1 //===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------===//
8 //
9 // This file implements the PredicateInfo class.
10 //
11 //===----------------------------------------------------------------===//
12
13 #include "llvm/Transforms/Utils/PredicateInfo.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DepthFirstIterator.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/CFG.h"
22 #include "llvm/IR/AssemblyAnnotationWriter.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/InstIterator.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/InitializePasses.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/DebugCounter.h"
37 #include "llvm/Support/FormattedStream.h"
38 #include "llvm/Transforms/Utils.h"
39 #include <algorithm>
40 #define DEBUG_TYPE "predicateinfo"
41 using namespace llvm;
42 using namespace PatternMatch;
43
44 INITIALIZE_PASS_BEGIN(PredicateInfoPrinterLegacyPass, "print-predicateinfo",
45 "PredicateInfo Printer", false, false)
46 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
47 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
48 INITIALIZE_PASS_END(PredicateInfoPrinterLegacyPass, "print-predicateinfo",
49 "PredicateInfo Printer", false, false)
50 static cl::opt<bool> VerifyPredicateInfo(
51 "verify-predicateinfo", cl::init(false), cl::Hidden,
52 cl::desc("Verify PredicateInfo in legacy printer pass."));
53 DEBUG_COUNTER(RenameCounter, "predicateinfo-rename",
54 "Controls which variables are renamed with predicateinfo");
55
56 namespace {
57 // Given a predicate info that is a type of branching terminator, get the
58 // branching block.
getBranchBlock(const PredicateBase * PB)59 const BasicBlock *getBranchBlock(const PredicateBase *PB) {
60 assert(isa<PredicateWithEdge>(PB) &&
61 "Only branches and switches should have PHIOnly defs that "
62 "require branch blocks.");
63 return cast<PredicateWithEdge>(PB)->From;
64 }
65
66 // Given a predicate info that is a type of branching terminator, get the
67 // branching terminator.
getBranchTerminator(const PredicateBase * PB)68 static Instruction *getBranchTerminator(const PredicateBase *PB) {
69 assert(isa<PredicateWithEdge>(PB) &&
70 "Not a predicate info type we know how to get a terminator from.");
71 return cast<PredicateWithEdge>(PB)->From->getTerminator();
72 }
73
74 // Given a predicate info that is a type of branching terminator, get the
75 // edge this predicate info represents
76 const std::pair<BasicBlock *, BasicBlock *>
getBlockEdge(const PredicateBase * PB)77 getBlockEdge(const PredicateBase *PB) {
78 assert(isa<PredicateWithEdge>(PB) &&
79 "Not a predicate info type we know how to get an edge from.");
80 const auto *PEdge = cast<PredicateWithEdge>(PB);
81 return std::make_pair(PEdge->From, PEdge->To);
82 }
83 }
84
85 namespace llvm {
86 enum LocalNum {
87 // Operations that must appear first in the block.
88 LN_First,
89 // Operations that are somewhere in the middle of the block, and are sorted on
90 // demand.
91 LN_Middle,
92 // Operations that must appear last in a block, like successor phi node uses.
93 LN_Last
94 };
95
96 // Associate global and local DFS info with defs and uses, so we can sort them
97 // into a global domination ordering.
98 struct ValueDFS {
99 int DFSIn = 0;
100 int DFSOut = 0;
101 unsigned int LocalNum = LN_Middle;
102 // Only one of Def or Use will be set.
103 Value *Def = nullptr;
104 Use *U = nullptr;
105 // Neither PInfo nor EdgeOnly participate in the ordering
106 PredicateBase *PInfo = nullptr;
107 bool EdgeOnly = false;
108 };
109
110 // Perform a strict weak ordering on instructions and arguments.
valueComesBefore(const Value * A,const Value * B)111 static bool valueComesBefore(const Value *A, const Value *B) {
112 auto *ArgA = dyn_cast_or_null<Argument>(A);
113 auto *ArgB = dyn_cast_or_null<Argument>(B);
114 if (ArgA && !ArgB)
115 return true;
116 if (ArgB && !ArgA)
117 return false;
118 if (ArgA && ArgB)
119 return ArgA->getArgNo() < ArgB->getArgNo();
120 return cast<Instruction>(A)->comesBefore(cast<Instruction>(B));
121 }
122
123 // This compares ValueDFS structures. Doing so allows us to walk the minimum
124 // number of instructions necessary to compute our def/use ordering.
125 struct ValueDFS_Compare {
126 DominatorTree &DT;
ValueDFS_Comparellvm::ValueDFS_Compare127 ValueDFS_Compare(DominatorTree &DT) : DT(DT) {}
128
operator ()llvm::ValueDFS_Compare129 bool operator()(const ValueDFS &A, const ValueDFS &B) const {
130 if (&A == &B)
131 return false;
132 // The only case we can't directly compare them is when they in the same
133 // block, and both have localnum == middle. In that case, we have to use
134 // comesbefore to see what the real ordering is, because they are in the
135 // same basic block.
136
137 assert((A.DFSIn != B.DFSIn || A.DFSOut == B.DFSOut) &&
138 "Equal DFS-in numbers imply equal out numbers");
139 bool SameBlock = A.DFSIn == B.DFSIn;
140
141 // We want to put the def that will get used for a given set of phi uses,
142 // before those phi uses.
143 // So we sort by edge, then by def.
144 // Note that only phi nodes uses and defs can come last.
