1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Decl nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGBlocks.h"
14 #include "CGCXXABI.h"
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGOpenCLRuntime.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CodeGenFunction.h"
20 #include "CodeGenModule.h"
21 #include "ConstantEmitter.h"
22 #include "PatternInit.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/CharUnits.h"
27 #include "clang/AST/Decl.h"
28 #include "clang/AST/DeclObjC.h"
29 #include "clang/AST/DeclOpenMP.h"
30 #include "clang/Basic/CodeGenOptions.h"
31 #include "clang/Basic/SourceManager.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "clang/CodeGen/CGFunctionInfo.h"
34 #include "clang/Sema/Sema.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/GlobalVariable.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/Type.h"
40 
41 using namespace clang;
42 using namespace CodeGen;
43 
44 static_assert(clang::Sema::MaximumAlignment <= llvm::Value::MaximumAlignment,
45               "Clang max alignment greater than what LLVM supports?");
46 
EmitDecl(const Decl & D)47 void CodeGenFunction::EmitDecl(const Decl &D) {
48   switch (D.getKind()) {
49   case Decl::BuiltinTemplate:
50   case Decl::TranslationUnit:
51   case Decl::ExternCContext:
52   case Decl::Namespace:
53   case Decl::UnresolvedUsingTypename:
54   case Decl::ClassTemplateSpecialization:
55   case Decl::ClassTemplatePartialSpecialization:
56   case Decl::VarTemplateSpecialization:
57   case Decl::VarTemplatePartialSpecialization:
58   case Decl::TemplateTypeParm:
59   case Decl::UnresolvedUsingValue:
60   case Decl::NonTypeTemplateParm:
61   case Decl::CXXDeductionGuide:
62   case Decl::CXXMethod:
63   case Decl::CXXConstructor:
64   case Decl::CXXDestructor:
65   case Decl::CXXConversion:
66   case Decl::Field:
67   case Decl::MSProperty:
68   case Decl::IndirectField:
69   case Decl::ObjCIvar:
70   case Decl::ObjCAtDefsField:
71   case Decl::ParmVar:
72   case Decl::ImplicitParam:
73   case Decl::ClassTemplate:
74   case Decl::VarTemplate:
75   case Decl::FunctionTemplate:
76   case Decl::TypeAliasTemplate:
77   case Decl::TemplateTemplateParm:
78   case Decl::ObjCMethod:
79   case Decl::ObjCCategory:
80   case Decl::ObjCProtocol:
81   case Decl::ObjCInterface:
82   case Decl::ObjCCategoryImpl:
83   case Decl::ObjCImplementation:
84   case Decl::ObjCProperty:
85   case Decl::ObjCCompatibleAlias:
86   case Decl::PragmaComment:
87   case Decl::PragmaDetectMismatch:
88   case Decl::AccessSpec:
89   case Decl::LinkageSpec:
90   case Decl::Export:
91   case Decl::ObjCPropertyImpl:
92   case Decl::FileScopeAsm:
93   case Decl::Friend:
94   case Decl::FriendTemplate:
95   case Decl::Block:
96   case Decl::Captured:
97   case Decl::ClassScopeFunctionSpecialization:
98   case Decl::UsingShadow:
99   case Decl::ConstructorUsingShadow:
100   case Decl::ObjCTypeParam:
101   case Decl::Binding:
102     llvm_unreachable("Declaration should not be in declstmts!");
103   case Decl::Function:  // void X();
104   case Decl::Record:    // struct/union/class X;
105   case Decl::Enum:      // enum X;
106   case Decl::EnumConstant: // enum ? { X = ? }
107   case Decl::CXXRecord: // struct/union/class X; [C++]
108   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
109   case Decl::Label:        // __label__ x;
110   case Decl::Import:
111   case Decl::MSGuid:    // __declspec(uuid("..."))
112   case Decl::OMPThreadPrivate:
113   case Decl::OMPAllocate:
114   case Decl::OMPCapturedExpr:
115   case Decl::OMPRequires:
116   case Decl::Empty:
117   case Decl::Concept:
118   case Decl::LifetimeExtendedTemporary:
119   case Decl::RequiresExprBody:
120     // None of these decls require codegen support.
121     return;
122 
123   case Decl::NamespaceAlias:
124     if (CGDebugInfo *DI = getDebugInfo())
125         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
126     return;
127   case Decl::Using:          // using X; [C++]
128     if (CGDebugInfo *DI = getDebugInfo())
129         DI->EmitUsingDecl(cast<UsingDecl>(D));
130     return;
131   case Decl::UsingPack:
132     for (auto *Using : cast<UsingPackDecl>(D).expansions())
133       EmitDecl(*Using);
134     return;
135   case Decl::UsingDirective: // using namespace X; [C++]
136     if (CGDebugInfo *DI = getDebugInfo())
137       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
138     return;
139   case Decl::Var:
140   case Decl::Decomposition: {
141     const VarDecl &VD = cast<VarDecl>(D);
142     assert(VD.isLocalVarDecl() &&
143            "Should not see file-scope variables inside a function!");
144     EmitVarDecl(VD);
145     if (auto *DD = dyn_cast<DecompositionDecl>(&VD))
146       for (auto *B : DD->bindings())
147         if (auto *HD = B->getHoldingVar())
148           EmitVarDecl(*HD);
149     return;
150   }
151 
152   case Decl::OMPDeclareReduction:
153     return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this);
154 
155   case Decl::OMPDeclareMapper:
156     return CGM.EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(&D), this);
157 
158   case Decl::Typedef:      // typedef int X;
159   case Decl::TypeAlias: {  // using X = int; [C++0x]
160     const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
161     QualType Ty = TD.getUnderlyingType();
162 
163     if (Ty->isVariablyModifiedType())
164       EmitVariablyModifiedType(Ty);
165 
166     return;
167   }
168   }
169 }
170 
171 /// EmitVarDecl - This method handles emission of any variable declaration
172 /// inside a function, including static vars etc.
