1 //===-- ThreadSanitizer.cpp - race detector -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of ThreadSanitizer, a race detector.
10 //
11 // The tool is under development, for the details about previous versions see
12 // http://code.google.com/p/data-race-test
13 //
14 // The instrumentation phase is quite simple:
15 //   - Insert calls to run-time library before every memory access.
16 //      - Optimizations may apply to avoid instrumenting some of the accesses.
17 //   - Insert calls at function entry/exit.
18 // The rest is handled by the run-time library.
19 //===----------------------------------------------------------------------===//
20 
21 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/Analysis/CaptureTracking.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/Metadata.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/InitializePasses.h"
40 #include "llvm/ProfileData/InstrProf.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/Instrumentation.h"
46 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
47 #include "llvm/Transforms/Utils/EscapeEnumerator.h"
48 #include "llvm/Transforms/Utils/Local.h"
49 #include "llvm/Transforms/Utils/ModuleUtils.h"
50 
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "tsan"
54 
55 static cl::opt<bool>  ClInstrumentMemoryAccesses(
56     "tsan-instrument-memory-accesses", cl::init(true),
57     cl::desc("Instrument memory accesses"), cl::Hidden);
58 static cl::opt<bool>  ClInstrumentFuncEntryExit(
59     "tsan-instrument-func-entry-exit", cl::init(true),
60     cl::desc("Instrument function entry and exit"), cl::Hidden);
61 static cl::opt<bool>  ClHandleCxxExceptions(
62     "tsan-handle-cxx-exceptions", cl::init(true),
63     cl::desc("Handle C++ exceptions (insert cleanup blocks for unwinding)"),
64     cl::Hidden);
65 static cl::opt<bool>  ClInstrumentAtomics(
66     "tsan-instrument-atomics", cl::init(true),
67     cl::desc("Instrument atomics"), cl::Hidden);
68 static cl::opt<bool>  ClInstrumentMemIntrinsics(
69     "tsan-instrument-memintrinsics", cl::init(true),
70     cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden);
71 static cl::opt<bool>  ClDistinguishVolatile(
72     "tsan-distinguish-volatile", cl::init(false),
73     cl::desc("Emit special instrumentation for accesses to volatiles"),
74     cl::Hidden);
75 static cl::opt<bool>  ClInstrumentReadBeforeWrite(
76     "tsan-instrument-read-before-write", cl::init(false),
77     cl::desc("Do not eliminate read instrumentation for read-before-writes"),
78     cl::Hidden);
79 
80 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
81 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
82 STATISTIC(NumOmittedReadsBeforeWrite,
83           "Number of reads ignored due to following writes");
84 STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size");
85 STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes");
86 STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads");
87 STATISTIC(NumOmittedReadsFromConstantGlobals,
88           "Number of reads from constant globals");
89 STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads");
90 STATISTIC(NumOmittedNonCaptured, "Number of accesses ignored due to capturing");
91 
92 static const char *const kTsanModuleCtorName = "tsan.module_ctor";
93 static const char *const kTsanInitName = "__tsan_init";
94 
95 namespace {
96 
97 /// ThreadSanitizer: instrument the code in module to find races.
98 ///
99 /// Instantiating ThreadSanitizer inserts the tsan runtime library API function
100 /// declarations into the module if they don't exist already. Instantiating
101 /// ensures the __tsan_init function is in the list of global constructors for
102 /// the module.
