? Align(8) : Align(16));
1190 
1191     // The stack slot for D8 needs to be maximally aligned because this is
1192     // actually the point where we align the stack pointer.  MachineFrameInfo
1193     // computes all offsets relative to the incoming stack pointer which is a
1194     // bit weird when realigning the stack.  Any extra padding for this
1195     // over-alignment is not realized because the code inserted below adjusts
1196     // the stack pointer by numregs * 8 before aligning the stack pointer.
1197     if (DNum == 0)
1198       MFI.setObjectAlignment(FI, MFI.getMaxAlign());
1199   }
1200 
1201   // Move the stack pointer to the d8 spill slot, and align it at the same
1202   // time. Leave the stack slot address in the scratch register r4.
1203   //
1204   //   sub r4, sp, #numregs * 8
1205   //   bic r4, r4, #align - 1
1206   //   mov sp, r4
1207   //
1208   bool isThumb = AFI->isThumbFunction();
1209   assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1210   AFI->setShouldRestoreSPFromFP(true);
1211 
1212   // sub r4, sp, #numregs * 8
1213   // The immediate is <= 64, so it doesn't need any special encoding.
1214   unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri;
1215   BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
1216       .addReg(ARM::SP)
1217       .addImm(8 * NumAlignedDPRCS2Regs)
1218       .add(predOps(ARMCC::AL))
1219       .add(condCodeOp());
1220 
1221   Align MaxAlign = MF.getFrameInfo().getMaxAlign();
1222   // We must set parameter MustBeSingleInstruction to true, since
1223   // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform
1224   // stack alignment.  Luckily, this can always be done since all ARM
1225   // architecture versions that support Neon also support the BFC
1226   // instruction.
1227   emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true);
1228 
1229   // mov sp, r4
1230   // The stack pointer must be adjusted before spilling anything, otherwise
1231   // the stack slots could be clobbered by an interrupt handler.
1232   // Leave r4 live, it is used below.
1233   Opc = isThumb ? ARM::tMOVr : ARM::MOVr;
1234   MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP)
1235                                 .addReg(ARM::R4)
1236                                 .add(predOps(ARMCC::AL));
1237   if (!isThumb)
1238     MIB.add(condCodeOp());
1239 
1240   // Now spill NumAlignedDPRCS2Regs registers starting from d8.
1241   // r4 holds the stack slot address.
1242   unsigned NextReg = ARM::D8;
1243 
1244   // 16-byte aligned vst1.64 with 4 d-regs and address writeback.
1245   // The writeback is only needed when emitting two vst1.64 instructions.
1246   if (NumAlignedDPRCS2Regs >= 6) {
1247     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1248                                                &ARM::QQPRRegClass);
1249     MBB.addLiveIn(SupReg);
1250     BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4)
1251         .addReg(ARM::R4, RegState::Kill)
1252         .addImm(16)
1253         .addReg(NextReg)
1254         .addReg(SupReg, RegState::ImplicitKill)
1255         .add(predOps(ARMCC::AL));
1256     NextReg += 4;
1257     NumAlignedDPRCS2Regs -= 4;
1258   }
1259 
1260   // We won't modify r4 beyond this point.  It currently points to the next
1261   // register to be spilled.
1262   unsigned R4BaseReg = NextReg;
1263 
1264   // 16-byte aligned vst1.64 with 4 d-regs, no writeback.
1265   if (NumAlignedDPRCS2Regs >= 4) {
1266     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1267                                                &ARM::QQPRRegClass);
1268     MBB.addLiveIn(SupReg);
1269     BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q))
1270         .addReg(ARM::R4)
1271         .addImm(16)
1272         .addReg(NextReg)
1273         .addReg(SupReg, RegState::ImplicitKill)
1274         .add(predOps(ARMCC::AL));
1275     NextReg += 4;
1276     NumAlignedDPRCS2Regs -= 4;
1277   }
1278 
1279   // 16-byte aligned vst1.64 with 2 d-regs.
1280   if (NumAlignedDPRCS2Regs >= 2) {
1281     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1282                                                &ARM::QPRRegClass);
1283     MBB.addLiveIn(SupReg);
1284     BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64))
1285         .addReg(ARM::R4)
1286         .addImm(16)
1287         .addReg(SupReg)
1288         .add(predOps(ARMCC::AL));
1289     NextReg += 2;
1290     NumAlignedDPRCS2Regs -= 2;
1291   }
1292 
1293   // Finally, use a vanilla vstr.64 for the odd last register.
1294   if (NumAlignedDPRCS2Regs) {
1295     MBB.addLiveIn(NextReg);
1296     // vstr.64 uses addrmode5 which has an offset scale of 4.
1297     BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD))
1298         .addReg(NextReg)
1299         .addReg(ARM::R4)
1300         .addImm((NextReg - R4BaseReg) * 2)
1301         .add(predOps(ARMCC::AL));
1302   }
1303 
1304   // The last spill instruction inserted should kill the scratch register r4.
1305   std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
1306 }
1307 
1308 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an
1309 /// iterator to the following instruction.
1310 static MachineBasicBlock::iterator
skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,unsigned NumAlignedDPRCS2Regs)1311 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
1312                         unsigned NumAlignedDPRCS2Regs) {
1313   //   sub r4, sp, #numregs * 8
1314   //   bic r4, r4, #align - 1
1315   //   mov sp, r4
1316   ++MI; ++MI; ++MI;
1317   assert(MI->mayStore() && "Expecting spill instruction");
1318 
1319   // These switches all fall through.
1320   switch(NumAlignedDPRCS2Regs) {
1321   case 7:
1322     ++MI;
1323     assert(MI->mayStore() && "Expecting spill instruction");
1324     LLVM_FALLTHROUGH;
1325   default:
1326     ++MI;
1327     assert(MI->mayStore() && "Expecting spill instruction");
1328     LLVM_FALLTHROUGH;
1329   case 1:
1330   case 2:
1331   case 4:
1332     assert(MI->killsRegister(ARM::R4) && "Missed kill flag");
1333     ++MI;
1334   }
1335   return MI;
1336 }
1337 
1338 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers
1339 /// starting from d8.  These instructions are assumed to execute while the
1340 /// stack is still aligned, unlike the code inserted by emitPopInst.
emitAlignedDPRCS2Restores(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned NumAlignedDPRCS2Regs,ArrayRef<CalleeSavedInfo> CSI,const TargetRegisterInfo * TRI)1341 static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB,
1342                                       MachineBasicBlock::iterator MI,
1343                                       unsigned NumAlignedDPRCS2Regs,
1344                                       ArrayRef<CalleeSavedInfo> CSI,
1345                                       const TargetRegisterInfo *TRI) {
1346   MachineFunction &MF = *MBB.getParent();
1347   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1348   DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1349   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1350 
1351   // Find the frame index assigned to d8.
1352   int D8SpillFI = 0;
1353   for (unsigned i = 0, e = CSI.size(); i != e; ++i)
1354     if (CSI[i].getReg() == ARM::D8) {
1355       D8SpillFI = CSI[i].getFrameIdx();
1356       break;
1357     }
1358 
1359   // Materialize the address of the d8 spill slot into the scratch register r4.
1360   // This can be fairly complicated if the stack frame is large, so just use
1361   // the normal frame index elimination mechanism to do it.  This code runs as
1362   // the initial part of the epilog where the stack and base pointers haven't
1363   // been changed yet.
1364   bool isThumb = AFI->isThumbFunction();
1365   assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1366 
1367   unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
1368   BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
1369       .addFrameIndex(D8SpillFI)
1370       .addImm(0)
1371       .add(predOps(ARMCC::AL))
1372       .add(condCodeOp());
1373 
1374   // Now restore NumAlignedDPRCS2Regs registers starting from d8.
1375   unsigned NextReg = ARM::D8;
1376 
1377   // 16-byte aligned vld1.64 with 4 d-regs and writeback.