145 if (SameBlock && A.LocalNum == LN_Last && B.LocalNum == LN_Last)
146 return comparePHIRelated(A, B);
147
148 bool isADef = A.Def;
149 bool isBDef = B.Def;
150 if (!SameBlock || A.LocalNum != LN_Middle || B.LocalNum != LN_Middle)
151 return std::tie(A.DFSIn, A.LocalNum, isADef) <
152 std::tie(B.DFSIn, B.LocalNum, isBDef);
153 return localComesBefore(A, B);
154 }
155
156 // For a phi use, or a non-materialized def, return the edge it represents.
157 const std::pair<BasicBlock *, BasicBlock *>
getBlockEdgellvm::ValueDFS_Compare158 getBlockEdge(const ValueDFS &VD) const {
159 if (!VD.Def && VD.U) {
160 auto *PHI = cast<PHINode>(VD.U->getUser());
161 return std::make_pair(PHI->getIncomingBlock(*VD.U), PHI->getParent());
162 }
163 // This is really a non-materialized def.
164 return ::getBlockEdge(VD.PInfo);
165 }
166
167 // For two phi related values, return the ordering.
comparePHIRelatedllvm::ValueDFS_Compare168 bool comparePHIRelated(const ValueDFS &A, const ValueDFS &B) const {
169 BasicBlock *ASrc, *ADest, *BSrc, *BDest;
170 std::tie(ASrc, ADest) = getBlockEdge(A);
171 std::tie(BSrc, BDest) = getBlockEdge(B);
172
173 #ifndef NDEBUG
174 // This function should only be used for values in the same BB, check that.
175 DomTreeNode *DomASrc = DT.getNode(ASrc);
176 DomTreeNode *DomBSrc = DT.getNode(BSrc);
177 assert(DomASrc->getDFSNumIn() == (unsigned)A.DFSIn &&
178 "DFS numbers for A should match the ones of the source block");
179 assert(DomBSrc->getDFSNumIn() == (unsigned)B.DFSIn &&
180 "DFS numbers for B should match the ones of the source block");
181 assert(A.DFSIn == B.DFSIn && "Values must be in the same block");
182 #endif
183 (void)ASrc;
184 (void)BSrc;
185
186 // Use DFS numbers to compare destination blocks, to guarantee a
187 // deterministic order.
188 DomTreeNode *DomADest = DT.getNode(ADest);
189 DomTreeNode *DomBDest = DT.getNode(BDest);
190 unsigned AIn = DomADest->getDFSNumIn();
191 unsigned BIn = DomBDest->getDFSNumIn();
192 bool isADef = A.Def;
193 bool isBDef = B.Def;
194 assert((!A.Def || !A.U) && (!B.Def || !B.U) &&
195 "Def and U cannot be set at the same time");
196 // Now sort by edge destination and then defs before uses.
197 return std::tie(AIn, isADef) < std::tie(BIn, isBDef);
198 }
199
200 // Get the definition of an instruction that occurs in the middle of a block.
getMiddleDefllvm::ValueDFS_Compare201 Value *getMiddleDef(const ValueDFS &VD) const {
202 if (VD.Def)
203 return VD.Def;
204 // It's possible for the defs and uses to be null. For branches, the local
205 // numbering will say the placed predicaeinfos should go first (IE
206 // LN_beginning), so we won't be in this function. For assumes, we will end
207 // up here, beause we need to order the def we will place relative to the
208 // assume. So for the purpose of ordering, we pretend the def is right
209 // after the assume, because that is where we will insert the info.
210 if (!VD.U) {
211 assert(VD.PInfo &&
212 "No def, no use, and no predicateinfo should not occur");
213 assert(isa<PredicateAssume>(VD.PInfo) &&
214 "Middle of block should only occur for assumes");
215 return cast<PredicateAssume>(VD.PInfo)->AssumeInst->getNextNode();
216 }
217 return nullptr;
218 }
219
220 // Return either the Def, if it's not null, or the user of the Use, if the def
221 // is null.
getDefOrUserllvm::ValueDFS_Compare222 const Instruction *getDefOrUser(const Value *Def, const Use *U) const {
223 if (Def)
224 return cast<Instruction>(Def);
225 return cast<Instruction>(U->getUser());
226 }
227
228 // This performs the necessary local basic block ordering checks to tell
229 // whether A comes before B, where both are in the same basic block.
localComesBeforellvm::ValueDFS_Compare230 bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const {
231 auto *ADef = getMiddleDef(A);
232 auto *BDef = getMiddleDef(B);
233
234 // See if we have real values or uses. If we have real values, we are
235 // guaranteed they are instructions or arguments. No matter what, we are
236 // guaranteed they are in the same block if they are instructions.
237 auto *ArgA = dyn_cast_or_null<Argument>(ADef);
238 auto *ArgB = dyn_cast_or_null<Argument>(BDef);
239
240 if (ArgA || ArgB)
241 return valueComesBefore(ArgA, ArgB);
242
243 auto *AInst = getDefOrUser(ADef, A.U);
244 auto *BInst = getDefOrUser(BDef, B.U);
245 return valueComesBefore(AInst, BInst);
246 }
247 };
248
249 class PredicateInfoBuilder {
250 // Used to store information about each value we might rename.
251 struct ValueInfo {
252 SmallVector<PredicateBase *, 4> Infos;
253 };
254
255 PredicateInfo &PI;
256 Function &F;
257 DominatorTree &DT;
258 AssumptionCache &AC;
259
260 // This stores info about each operand or comparison result we make copies
261 // of. The real ValueInfos start at index 1, index 0 is unused so that we
262 // can more easily detect invalid indexing.