103 struct ThreadSanitizer {
104   bool sanitizeFunction(Function &F, const TargetLibraryInfo &TLI);
105 
106 private:
107   void initialize(Module &M);
108   bool instrumentLoadOrStore(Instruction *I, const DataLayout &DL);
109   bool instrumentAtomic(Instruction *I, const DataLayout &DL);
110   bool instrumentMemIntrinsic(Instruction *I);
111   void chooseInstructionsToInstrument(SmallVectorImpl<Instruction *> &Local,
112                                       SmallVectorImpl<Instruction *> &All,
113                                       const DataLayout &DL);
114   bool addrPointsToConstantData(Value *Addr);
115   int getMemoryAccessFuncIndex(Value *Addr, const DataLayout &DL);
116   void InsertRuntimeIgnores(Function &F);
117 
118   Type *IntptrTy;
119   FunctionCallee TsanFuncEntry;
120   FunctionCallee TsanFuncExit;
121   FunctionCallee TsanIgnoreBegin;
122   FunctionCallee TsanIgnoreEnd;
123   // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
124   static const size_t kNumberOfAccessSizes = 5;
125   FunctionCallee TsanRead[kNumberOfAccessSizes];
126   FunctionCallee TsanWrite[kNumberOfAccessSizes];
127   FunctionCallee TsanUnalignedRead[kNumberOfAccessSizes];
128   FunctionCallee TsanUnalignedWrite[kNumberOfAccessSizes];
129   FunctionCallee TsanVolatileRead[kNumberOfAccessSizes];
130   FunctionCallee TsanVolatileWrite[kNumberOfAccessSizes];
131   FunctionCallee TsanUnalignedVolatileRead[kNumberOfAccessSizes];
132   FunctionCallee TsanUnalignedVolatileWrite[kNumberOfAccessSizes];
133   FunctionCallee TsanAtomicLoad[kNumberOfAccessSizes];
134   FunctionCallee TsanAtomicStore[kNumberOfAccessSizes];
135   FunctionCallee TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1]
136                               [kNumberOfAccessSizes];
137   FunctionCallee TsanAtomicCAS[kNumberOfAccessSizes];
138   FunctionCallee TsanAtomicThreadFence;
139   FunctionCallee TsanAtomicSignalFence;
140   FunctionCallee TsanVptrUpdate;
141   FunctionCallee TsanVptrLoad;
142   FunctionCallee MemmoveFn, MemcpyFn, MemsetFn;
143 };
144 
145 struct ThreadSanitizerLegacyPass : FunctionPass {
ThreadSanitizerLegacyPass__anon0859d7ca0111::ThreadSanitizerLegacyPass146   ThreadSanitizerLegacyPass() : FunctionPass(ID) {
147     initializeThreadSanitizerLegacyPassPass(*PassRegistry::getPassRegistry());
148   }
149   StringRef getPassName() const override;
150   void getAnalysisUsage(AnalysisUsage &AU) const override;
151   bool runOnFunction(Function &F) override;
152   bool doInitialization(Module &M) override;
153   static char ID; // Pass identification, replacement for typeid.
154 private:
155   Optional<ThreadSanitizer> TSan;
156 };
157 
insertModuleCtor(Module & M)158 void insertModuleCtor(Module &M) {
159   getOrCreateSanitizerCtorAndInitFunctions(
160       M, kTsanModuleCtorName, kTsanInitName, /*InitArgTypes=*/{},
161       /*InitArgs=*/{},
162       // This callback is invoked when the functions are created the first
163       // time. Hook them into the global ctors list in that case:
164       [&](Function *Ctor, FunctionCallee) { appendToGlobalCtors(M, Ctor, 0); });
165 }
166 
167 }  // namespace
168 
run(Function & F,FunctionAnalysisManager & FAM)169 PreservedAnalyses ThreadSanitizerPass::run(Function &F,
170                                            FunctionAnalysisManager &FAM) {
171   ThreadSanitizer TSan;
172   if (TSan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F)))
173     return PreservedAnalyses::none();
174   return PreservedAnalyses::all();
175 }
176 
run(Module & M,ModuleAnalysisManager & MAM)177 PreservedAnalyses ThreadSanitizerPass::run(Module &M,
178                                            ModuleAnalysisManager &MAM) {
179   insertModuleCtor(M);
180   return PreservedAnalyses::none();
181 }
182 
183 char ThreadSanitizerLegacyPass::ID = 0;
184 INITIALIZE_PASS_BEGIN(ThreadSanitizerLegacyPass, "tsan",
185                       "ThreadSanitizer: detects data races.", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)186 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
187 INITIALIZE_PASS_END(ThreadSanitizerLegacyPass, "tsan",
188                     "ThreadSanitizer: detects data races.", false, false)
189 
190 StringRef ThreadSanitizerLegacyPass::getPassName() const {
191   return "ThreadSanitizerLegacyPass";
192 }
193 
getAnalysisUsage(AnalysisUsage & AU) const194 void ThreadSanitizerLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
195   AU.addRequired<TargetLibraryInfoWrapperPass>();
196 }
197 
doInitialization(Module & M)198 bool ThreadSanitizerLegacyPass::doInitialization(Module &M) {
199   insertModuleCtor(M);
200   TSan.emplace();
201   return true;
202 }
203 
runOnFunction(Function & F)204 bool ThreadSanitizerLegacyPass::runOnFunction(Function &F) {
205   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
206   TSan->sanitizeFunction(F, TLI);
207   return true;
208 }
209 
createThreadSanitizerLegacyPassPass()210 FunctionPass *llvm::createThreadSanitizerLegacyPassPass() {
211   return new ThreadSanitizerLegacyPass();
212 }
213 
initialize(Module & M)214 void ThreadSanitizer::initialize(Module &M) {
215   const DataLayout &DL = M.getDataLayout();
216   IntptrTy = DL.getIntPtrType(M.getContext());
217 
218   IRBuilder<> IRB(M.getContext());
219   AttributeList Attr;
220   Attr = Attr.addAttribute(M.getContext(), AttributeList::FunctionIndex,
221                            Attribute::NoUnwind);
222   // Initialize the callbacks.