EmitVarDecl(const VarDecl & D)173 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
174   if (D.hasExternalStorage())
175     // Don't emit it now, allow it to be emitted lazily on its first use.
176     return;
177 
178   // Some function-scope variable does not have static storage but still
179   // needs to be emitted like a static variable, e.g. a function-scope
180   // variable in constant address space in OpenCL.
181   if (D.getStorageDuration() != SD_Automatic) {
182     // Static sampler variables translated to function calls.
183     if (D.getType()->isSamplerT())
184       return;
185 
186     llvm::GlobalValue::LinkageTypes Linkage =
187         CGM.getLLVMLinkageVarDefinition(&D, /*IsConstant=*/false);
188 
189     // FIXME: We need to force the emission/use of a guard variable for
190     // some variables even if we can constant-evaluate them because
191     // we can't guarantee every translation unit will constant-evaluate them.
192 
193     return EmitStaticVarDecl(D, Linkage);
194   }
195 
196   if (D.getType().getAddressSpace() == LangAS::opencl_local)
197     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
198 
199   assert(D.hasLocalStorage());
200   return EmitAutoVarDecl(D);
201 }
202 
getStaticDeclName(CodeGenModule & CGM,const VarDecl & D)203 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
204   if (CGM.getLangOpts().CPlusPlus)
205     return CGM.getMangledName(&D).str();
206 
207   // If this isn't C++, we don't need a mangled name, just a pretty one.
208   assert(!D.isExternallyVisible() && "name shouldn't matter");
209   std::string ContextName;
210   const DeclContext *DC = D.getDeclContext();
211   if (auto *CD = dyn_cast<CapturedDecl>(DC))
212     DC = cast<DeclContext>(CD->getNonClosureContext());
213   if (const auto *FD = dyn_cast<FunctionDecl>(DC))
214     ContextName = std::string(CGM.getMangledName(FD));
215   else if (const auto *BD = dyn_cast<BlockDecl>(DC))
216     ContextName = std::string(CGM.getBlockMangledName(GlobalDecl(), BD));
217   else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
218     ContextName = OMD->getSelector().getAsString();
219   else
220     llvm_unreachable("Unknown context for static var decl");
221 
222   ContextName += "." + D.getNameAsString();
223   return ContextName;
224 }
225 
getOrCreateStaticVarDecl(const VarDecl & D,llvm::GlobalValue::LinkageTypes Linkage)226 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
227     const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
228   // In general, we don't always emit static var decls once before we reference
229   // them. It is possible to reference them before emitting the function that
230   // contains them, and it is possible to emit the containing function multiple
231   // times.
232   if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
233     return ExistingGV;
234 
235   QualType Ty = D.getType();
236   assert(Ty->isConstantSizeType() && "VLAs can't be static");
237 
238   // Use the label if the variable is renamed with the asm-label extension.
239   std::string Name;
240   if (D.hasAttr<AsmLabelAttr>())
241     Name = std::string(getMangledName(&D));
242   else
243     Name = getStaticDeclName(*this, D);
244 
245   llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
246   LangAS AS = GetGlobalVarAddressSpace(&D);
247   unsigned TargetAS = getContext().getTargetAddressSpace(AS);
248 
249   // OpenCL variables in local address space and CUDA shared
250   // variables cannot have an initializer.
251   llvm::Constant *Init = nullptr;
252   if (Ty.getAddressSpace() == LangAS::opencl_local ||
253       D.hasAttr<CUDASharedAttr>() || D.hasAttr<LoaderUninitializedAttr>())
254     Init = llvm::UndefValue::get(LTy);
255   else
256     Init = EmitNullConstant(Ty);
257 
258   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
259       getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name,
260       nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
261   GV->setAlignment(getContext().getDeclAlign(&D).getAsAlign());
262 
263   if (supportsCOMDAT() && GV->isWeakForLinker())
264     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
265 
266   if (D.getTLSKind())
267     setTLSMode(GV, D);
268 
269   setGVProperties(GV, &D);
270 
271   // Make sure the result is of the correct type.
272   LangAS ExpectedAS = Ty.getAddressSpace();
273   llvm::Constant *Addr = GV;
274   if (AS != ExpectedAS) {
275     Addr = getTargetCodeGenInfo().performAddrSpaceCast(
276         *this, GV, AS, ExpectedAS,
277         LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS)));
278   }
279 
280   setStaticLocalDeclAddress(&D, Addr);
281 
282   // Ensure that the static local gets initialized by making sure the parent
283   // function gets emitted eventually.