1378   if (NumAlignedDPRCS2Regs >= 6) {
1379     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1380                                                &ARM::QQPRRegClass);
1381     BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg)
1382         .addReg(ARM::R4, RegState::Define)
1383         .addReg(ARM::R4, RegState::Kill)
1384         .addImm(16)
1385         .addReg(SupReg, RegState::ImplicitDefine)
1386         .add(predOps(ARMCC::AL));
1387     NextReg += 4;
1388     NumAlignedDPRCS2Regs -= 4;
1389   }
1390 
1391   // We won't modify r4 beyond this point.  It currently points to the next
1392   // register to be spilled.
1393   unsigned R4BaseReg = NextReg;
1394 
1395   // 16-byte aligned vld1.64 with 4 d-regs, no writeback.
1396   if (NumAlignedDPRCS2Regs >= 4) {
1397     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1398                                                &ARM::QQPRRegClass);
1399     BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg)
1400         .addReg(ARM::R4)
1401         .addImm(16)
1402         .addReg(SupReg, RegState::ImplicitDefine)
1403         .add(predOps(ARMCC::AL));
1404     NextReg += 4;
1405     NumAlignedDPRCS2Regs -= 4;
1406   }
1407 
1408   // 16-byte aligned vld1.64 with 2 d-regs.
1409   if (NumAlignedDPRCS2Regs >= 2) {
1410     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1411                                                &ARM::QPRRegClass);
1412     BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg)
1413         .addReg(ARM::R4)
1414         .addImm(16)
1415         .add(predOps(ARMCC::AL));
1416     NextReg += 2;
1417     NumAlignedDPRCS2Regs -= 2;
1418   }
1419 
1420   // Finally, use a vanilla vldr.64 for the remaining odd register.
1421   if (NumAlignedDPRCS2Regs)
1422     BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg)
1423         .addReg(ARM::R4)
1424         .addImm(2 * (NextReg - R4BaseReg))
1425         .add(predOps(ARMCC::AL));
1426 
1427   // Last store kills r4.
1428   std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
1429 }
1430 
spillCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,ArrayRef<CalleeSavedInfo> CSI,const TargetRegisterInfo * TRI) const1431 bool ARMFrameLowering::spillCalleeSavedRegisters(
1432     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
1433     ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
1434   if (CSI.empty())
1435     return false;
1436 
1437   MachineFunction &MF = *MBB.getParent();
1438   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1439 
1440   unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD;
1441   unsigned PushOneOpc = AFI->isThumbFunction() ?
1442     ARM::t2STR_PRE : ARM::STR_PRE_IMM;
1443   unsigned FltOpc = ARM::VSTMDDB_UPD;
1444   unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
1445   // Save the non-secure floating point context.
1446   if (llvm::any_of(CSI, [](const CalleeSavedInfo &C) {
1447         return C.getReg() == ARM::FPCXTNS;
1448       })) {
1449     BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::VSTR_FPCXTNS_pre),
1450             ARM::SP)
1451         .addReg(ARM::SP)
1452         .addImm(-4)
1453         .add(predOps(ARMCC::AL));
1454   }
1455   emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register, 0,
1456                MachineInstr::FrameSetup);
1457   emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register, 0,
1458                MachineInstr::FrameSetup);
1459   emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register,
1460                NumAlignedDPRCS2Regs, MachineInstr::FrameSetup);
1461 
1462   // The code above does not insert spill code for the aligned DPRCS2 registers.
1463   // The stack realignment code will be inserted between the push instructions
1464   // and these spills.
1465   if (NumAlignedDPRCS2Regs)
1466     emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
1467 
1468   return true;
1469 }
1470 
restoreCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,MutableArrayRef<CalleeSavedInfo> CSI,const TargetRegisterInfo * TRI) const1471 bool ARMFrameLowering::restoreCalleeSavedRegisters(
1472     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
1473     MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
1474   if (CSI.empty())
1475     return false;
1476 
1477   MachineFunction &MF = *MBB.getParent();
1478   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1479   bool isVarArg = AFI->getArgRegsSaveSize() > 0;
1480   unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
1481 
1482   // The emitPopInst calls below do not insert reloads for the aligned DPRCS2
1483   // registers. Do that here instead.
1484   if (NumAlignedDPRCS2Regs)
1485     emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
1486 
1487   unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD;
1488   unsigned LdrOpc = AFI->isThumbFunction() ? ARM::t2LDR_POST :ARM::LDR_POST_IMM;
1489   unsigned FltOpc = ARM::VLDMDIA_UPD;
1490   emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register,
1491               NumAlignedDPRCS2Regs);
1492   emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
1493               &isARMArea2Register, 0);
1494   emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
1495               &isARMArea1Register, 0);
1496 
1497   return true;
1498 }
1499 
1500 // FIXME: Make generic?
EstimateFunctionSizeInBytes(const MachineFunction & MF,const ARMBaseInstrInfo & TII)1501 static unsigned EstimateFunctionSizeInBytes(const MachineFunction &MF,
1502                                             const ARMBaseInstrInfo &TII) {
1503   unsigned FnSize = 0;
1504   for (auto &MBB : MF) {
1505     for (auto &MI : MBB)
1506       FnSize += TII.getInstSizeInBytes(MI);
1507   }
1508   if (MF.getJumpTableInfo())
1509     for (auto &Table: MF.getJumpTableInfo()->getJumpTables())
1510       FnSize += Table.MBBs.size() * 4;
1511   FnSize += MF.getConstantPool()->getConstants().size() * 4;
1512   return FnSize;
1513 }
1514 
1515 /// estimateRSStackSizeLimit - Look at each instruction that references stack
1516 /// frames and return the stack size limit beyond which some of these
1517 /// instructions will require a scratch register during their expansion later.
1518 // FIXME: Move to TII?
estimateRSStackSizeLimit(MachineFunction & MF,const TargetFrameLowering * TFI,bool & HasNonSPFrameIndex)1519 static unsigned estimateRSStackSizeLimit(MachineFunction &MF,
1520                                          const TargetFrameLowering *TFI,
1521                                          bool &HasNonSPFrameIndex) {
1522   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1523   const ARMBaseInstrInfo &TII =
1524       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
1525   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1526   unsigned Limit = (1 << 12) - 1;
1527   for (auto &MBB : MF) {
1528     for (auto &MI : MBB) {
1529       if (MI.isDebugInstr())
1530         continue;
1531       for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1532         if (!MI.getOperand(i).isFI())
1533           continue;
1534 
1535         // When using ADDri to get the address of a stack object, 255 is the
1536         // largest offset guaranteed to fit in the immediate offset.
1537         if (MI.getOpcode() == ARM::ADDri) {
1538           Limit = std::min(Limit, (1U << 8) - 1);
1539           break;
1540         }
1541         // t2ADDri will not require an extra register, it can reuse the
1542         // destination.
1543         if (MI.getOpcode() == ARM::t2ADDri || MI.getOpcode() == ARM::t2ADDri12)
1544           break;
1545 
1546         const MCInstrDesc &MCID = MI.getDesc();
1547         const TargetRegisterClass *RegClass = TII.getRegClass(MCID, i, TRI, MF);
1548         if (RegClass && !RegClass->contains(ARM::SP))
1549           HasNonSPFrameIndex = true;
1550 
1551         // Otherwise check the addressing mode.
1552         switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) {
1553         case ARMII::AddrMode_i12:
1554         case ARMII::AddrMode2:
1555           // Default 12 bit limit.
1556           break;
1557         case ARMII::AddrMode3:
1558         case ARMII::AddrModeT2_i8:
1559           Limit = std::min(Limit, (1U << 8) - 1);
1560           break;
1561         case ARMII::AddrMode5FP16:
1562           Limit = std::min(Limit, ((1U << 8) - 1) * 2);
1563           break;
1564         case ARMII::AddrMode5:
1565         case ARMII::AddrModeT2_i8s4:
1566         case ARMII::AddrModeT2_ldrex:
1567           Limit = std::min(Limit, ((1U << 8) - 1) * 4);
1568           break;
1569         case ARMII::AddrModeT2_i12:
1570           // i12 supports only positive offset so these will be converted to
1571           // i8 opcodes. See llvm::rewriteT2FrameIndex.