223   TsanFuncEntry = M.getOrInsertFunction("__tsan_func_entry", Attr,
224                                         IRB.getVoidTy(), IRB.getInt8PtrTy());
225   TsanFuncExit =
226       M.getOrInsertFunction("__tsan_func_exit", Attr, IRB.getVoidTy());
227   TsanIgnoreBegin = M.getOrInsertFunction("__tsan_ignore_thread_begin", Attr,
228                                           IRB.getVoidTy());
229   TsanIgnoreEnd =
230       M.getOrInsertFunction("__tsan_ignore_thread_end", Attr, IRB.getVoidTy());
231   IntegerType *OrdTy = IRB.getInt32Ty();
232   for (size_t i = 0; i < kNumberOfAccessSizes; ++i) {
233     const unsigned ByteSize = 1U << i;
234     const unsigned BitSize = ByteSize * 8;
235     std::string ByteSizeStr = utostr(ByteSize);
236     std::string BitSizeStr = utostr(BitSize);
237     SmallString<32> ReadName("__tsan_read" + ByteSizeStr);
238     TsanRead[i] = M.getOrInsertFunction(ReadName, Attr, IRB.getVoidTy(),
239                                         IRB.getInt8PtrTy());
240 
241     SmallString<32> WriteName("__tsan_write" + ByteSizeStr);
242     TsanWrite[i] = M.getOrInsertFunction(WriteName, Attr, IRB.getVoidTy(),
243                                          IRB.getInt8PtrTy());
244 
245     SmallString<64> UnalignedReadName("__tsan_unaligned_read" + ByteSizeStr);
246     TsanUnalignedRead[i] = M.getOrInsertFunction(
247         UnalignedReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
248 
249     SmallString<64> UnalignedWriteName("__tsan_unaligned_write" + ByteSizeStr);
250     TsanUnalignedWrite[i] = M.getOrInsertFunction(
251         UnalignedWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
252 
253     SmallString<64> VolatileReadName("__tsan_volatile_read" + ByteSizeStr);
254     TsanVolatileRead[i] = M.getOrInsertFunction(
255         VolatileReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
256 
257     SmallString<64> VolatileWriteName("__tsan_volatile_write" + ByteSizeStr);
258     TsanVolatileWrite[i] = M.getOrInsertFunction(
259         VolatileWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
260 
261     SmallString<64> UnalignedVolatileReadName("__tsan_unaligned_volatile_read" +
262                                               ByteSizeStr);
263     TsanUnalignedVolatileRead[i] = M.getOrInsertFunction(
264         UnalignedVolatileReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
265 
266     SmallString<64> UnalignedVolatileWriteName(
267         "__tsan_unaligned_volatile_write" + ByteSizeStr);
268     TsanUnalignedVolatileWrite[i] = M.getOrInsertFunction(
269         UnalignedVolatileWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
270 
271     Type *Ty = Type::getIntNTy(M.getContext(), BitSize);
272     Type *PtrTy = Ty->getPointerTo();
273     SmallString<32> AtomicLoadName("__tsan_atomic" + BitSizeStr + "_load");
274     TsanAtomicLoad[i] =
275         M.getOrInsertFunction(AtomicLoadName, Attr, Ty, PtrTy, OrdTy);
276 
277     SmallString<32> AtomicStoreName("__tsan_atomic" + BitSizeStr + "_store");
278     TsanAtomicStore[i] = M.getOrInsertFunction(
279         AtomicStoreName, Attr, IRB.getVoidTy(), PtrTy, Ty, OrdTy);
280 
281     for (unsigned Op = AtomicRMWInst::FIRST_BINOP;
282          Op <= AtomicRMWInst::LAST_BINOP; ++Op) {
283       TsanAtomicRMW[Op][i] = nullptr;
284       const char *NamePart = nullptr;
285       if (Op == AtomicRMWInst::Xchg)
286         NamePart = "_exchange";
287       else if (Op == AtomicRMWInst::Add)
288         NamePart = "_fetch_add";
289       else if (Op == AtomicRMWInst::Sub)
290         NamePart = "_fetch_sub";
291       else if (Op == AtomicRMWInst::And)
292         NamePart = "_fetch_and";
293       else if (Op == AtomicRMWInst::Or)
294         NamePart = "_fetch_or";
295       else if (Op == AtomicRMWInst::Xor)
296         NamePart = "_fetch_xor";
297       else if (Op == AtomicRMWInst::Nand)
298         NamePart = "_fetch_nand";
299       else
300         continue;
301       SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart);