263 SmallVector<ValueInfo, 32> ValueInfos;
264
265 // This gives the index into the ValueInfos array for a given Value. Because
266 // 0 is not a valid Value Info index, you can use DenseMap::lookup and tell
267 // whether it returned a valid result.
268 DenseMap<Value *, unsigned int> ValueInfoNums;
269
270 // The set of edges along which we can only handle phi uses, due to critical
271 // edges.
272 DenseSet<std::pair<BasicBlock *, BasicBlock *>> EdgeUsesOnly;
273
274 ValueInfo &getOrCreateValueInfo(Value *);
275 const ValueInfo &getValueInfo(Value *) const;
276
277 void processAssume(IntrinsicInst *, BasicBlock *,
278 SmallVectorImpl<Value *> &OpsToRename);
279 void processBranch(BranchInst *, BasicBlock *,
280 SmallVectorImpl<Value *> &OpsToRename);
281 void processSwitch(SwitchInst *, BasicBlock *,
282 SmallVectorImpl<Value *> &OpsToRename);
283 void renameUses(SmallVectorImpl<Value *> &OpsToRename);
284 void addInfoFor(SmallVectorImpl<Value *> &OpsToRename, Value *Op,
285 PredicateBase *PB);
286
287 typedef SmallVectorImpl<ValueDFS> ValueDFSStack;
288 void convertUsesToDFSOrdered(Value *, SmallVectorImpl<ValueDFS> &);
289 Value *materializeStack(unsigned int &, ValueDFSStack &, Value *);
290 bool stackIsInScope(const ValueDFSStack &, const ValueDFS &) const;
291 void popStackUntilDFSScope(ValueDFSStack &, const ValueDFS &);
292
293 public:
PredicateInfoBuilder(PredicateInfo & PI,Function & F,DominatorTree & DT,AssumptionCache & AC)294 PredicateInfoBuilder(PredicateInfo &PI, Function &F, DominatorTree &DT,
295 AssumptionCache &AC)
296 : PI(PI), F(F), DT(DT), AC(AC) {
297 // Push an empty operand info so that we can detect 0 as not finding one
298 ValueInfos.resize(1);
299 }
300
301 void buildPredicateInfo();
302 };
303
stackIsInScope(const ValueDFSStack & Stack,const ValueDFS & VDUse) const304 bool PredicateInfoBuilder::stackIsInScope(const ValueDFSStack &Stack,
305 const ValueDFS &VDUse) const {
306 if (Stack.empty())
307 return false;
308 // If it's a phi only use, make sure it's for this phi node edge, and that the
309 // use is in a phi node. If it's anything else, and the top of the stack is
310 // EdgeOnly, we need to pop the stack. We deliberately sort phi uses next to
311 // the defs they must go with so that we can know it's time to pop the stack
312 // when we hit the end of the phi uses for a given def.
313 if (Stack.back().EdgeOnly) {
314 if (!VDUse.U)
315 return false;
316 auto *PHI = dyn_cast<PHINode>(VDUse.U->getUser());
317 if (!PHI)
318 return false;
319 // Check edge
320 BasicBlock *EdgePred = PHI->getIncomingBlock(*VDUse.U);
321 if (EdgePred != getBranchBlock(Stack.back().PInfo))
322 return false;
323
324 // Use dominates, which knows how to handle edge dominance.
325 return DT.dominates(getBlockEdge(Stack.back().PInfo), *VDUse.U);
326 }
327
328 return (VDUse.DFSIn >= Stack.back().DFSIn &&
329 VDUse.DFSOut <= Stack.back().DFSOut);
330 }
331
popStackUntilDFSScope(ValueDFSStack & Stack,const ValueDFS & VD)332 void PredicateInfoBuilder::popStackUntilDFSScope(ValueDFSStack &Stack,
333 const ValueDFS &VD) {
334 while (!Stack.empty() && !stackIsInScope(Stack, VD))
335 Stack.pop_back();
336 }
337
338 // Convert the uses of Op into a vector of uses, associating global and local
339 // DFS info with each one.
convertUsesToDFSOrdered(Value * Op,SmallVectorImpl<ValueDFS> & DFSOrderedSet)340 void PredicateInfoBuilder::convertUsesToDFSOrdered(
341 Value *Op, SmallVectorImpl<ValueDFS> &DFSOrderedSet) {
342 for (auto &U : Op->uses()) {
343 if (auto *I = dyn_cast<Instruction>(U.getUser())) {
344 ValueDFS VD;
345 // Put the phi node uses in the incoming block.
346 BasicBlock *IBlock;
347 if (auto *PN = dyn_cast<PHINode>(I)) {
348 IBlock = PN->getIncomingBlock(U);
349 // Make phi node users appear last in the incoming block
350 // they are from.
351 VD.LocalNum = LN_Last;
352 } else {
353 // If it's not a phi node use, it is somewhere in the middle of the
354 // block.
355 IBlock = I->getParent();
356 VD.LocalNum = LN_Middle;
357 }
358 DomTreeNode *DomNode = DT.getNode(IBlock);
359 // It's possible our use is in an unreachable block. Skip it if so.
360 if (!DomNode)
361 continue;
362 VD.DFSIn = DomNode->getDFSNumIn();
363 VD.DFSOut = DomNode->getDFSNumOut();
364 VD.U = &U;
365 DFSOrderedSet.push_back(VD);
366 }
367 }
368 }
369
370 // Collect relevant operations from Comparison that we may want to insert copies
371 // for.
collectCmpOps(CmpInst * Comparison,SmallVectorImpl<Value * > & CmpOperands)372 void collectCmpOps(CmpInst *Comparison, SmallVectorImpl<Value *> &CmpOperands) {
373 auto *Op0 = Comparison->getOperand(0);
374 auto *Op1 = Comparison->getOperand(1);
375 if (Op0 == Op1)
376 return;
377 CmpOperands.push_back(Comparison);
378 // Only want real values, not constants. Additionally, operands with one use
379 // are only being used in the comparison, which means they will not be useful
380 // for us to consider for predicateinfo.