1572           if (TFI->hasFP(MF) && AFI->hasStackFrame())
1573             Limit = std::min(Limit, (1U << 8) - 1);
1574           break;
1575         case ARMII::AddrMode4:
1576         case ARMII::AddrMode6:
1577           // Addressing modes 4 & 6 (load/store) instructions can't encode an
1578           // immediate offset for stack references.
1579           return 0;
1580         case ARMII::AddrModeT2_i7:
1581           Limit = std::min(Limit, ((1U << 7) - 1) * 1);
1582           break;
1583         case ARMII::AddrModeT2_i7s2:
1584           Limit = std::min(Limit, ((1U << 7) - 1) * 2);
1585           break;
1586         case ARMII::AddrModeT2_i7s4:
1587           Limit = std::min(Limit, ((1U << 7) - 1) * 4);
1588           break;
1589         default:
1590           llvm_unreachable("Unhandled addressing mode in stack size limit calculation");
1591         }
1592         break; // At most one FI per instruction
1593       }
1594     }
1595   }
1596 
1597   return Limit;
1598 }
1599 
1600 // In functions that realign the stack, it can be an advantage to spill the
1601 // callee-saved vector registers after realigning the stack. The vst1 and vld1
1602 // instructions take alignment hints that can improve performance.
1603 static void
checkNumAlignedDPRCS2Regs(MachineFunction & MF,BitVector & SavedRegs)1604 checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) {
1605   MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0);
1606   if (!SpillAlignedNEONRegs)
1607     return;
1608 
1609   // Naked functions don't spill callee-saved registers.
1610   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
1611     return;
1612 
1613   // We are planning to use NEON instructions vst1 / vld1.
1614   if (!static_cast<const ARMSubtarget &>(MF.getSubtarget()).hasNEON())
1615     return;
1616 
1617   // Don't bother if the default stack alignment is sufficiently high.
1618   if (MF.getSubtarget().getFrameLowering()->getStackAlign() >= Align(8))
1619     return;
1620 
1621   // Aligned spills require stack realignment.
1622   if (!static_cast<const ARMBaseRegisterInfo *>(
1623            MF.getSubtarget().getRegisterInfo())->canRealignStack(MF))
1624     return;
1625 
1626   // We always spill contiguous d-registers starting from d8. Count how many
1627   // needs spilling.  The register allocator will almost always use the
1628   // callee-saved registers in order, but it can happen that there are holes in
1629   // the range.  Registers above the hole will be spilled to the standard DPRCS
1630   // area.
1631   unsigned NumSpills = 0;
1632   for (; NumSpills < 8; ++NumSpills)
1633     if (!SavedRegs.test(ARM::D8 + NumSpills))
1634       break;
1635 
1636   // Don't do this for just one d-register. It's not worth it.
1637   if (NumSpills < 2)
1638     return;
1639 
1640   // Spill the first NumSpills D-registers after realigning the stack.
1641   MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills);
1642 
1643   // A scratch register is required for the vst1 / vld1 instructions.
1644   SavedRegs.set(ARM::R4);
1645 }
1646 
enableShrinkWrapping(const MachineFunction & MF) const1647 bool ARMFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
1648   // For CMSE entry functions, we want to save the FPCXT_NS immediately
1649   // upon function entry (resp. restore it immmediately before return)
1650   if (STI.hasV8_1MMainlineOps() &&
1651       MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction())
1652     return false;
1653 
1654   return true;
1655 }
1656 
determineCalleeSaves(MachineFunction & MF,BitVector & SavedRegs,RegScavenger * RS) const1657 void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF,
1658                                             BitVector &SavedRegs,
1659                                             RegScavenger *RS) const {
1660   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
1661   // This tells PEI to spill the FP as if it is any other callee-save register
1662   // to take advantage the eliminateFrameIndex machinery. This also ensures it
1663   // is spilled in the order specified by getCalleeSavedRegs() to make it easier
1664   // to combine multiple loads / stores.
1665   bool CanEliminateFrame = true;
1666   bool CS1Spilled = false;
1667   bool LRSpilled = false;
1668   unsigned NumGPRSpills = 0;
1669   unsigned NumFPRSpills = 0;
1670   SmallVector<unsigned, 4> UnspilledCS1GPRs;
1671   SmallVector<unsigned, 4> UnspilledCS2GPRs;
1672   const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
1673       MF.getSubtarget().getRegisterInfo());
1674   const ARMBaseInstrInfo &TII =
1675       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
1676   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1677   MachineFrameInfo &MFI = MF.getFrameInfo();
1678   MachineRegisterInfo &MRI = MF.getRegInfo();
1679   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1680   (void)TRI;  // Silence unused warning in non-assert builds.
1681   Register FramePtr = RegInfo->getFrameRegister(MF);
1682 
1683   // Spill R4 if Thumb2 function requires stack realignment - it will be used as
1684   // scratch register. Also spill R4 if Thumb2 function has varsized objects,
1685   // since it's not always possible to restore sp from fp in a single
1686   // instruction.
1687   // FIXME: It will be better just to find spare register here.
1688   if (AFI->isThumb2Function() &&
1689       (MFI.hasVarSizedObjects() || RegInfo->needsStackRealignment(MF)))
1690     SavedRegs.set(ARM::R4);
1691 
1692   // If a stack probe will be emitted, spill R4 and LR, since they are
1693   // clobbered by the stack probe call.
1694   // This estimate should be a safe, conservative estimate. The actual
1695   // stack probe is enabled based on the size of the local objects;
1696   // this estimate also includes the varargs store size.
1697   if (STI.isTargetWindows() &&
1698       WindowsRequiresStackProbe(MF, MFI.estimateStackSize(MF))) {
1699     SavedRegs.set(ARM::R4);
1700     SavedRegs.set(ARM::LR);
1701   }
1702 
1703   if (AFI->isThumb1OnlyFunction()) {
1704     // Spill LR if Thumb1 function uses variable length argument lists.
1705     if (AFI->getArgRegsSaveSize() > 0)
1706       SavedRegs.set(ARM::LR);
1707 
1708     // Spill R4 if Thumb1 epilogue has to restore SP from FP or the function
1709     // requires stack alignment.  We don't know for sure what the stack size
1710     // will be, but for this, an estimate is good enough. If there anything
1711     // changes it, it'll be a spill, which implies we've used all the registers
1712     // and so R4 is already used, so not marking it here will be OK.
1713     // FIXME: It will be better just to find spare register here.
1714     if (MFI.hasVarSizedObjects() || RegInfo->needsStackRealignment(MF) ||
1715         MFI.estimateStackSize(MF) > 508)
1716       SavedRegs.set(ARM::R4);
1717   }
1718 
1719   // See if we can spill vector registers to aligned stack.
1720   checkNumAlignedDPRCS2Regs(MF, SavedRegs);
1721 
1722   // Spill the BasePtr if it's used.
1723   if (RegInfo->hasBasePointer(MF))
1724     SavedRegs.set(RegInfo->getBaseRegister());
1725 
1726   // On v8.1-M.Main CMSE entry functions save/restore FPCXT.
1727   if (STI.hasV8_1MMainlineOps() && AFI->isCmseNSEntryFunction())
1728     CanEliminateFrame = false;
1729 
1730   // Don't spill FP if the frame can be eliminated. This is determined
1731   // by scanning the callee-save registers to see if any is modified.