302       TsanAtomicRMW[Op][i] =
303           M.getOrInsertFunction(RMWName, Attr, Ty, PtrTy, Ty, OrdTy);
304     }
305 
306     SmallString<32> AtomicCASName("__tsan_atomic" + BitSizeStr +
307                                   "_compare_exchange_val");
308     TsanAtomicCAS[i] = M.getOrInsertFunction(AtomicCASName, Attr, Ty, PtrTy, Ty,
309                                              Ty, OrdTy, OrdTy);
310   }
311   TsanVptrUpdate =
312       M.getOrInsertFunction("__tsan_vptr_update", Attr, IRB.getVoidTy(),
313                             IRB.getInt8PtrTy(), IRB.getInt8PtrTy());
314   TsanVptrLoad = M.getOrInsertFunction("__tsan_vptr_read", Attr,
315                                        IRB.getVoidTy(), IRB.getInt8PtrTy());
316   TsanAtomicThreadFence = M.getOrInsertFunction("__tsan_atomic_thread_fence",
317                                                 Attr, IRB.getVoidTy(), OrdTy);
318   TsanAtomicSignalFence = M.getOrInsertFunction("__tsan_atomic_signal_fence",
319                                                 Attr, IRB.getVoidTy(), OrdTy);
320 
321   MemmoveFn =
322       M.getOrInsertFunction("memmove", Attr, IRB.getInt8PtrTy(),
323                             IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy);
324   MemcpyFn =
325       M.getOrInsertFunction("memcpy", Attr, IRB.getInt8PtrTy(),
326                             IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy);
327   MemsetFn =
328       M.getOrInsertFunction("memset", Attr, IRB.getInt8PtrTy(),
329                             IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy);
330 }
331 
isVtableAccess(Instruction * I)332 static bool isVtableAccess(Instruction *I) {
333   if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa))
334     return Tag->isTBAAVtableAccess();
335   return false;
336 }
337 
338 // Do not instrument known races/"benign races" that come from compiler
339 // instrumentatin. The user has no way of suppressing them.
shouldInstrumentReadWriteFromAddress(const Module * M,Value * Addr)340 static bool shouldInstrumentReadWriteFromAddress(const Module *M, Value *Addr) {
341   // Peel off GEPs and BitCasts.
342   Addr = Addr->stripInBoundsOffsets();
343 
344   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
345     if (GV->hasSection()) {
346       StringRef SectionName = GV->getSection();
347       // Check if the global is in the PGO counters section.
348       auto OF = Triple(M->getTargetTriple()).getObjectFormat();
349       if (SectionName.endswith(
350               getInstrProfSectionName(IPSK_cnts, OF, /*AddSegmentInfo=*/false)))
351         return false;
352     }
353 
354     // Check if the global is private gcov data.
355     if (GV->getName().startswith("__llvm_gcov") ||
356         GV->getName().startswith("__llvm_gcda"))
357       return false;
358   }
359 
360   // Do not instrument acesses from different address spaces; we cannot deal
361   // with them.
362   if (Addr) {
363     Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
364     if (PtrTy->getPointerAddressSpace() != 0)
365       return false;
366   }
367 
368   return true;
369 }
370 
addrPointsToConstantData(Value * Addr)371 bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) {
372   // If this is a GEP, just analyze its pointer operand.
373   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr))
374     Addr = GEP->getPointerOperand();
375 
376   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
377     if (GV->isConstant()) {
378       // Reads from constant globals can not race with any writes.
379       NumOmittedReadsFromConstantGlobals++;
380       return true;
381     }
382   } else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) {
383     if (isVtableAccess(L)) {
384       // Reads from a vtable pointer can not race with any writes.
385       NumOmittedReadsFromVtable++;
386       return true;
387     }
388   }
389   return false;
390 }
391 
392 // Instrumenting some of the accesses may be proven redundant.