381 //
382 if ((isa<Instruction>(Op0) || isa<Argument>(Op0)) && !Op0->hasOneUse())
383 CmpOperands.push_back(Op0);
384 if ((isa<Instruction>(Op1) || isa<Argument>(Op1)) && !Op1->hasOneUse())
385 CmpOperands.push_back(Op1);
386 }
387
388 // Add Op, PB to the list of value infos for Op, and mark Op to be renamed.
addInfoFor(SmallVectorImpl<Value * > & OpsToRename,Value * Op,PredicateBase * PB)389 void PredicateInfoBuilder::addInfoFor(SmallVectorImpl<Value *> &OpsToRename,
390 Value *Op, PredicateBase *PB) {
391 auto &OperandInfo = getOrCreateValueInfo(Op);
392 if (OperandInfo.Infos.empty())
393 OpsToRename.push_back(Op);
394 PI.AllInfos.push_back(PB);
395 OperandInfo.Infos.push_back(PB);
396 }
397
398 // Process an assume instruction and place relevant operations we want to rename
399 // into OpsToRename.
processAssume(IntrinsicInst * II,BasicBlock * AssumeBB,SmallVectorImpl<Value * > & OpsToRename)400 void PredicateInfoBuilder::processAssume(
401 IntrinsicInst *II, BasicBlock *AssumeBB,
402 SmallVectorImpl<Value *> &OpsToRename) {
403 // See if we have a comparison we support
404 SmallVector<Value *, 8> CmpOperands;
405 SmallVector<Value *, 2> ConditionsToProcess;
406 CmpInst::Predicate Pred;
407 Value *Operand = II->getOperand(0);
408 if (m_c_And(m_Cmp(Pred, m_Value(), m_Value()),
409 m_Cmp(Pred, m_Value(), m_Value()))
410 .match(II->getOperand(0))) {
411 ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(0));
412 ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(1));
413 ConditionsToProcess.push_back(Operand);
414 } else if (isa<CmpInst>(Operand)) {
415
416 ConditionsToProcess.push_back(Operand);
417 }
418 for (auto Cond : ConditionsToProcess) {
419 if (auto *Cmp = dyn_cast<CmpInst>(Cond)) {
420 collectCmpOps(Cmp, CmpOperands);
421 // Now add our copy infos for our operands
422 for (auto *Op : CmpOperands) {
423 auto *PA = new PredicateAssume(Op, II, Cmp);
424 addInfoFor(OpsToRename, Op, PA);
425 }
426 CmpOperands.clear();
427 } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) {
428 // Otherwise, it should be an AND.
429 assert(BinOp->getOpcode() == Instruction::And &&
430 "Should have been an AND");
431 auto *PA = new PredicateAssume(BinOp, II, BinOp);
432 addInfoFor(OpsToRename, BinOp, PA);
433 } else {
434 llvm_unreachable("Unknown type of condition");
435 }
436 }
437 }
438
439 // Process a block terminating branch, and place relevant operations to be
440 // renamed into OpsToRename.
processBranch(BranchInst * BI,BasicBlock * BranchBB,SmallVectorImpl<Value * > & OpsToRename)441 void PredicateInfoBuilder::processBranch(
442 BranchInst *BI, BasicBlock *BranchBB,
443 SmallVectorImpl<Value *> &OpsToRename) {
444 BasicBlock *FirstBB = BI->getSuccessor(0);
445 BasicBlock *SecondBB = BI->getSuccessor(1);
446 SmallVector<BasicBlock *, 2> SuccsToProcess;
447 SuccsToProcess.push_back(FirstBB);
448 SuccsToProcess.push_back(SecondBB);
449 SmallVector<Value *, 2> ConditionsToProcess;
450
451 auto InsertHelper = [&](Value *Op, bool isAnd, bool isOr, Value *Cond) {
452 for (auto *Succ : SuccsToProcess) {
453 // Don't try to insert on a self-edge. This is mainly because we will
454 // eliminate during renaming anyway.
455 if (Succ == BranchBB)
456 continue;
457 bool TakenEdge = (Succ == FirstBB);
458 // For and, only insert on the true edge
459 // For or, only insert on the false edge
460 if ((isAnd && !TakenEdge) || (isOr && TakenEdge))
461 continue;
462 PredicateBase *PB =
463 new PredicateBranch(Op, BranchBB, Succ, Cond, TakenEdge);
464 addInfoFor(OpsToRename, Op, PB);
465 if (!Succ->getSinglePredecessor())
466 EdgeUsesOnly.insert({BranchBB, Succ});
467 }
468 };
469
470 // Match combinations of conditions.