284   const Decl *DC = cast<Decl>(D.getDeclContext());
285 
286   // We can't name blocks or captured statements directly, so try to emit their
287   // parents.
288   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
289     DC = DC->getNonClosureContext();
290     // FIXME: Ensure that global blocks get emitted.
291     if (!DC)
292       return Addr;
293   }
294 
295   GlobalDecl GD;
296   if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
297     GD = GlobalDecl(CD, Ctor_Base);
298   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
299     GD = GlobalDecl(DD, Dtor_Base);
300   else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
301     GD = GlobalDecl(FD);
302   else {
303     // Don't do anything for Obj-C method decls or global closures. We should
304     // never defer them.
305     assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
306   }
307   if (GD.getDecl()) {
308     // Disable emission of the parent function for the OpenMP device codegen.
309     CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this);
310     (void)GetAddrOfGlobal(GD);
311   }
312 
313   return Addr;
314 }
315 
316 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
317 /// global variable that has already been created for it.  If the initializer
318 /// has a different type than GV does, this may free GV and return a different
319 /// one.  Otherwise it just returns GV.
320 llvm::GlobalVariable *
AddInitializerToStaticVarDecl(const VarDecl & D,llvm::GlobalVariable * GV)321 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
322                                                llvm::GlobalVariable *GV) {
323   ConstantEmitter emitter(*this);
324   llvm::Constant *Init = emitter.tryEmitForInitializer(D);
325 
326   // If constant emission failed, then this should be a C++ static
327   // initializer.
328   if (!Init) {
329     if (!getLangOpts().CPlusPlus)
330       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
331     else if (HaveInsertPoint()) {
332       // Since we have a static initializer, this global variable can't
333       // be constant.
334       GV->setConstant(false);
335 
336       EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
337     }
338     return GV;
339   }
340 
341   // The initializer may differ in type from the global. Rewrite
342   // the global to match the initializer.  (We have to do this
343   // because some types, like unions, can't be completely represented
344   // in the LLVM type system.)
345   if (GV->getValueType() != Init->getType()) {
346     llvm::GlobalVariable *OldGV = GV;
347 
348     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
349                                   OldGV->isConstant(),
350                                   OldGV->getLinkage(), Init, "",
351                                   /*InsertBefore*/ OldGV,
352                                   OldGV->getThreadLocalMode(),
353                            CGM.getContext().getTargetAddressSpace(D.getType()));
354     GV->setVisibility(OldGV->getVisibility());
355     GV->setDSOLocal(OldGV->isDSOLocal());
356     GV->setComdat(OldGV->getComdat());
357 
358     // Steal the name of the old global
359     GV->takeName(OldGV);
360 
361     // Replace all uses of the old global with the new global
362     llvm::Constant *NewPtrForOldDecl =
363     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
364     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
365 
366     // Erase the old global, since it is no longer used.
367     OldGV->eraseFromParent();
368   }
369 
370   GV->setConstant(CGM.isTypeConstant(D.getType(), true));
371   GV->setInitializer(Init);
372 
373   emitter.finalize(GV);
374 
375   if (D.needsDestruction(getContext()) == QualType::DK_cxx_destructor &&
376       HaveInsertPoint()) {
377     // We have a constant initializer, but a nontrivial destructor. We still
378     // need to perform a guarded "initialization" in order to register the
379     // destructor.
380     EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
381   }
382 
383   return GV;
384 }
385 
EmitStaticVarDecl(const VarDecl & D,llvm::GlobalValue::LinkageTypes Linkage)386 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
387                                       llvm::GlobalValue::LinkageTypes Linkage) {
388   // Check to see if we already have a global variable for this
389   // declaration.  This can happen when double-emitting function
390   // bodies, e.g. with complete and base constructors.
391   llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
392   CharUnits alignment = getContext().getDeclAlign(&D);
393 
394   // Store into LocalDeclMap before generating initializer to handle
395   // circular references.
396   setAddrOfLocalVar(&D, Address(addr, alignment));
397 
398   // We can't have a VLA here, but we can have a pointer to a VLA,
399   // even though that doesn't really make any sense.
400   // Make sure to evaluate VLA bounds now so that we have them for later.
401   if (D.getType()->isVariablyModifiedType())
402     EmitVariablyModifiedType(D.getType());
403 
404   // Save the type in case adding the initializer forces a type change.
405   llvm::Type *expectedType = addr->getType();
406 
407   llvm::GlobalVariable *var =
408     cast<llvm::GlobalVariable>(addr->stripPointerCasts());
409 
410   // CUDA's local and local static __shared__ variables should not
411   // have any non-empty initializers. This is ensured by Sema.
412   // Whatever initializer such variable may have when it gets here is
413   // a no-op and should not be emitted.
414   bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
415                          D.hasAttr<CUDASharedAttr>();
416   // If this value has an initializer, emit it.