393 // Currently handled:
394 //  - read-before-write (within same BB, no calls between)
395 //  - not captured variables
396 //
397 // We do not handle some of the patterns that should not survive
398 // after the classic compiler optimizations.
399 // E.g. two reads from the same temp should be eliminated by CSE,
400 // two writes should be eliminated by DSE, etc.
401 //
402 // 'Local' is a vector of insns within the same BB (no calls between).
403 // 'All' is a vector of insns that will be instrumented.
chooseInstructionsToInstrument(SmallVectorImpl<Instruction * > & Local,SmallVectorImpl<Instruction * > & All,const DataLayout & DL)404 void ThreadSanitizer::chooseInstructionsToInstrument(
405     SmallVectorImpl<Instruction *> &Local, SmallVectorImpl<Instruction *> &All,
406     const DataLayout &DL) {
407   SmallPtrSet<Value*, 8> WriteTargets;
408   // Iterate from the end.
409   for (Instruction *I : reverse(Local)) {
410     if (StoreInst *Store = dyn_cast<StoreInst>(I)) {
411       Value *Addr = Store->getPointerOperand();
412       if (!shouldInstrumentReadWriteFromAddress(I->getModule(), Addr))
413         continue;
414       WriteTargets.insert(Addr);
415     } else {
416       LoadInst *Load = cast<LoadInst>(I);
417       Value *Addr = Load->getPointerOperand();
418       if (!shouldInstrumentReadWriteFromAddress(I->getModule(), Addr))
419         continue;
420       if (!ClInstrumentReadBeforeWrite && WriteTargets.count(Addr)) {
421         // We will write to this temp, so no reason to analyze the read.
422         NumOmittedReadsBeforeWrite++;
423         continue;
424       }
425       if (addrPointsToConstantData(Addr)) {
426         // Addr points to some constant data -- it can not race with any writes.
427         continue;
428       }
429     }
430     Value *Addr = isa<StoreInst>(*I)
431         ? cast<StoreInst>(I)->getPointerOperand()
432         : cast<LoadInst>(I)->getPointerOperand();
433     if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) &&
434         !PointerMayBeCaptured(Addr, true, true)) {
435       // The variable is addressable but not captured, so it cannot be
436       // referenced from a different thread and participate in a data race
437       // (see llvm/Analysis/CaptureTracking.h for details).
438       NumOmittedNonCaptured++;
439       continue;
440     }
441     All.push_back(I);
442   }
443   Local.clear();
444 }
445 
isAtomic(Instruction * I)446 static bool isAtomic(Instruction *I) {
447   // TODO: Ask TTI whether synchronization scope is between threads.
448   if (LoadInst *LI = dyn_cast<LoadInst>(I))
449     return LI->isAtomic() && LI->getSyncScopeID() != SyncScope::SingleThread;
450   if (StoreInst *SI = dyn_cast<StoreInst>(I))
451     return SI->isAtomic() && SI->getSyncScopeID() != SyncScope::SingleThread;
452   if (isa<AtomicRMWInst>(I))
453     return true;
454   if (isa<AtomicCmpXchgInst>(I))
455     return true;
456   if (isa<FenceInst>(I))
457     return true;
458   return false;
459 }
460 
InsertRuntimeIgnores(Function & F)461 void ThreadSanitizer::InsertRuntimeIgnores(Function &F) {
462   IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
463   IRB.CreateCall(TsanIgnoreBegin);
464   EscapeEnumerator EE(F, "tsan_ignore_cleanup", ClHandleCxxExceptions);
465   while (IRBuilder<> *AtExit = EE.Next()) {
466     AtExit->CreateCall(TsanIgnoreEnd);
467   }
468 }
469 
sanitizeFunction(Function & F,const TargetLibraryInfo & TLI)470 bool ThreadSanitizer::sanitizeFunction(Function &F,
471                                        const TargetLibraryInfo &TLI) {
472   // This is required to prevent instrumenting call to __tsan_init from within
473   // the module constructor.
474   if (F.getName() == kTsanModuleCtorName)
475     return false;
476   // Naked functions can not have prologue/epilogue
477   // (__tsan_func_entry/__tsan_func_exit) generated, so don't instrument them at
478   // all.
479   if (F.hasFnAttribute(Attribute::Naked))
480     return false;
481   initialize(*F.getParent());
482   SmallVector<Instruction*, 8> AllLoadsAndStores;
483   SmallVector<Instruction*, 8> LocalLoadsAndStores;
484   SmallVector<Instruction*, 8> AtomicAccesses;
485   SmallVector<Instruction*, 8> MemIntrinCalls;
486   bool Res = false;
487   bool HasCalls = false;
488   bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeThread);
489   const DataLayout &DL = F.getParent()->getDataLayout();
490 
491   // Traverse all instructions, collect loads/stores/returns, check for calls.