471 CmpInst::Predicate Pred;
472 bool isAnd = false;
473 bool isOr = false;
474 SmallVector<Value *, 8> CmpOperands;
475 if (match(BI->getCondition(), m_And(m_Cmp(Pred, m_Value(), m_Value()),
476 m_Cmp(Pred, m_Value(), m_Value()))) ||
477 match(BI->getCondition(), m_Or(m_Cmp(Pred, m_Value(), m_Value()),
478 m_Cmp(Pred, m_Value(), m_Value())))) {
479 auto *BinOp = cast<BinaryOperator>(BI->getCondition());
480 if (BinOp->getOpcode() == Instruction::And)
481 isAnd = true;
482 else if (BinOp->getOpcode() == Instruction::Or)
483 isOr = true;
484 ConditionsToProcess.push_back(BinOp->getOperand(0));
485 ConditionsToProcess.push_back(BinOp->getOperand(1));
486 ConditionsToProcess.push_back(BI->getCondition());
487 } else if (isa<CmpInst>(BI->getCondition())) {
488 ConditionsToProcess.push_back(BI->getCondition());
489 }
490 for (auto Cond : ConditionsToProcess) {
491 if (auto *Cmp = dyn_cast<CmpInst>(Cond)) {
492 collectCmpOps(Cmp, CmpOperands);
493 // Now add our copy infos for our operands
494 for (auto *Op : CmpOperands)
495 InsertHelper(Op, isAnd, isOr, Cmp);
496 } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) {
497 // This must be an AND or an OR.
498 assert((BinOp->getOpcode() == Instruction::And ||
499 BinOp->getOpcode() == Instruction::Or) &&
500 "Should have been an AND or an OR");
501 // The actual value of the binop is not subject to the same restrictions
502 // as the comparison. It's either true or false on the true/false branch.
503 InsertHelper(BinOp, false, false, BinOp);
504 } else {
505 llvm_unreachable("Unknown type of condition");
506 }
507 CmpOperands.clear();
508 }
509 }
510 // Process a block terminating switch, and place relevant operations to be
511 // renamed into OpsToRename.
processSwitch(SwitchInst * SI,BasicBlock * BranchBB,SmallVectorImpl<Value * > & OpsToRename)512 void PredicateInfoBuilder::processSwitch(
513 SwitchInst *SI, BasicBlock *BranchBB,
514 SmallVectorImpl<Value *> &OpsToRename) {
515 Value *Op = SI->getCondition();
516 if ((!isa<Instruction>(Op) && !isa<Argument>(Op)) || Op->hasOneUse())
517 return;
518
519 // Remember how many outgoing edges there are to every successor.
520 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
521 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
522 BasicBlock *TargetBlock = SI->getSuccessor(i);
523 ++SwitchEdges[TargetBlock];
524 }
525
526 // Now propagate info for each case value
527 for (auto C : SI->cases()) {
528 BasicBlock *TargetBlock = C.getCaseSuccessor();
529 if (SwitchEdges.lookup(TargetBlock) == 1) {
530 PredicateSwitch *PS = new PredicateSwitch(
531 Op, SI->getParent(), TargetBlock, C.getCaseValue(), SI);
532 addInfoFor(OpsToRename, Op, PS);
533 if (!TargetBlock->getSinglePredecessor())
534 EdgeUsesOnly.insert({BranchBB, TargetBlock});
535 }
536 }
537 }
538
539 // Build predicate info for our function
buildPredicateInfo()540 void PredicateInfoBuilder::buildPredicateInfo() {
541 DT.updateDFSNumbers();
542 // Collect operands to rename from all conditional branch terminators, as well
543 // as assume statements.
544 SmallVector<Value *, 8> OpsToRename;
545 for (auto DTN : depth_first(DT.getRootNode())) {
546 BasicBlock *BranchBB = DTN->getBlock();
547 if (auto *BI = dyn_cast<BranchInst>(BranchBB->getTerminator())) {
548 if (!BI->isConditional())
549 continue;
550 // Can't insert conditional information if they all go to the same place.
551 if (BI->getSuccessor(0) == BI->getSuccessor(1))
552 continue;
553 processBranch(BI, BranchBB, OpsToRename);
554 } else if (auto *SI = dyn_cast<SwitchInst>(BranchBB->getTerminator())) {
555 processSwitch(SI, BranchBB, OpsToRename);
556 }
557 }
558 for (auto &Assume : AC.assumptions()) {
559 if (auto *II = dyn_cast_or_null<IntrinsicInst>(Assume))
560 if (DT.isReachableFromEntry(II->getParent()))
561 processAssume(II, II->getParent(), OpsToRename);
562 }
563 // Now rename all our operations.
564 renameUses(OpsToRename);
565 }
566
567 // Create a ssa_copy declaration with custom mangling, because
568 // Intrinsic::getDeclaration does not handle overloaded unnamed types properly:
569 // all unnamed types get mangled to the same string. We use the pointer
570 // to the type as name here, as it guarantees unique names for different
571 // types and we remove the declarations when destroying PredicateInfo.
572 // It is a workaround for PR38117, because solving it in a fully general way is
573 // tricky (FIXME).
getCopyDeclaration(Module * M,Type * Ty)574 static Function *getCopyDeclaration(Module *M, Type *Ty) {
575 std::string Name = "llvm.ssa.copy." + utostr((uintptr_t) Ty);
576 return cast<Function>(
577 M->getOrInsertFunction(Name,
578 getType(M->getContext(), Intrinsic::ssa_copy, Ty))
579 .getCallee());
580 }
581
582 // Given the renaming stack, make all the operands currently on the stack real
583 // by inserting them into the IR. Return the last operation's value.
materializeStack(unsigned int & Counter,ValueDFSStack & RenameStack,Value * OrigOp)584 Value *PredicateInfoBuilder::materializeStack(unsigned int &Counter,
585 ValueDFSStack &RenameStack,
586 Value *OrigOp) {
587 // Find the first thing we have to materialize
588 auto RevIter = RenameStack.rbegin();
589 for (; RevIter != RenameStack.rend(); ++RevIter)
590 if (RevIter->Def)
591 break;
592
593 size_t Start = RevIter - RenameStack.rbegin();
594 // The maximum number of things we should be trying to materialize at once
595 // right now is 4, depending on if we had an assume, a branch, and both used
596 // and of conditions.