417   if (D.getInit() && !isCudaSharedVar)
418     var = AddInitializerToStaticVarDecl(D, var);
419 
420   var->setAlignment(alignment.getAsAlign());
421 
422   if (D.hasAttr<AnnotateAttr>())
423     CGM.AddGlobalAnnotations(&D, var);
424 
425   if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>())
426     var->addAttribute("bss-section", SA->getName());
427   if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>())
428     var->addAttribute("data-section", SA->getName());
429   if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>())
430     var->addAttribute("rodata-section", SA->getName());
431   if (auto *SA = D.getAttr<PragmaClangRelroSectionAttr>())
432     var->addAttribute("relro-section", SA->getName());
433 
434   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
435     var->setSection(SA->getName());
436 
437   if (D.hasAttr<UsedAttr>())
438     CGM.addUsedGlobal(var);
439 
440   // We may have to cast the constant because of the initializer
441   // mismatch above.
442   //
443   // FIXME: It is really dangerous to store this in the map; if anyone
444   // RAUW's the GV uses of this constant will be invalid.
445   llvm::Constant *castedAddr =
446     llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
447   if (var != castedAddr)
448     LocalDeclMap.find(&D)->second = Address(castedAddr, alignment);
449   CGM.setStaticLocalDeclAddress(&D, castedAddr);
450 
451   CGM.getSanitizerMetadata()->reportGlobalToASan(var, D);
452 
453   // Emit global variable debug descriptor for static vars.
454   CGDebugInfo *DI = getDebugInfo();
455   if (DI && CGM.getCodeGenOpts().hasReducedDebugInfo()) {
456     DI->setLocation(D.getLocation());
457     DI->EmitGlobalVariable(var, &D);
458   }
459 }
460 
461 namespace {
462   struct DestroyObject final : EHScopeStack::Cleanup {
DestroyObject__anona90623d20111::DestroyObject463     DestroyObject(Address addr, QualType type,
464                   CodeGenFunction::Destroyer *destroyer,
465                   bool useEHCleanupForArray)
466       : addr(addr), type(type), destroyer(destroyer),
467         useEHCleanupForArray(useEHCleanupForArray) {}
468 
469     Address addr;
470     QualType type;
471     CodeGenFunction::Destroyer *destroyer;
472     bool useEHCleanupForArray;
473 
Emit__anona90623d20111::DestroyObject474     void Emit(CodeGenFunction &CGF, Flags flags) override {
475       // Don't use an EH cleanup recursively from an EH cleanup.
476       bool useEHCleanupForArray =
477         flags.isForNormalCleanup() && this->useEHCleanupForArray;
478 
479       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
480     }
481   };
482 
483   template <class Derived>
484   struct DestroyNRVOVariable : EHScopeStack::Cleanup {
DestroyNRVOVariable__anona90623d20111::DestroyNRVOVariable485     DestroyNRVOVariable(Address addr, QualType type, llvm::Value *NRVOFlag)
486         : NRVOFlag(NRVOFlag), Loc(addr), Ty(type) {}
487 
488     llvm::Value *NRVOFlag;
489     Address Loc;
490     QualType Ty;
491 
Emit__anona90623d20111::DestroyNRVOVariable492     void Emit(CodeGenFunction &CGF, Flags flags) override {
493       // Along the exceptions path we always execute the dtor.
494       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
495 
496       llvm::BasicBlock *SkipDtorBB = nullptr;
497       if (NRVO) {
498         // If we exited via NRVO, we skip the destructor call.
499         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
500         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
501         llvm::Value *DidNRVO =
502           CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val");
503         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
504         CGF.EmitBlock(RunDtorBB);
505       }
506 
507       static_cast<Derived *>(this)->emitDestructorCall(CGF);
508 
509       if (NRVO) CGF.EmitBlock(SkipDtorBB);
510     }
511 
512     virtual ~DestroyNRVOVariable() = default;
513   };
514 
515   struct DestroyNRVOVariableCXX final
516       : DestroyNRVOVariable<DestroyNRVOVariableCXX> {
DestroyNRVOVariableCXX__anona90623d20111::DestroyNRVOVariableCXX517     DestroyNRVOVariableCXX(Address addr, QualType type,
518                            const CXXDestructorDecl *Dtor, llvm::Value *NRVOFlag)
519         : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, type, NRVOFlag),
520           Dtor(Dtor) {}
521 
522     const CXXDestructorDecl *Dtor;
523 
emitDestructorCall__anona90623d20111::DestroyNRVOVariableCXX524     void emitDestructorCall(CodeGenFunction &CGF) {
525       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
526                                 /*ForVirtualBase=*/false,
527                                 /*Delegating=*/false, Loc, Ty);
528     }
529   };
530 
531   struct DestroyNRVOVariableC final
532       : DestroyNRVOVariable<DestroyNRVOVariableC> {
DestroyNRVOVariableC__anona90623d20111::DestroyNRVOVariableC533     DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty)
534         : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, Ty, NRVOFlag) {}
535 
emitDestructorCall__anona90623d20111::DestroyNRVOVariableC536     void emitDestructorCall(CodeGenFunction &CGF) {
537       CGF.destroyNonTrivialCStruct(CGF, Loc, Ty);
538     }
539   };
540 
541   struct CallStackRestore final : EHScopeStack::Cleanup {
542     Address Stack;
CallStackRestore__anona90623d20111::CallStackRestore543     CallStackRestore(Address Stack) : Stack(Stack) {}
Emit__anona90623d20111::CallStackRestore544     void Emit(CodeGenFunction &CGF, Flags flags) override {
545       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
546       llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
547       CGF.Builder.CreateCall(F, V);
548     }
549   };
550 
551   struct ExtendGCLifetime final : EHScopeStack::Cleanup {
552     const VarDecl &Var;
ExtendGCLifetime__anona90623d20111::ExtendGCLifetime553     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
554 
Emit__anona90623d20111::ExtendGCLifetime555     void Emit(CodeGenFunction &CGF, Flags flags) override {
556       // Compute the address of the local variable, in case it's a
557       // byref or something.