492   for (auto &BB : F) {
493     for (auto &Inst : BB) {
494       if (isAtomic(&Inst))
495         AtomicAccesses.push_back(&Inst);
496       else if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst))
497         LocalLoadsAndStores.push_back(&Inst);
498       else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
499         if (CallInst *CI = dyn_cast<CallInst>(&Inst))
500           maybeMarkSanitizerLibraryCallNoBuiltin(CI, &TLI);
501         if (isa<MemIntrinsic>(Inst))
502           MemIntrinCalls.push_back(&Inst);
503         HasCalls = true;
504         chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores,
505                                        DL);
506       }
507     }
508     chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, DL);
509   }
510 
511   // We have collected all loads and stores.
512   // FIXME: many of these accesses do not need to be checked for races
513   // (e.g. variables that do not escape, etc).
514 
515   // Instrument memory accesses only if we want to report bugs in the function.
516   if (ClInstrumentMemoryAccesses && SanitizeFunction)
517     for (auto Inst : AllLoadsAndStores) {
518       Res |= instrumentLoadOrStore(Inst, DL);
519     }
520 
521   // Instrument atomic memory accesses in any case (they can be used to
522   // implement synchronization).
523   if (ClInstrumentAtomics)
524     for (auto Inst : AtomicAccesses) {
525       Res |= instrumentAtomic(Inst, DL);
526     }
527 
528   if (ClInstrumentMemIntrinsics && SanitizeFunction)
529     for (auto Inst : MemIntrinCalls) {
530       Res |= instrumentMemIntrinsic(Inst);
531     }
532 
533   if (F.hasFnAttribute("sanitize_thread_no_checking_at_run_time")) {
534     assert(!F.hasFnAttribute(Attribute::SanitizeThread));
535     if (HasCalls)
536       InsertRuntimeIgnores(F);
537   }
538 
539   // Instrument function entry/exit points if there were instrumented accesses.
540   if ((Res || HasCalls) && ClInstrumentFuncEntryExit) {
541     IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
542     Value *ReturnAddress = IRB.CreateCall(
543         Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress),
544         IRB.getInt32(0));
545     IRB.CreateCall(TsanFuncEntry, ReturnAddress);
546 
547     EscapeEnumerator EE(F, "tsan_cleanup", ClHandleCxxExceptions);
548     while (IRBuilder<> *AtExit = EE.Next()) {
549       AtExit->CreateCall(TsanFuncExit, {});
550     }
551     Res = true;
552   }
553   return Res;
554 }
555 
instrumentLoadOrStore(Instruction * I,const DataLayout & DL)556 bool ThreadSanitizer::instrumentLoadOrStore(Instruction *I,
557                                             const DataLayout &DL) {
558   IRBuilder<> IRB(I);
559   bool IsWrite = isa<StoreInst>(*I);
560   Value *Addr = IsWrite
561       ? cast<StoreInst>(I)->getPointerOperand()
562       : cast<LoadInst>(I)->getPointerOperand();
563 
564   // swifterror memory addresses are mem2reg promoted by instruction selection.
565   // As such they cannot have regular uses like an instrumentation function and
566   // it makes no sense to track them as memory.
567   if (Addr->isSwiftError())
568     return false;
569 
570   int Idx = getMemoryAccessFuncIndex(Addr, DL);
571   if (Idx < 0)
572     return false;
573   if (IsWrite && isVtableAccess(I)) {
574     LLVM_DEBUG(dbgs() << "  VPTR : " << *I << "\n");
575     Value *StoredValue = cast<StoreInst>(I)->getValueOperand();
576     // StoredValue may be a vector type if we are storing several vptrs at once.
577     // In this case, just take the first element of the vector since this is
578     // enough to find vptr races.
579     if (isa<VectorType>(StoredValue->getType()))
580       StoredValue = IRB.CreateExtractElement(
581           StoredValue, ConstantInt::get(IRB.getInt32Ty(), 0));
582     if (StoredValue->getType()->isIntegerTy())
583       StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getInt8PtrTy());
584     // Call TsanVptrUpdate.