1732   const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
1733   for (unsigned i = 0; CSRegs[i]; ++i) {
1734     unsigned Reg = CSRegs[i];
1735     bool Spilled = false;
1736     if (SavedRegs.test(Reg)) {
1737       Spilled = true;
1738       CanEliminateFrame = false;
1739     }
1740 
1741     if (!ARM::GPRRegClass.contains(Reg)) {
1742       if (Spilled) {
1743         if (ARM::SPRRegClass.contains(Reg))
1744           NumFPRSpills++;
1745         else if (ARM::DPRRegClass.contains(Reg))
1746           NumFPRSpills += 2;
1747         else if (ARM::QPRRegClass.contains(Reg))
1748           NumFPRSpills += 4;
1749       }
1750       continue;
1751     }
1752 
1753     if (Spilled) {
1754       NumGPRSpills++;
1755 
1756       if (!STI.splitFramePushPop(MF)) {
1757         if (Reg == ARM::LR)
1758           LRSpilled = true;
1759         CS1Spilled = true;
1760         continue;
1761       }
1762 
1763       // Keep track if LR and any of R4, R5, R6, and R7 is spilled.
1764       switch (Reg) {
1765       case ARM::LR:
1766         LRSpilled = true;
1767         LLVM_FALLTHROUGH;
1768       case ARM::R0: case ARM::R1:
1769       case ARM::R2: case ARM::R3:
1770       case ARM::R4: case ARM::R5:
1771       case ARM::R6: case ARM::R7:
1772         CS1Spilled = true;
1773         break;
1774       default:
1775         break;
1776       }
1777     } else {
1778       if (!STI.splitFramePushPop(MF)) {
1779         UnspilledCS1GPRs.push_back(Reg);
1780         continue;
1781       }
1782 
1783       switch (Reg) {
1784       case ARM::R0: case ARM::R1:
1785       case ARM::R2: case ARM::R3:
1786       case ARM::R4: case ARM::R5:
1787       case ARM::R6: case ARM::R7:
1788       case ARM::LR:
1789         UnspilledCS1GPRs.push_back(Reg);
1790         break;
1791       default:
1792         UnspilledCS2GPRs.push_back(Reg);
1793         break;
1794       }
1795     }
1796   }
1797 
1798   bool ForceLRSpill = false;
1799   if (!LRSpilled && AFI->isThumb1OnlyFunction()) {
1800     unsigned FnSize = EstimateFunctionSizeInBytes(MF, TII);
1801     // Force LR to be spilled if the Thumb function size is > 2048. This enables
1802     // use of BL to implement far jump.
1803     if (FnSize >= (1 << 11)) {
1804       CanEliminateFrame = false;
1805       ForceLRSpill = true;
1806     }
1807   }
1808 
1809   // If any of the stack slot references may be out of range of an immediate
1810   // offset, make sure a register (or a spill slot) is available for the
1811   // register scavenger. Note that if we're indexing off the frame pointer, the
1812   // effective stack size is 4 bytes larger since the FP points to the stack
1813   // slot of the previous FP. Also, if we have variable sized objects in the
1814   // function, stack slot references will often be negative, and some of
1815   // our instructions are positive-offset only, so conservatively consider
1816   // that case to want a spill slot (or register) as well. Similarly, if
1817   // the function adjusts the stack pointer during execution and the
1818   // adjustments aren't already part of our stack size estimate, our offset
1819   // calculations may be off, so be conservative.
1820   // FIXME: We could add logic to be more precise about negative offsets
1821   //        and which instructions will need a scratch register for them. Is it
1822   //        worth the effort and added fragility?
1823   unsigned EstimatedStackSize =
1824       MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills);
1825 
1826   // Determine biggest (positive) SP offset in MachineFrameInfo.
1827   int MaxFixedOffset = 0;
1828   for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) {
1829     int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I);
1830     MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset);
1831   }
1832 
1833   bool HasFP = hasFP(MF);
1834   if (HasFP) {
1835     if (AFI->hasStackFrame())
1836       EstimatedStackSize += 4;
1837   } else {
1838     // If FP is not used, SP will be used to access arguments, so count the
1839     // size of arguments into the estimation.
1840     EstimatedStackSize += MaxFixedOffset;
1841   }
1842   EstimatedStackSize += 16; // For possible paddings.
1843 
1844   unsigned EstimatedRSStackSizeLimit, EstimatedRSFixedSizeLimit;
1845   bool HasNonSPFrameIndex = false;
1846   if (AFI->isThumb1OnlyFunction()) {
1847     // For Thumb1, don't bother to iterate over the function. The only
1848     // instruction that requires an emergency spill slot is a store to a
1849     // frame index.
1850     //
1851     // tSTRspi, which is used for sp-relative accesses, has an 8-bit unsigned
1852     // immediate. tSTRi, which is used for bp- and fp-relative accesses, has
1853     // a 5-bit unsigned immediate.
1854     //
1855     // We could try to check if the function actually contains a tSTRspi
1856     // that might need the spill slot, but it's not really important.
1857     // Functions with VLAs or extremely large call frames are rare, and
1858     // if a function is allocating more than 1KB of stack, an extra 4-byte
1859     // slot probably isn't relevant.
1860     if (RegInfo->hasBasePointer(MF))
1861       EstimatedRSStackSizeLimit = (1U << 5) * 4;
1862     else
1863       EstimatedRSStackSizeLimit = (1U << 8) * 4;
1864     EstimatedRSFixedSizeLimit = (1U << 5) * 4;
1865   } else {
1866     EstimatedRSStackSizeLimit =
1867         estimateRSStackSizeLimit(MF, this, HasNonSPFrameIndex);
1868     EstimatedRSFixedSizeLimit = EstimatedRSStackSizeLimit;
1869   }
1870   // Final estimate of whether sp or bp-relative accesses might require
1871   // scavenging.
1872   bool HasLargeStack = EstimatedStackSize > EstimatedRSStackSizeLimit;
1873 
1874   // If the stack pointer moves and we don't have a base pointer, the
1875   // estimate logic doesn't work. The actual offsets might be larger when
1876   // we're constructing a call frame, or we might need to use negative
1877   // offsets from fp.
1878   bool HasMovingSP = MFI.hasVarSizedObjects() ||
1879     (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF));
1880   bool HasBPOrFixedSP = RegInfo->hasBasePointer(MF) || !HasMovingSP;
1881 
1882   // If we have a frame pointer, we assume arguments will be accessed
1883   // relative to the frame pointer. Check whether fp-relative accesses to
1884   // arguments require scavenging.
1885   //
1886   // We could do slightly better on Thumb1; in some cases, an sp-relative
1887   // offset would be legal even though an fp-relative offset is not.
1888   int MaxFPOffset = getMaxFPOffset(STI, *AFI);
1889   bool HasLargeArgumentList =
1890       HasFP && (MaxFixedOffset - MaxFPOffset) > (int)EstimatedRSFixedSizeLimit;
1891 
1892   bool BigFrameOffsets = HasLargeStack || !HasBPOrFixedSP ||
1893                          HasLargeArgumentList || HasNonSPFrameIndex;
1894   LLVM_DEBUG(dbgs() << "EstimatedLimit: " << EstimatedRSStackSizeLimit
1895                     << "; EstimatedStack: " << EstimatedStackSize
1896                     << "; EstimatedFPStack: " << MaxFixedOffset - MaxFPOffset
1897                     << "; BigFrameOffsets: " << BigFrameOffsets << "\n");
1898   if (BigFrameOffsets ||
1899       !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) {
1900     AFI->setHasStackFrame(true);
1901 
1902     if (HasFP) {
1903       SavedRegs.set(FramePtr);
1904       // If the frame pointer is required by the ABI, also spill LR so that we
1905       // emit a complete frame record.