558       DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
559                       Var.getType(), VK_LValue, SourceLocation());
560       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
561                                                 SourceLocation());
562       CGF.EmitExtendGCLifetime(value);
563     }
564   };
565 
566   struct CallCleanupFunction final : EHScopeStack::Cleanup {
567     llvm::Constant *CleanupFn;
568     const CGFunctionInfo &FnInfo;
569     const VarDecl &Var;
570 
CallCleanupFunction__anona90623d20111::CallCleanupFunction571     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
572                         const VarDecl *Var)
573       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
574 
Emit__anona90623d20111::CallCleanupFunction575     void Emit(CodeGenFunction &CGF, Flags flags) override {
576       DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
577                       Var.getType(), VK_LValue, SourceLocation());
578       // Compute the address of the local variable, in case it's a byref
579       // or something.
580       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(CGF);
581 
582       // In some cases, the type of the function argument will be different from
583       // the type of the pointer. An example of this is
584       // void f(void* arg);
585       // __attribute__((cleanup(f))) void *g;
586       //
587       // To fix this we insert a bitcast here.
588       QualType ArgTy = FnInfo.arg_begin()->type;
589       llvm::Value *Arg =
590         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
591 
592       CallArgList Args;
593       Args.add(RValue::get(Arg),
594                CGF.getContext().getPointerType(Var.getType()));
595       auto Callee = CGCallee::forDirect(CleanupFn);
596       CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args);
597     }
598   };
599 } // end anonymous namespace
600 
601 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
602 /// variable with lifetime.
EmitAutoVarWithLifetime(CodeGenFunction & CGF,const VarDecl & var,Address addr,Qualifiers::ObjCLifetime lifetime)603 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
604                                     Address addr,
605                                     Qualifiers::ObjCLifetime lifetime) {
606   switch (lifetime) {
607   case Qualifiers::OCL_None:
608     llvm_unreachable("present but none");
609 
610   case Qualifiers::OCL_ExplicitNone:
611     // nothing to do
612     break;
613 
614   case Qualifiers::OCL_Strong: {
615     CodeGenFunction::Destroyer *destroyer =
616       (var.hasAttr<ObjCPreciseLifetimeAttr>()
617        ? CodeGenFunction::destroyARCStrongPrecise
618        : CodeGenFunction::destroyARCStrongImprecise);
619 
620     CleanupKind cleanupKind = CGF.getARCCleanupKind();
621     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
622                     cleanupKind & EHCleanup);
623     break;
624   }
625   case Qualifiers::OCL_Autoreleasing:
626     // nothing to do
627     break;
628 
629   case Qualifiers::OCL_Weak:
630     // __weak objects always get EH cleanups; otherwise, exceptions
631     // could cause really nasty crashes instead of mere leaks.
632     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
633                     CodeGenFunction::destroyARCWeak,
634                     /*useEHCleanup*/ true);
635     break;
636   }
637 }
638 
isAccessedBy(const VarDecl & var,const Stmt * s)639 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
640   if (const Expr *e = dyn_cast<Expr>(s)) {
641     // Skip the most common kinds of expressions that make
642     // hierarchy-walking expensive.
643     s = e = e->IgnoreParenCasts();
644 
645     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
646       return (ref->getDecl() == &var);
647     if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
648       const BlockDecl *block = be->getBlockDecl();
649       for (const auto &I : block->captures()) {
650         if (I.getVariable() == &var)
651           return true;
652       }
653     }
654   }
655 
656   for (const Stmt *SubStmt : s->children())
657     // SubStmt might be null; as in missing decl or conditional of an if-stmt.
658     if (SubStmt && isAccessedBy(var, SubStmt))
659       return true;
660 
661   return false;
662 }
663 
isAccessedBy(const ValueDecl * decl,const Expr * e)664 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
665   if (!decl) return false;
666   if (!isa<VarDecl>(decl)) return false;
667   const VarDecl *var = cast<VarDecl>(decl);
668   return isAccessedBy(*var, e);
669 }
670 
tryEmitARCCopyWeakInit(CodeGenFunction & CGF,const LValue & destLV,const Expr * init)671 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF,
672                                    const LValue &destLV, const Expr *init) {
673   bool needsCast = false;
674 
675   while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) {
676     switch (castExpr->getCastKind()) {
677     // Look through casts that don't require representation changes.
678     case CK_NoOp:
679     case CK_BitCast:
680     case CK_BlockPointerToObjCPointerCast:
681       needsCast = true;
682       break;
683 
684     // If we find an l-value to r-value cast from a __weak variable,
685     // emit this operation as a copy or move.