585     IRB.CreateCall(TsanVptrUpdate,
586                    {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
587                     IRB.CreatePointerCast(StoredValue, IRB.getInt8PtrTy())});
588     NumInstrumentedVtableWrites++;
589     return true;
590   }
591   if (!IsWrite && isVtableAccess(I)) {
592     IRB.CreateCall(TsanVptrLoad,
593                    IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
594     NumInstrumentedVtableReads++;
595     return true;
596   }
597   const unsigned Alignment = IsWrite
598       ? cast<StoreInst>(I)->getAlignment()
599       : cast<LoadInst>(I)->getAlignment();
600   const bool IsVolatile =
601       ClDistinguishVolatile && (IsWrite ? cast<StoreInst>(I)->isVolatile()
602                                         : cast<LoadInst>(I)->isVolatile());
603   Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType();
604   const uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
605   FunctionCallee OnAccessFunc = nullptr;
606   if (Alignment == 0 || Alignment >= 8 || (Alignment % (TypeSize / 8)) == 0) {
607     if (IsVolatile)
608       OnAccessFunc = IsWrite ? TsanVolatileWrite[Idx] : TsanVolatileRead[Idx];
609     else
610       OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx];
611   } else {
612     if (IsVolatile)
613       OnAccessFunc = IsWrite ? TsanUnalignedVolatileWrite[Idx]
614                              : TsanUnalignedVolatileRead[Idx];
615     else
616       OnAccessFunc = IsWrite ? TsanUnalignedWrite[Idx] : TsanUnalignedRead[Idx];
617   }
618   IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
619   if (IsWrite) NumInstrumentedWrites++;
620   else         NumInstrumentedReads++;
621   return true;
622 }
623 
createOrdering(IRBuilder<> * IRB,AtomicOrdering ord)624 static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
625   uint32_t v = 0;
626   switch (ord) {
627     case AtomicOrdering::NotAtomic:
628       llvm_unreachable("unexpected atomic ordering!");
629     case AtomicOrdering::Unordered:              LLVM_FALLTHROUGH;
630     case AtomicOrdering::Monotonic:              v = 0; break;
631     // Not specified yet:
632     // case AtomicOrdering::Consume:                v = 1; break;
633     case AtomicOrdering::Acquire:                v = 2; break;
634     case AtomicOrdering::Release:                v = 3; break;
635     case AtomicOrdering::AcquireRelease:         v = 4; break;
636     case AtomicOrdering::SequentiallyConsistent: v = 5; break;
637   }
638   return IRB->getInt32(v);
639 }
640 
641 // If a memset intrinsic gets inlined by the code gen, we will miss races on it.
642 // So, we either need to ensure the intrinsic is not inlined, or instrument it.
643 // We do not instrument memset/memmove/memcpy intrinsics (too complicated),
644 // instead we simply replace them with regular function calls, which are then
645 // intercepted by the run-time.
646 // Since tsan is running after everyone else, the calls should not be
647 // replaced back with intrinsics. If that becomes wrong at some point,
648 // we will need to call e.g. __tsan_memset to avoid the intrinsics.
instrumentMemIntrinsic(Instruction * I)649 bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) {
650   IRBuilder<> IRB(I);
651   if (MemSetInst *M = dyn_cast<MemSetInst>(I)) {
652     IRB.CreateCall(
653         MemsetFn,
654         {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
655          IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false),
656          IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)});
657     I->eraseFromParent();
658   } else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) {
659     IRB.CreateCall(
660         isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn,
661         {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
662          IRB.CreatePointerCast(M->getArgOperand(1), IRB.getInt8PtrTy()),
663          IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)});
664     I->eraseFromParent();
665   }
666   return false;
667 }
668 
669 // Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x
670 // standards.  For background see C++11 standard.  A slightly older, publicly
671 // available draft of the standard (not entirely up-to-date, but close enough
672 // for casual browsing) is available here:
673 // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
674 // The following page contains more background information:
675 // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
676 
instrumentAtomic(Instruction * I,const DataLayout & DL)677 bool ThreadSanitizer::instrumentAtomic(Instruction *I, const DataLayout &DL) {
678   IRBuilder<> IRB(I);
679   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
680     Value *Addr = LI->getPointerOperand();
681     int Idx = getMemoryAccessFuncIndex(Addr, DL);