597 for (auto RenameIter = RenameStack.end() - Start;
598 RenameIter != RenameStack.end(); ++RenameIter) {
599 auto *Op =
600 RenameIter == RenameStack.begin() ? OrigOp : (RenameIter - 1)->Def;
601 ValueDFS &Result = *RenameIter;
602 auto *ValInfo = Result.PInfo;
603 ValInfo->RenamedOp = (RenameStack.end() - Start) == RenameStack.begin()
604 ? OrigOp
605 : (RenameStack.end() - Start - 1)->Def;
606 // For edge predicates, we can just place the operand in the block before
607 // the terminator. For assume, we have to place it right before the assume
608 // to ensure we dominate all of our uses. Always insert right before the
609 // relevant instruction (terminator, assume), so that we insert in proper
610 // order in the case of multiple predicateinfo in the same block.
611 if (isa<PredicateWithEdge>(ValInfo)) {
612 IRBuilder<> B(getBranchTerminator(ValInfo));
613 Function *IF = getCopyDeclaration(F.getParent(), Op->getType());
614 if (IF->users().empty())
615 PI.CreatedDeclarations.insert(IF);
616 CallInst *PIC =
617 B.CreateCall(IF, Op, Op->getName() + "." + Twine(Counter++));
618 PI.PredicateMap.insert({PIC, ValInfo});
619 Result.Def = PIC;
620 } else {
621 auto *PAssume = dyn_cast<PredicateAssume>(ValInfo);
622 assert(PAssume &&
623 "Should not have gotten here without it being an assume");
624 // Insert the predicate directly after the assume. While it also holds
625 // directly before it, assume(i1 true) is not a useful fact.
626 IRBuilder<> B(PAssume->AssumeInst->getNextNode());
627 Function *IF = getCopyDeclaration(F.getParent(), Op->getType());
628 if (IF->users().empty())
629 PI.CreatedDeclarations.insert(IF);
630 CallInst *PIC = B.CreateCall(IF, Op);
631 PI.PredicateMap.insert({PIC, ValInfo});
632 Result.Def = PIC;
633 }
634 }
635 return RenameStack.back().Def;
636 }
637
638 // Instead of the standard SSA renaming algorithm, which is O(Number of
639 // instructions), and walks the entire dominator tree, we walk only the defs +
640 // uses. The standard SSA renaming algorithm does not really rely on the
641 // dominator tree except to order the stack push/pops of the renaming stacks, so
642 // that defs end up getting pushed before hitting the correct uses. This does
643 // not require the dominator tree, only the *order* of the dominator tree. The
644 // complete and correct ordering of the defs and uses, in dominator tree is
645 // contained in the DFS numbering of the dominator tree. So we sort the defs and
646 // uses into the DFS ordering, and then just use the renaming stack as per
647 // normal, pushing when we hit a def (which is a predicateinfo instruction),
648 // popping when we are out of the dfs scope for that def, and replacing any uses
649 // with top of stack if it exists. In order to handle liveness without
650 // propagating liveness info, we don't actually insert the predicateinfo
651 // instruction def until we see a use that it would dominate. Once we see such
652 // a use, we materialize the predicateinfo instruction in the right place and
653 // use it.
654 //
655 // TODO: Use this algorithm to perform fast single-variable renaming in
656 // promotememtoreg and memoryssa.
renameUses(SmallVectorImpl<Value * > & OpsToRename)657 void PredicateInfoBuilder::renameUses(SmallVectorImpl<Value *> &OpsToRename) {
658 ValueDFS_Compare Compare(DT);
659 // Compute liveness, and rename in O(uses) per Op.
660 for (auto *Op : OpsToRename) {
661 LLVM_DEBUG(dbgs() << "Visiting " << *Op << "\n");
662 unsigned Counter = 0;
663 SmallVector<ValueDFS, 16> OrderedUses;
664 const auto &ValueInfo = getValueInfo(Op);
665 // Insert the possible copies into the def/use list.
666 // They will become real copies if we find a real use for them, and never
667 // created otherwise.
668 for (auto &PossibleCopy : ValueInfo.Infos) {
669 ValueDFS VD;
670 // Determine where we are going to place the copy by the copy type.
671 // The predicate info for branches always come first, they will get
672 // materialized in the split block at the top of the block.
673 // The predicate info for assumes will be somewhere in the middle,
674 // it will get materialized in front of the assume.
675 if (const auto *PAssume = dyn_cast<PredicateAssume>(PossibleCopy)) {
676 VD.LocalNum = LN_Middle;
677 DomTreeNode *DomNode = DT.getNode(PAssume->AssumeInst->getParent());
678 if (!DomNode)
679 continue;
680 VD.DFSIn = DomNode->getDFSNumIn();
681 VD.DFSOut = DomNode->getDFSNumOut();
682 VD.PInfo = PossibleCopy;
683 OrderedUses.push_back(VD);
684 } else if (isa<PredicateWithEdge>(PossibleCopy)) {
685 // If we can only do phi uses, we treat it like it's in the branch
686 // block, and handle it specially. We know that it goes last, and only
687 // dominate phi uses.