686     case CK_LValueToRValue: {
687       const Expr *srcExpr = castExpr->getSubExpr();
688       if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak)
689         return false;
690 
691       // Emit the source l-value.
692       LValue srcLV = CGF.EmitLValue(srcExpr);
693 
694       // Handle a formal type change to avoid asserting.
695       auto srcAddr = srcLV.getAddress(CGF);
696       if (needsCast) {
697         srcAddr = CGF.Builder.CreateElementBitCast(
698             srcAddr, destLV.getAddress(CGF).getElementType());
699       }
700 
701       // If it was an l-value, use objc_copyWeak.
702       if (srcExpr->getValueKind() == VK_LValue) {
703         CGF.EmitARCCopyWeak(destLV.getAddress(CGF), srcAddr);
704       } else {
705         assert(srcExpr->getValueKind() == VK_XValue);
706         CGF.EmitARCMoveWeak(destLV.getAddress(CGF), srcAddr);
707       }
708       return true;
709     }
710 
711     // Stop at anything else.
712     default:
713       return false;
714     }
715 
716     init = castExpr->getSubExpr();
717   }
718   return false;
719 }
720 
drillIntoBlockVariable(CodeGenFunction & CGF,LValue & lvalue,const VarDecl * var)721 static void drillIntoBlockVariable(CodeGenFunction &CGF,
722                                    LValue &lvalue,
723                                    const VarDecl *var) {
724   lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(CGF), var));
725 }
726 
EmitNullabilityCheck(LValue LHS,llvm::Value * RHS,SourceLocation Loc)727 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS,
728                                            SourceLocation Loc) {
729   if (!SanOpts.has(SanitizerKind::NullabilityAssign))
730     return;
731 
732   auto Nullability = LHS.getType()->getNullability(getContext());
733   if (!Nullability || *Nullability != NullabilityKind::NonNull)
734     return;
735 
736   // Check if the right hand side of the assignment is nonnull, if the left
737   // hand side must be nonnull.
738   SanitizerScope SanScope(this);
739   llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS);
740   llvm::Constant *StaticData[] = {
741       EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()),
742       llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused.
743       llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)};
744   EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}},
745             SanitizerHandler::TypeMismatch, StaticData, RHS);
746 }
747 
EmitScalarInit(const Expr * init,const ValueDecl * D,LValue lvalue,bool capturedByInit)748 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
749                                      LValue lvalue, bool capturedByInit) {
750   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
751   if (!lifetime) {
752     llvm::Value *value = EmitScalarExpr(init);
753     if (capturedByInit)
754       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
755     EmitNullabilityCheck(lvalue, value, init->getExprLoc());
756     EmitStoreThroughLValue(RValue::get(value), lvalue, true);
757     return;
758   }
759 
760   if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
761     init = DIE->getExpr();
762 
763   // If we're emitting a value with lifetime, we have to do the
764   // initialization *before* we leave the cleanup scopes.
765   if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(init))
766     init = EWC->getSubExpr();
767   CodeGenFunction::RunCleanupsScope Scope(*this);
768 
769   // We have to maintain the illusion that the variable is
770   // zero-initialized.  If the variable might be accessed in its
771   // initializer, zero-initialize before running the initializer, then
772   // actually perform the initialization with an assign.
773   bool accessedByInit = false;
774   if (lifetime != Qualifiers::OCL_ExplicitNone)
775     accessedByInit = (capturedByInit || isAccessedBy(D, init));
776   if (accessedByInit) {
777     LValue tempLV = lvalue;
778     // Drill down to the __block object if necessary.
779     if (capturedByInit) {
780       // We can use a simple GEP for this because it can't have been
781       // moved yet.
782       tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(*this),
783                                               cast<VarDecl>(D),
784                                               /*follow*/ false));
785     }
786 
787     auto ty =
788         cast<llvm::PointerType>(tempLV.getAddress(*this).getElementType());
789     llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType());
790 
791     // If __weak, we want to use a barrier under certain conditions.
792     if (lifetime == Qualifiers::OCL_Weak)
793       EmitARCInitWeak(tempLV.getAddress(*this), zero);
794 
795     // Otherwise just do a simple store.
796     else
797       EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
798   }
799 
800   // Emit the initializer.
801   llvm::Value *value = nullptr;
802 
803   switch (lifetime) {
804   case Qualifiers::OCL_None:
805     llvm_unreachable("present but none");
806 
807   case Qualifiers::OCL_Strong: {
808     if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) {
809       value = EmitARCRetainScalarExpr(init);
810       break;
811     }
812     // If D is pseudo-strong, treat it like __unsafe_unretained here. This means
813     // that we omit the retain, and causes non-autoreleased return values to be
814     // immediately released.
815     LLVM_FALLTHROUGH;
816   }
817 
818   case Qualifiers::OCL_ExplicitNone:
819     value = EmitARCUnsafeUnretainedScalarExpr(init);
820     break;
821 
822   case Qualifiers::OCL_Weak: {
823     // If it's not accessed by the initializer, try to emit the
824     // initialization with a copy or move.