1906       if (MF.getTarget().Options.DisableFramePointerElim(MF) && !LRSpilled) {
1907         SavedRegs.set(ARM::LR);
1908         LRSpilled = true;
1909         NumGPRSpills++;
1910         auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR);
1911         if (LRPos != UnspilledCS1GPRs.end())
1912           UnspilledCS1GPRs.erase(LRPos);
1913       }
1914       auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr);
1915       if (FPPos != UnspilledCS1GPRs.end())
1916         UnspilledCS1GPRs.erase(FPPos);
1917       NumGPRSpills++;
1918       if (FramePtr == ARM::R7)
1919         CS1Spilled = true;
1920     }
1921 
1922     // This is true when we inserted a spill for a callee-save GPR which is
1923     // not otherwise used by the function. This guaranteees it is possible
1924     // to scavenge a register to hold the address of a stack slot. On Thumb1,
1925     // the register must be a valid operand to tSTRi, i.e. r4-r7. For other
1926     // subtargets, this is any GPR, i.e. r4-r11 or lr.
1927     //
1928     // If we don't insert a spill, we instead allocate an emergency spill
1929     // slot, which can be used by scavenging to spill an arbitrary register.
1930     //
1931     // We currently don't try to figure out whether any specific instruction
1932     // requires scavening an additional register.
1933     bool ExtraCSSpill = false;
1934 
1935     if (AFI->isThumb1OnlyFunction()) {
1936       // For Thumb1-only targets, we need some low registers when we save and
1937       // restore the high registers (which aren't allocatable, but could be
1938       // used by inline assembly) because the push/pop instructions can not
1939       // access high registers. If necessary, we might need to push more low
1940       // registers to ensure that there is at least one free that can be used
1941       // for the saving & restoring, and preferably we should ensure that as
1942       // many as are needed are available so that fewer push/pop instructions
1943       // are required.
1944 
1945       // Low registers which are not currently pushed, but could be (r4-r7).
1946       SmallVector<unsigned, 4> AvailableRegs;
1947 
1948       // Unused argument registers (r0-r3) can be clobbered in the prologue for
1949       // free.
1950       int EntryRegDeficit = 0;
1951       for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) {
1952         if (!MF.getRegInfo().isLiveIn(Reg)) {
1953           --EntryRegDeficit;
1954           LLVM_DEBUG(dbgs()
1955                      << printReg(Reg, TRI)
1956                      << " is unused argument register, EntryRegDeficit = "
1957                      << EntryRegDeficit << "\n");
1958         }
1959       }
1960 
1961       // Unused return registers can be clobbered in the epilogue for free.
1962       int ExitRegDeficit = AFI->getReturnRegsCount() - 4;
1963       LLVM_DEBUG(dbgs() << AFI->getReturnRegsCount()
1964                         << " return regs used, ExitRegDeficit = "
1965                         << ExitRegDeficit << "\n");
1966 
1967       int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit);
1968       LLVM_DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n");
1969 
1970       // r4-r6 can be used in the prologue if they are pushed by the first push
1971       // instruction.
1972       for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) {
1973         if (SavedRegs.test(Reg)) {
1974           --RegDeficit;
1975           LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
1976                             << " is saved low register, RegDeficit = "
1977                             << RegDeficit << "\n");
1978         } else {
1979           AvailableRegs.push_back(Reg);
1980           LLVM_DEBUG(
1981               dbgs()
1982               << printReg(Reg, TRI)
1983               << " is non-saved low register, adding to AvailableRegs\n");
1984         }
1985       }
1986 
1987       // r7 can be used if it is not being used as the frame pointer.
1988       if (!HasFP) {
1989         if (SavedRegs.test(ARM::R7)) {
1990           --RegDeficit;
1991           LLVM_DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = "
1992                             << RegDeficit << "\n");
1993         } else {
1994           AvailableRegs.push_back(ARM::R7);
1995           LLVM_DEBUG(
1996               dbgs()
1997               << "%r7 is non-saved low register, adding to AvailableRegs\n");
1998         }
1999       }
2000 
2001       // Each of r8-r11 needs to be copied to a low register, then pushed.
2002       for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) {
2003         if (SavedRegs.test(Reg)) {
2004           ++RegDeficit;
2005           LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
2006                             << " is saved high register, RegDeficit = "
2007                             << RegDeficit << "\n");
2008         }
2009       }
2010 
2011       // LR can only be used by PUSH, not POP, and can't be used at all if the
2012       // llvm.returnaddress intrinsic is used. This is only worth doing if we
2013       // are more limited at function entry than exit.
2014       if ((EntryRegDeficit > ExitRegDeficit) &&
2015           !(MF.getRegInfo().isLiveIn(ARM::LR) &&
2016             MF.getFrameInfo().isReturnAddressTaken())) {
2017         if (SavedRegs.test(ARM::LR)) {
2018           --RegDeficit;
2019           LLVM_DEBUG(dbgs() << "%lr is saved register, RegDeficit = "
2020                             << RegDeficit << "\n");
2021         } else {
2022           AvailableRegs.push_back(ARM::LR);
2023           LLVM_DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n");
2024         }
2025       }
2026 
2027       // If there are more high registers that need pushing than low registers
2028       // available, push some more low registers so that we can use fewer push
2029       // instructions. This might not reduce RegDeficit all the way to zero,
2030       // because we can only guarantee that r4-r6 are available, but r8-r11 may
2031       // need saving.
2032       LLVM_DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n");
2033       for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) {
2034         unsigned Reg = AvailableRegs.pop_back_val();
2035         LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2036                           << " to make up reg deficit\n");
2037         SavedRegs.set(Reg);
2038         NumGPRSpills++;
2039         CS1Spilled = true;
2040         assert(!MRI.isReserved(Reg) && "Should not be reserved");
2041         if (Reg != ARM::LR && !MRI.isPhysRegUsed(Reg))
2042           ExtraCSSpill = true;
2043         UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg));
2044         if (Reg == ARM::LR)
2045           LRSpilled = true;
2046       }
2047       LLVM_DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit
2048                         << "\n");
2049     }
2050 
2051     // Avoid spilling LR in Thumb1 if there's a tail call: it's expensive to
2052     // restore LR in that case.
2053     bool ExpensiveLRRestore = AFI->isThumb1OnlyFunction() && MFI.hasTailCall();
2054 
2055     // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled.
2056     // Spill LR as well so we can fold BX_RET to the registers restore (LDM).
2057     if (!LRSpilled && CS1Spilled && !ExpensiveLRRestore) {
2058       SavedRegs.set(ARM::LR);
2059       NumGPRSpills++;
2060       SmallVectorImpl<unsigned>::iterator LRPos;
2061       LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR);
2062       if (LRPos != UnspilledCS1GPRs.end())
2063         UnspilledCS1GPRs.erase(LRPos);
2064 
2065       ForceLRSpill = false;
2066       if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR) &&
2067           !AFI->isThumb1OnlyFunction())
2068         ExtraCSSpill = true;
2069     }
2070 
2071     // If stack and double are 8-byte aligned and we are spilling an odd number
2072     // of GPRs, spill one extra callee save GPR so we won't have to pad between
2073     // the integer and double callee save areas.
2074     LLVM_DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n");
2075     const Align TargetAlign = getStackAlign();
2076     if (TargetAlign >= Align(8) && (NumGPRSpills & 1)) {
2077       if (CS1Spilled && !UnspilledCS1GPRs.empty()) {
2078         for (unsigned i = 0, e = UnspilledCS1GPRs.size(); i != e; ++i) {
2079           unsigned Reg = UnspilledCS1GPRs[i];
2080           // Don't spill high register if the function is thumb.  In the case of
2081           // Windows on ARM, accept R11 (frame pointer)
2082           if (!AFI->isThumbFunction() ||
2083               (STI.isTargetWindows() && Reg == ARM::R11) ||
2084               isARMLowRegister(Reg) ||
2085               (Reg == ARM::LR && !ExpensiveLRRestore)) {
2086             SavedRegs.set(Reg);
2087             LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2088                               << " to make up alignment\n");
2089             if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg) &&
2090                 !(Reg == ARM::LR && AFI->isThumb1OnlyFunction()))
2091               ExtraCSSpill = true;
2092             break;
2093           }
2094         }
2095       } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) {
2096         unsigned Reg = UnspilledCS2GPRs.front();
2097         SavedRegs.set(Reg);
2098         LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2099                           << " to make up alignment\n");
2100         if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg))
2101           ExtraCSSpill = true;
2102       }
2103     }
2104 
2105     // Estimate if we might need to scavenge a register at some point in order
2106     // to materialize a stack offset. If so, either spill one additional
2107     // callee-saved register or reserve a special spill slot to facilitate
2108     // register scavenging. Thumb1 needs a spill slot for stack pointer
2109     // adjustments also, even when the frame itself is small.