682     if (Idx < 0)
683       return false;
684     const unsigned ByteSize = 1U << Idx;
685     const unsigned BitSize = ByteSize * 8;
686     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
687     Type *PtrTy = Ty->getPointerTo();
688     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
689                      createOrdering(&IRB, LI->getOrdering())};
690     Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType();
691     Value *C = IRB.CreateCall(TsanAtomicLoad[Idx], Args);
692     Value *Cast = IRB.CreateBitOrPointerCast(C, OrigTy);
693     I->replaceAllUsesWith(Cast);
694   } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
695     Value *Addr = SI->getPointerOperand();
696     int Idx = getMemoryAccessFuncIndex(Addr, DL);
697     if (Idx < 0)
698       return false;
699     const unsigned ByteSize = 1U << Idx;
700     const unsigned BitSize = ByteSize * 8;
701     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
702     Type *PtrTy = Ty->getPointerTo();
703     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
704                      IRB.CreateBitOrPointerCast(SI->getValueOperand(), Ty),
705                      createOrdering(&IRB, SI->getOrdering())};
706     CallInst *C = CallInst::Create(TsanAtomicStore[Idx], Args);
707     ReplaceInstWithInst(I, C);
708   } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) {
709     Value *Addr = RMWI->getPointerOperand();
710     int Idx = getMemoryAccessFuncIndex(Addr, DL);
711     if (Idx < 0)
712       return false;
713     FunctionCallee F = TsanAtomicRMW[RMWI->getOperation()][Idx];
714     if (!F)
715       return false;
716     const unsigned ByteSize = 1U << Idx;
717     const unsigned BitSize = ByteSize * 8;
718     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
719     Type *PtrTy = Ty->getPointerTo();
720     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
721                      IRB.CreateIntCast(RMWI->getValOperand(), Ty, false),
722                      createOrdering(&IRB, RMWI->getOrdering())};
723     CallInst *C = CallInst::Create(F, Args);
724     ReplaceInstWithInst(I, C);
725   } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) {
726     Value *Addr = CASI->getPointerOperand();
727     int Idx = getMemoryAccessFuncIndex(Addr, DL);
728     if (Idx < 0)
729       return false;
730     const unsigned ByteSize = 1U << Idx;
731     const unsigned BitSize = ByteSize * 8;
732     Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
733     Type *PtrTy = Ty->getPointerTo();
734     Value *CmpOperand =
735       IRB.CreateBitOrPointerCast(CASI->getCompareOperand(), Ty);
736     Value *NewOperand =
737       IRB.CreateBitOrPointerCast(CASI->getNewValOperand(), Ty);
738     Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
739                      CmpOperand,
740                      NewOperand,
741                      createOrdering(&IRB, CASI->getSuccessOrdering()),
742                      createOrdering(&IRB, CASI->getFailureOrdering())};
743     CallInst *C = IRB.CreateCall(TsanAtomicCAS[Idx], Args);
744     Value *Success = IRB.CreateICmpEQ(C, CmpOperand);
745     Value *OldVal = C;
746     Type *OrigOldValTy = CASI->getNewValOperand()->getType();
747     if (Ty != OrigOldValTy) {
748       // The value is a pointer, so we need to cast the return value.
749       OldVal = IRB.CreateIntToPtr(C, OrigOldValTy);
750     }
751 
752     Value *Res =
753       IRB.CreateInsertValue(UndefValue::get(CASI->getType()), OldVal, 0);
754     Res = IRB.CreateInsertValue(Res, Success, 1);
755 
756     I->replaceAllUsesWith(Res);
757     I->eraseFromParent();
758   } else if (FenceInst *FI = dyn_cast<FenceInst>(I)) {
759     Value *Args[] = {createOrdering(&IRB, FI->getOrdering())};
760     FunctionCallee F = FI->getSyncScopeID() == SyncScope::SingleThread
761                            ? TsanAtomicSignalFence
762                            : TsanAtomicThreadFence;
763     CallInst *C = CallInst::Create(F, Args);
764     ReplaceInstWithInst(I, C);
765   }
766   return true;
767 }
768 
getMemoryAccessFuncIndex(Value * Addr,const DataLayout & DL)769 int ThreadSanitizer::getMemoryAccessFuncIndex(Value *Addr,
770                                               const DataLayout &DL) {
771   Type *OrigPtrTy = Addr->getType();
772   Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();
773   assert(OrigTy->isSized());
774   uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
775   if (TypeSize != 8  && TypeSize != 16 &&
776       TypeSize != 32 && TypeSize != 64 && TypeSize != 128) {
777     NumAccessesWithBadSize++;
778     // Ignore all unusual sizes.
779     return -1;
780   }
781   size_t Idx = countTrailingZeros(TypeSize / 8);
782   assert(Idx < kNumberOfAccessSizes);
783   return Idx;
784 }
785