688 auto BlockEdge = getBlockEdge(PossibleCopy);
689 if (EdgeUsesOnly.count(BlockEdge)) {
690 VD.LocalNum = LN_Last;
691 auto *DomNode = DT.getNode(BlockEdge.first);
692 if (DomNode) {
693 VD.DFSIn = DomNode->getDFSNumIn();
694 VD.DFSOut = DomNode->getDFSNumOut();
695 VD.PInfo = PossibleCopy;
696 VD.EdgeOnly = true;
697 OrderedUses.push_back(VD);
698 }
699 } else {
700 // Otherwise, we are in the split block (even though we perform
701 // insertion in the branch block).
702 // Insert a possible copy at the split block and before the branch.
703 VD.LocalNum = LN_First;
704 auto *DomNode = DT.getNode(BlockEdge.second);
705 if (DomNode) {
706 VD.DFSIn = DomNode->getDFSNumIn();
707 VD.DFSOut = DomNode->getDFSNumOut();
708 VD.PInfo = PossibleCopy;
709 OrderedUses.push_back(VD);
710 }
711 }
712 }
713 }
714
715 convertUsesToDFSOrdered(Op, OrderedUses);
716 // Here we require a stable sort because we do not bother to try to
717 // assign an order to the operands the uses represent. Thus, two
718 // uses in the same instruction do not have a strict sort order
719 // currently and will be considered equal. We could get rid of the
720 // stable sort by creating one if we wanted.
721 llvm::stable_sort(OrderedUses, Compare);
722 SmallVector<ValueDFS, 8> RenameStack;
723 // For each use, sorted into dfs order, push values and replaces uses with
724 // top of stack, which will represent the reaching def.
725 for (auto &VD : OrderedUses) {
726 // We currently do not materialize copy over copy, but we should decide if
727 // we want to.
728 bool PossibleCopy = VD.PInfo != nullptr;
729 if (RenameStack.empty()) {
730 LLVM_DEBUG(dbgs() << "Rename Stack is empty\n");
731 } else {
732 LLVM_DEBUG(dbgs() << "Rename Stack Top DFS numbers are ("
733 << RenameStack.back().DFSIn << ","
734 << RenameStack.back().DFSOut << ")\n");
735 }
736
737 LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << VD.DFSIn << ","
738 << VD.DFSOut << ")\n");
739
740 bool ShouldPush = (VD.Def || PossibleCopy);
741 bool OutOfScope = !stackIsInScope(RenameStack, VD);
742 if (OutOfScope || ShouldPush) {
743 // Sync to our current scope.
744 popStackUntilDFSScope(RenameStack, VD);
745 if (ShouldPush) {
746 RenameStack.push_back(VD);
747 }
748 }
749 // If we get to this point, and the stack is empty we must have a use
750 // with no renaming needed, just skip it.
751 if (RenameStack.empty())
752 continue;
753 // Skip values, only want to rename the uses
754 if (VD.Def || PossibleCopy)
755 continue;
756 if (!DebugCounter::shouldExecute(RenameCounter)) {
757 LLVM_DEBUG(dbgs() << "Skipping execution due to debug counter\n");
758 continue;
759 }
760 ValueDFS &Result = RenameStack.back();
761
762 // If the possible copy dominates something, materialize our stack up to
763 // this point. This ensures every comparison that affects our operation
764 // ends up with predicateinfo.
765 if (!Result.Def)
766 Result.Def = materializeStack(Counter, RenameStack, Op);
767
768 LLVM_DEBUG(dbgs() << "Found replacement " << *Result.Def << " for "
769 << *VD.U->get() << " in " << *(VD.U->getUser())
770 << "\n");
771 assert(DT.dominates(cast<Instruction>(Result.Def), *VD.U) &&
772 "Predicateinfo def should have dominated this use");
773 VD.U->set(Result.Def);
774 }
775 }
776 }
777
778 PredicateInfoBuilder::ValueInfo &
getOrCreateValueInfo(Value * Operand)779 PredicateInfoBuilder::getOrCreateValueInfo(Value *Operand) {
780 auto OIN = ValueInfoNums.find(Operand);
781 if (OIN == ValueInfoNums.end()) {
782 // This will grow it
783 ValueInfos.resize(ValueInfos.size() + 1);
784 // This will use the new size and give us a 0 based number of the info
785 auto InsertResult = ValueInfoNums.insert({Operand, ValueInfos.size() - 1});
786 assert(InsertResult.second && "Value info number already existed?");
787 return ValueInfos[InsertResult.first->second];
788 }
789 return ValueInfos[OIN->second];
790 }
791
792 const PredicateInfoBuilder::ValueInfo &
getValueInfo(Value * Operand) const793 PredicateInfoBuilder::getValueInfo(Value *Operand) const {
794 auto OINI = ValueInfoNums.lookup(Operand);
795 assert(OINI != 0 && "Operand was not really in the Value Info Numbers");
796 assert(OINI < ValueInfos.size() &&
797 "Value Info Number greater than size of Value Info Table");
798 return ValueInfos[OINI];
799 }
800
PredicateInfo(Function & F,DominatorTree & DT,AssumptionCache & AC)801 PredicateInfo::PredicateInfo(Function &F, DominatorTree &DT,
802 AssumptionCache &AC)
803 : F(F) {
804 PredicateInfoBuilder Builder(*this, F, DT, AC);
805 Builder.buildPredicateInfo();
806 }
807
808 // Remove all declarations we created . The PredicateInfo consumers are
809 // responsible for remove the ssa_copy calls created.
~PredicateInfo()810 PredicateInfo::~PredicateInfo() {
811 // Collect function pointers in set first, as SmallSet uses a SmallVector
812 // internally and we have to remove the asserting value handles first.