2110     if (BigFrameOffsets && !ExtraCSSpill) {
2111       // If any non-reserved CS register isn't spilled, just spill one or two
2112       // extra. That should take care of it!
2113       unsigned NumExtras = TargetAlign.value() / 4;
2114       SmallVector<unsigned, 2> Extras;
2115       while (NumExtras && !UnspilledCS1GPRs.empty()) {
2116         unsigned Reg = UnspilledCS1GPRs.back();
2117         UnspilledCS1GPRs.pop_back();
2118         if (!MRI.isReserved(Reg) &&
2119             (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg))) {
2120           Extras.push_back(Reg);
2121           NumExtras--;
2122         }
2123       }
2124       // For non-Thumb1 functions, also check for hi-reg CS registers
2125       if (!AFI->isThumb1OnlyFunction()) {
2126         while (NumExtras && !UnspilledCS2GPRs.empty()) {
2127           unsigned Reg = UnspilledCS2GPRs.back();
2128           UnspilledCS2GPRs.pop_back();
2129           if (!MRI.isReserved(Reg)) {
2130             Extras.push_back(Reg);
2131             NumExtras--;
2132           }
2133         }
2134       }
2135       if (NumExtras == 0) {
2136         for (unsigned Reg : Extras) {
2137           SavedRegs.set(Reg);
2138           if (!MRI.isPhysRegUsed(Reg))
2139             ExtraCSSpill = true;
2140         }
2141       }
2142       if (!ExtraCSSpill && RS) {
2143         // Reserve a slot closest to SP or frame pointer.
2144         LLVM_DEBUG(dbgs() << "Reserving emergency spill slot\n");
2145         const TargetRegisterClass &RC = ARM::GPRRegClass;
2146         unsigned Size = TRI->getSpillSize(RC);
2147         Align Alignment = TRI->getSpillAlign(RC);
2148         RS->addScavengingFrameIndex(
2149             MFI.CreateStackObject(Size, Alignment, false));
2150       }
2151     }
2152   }
2153 
2154   if (ForceLRSpill)
2155     SavedRegs.set(ARM::LR);
2156   AFI->setLRIsSpilled(SavedRegs.test(ARM::LR));
2157 }
2158 
getCalleeSaves(const MachineFunction & MF,BitVector & SavedRegs) const2159 void ARMFrameLowering::getCalleeSaves(const MachineFunction &MF,
2160                                       BitVector &SavedRegs) const {
2161   TargetFrameLowering::getCalleeSaves(MF, SavedRegs);
2162 
2163   // If we have the "returned" parameter attribute which guarantees that we
2164   // return the value which was passed in r0 unmodified (e.g. C++ 'structors),
2165   // record that fact for IPRA.
2166   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2167   if (AFI->getPreservesR0())
2168     SavedRegs.set(ARM::R0);
2169 }
2170 
assignCalleeSavedSpillSlots(MachineFunction & MF,const TargetRegisterInfo * TRI,std::vector<CalleeSavedInfo> & CSI) const2171 bool ARMFrameLowering::assignCalleeSavedSpillSlots(
2172     MachineFunction &MF, const TargetRegisterInfo *TRI,
2173     std::vector<CalleeSavedInfo> &CSI) const {
2174   // For CMSE entry functions, handle floating-point context as if it was a
2175   // callee-saved register.
2176   if (STI.hasV8_1MMainlineOps() &&
2177       MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) {
2178     CSI.emplace_back(ARM::FPCXTNS);
2179     CSI.back().setRestored(false);
2180   }
2181 
2182   return false;
2183 }
2184 
2185 const TargetFrameLowering::SpillSlot *
getCalleeSavedSpillSlots(unsigned & NumEntries) const2186 ARMFrameLowering::getCalleeSavedSpillSlots(unsigned &NumEntries) const {
2187   static const SpillSlot FixedSpillOffsets[] = {{ARM::FPCXTNS, -4}};
2188   NumEntries = array_lengthof(FixedSpillOffsets);
2189   return FixedSpillOffsets;
2190 }
2191 
eliminateCallFramePseudoInstr(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator I) const2192 MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr(
2193     MachineFunction &MF, MachineBasicBlock &MBB,
2194     MachineBasicBlock::iterator I) const {
2195   const ARMBaseInstrInfo &TII =
2196       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2197   if (!hasReservedCallFrame(MF)) {
2198     // If we have alloca, convert as follows:
2199     // ADJCALLSTACKDOWN -> sub, sp, sp, amount
2200     // ADJCALLSTACKUP   -> add, sp, sp, amount
2201     MachineInstr &Old = *I;
2202     DebugLoc dl = Old.getDebugLoc();
2203     unsigned Amount = TII.getFrameSize(Old);
2204     if (Amount != 0) {
2205       // We need to keep the stack aligned properly.  To do this, we round the
2206       // amount of space needed for the outgoing arguments up to the next
2207       // alignment boundary.
2208       Amount = alignSPAdjust(Amount);
2209 
2210       ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2211       assert(!AFI->isThumb1OnlyFunction() &&
2212              "This eliminateCallFramePseudoInstr does not support Thumb1!");
2213       bool isARM = !AFI->isThumbFunction();
2214 
2215       // Replace the pseudo instruction with a new instruction...
2216       unsigned Opc = Old.getOpcode();
2217       int PIdx = Old.findFirstPredOperandIdx();
2218       ARMCC::CondCodes Pred =
2219           (PIdx == -1) ? ARMCC::AL
2220                        : (ARMCC::CondCodes)Old.getOperand(PIdx).getImm();
2221       unsigned PredReg = TII.getFramePred(Old);
2222       if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) {
2223         emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags,
2224                      Pred, PredReg);
2225       } else {
2226         assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP);
2227         emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags,
2228                      Pred, PredReg);
2229       }
2230     }
2231   }
2232   return MBB.erase(I);
2233 }
2234 
2235 /// Get the minimum constant for ARM that is greater than or equal to the
2236 /// argument. In ARM, constants can have any value that can be produced by
2237 /// rotating an 8-bit value to the right by an even number of bits within a
2238 /// 32-bit word.
alignToARMConstant(uint32_t Value)2239 static uint32_t alignToARMConstant(uint32_t Value) {
2240   unsigned Shifted = 0;
2241 
2242   if (Value == 0)
2243       return 0;
2244 
2245   while (!(Value & 0xC0000000)) {
2246       Value = Value << 2;
2247       Shifted += 2;
2248   }
2249 
2250   bool Carry = (Value & 0x00FFFFFF);
2251   Value = ((Value & 0xFF000000) >> 24) + Carry;
2252 
2253   if (Value & 0x0000100)
2254       Value = Value & 0x000001FC;
2255 
2256   if (Shifted > 24)
2257       Value = Value >> (Shifted - 24);
2258   else
2259       Value = Value << (24 - Shifted);
2260 
2261   return Value;
2262 }
2263 
2264 // The stack limit in the TCB is set to this many bytes above the actual
2265 // stack limit.
2266 static const uint64_t kSplitStackAvailable = 256;
2267 
2268 // Adjust the function prologue to enable split stacks. This currently only
2269 // supports android and linux.