825     if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) {
826       return;
827     }
828 
829     // No way to optimize a producing initializer into this.  It's not
830     // worth optimizing for, because the value will immediately
831     // disappear in the common case.
832     value = EmitScalarExpr(init);
833 
834     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
835     if (accessedByInit)
836       EmitARCStoreWeak(lvalue.getAddress(*this), value, /*ignored*/ true);
837     else
838       EmitARCInitWeak(lvalue.getAddress(*this), value);
839     return;
840   }
841 
842   case Qualifiers::OCL_Autoreleasing:
843     value = EmitARCRetainAutoreleaseScalarExpr(init);
844     break;
845   }
846 
847   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
848 
849   EmitNullabilityCheck(lvalue, value, init->getExprLoc());
850 
851   // If the variable might have been accessed by its initializer, we
852   // might have to initialize with a barrier.  We have to do this for
853   // both __weak and __strong, but __weak got filtered out above.
854   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
855     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
856     EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
857     EmitARCRelease(oldValue, ARCImpreciseLifetime);
858     return;
859   }
860 
861   EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
862 }
863 
864 /// Decide whether we can emit the non-zero parts of the specified initializer
865 /// with equal or fewer than NumStores scalar stores.
canEmitInitWithFewStoresAfterBZero(llvm::Constant * Init,unsigned & NumStores)866 static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init,
867                                                unsigned &NumStores) {
868   // Zero and Undef never requires any extra stores.
869   if (isa<llvm::ConstantAggregateZero>(Init) ||
870       isa<llvm::ConstantPointerNull>(Init) ||
871       isa<llvm::UndefValue>(Init))
872     return true;
873   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
874       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
875       isa<llvm::ConstantExpr>(Init))
876     return Init->isNullValue() || NumStores--;
877 
878   // See if we can emit each element.
879   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
880     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
881       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
882       if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
883         return false;
884     }
885     return true;
886   }
887 
888   if (llvm::ConstantDataSequential *CDS =
889         dyn_cast<llvm::ConstantDataSequential>(Init)) {
890     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
891       llvm::Constant *Elt = CDS->getElementAsConstant(i);
892       if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
893         return false;
894     }
895     return true;
896   }
897 
898   // Anything else is hard and scary.
899   return false;
900 }
901 
902 /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit
903 /// the scalar stores that would be required.
emitStoresForInitAfterBZero(CodeGenModule & CGM,llvm::Constant * Init,Address Loc,bool isVolatile,CGBuilderTy & Builder)904 static void emitStoresForInitAfterBZero(CodeGenModule &CGM,
905                                         llvm::Constant *Init, Address Loc,
906                                         bool isVolatile, CGBuilderTy &Builder) {
907   assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
908          "called emitStoresForInitAfterBZero for zero or undef value.");
909 
910   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
911       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
912       isa<llvm::ConstantExpr>(Init)) {
913     Builder.CreateStore(Init, Loc, isVolatile);
914     return;
915   }
916 
917   if (llvm::ConstantDataSequential *CDS =
918           dyn_cast<llvm::ConstantDataSequential>(Init)) {
919     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
920       llvm::Constant *Elt = CDS->getElementAsConstant(i);
921 
922       // If necessary, get a pointer to the element and emit it.
923       if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
924         emitStoresForInitAfterBZero(
925             CGM, Elt, Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), isVolatile,
926             Builder);
927     }
928     return;
929   }
930 
931   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
932          "Unknown value type!");
933 
934   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
935     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
936 
937     // If necessary, get a pointer to the element and emit it.
938     if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
939       emitStoresForInitAfterBZero(CGM, Elt,
940                                   Builder.CreateConstInBoundsGEP2_32(Loc, 0, i),
941                                   isVolatile, Builder);
942   }
943 }
944 
945 /// Decide whether we should use bzero plus some stores to initialize a local
946 /// variable instead of using a memcpy from a constant global.  It is beneficial
947 /// to use bzero if the global is all zeros, or mostly zeros and large.
shouldUseBZeroPlusStoresToInitialize(llvm::Constant * Init,uint64_t GlobalSize)948 static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init,
949                                                  uint64_t GlobalSize) {
950   // If a global is all zeros, always use a bzero.
951   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
952 
953   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
954   // do it if it will require 6 or fewer scalar stores.
955   // TODO: Should budget depends on the size?  Avoiding a large global warrants
956   // plopping in more stores.
957   unsigned StoreBudget = 6;
958   uint64_t SizeLimit = 32;
959 
960   return GlobalSize > SizeLimit &&
961          canEmitInitWithFewStoresAfterBZero(Init, StoreBudget);
962 }
963 
964 /// Decide whether we should use memset to initialize a local variable instead
965 /// of using a memcpy from a constant global. Assumes we've already decided to
966 /// not user bzero.