813 SmallPtrSet<Function *, 20> FunctionPtrs;
814 for (auto &F : CreatedDeclarations)
815 FunctionPtrs.insert(&*F);
816 CreatedDeclarations.clear();
817
818 for (Function *F : FunctionPtrs) {
819 assert(F->user_begin() == F->user_end() &&
820 "PredicateInfo consumer did not remove all SSA copies.");
821 F->eraseFromParent();
822 }
823 }
824
verifyPredicateInfo() const825 void PredicateInfo::verifyPredicateInfo() const {}
826
827 char PredicateInfoPrinterLegacyPass::ID = 0;
828
PredicateInfoPrinterLegacyPass()829 PredicateInfoPrinterLegacyPass::PredicateInfoPrinterLegacyPass()
830 : FunctionPass(ID) {
831 initializePredicateInfoPrinterLegacyPassPass(
832 *PassRegistry::getPassRegistry());
833 }
834
getAnalysisUsage(AnalysisUsage & AU) const835 void PredicateInfoPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
836 AU.setPreservesAll();
837 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
838 AU.addRequired<AssumptionCacheTracker>();
839 }
840
841 // Replace ssa_copy calls created by PredicateInfo with their operand.
replaceCreatedSSACopys(PredicateInfo & PredInfo,Function & F)842 static void replaceCreatedSSACopys(PredicateInfo &PredInfo, Function &F) {
843 for (auto I = inst_begin(F), E = inst_end(F); I != E;) {
844 Instruction *Inst = &*I++;
845 const auto *PI = PredInfo.getPredicateInfoFor(Inst);
846 auto *II = dyn_cast<IntrinsicInst>(Inst);
847 if (!PI || !II || II->getIntrinsicID() != Intrinsic::ssa_copy)
848 continue;
849
850 Inst->replaceAllUsesWith(II->getOperand(0));
851 Inst->eraseFromParent();
852 }
853 }
854
runOnFunction(Function & F)855 bool PredicateInfoPrinterLegacyPass::runOnFunction(Function &F) {
856 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
857 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
858 auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC);
859 PredInfo->print(dbgs());
860 if (VerifyPredicateInfo)
861 PredInfo->verifyPredicateInfo();
862
863 replaceCreatedSSACopys(*PredInfo, F);
864 return false;
865 }
866
run(Function & F,FunctionAnalysisManager & AM)867 PreservedAnalyses PredicateInfoPrinterPass::run(Function &F,
868 FunctionAnalysisManager &AM) {
869 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
870 auto &AC = AM.getResult<AssumptionAnalysis>(F);
871 OS << "PredicateInfo for function: " << F.getName() << "\n";
872 auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC);
873 PredInfo->print(OS);
874
875 replaceCreatedSSACopys(*PredInfo, F);
876 return PreservedAnalyses::all();
877 }
878
879 /// An assembly annotator class to print PredicateInfo information in
880 /// comments.
881 class PredicateInfoAnnotatedWriter : public AssemblyAnnotationWriter {
882 friend class PredicateInfo;
883 const PredicateInfo *PredInfo;
884
885 public:
PredicateInfoAnnotatedWriter(const PredicateInfo * M)886 PredicateInfoAnnotatedWriter(const PredicateInfo *M) : PredInfo(M) {}
887
emitBasicBlockStartAnnot(const BasicBlock * BB,formatted_raw_ostream & OS)888 void emitBasicBlockStartAnnot(const BasicBlock *BB,
889 formatted_raw_ostream &OS) override {}
890
emitInstructionAnnot(const Instruction * I,formatted_raw_ostream & OS)891 void emitInstructionAnnot(const Instruction *I,
892 formatted_raw_ostream &OS) override {
893 if (const auto *PI = PredInfo->getPredicateInfoFor(I)) {
894 OS << "; Has predicate info\n";
895 if (const auto *PB = dyn_cast<PredicateBranch>(PI)) {
896 OS << "; branch predicate info { TrueEdge: " << PB->TrueEdge
897 << " Comparison:" << *PB->Condition << " Edge: [";
898 PB->From->printAsOperand(OS);
899 OS << ",";
900 PB->To->printAsOperand(OS);
901 OS << "]";
902 } else if (const auto *PS = dyn_cast<PredicateSwitch>(PI)) {
903 OS << "; switch predicate info { CaseValue: " << *PS->CaseValue
904 << " Switch:" << *PS->Switch << " Edge: [";
905 PS->From->printAsOperand(OS);
906 OS << ",";
907 PS->To->printAsOperand(OS);
908 OS << "]";
909 } else if (const auto *PA = dyn_cast<PredicateAssume>(PI)) {
910 OS << "; assume predicate info {"
911 << " Comparison:" << *PA->Condition;
912 }
913 OS << ", RenamedOp: ";
914 PI->RenamedOp->printAsOperand(OS, false);
915 OS << " }\n";
916 }
917 }
918 };
919
print(raw_ostream & OS) const920 void PredicateInfo::print(raw_ostream &OS) const {
921 PredicateInfoAnnotatedWriter Writer(this);
922 F.print(OS, &Writer);
923 }
924
dump() const925 void PredicateInfo::dump() const {
926 PredicateInfoAnnotatedWriter Writer(this);
927 F.print(dbgs(), &Writer);
928 }
929
run(Function & F,FunctionAnalysisManager & AM)930 PreservedAnalyses PredicateInfoVerifierPass::run(Function &F,
931 FunctionAnalysisManager &AM) {
932 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
933 auto &AC = AM.getResult<AssumptionAnalysis>(F);
934 std::make_unique<PredicateInfo>(F, DT, AC)->verifyPredicateInfo();
935
936 return PreservedAnalyses::all();
937 }
938 }
939