2270 //
2271 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but
2272 // must be well defined in order to allow for consistent implementations of the
2273 // __morestack helper function. The ABI is also not a normal ABI in that it
2274 // doesn't follow the normal calling conventions because this allows the
2275 // prologue of each function to be optimized further.
2276 //
2277 // Currently, the ABI looks like (when calling __morestack)
2278 //
2279 //  * r4 holds the minimum stack size requested for this function call
2280 //  * r5 holds the stack size of the arguments to the function
2281 //  * the beginning of the function is 3 instructions after the call to
2282 //    __morestack
2283 //
2284 // Implementations of __morestack should use r4 to allocate a new stack, r5 to
2285 // place the arguments on to the new stack, and the 3-instruction knowledge to
2286 // jump directly to the body of the function when working on the new stack.
2287 //
2288 // An old (and possibly no longer compatible) implementation of __morestack for
2289 // ARM can be found at [1].
2290 //
2291 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S
adjustForSegmentedStacks(MachineFunction & MF,MachineBasicBlock & PrologueMBB) const2292 void ARMFrameLowering::adjustForSegmentedStacks(
2293     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2294   unsigned Opcode;
2295   unsigned CFIIndex;
2296   const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>();
2297   bool Thumb = ST->isThumb();
2298 
2299   // Sadly, this currently doesn't support varargs, platforms other than
2300   // android/linux. Note that thumb1/thumb2 are support for android/linux.
2301   if (MF.getFunction().isVarArg())
2302     report_fatal_error("Segmented stacks do not support vararg functions.");
2303   if (!ST->isTargetAndroid() && !ST->isTargetLinux())
2304     report_fatal_error("Segmented stacks not supported on this platform.");
2305 
2306   MachineFrameInfo &MFI = MF.getFrameInfo();
2307   MachineModuleInfo &MMI = MF.getMMI();
2308   MCContext &Context = MMI.getContext();
2309   const MCRegisterInfo *MRI = Context.getRegisterInfo();
2310   const ARMBaseInstrInfo &TII =
2311       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2312   ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>();
2313   DebugLoc DL;
2314 
2315   uint64_t StackSize = MFI.getStackSize();
2316 
2317   // Do not generate a prologue for leaf functions with a stack of size zero.
2318   // For non-leaf functions we have to allow for the possibility that the
2319   // callis to a non-split function, as in PR37807. This function could also
2320   // take the address of a non-split function. When the linker tries to adjust
2321   // its non-existent prologue, it would fail with an error. Mark the object
2322   // file so that such failures are not errors. See this Go language bug-report
2323   // https://go-review.googlesource.com/c/go/+/148819/
2324   if (StackSize == 0 && !MFI.hasTailCall()) {
2325     MF.getMMI().setHasNosplitStack(true);
2326     return;
2327   }
2328 
2329   // Use R4 and R5 as scratch registers.
2330   // We save R4 and R5 before use and restore them before leaving the function.
2331   unsigned ScratchReg0 = ARM::R4;
2332   unsigned ScratchReg1 = ARM::R5;
2333   uint64_t AlignedStackSize;
2334 
2335   MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock();
2336   MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock();
2337   MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock();
2338   MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock();
2339   MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock();
2340 
2341   // Grab everything that reaches PrologueMBB to update there liveness as well.
2342   SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion;
2343   SmallVector<MachineBasicBlock *, 2> WalkList;
2344   WalkList.push_back(&PrologueMBB);
2345 
2346   do {
2347     MachineBasicBlock *CurMBB = WalkList.pop_back_val();
2348     for (MachineBasicBlock *PredBB : CurMBB->predecessors()) {
2349       if (BeforePrologueRegion.insert(PredBB).second)
2350         WalkList.push_back(PredBB);
2351     }
2352   } while (!WalkList.empty());
2353 
2354   // The order in that list is important.
2355   // The blocks will all be inserted before PrologueMBB using that order.
2356   // Therefore the block that should appear first in the CFG should appear
2357   // first in the list.
2358   MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB,
2359                                       PostStackMBB};
2360 
2361   for (MachineBasicBlock *B : AddedBlocks)
2362     BeforePrologueRegion.insert(B);
2363 
2364   for (const auto &LI : PrologueMBB.liveins()) {
2365     for (MachineBasicBlock *PredBB : BeforePrologueRegion)
2366       PredBB->addLiveIn(LI);
2367   }
2368 
2369   // Remove the newly added blocks from the list, since we know
2370   // we do not have to do the following updates for them.
2371   for (MachineBasicBlock *B : AddedBlocks) {
2372     BeforePrologueRegion.erase(B);
2373     MF.insert(PrologueMBB.getIterator(), B);
2374   }
2375 
2376   for (MachineBasicBlock *MBB : BeforePrologueRegion) {
2377     // Make sure the LiveIns are still sorted and unique.
2378     MBB->sortUniqueLiveIns();
2379     // Replace the edges to PrologueMBB by edges to the sequences
2380     // we are about to add.
2381     MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]);
2382   }
2383 
2384   // The required stack size that is aligned to ARM constant criterion.
2385   AlignedStackSize = alignToARMConstant(StackSize);
2386 
2387   // When the frame size is less than 256 we just compare the stack
2388   // boundary directly to the value of the stack pointer, per gcc.
2389   bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable;
2390 
2391   // We will use two of the callee save registers as scratch registers so we
2392   // need to save those registers onto the stack.
2393   // We will use SR0 to hold stack limit and SR1 to hold the stack size
2394   // requested and arguments for __morestack().
2395   // SR0: Scratch Register #0
2396   // SR1: Scratch Register #1
2397   // push {SR0, SR1}
2398   if (Thumb) {
2399     BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH))
2400         .add(predOps(ARMCC::AL))
2401         .addReg(ScratchReg0)
2402         .addReg(ScratchReg1);
2403   } else {
2404     BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD))
2405         .addReg(ARM::SP, RegState::Define)
2406         .addReg(ARM::SP)
2407         .add(predOps(ARMCC::AL))
2408         .addReg(ScratchReg0)
2409         .addReg(ScratchReg1);
2410   }
2411 
2412   // Emit the relevant DWARF information about the change in stack pointer as
2413   // well as where to find both r4 and r5 (the callee-save registers)
2414   CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 8));
2415   BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2416       .addCFIIndex(CFIIndex);
2417   CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
2418       nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4));
2419   BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2420       .addCFIIndex(CFIIndex);
2421   CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
2422       nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8));
2423   BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2424       .addCFIIndex(CFIIndex);
2425 
2426   // mov SR1, sp
2427   if (Thumb) {
2428     BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1)
2429         .addReg(ARM::SP)
2430         .add(predOps(ARMCC::AL));
2431   } else if (CompareStackPointer) {
2432     BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1)
2433         .addReg(ARM::SP)
2434         .add(predOps(ARMCC::AL))
2435         .add(condCodeOp());
2436   }
2437 
2438   // sub SR1, sp, #StackSize
2439   if (!CompareStackPointer && Thumb) {
2440     BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1)
2441         .add(condCodeOp())
2442         .addReg(ScratchReg1)
2443         .addImm(AlignedStackSize)
2444         .add(predOps(ARMCC::AL));
2445   } else if (!CompareStackPointer) {
2446     BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1)
2447         .addReg(ARM::SP)
2448         .addImm(AlignedStackSize)
2449         .add(predOps(ARMCC::AL))
2450         .add(condCodeOp());
2451   }
2452 
2453   if (Thumb && ST->isThumb1Only()) {
2454     unsigned PCLabelId = ARMFI->createPICLabelUId();
2455     ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create(
2456         MF.getFunction().getContext(), "__STACK_LIMIT", PCLabelId, 0);
2457     MachineConstantPool *MCP = MF.getConstantPool();
2458     unsigned CPI = MCP->getConstantPoolIndex(NewCPV, Align(4));
2459 
2460     // ldr SR0, [pc, offset(STACK_LIMIT)]
2461     BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0)
2462         .addConstantPoolIndex(CPI)
2463         .add(predOps(ARMCC::AL));
2464 
2465     // ldr SR0, [SR0]
2466     BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0)
2467         .addReg(ScratchReg0)
2468         .addImm(0)
2469         .add(predOps(ARMCC::AL));
2470   } else {
2471     // Get TLS base address from the coprocessor
2472     // mrc p15, #0, SR0, c13, c0, #3
2473     BuildMI(McrMBB, DL, TII.get(Thumb ? ARM::t2MRC : ARM::MRC),
2474             ScratchReg0)
2475         .addImm(15)
2476         .addImm(0)
2477         .addImm(13)
2478         .addImm(0)
2479         .addImm(3)
2480         .add(predOps(ARMCC::AL));
2481 
2482     // Use the last tls slot on android and a private field of the TCP on linux.
2483     assert(ST->isTargetAndroid() || ST->isTargetLinux());
2484     unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1;
2485 
2486     // Get the stack limit from the right offset
2487     // ldr SR0, [sr0, #4 * TlsOffset]
2488     BuildMI(GetMBB, DL, TII.get(Thumb ? ARM::t2LDRi12 : ARM::LDRi12),
2489             ScratchReg0)
2490         .addReg(ScratchReg0)
2491         .addImm(4 * TlsOffset)
2492         .add(predOps(ARMCC::AL));
2493   }
2494 
2495   // Compare stack limit with stack size requested.
2496   // cmp SR0, SR1
2497   Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr;
2498   BuildMI(GetMBB, DL, TII.get(Opcode))
2499       .addReg(ScratchReg0)
2500       .addReg(ScratchReg1)
2501       .add(predOps(ARMCC::AL));
2502 
2503   // This jump is taken if StackLimit < SP - stack required.
2504   Opcode = Thumb ? ARM::tBcc : ARM::Bcc;
2505   BuildMI(GetMBB, DL, TII.get(Opcode)).addMBB(PostStackMBB)
2506        .addImm(ARMCC::LO)
2507        .addReg(ARM::CPSR);
2508 
2509 
2510   // Calling __morestack(StackSize, Size of stack arguments).
2511   // __morestack knows that the stack size requested is in SR0(r4)
2512   // and amount size of stack arguments is in SR1(r5).
2513 
2514   // Pass first argument for the __morestack by Scratch Register #0.
2515   //   The amount size of stack required
2516   if (Thumb) {
2517     BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0)
2518         .add(condCodeOp())
2519         .addImm(AlignedStackSize)
2520         .add(predOps(ARMCC::AL));
2521   } else {
2522     BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0)
2523         .addImm(AlignedStackSize)
2524         .add(predOps(ARMCC::AL))
2525         .add(condCodeOp());
2526   }
2527   // Pass second argument for the __morestack by Scratch Register #1.
2528   //   The amount size of stack consumed to save function arguments.
2529   if (Thumb) {
2530     BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1)
2531         .add(condCodeOp())
2532         .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
2533         .add(predOps(ARMCC::AL));
2534   } else {
2535     BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1)
2536         .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
2537         .add(predOps(ARMCC::AL))
2538         .add(condCodeOp());
2539   }
2540 
2541   // push {lr} - Save return address of this function.
2542   if (Thumb) {
2543     BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH))
2544         .add(predOps(ARMCC::AL))
2545         .addReg(ARM::LR);
2546   } else {
2547     BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD))
2548         .addReg(ARM::SP, RegState::Define)
2549         .addReg(ARM::SP)
2550         .add(predOps(ARMCC::AL))
2551         .addReg(ARM::LR);
2552   }
2553 
2554   // Emit the DWARF info about the change in stack as well as where to find the
2555   // previous link register
2556   CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 12));
2557   BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2558       .addCFIIndex(CFIIndex);
2559   CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
2560         nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12));
2561   BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2562       .addCFIIndex(CFIIndex);
2563 
2564   // Call __morestack().
2565   if (Thumb) {
2566     BuildMI(AllocMBB, DL, TII.get(ARM::tBL))
2567         .add(predOps(ARMCC::AL))
2568         .addExternalSymbol("__morestack");
2569   } else {
2570     BuildMI(AllocMBB, DL, TII.get(ARM::BL))
2571         .addExternalSymbol("__morestack");
2572   }
2573 
2574   // pop {lr} - Restore return address of this original function.
2575   if (Thumb) {
2576     if (ST->isThumb1Only()) {
2577       BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
2578           .add(predOps(ARMCC::AL))
2579           .addReg(ScratchReg0);
2580       BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR)
2581           .addReg(ScratchReg0)
2582           .add(predOps(ARMCC::AL));
2583     } else {
2584       BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST))
2585           .addReg(ARM::LR, RegState::Define)
2586           .addReg(ARM::SP, RegState::Define)
2587           .addReg(ARM::SP)
2588           .addImm(4)
2589           .add(predOps(ARMCC::AL));
2590     }
2591   } else {
2592     BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
2593         .addReg(ARM::SP, RegState::Define)
2594         .addReg(ARM::SP)
2595         .add(predOps(ARMCC::AL))
2596         .addReg(ARM::LR);
2597   }
2598 
2599   // Restore SR0 and SR1 in case of __morestack() was called.
2600   // __morestack() will skip PostStackMBB block so we need to restore
2601   // scratch registers from here.
2602   // pop {SR0, SR1}
2603   if (Thumb) {
2604     BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
2605         .add(predOps(ARMCC::AL))
2606         .addReg(ScratchReg0)
2607         .addReg(ScratchReg1);
2608   } else {
2609     BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
2610         .addReg(ARM::SP, RegState::Define)
2611         .addReg(ARM::SP)
2612         .add(predOps(ARMCC::AL))
2613         .addReg(ScratchReg0)
2614         .addReg(ScratchReg1);
2615   }
2616 
2617   // Update the CFA offset now that we've popped
2618   CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
2619   BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2620       .addCFIIndex(CFIIndex);
2621 
2622   // Return from this function.
2623   BuildMI(AllocMBB, DL, TII.get(ST->getReturnOpcode())).add(predOps(ARMCC::AL));
2624 
2625   // Restore SR0 and SR1 in case of __morestack() was not called.
2626   // pop {SR0, SR1}
2627   if (Thumb) {
2628     BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP))
2629         .add(predOps(ARMCC::AL))
2630         .addReg(ScratchReg0)
2631         .addReg(ScratchReg1);
2632   } else {
2633     BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD))
2634         .addReg(ARM::SP, RegState::Define)
2635         .addReg(ARM::SP)
2636         .add(predOps(ARMCC::AL))
2637         .addReg(ScratchReg0)
2638         .addReg(ScratchReg1);
2639   }
2640 
2641   // Update the CFA offset now that we've popped
2642   CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
2643   BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2644       .addCFIIndex(CFIIndex);
2645 
2646   // Tell debuggers that r4 and r5 are now the same as they were in the
2647   // previous function, that they're the "Same Value".
2648   CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
2649       nullptr, MRI->getDwarfRegNum(ScratchReg0, true)));
2650   BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2651       .addCFIIndex(CFIIndex);
2652   CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
2653       nullptr, MRI->getDwarfRegNum(ScratchReg1, true)));
2654   BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2655       .addCFIIndex(CFIIndex);
2656 
2657   // Organizing MBB lists
2658   PostStackMBB->addSuccessor(&PrologueMBB);
2659 
2660   AllocMBB->addSuccessor(PostStackMBB);
2661 
2662   GetMBB->addSuccessor(PostStackMBB);
2663   GetMBB->addSuccessor(AllocMBB);
2664 
2665   McrMBB->addSuccessor(GetMBB);
2666 
2667   PrevStackMBB->addSuccessor(McrMBB);
2668 
2669 #ifdef EXPENSIVE_CHECKS
2670   MF.verify();
2671 #endif
2672 }
2673