967 /// FIXME We could be more clever, as we are for bzero above, and generate
968 ///       memset followed by stores. It's unclear that's worth the effort.
shouldUseMemSetToInitialize(llvm::Constant * Init,uint64_t GlobalSize,const llvm::DataLayout & DL)969 static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init,
970                                                 uint64_t GlobalSize,
971                                                 const llvm::DataLayout &DL) {
972   uint64_t SizeLimit = 32;
973   if (GlobalSize <= SizeLimit)
974     return nullptr;
975   return llvm::isBytewiseValue(Init, DL);
976 }
977 
978 /// Decide whether we want to split a constant structure or array store into a
979 /// sequence of its fields' stores. This may cost us code size and compilation
980 /// speed, but plays better with store optimizations.
shouldSplitConstantStore(CodeGenModule & CGM,uint64_t GlobalByteSize)981 static bool shouldSplitConstantStore(CodeGenModule &CGM,
982                                      uint64_t GlobalByteSize) {
983   // Don't break things that occupy more than one cacheline.
984   uint64_t ByteSizeLimit = 64;
985   if (CGM.getCodeGenOpts().OptimizationLevel == 0)
986     return false;
987   if (GlobalByteSize <= ByteSizeLimit)
988     return true;
989   return false;
990 }
991 
992 enum class IsPattern { No, Yes };
993 
994 /// Generate a constant filled with either a pattern or zeroes.
patternOrZeroFor(CodeGenModule & CGM,IsPattern isPattern,llvm::Type * Ty)995 static llvm::Constant *patternOrZeroFor(CodeGenModule &CGM, IsPattern isPattern,
996                                         llvm::Type *Ty) {
997   if (isPattern == IsPattern::Yes)
998     return initializationPatternFor(CGM, Ty);
999   else
1000     return llvm::Constant::getNullValue(Ty);
1001 }
1002 
1003 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
1004                                         llvm::Constant *constant);
1005 
1006 /// Helper function for constWithPadding() to deal with padding in structures.
constStructWithPadding(CodeGenModule & CGM,IsPattern isPattern,llvm::StructType * STy,llvm::Constant * constant)1007 static llvm::Constant *constStructWithPadding(CodeGenModule &CGM,
1008                                               IsPattern isPattern,
1009                                               llvm::StructType *STy,
1010                                               llvm::Constant *constant) {
1011   const llvm::DataLayout &DL = CGM.getDataLayout();
1012   const llvm::StructLayout *Layout = DL.getStructLayout(STy);
1013   llvm::Type *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext());
1014   unsigned SizeSoFar = 0;
1015   SmallVector<llvm::Constant *, 8> Values;
1016   bool NestedIntact = true;
1017   for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) {
1018     unsigned CurOff = Layout->getElementOffset(i);
1019     if (SizeSoFar < CurOff) {
1020       assert(!STy->isPacked());
1021       auto *PadTy = llvm::ArrayType::get(Int8Ty, CurOff - SizeSoFar);
1022       Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
1023     }
1024     llvm::Constant *CurOp;
1025     if (constant->isZeroValue())
1026       CurOp = llvm::Constant::getNullValue(STy->getElementType(i));
1027     else
1028       CurOp = cast<llvm::Constant>(constant->getAggregateElement(i));
1029     auto *NewOp = constWithPadding(CGM, isPattern, CurOp);
1030     if (CurOp != NewOp)
1031       NestedIntact = false;
1032     Values.push_back(NewOp);
1033     SizeSoFar = CurOff + DL.getTypeAllocSize(CurOp->getType());
1034   }
1035   unsigned TotalSize = Layout->getSizeInBytes();
1036   if (SizeSoFar < TotalSize) {
1037     auto *PadTy = llvm::ArrayType::get(Int8Ty, TotalSize - SizeSoFar);
1038     Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
1039   }
1040   if (NestedIntact && Values.size() == STy->getNumElements())
1041     return constant;
1042   return llvm::ConstantStruct::getAnon(Values, STy->isPacked());
1043 }
1044 
1045 /// Replace all padding bytes in a given constant with either a pattern byte or
1046 /// 0x00.
constWithPadding(CodeGenModule & CGM,IsPattern isPattern,llvm::Constant * constant)1047 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
1048                                         llvm::Constant *constant) {
1049   llvm::Type *OrigTy = constant->getType();
1050   if (const auto STy = dyn_cast<llvm::StructType>(OrigTy))
1051     return constStructWithPadding(CGM, isPattern, STy, constant);
1052   if (auto *ArrayTy = dyn_cast<llvm::ArrayType>(OrigTy)) {
1053     llvm::SmallVector<llvm::Constant *, 8> Values;
1054     uint64_t Size = ArrayTy->getNumElements();
1055     if (!Size)
1056       return constant;
1057     llvm::Type *ElemTy = ArrayTy->getElementType();
1058     bool ZeroInitializer = constant->isNullValue();
1059     llvm::Constant *OpValue, *PaddedOp;
1060     if (ZeroInitializer) {
1061       OpValue = llvm::Constant::getNullValue(ElemTy);
1062       PaddedOp = constWithPadding(CGM, isPattern, OpValue);
1063     }
1064     for (unsigned Op = 0; Op != Size; ++Op) {
1065       if (!ZeroInitializer) {
1066         OpValue = constant->getAggregateElement(Op);
1067         PaddedOp = constWithPadding(CGM, isPattern, OpValue);
1068       }
1069       Values.push_back(PaddedOp);
1070     }
1071     auto *NewElemTy = Values[0]->getType();
1072     if (NewElemTy == ElemTy)
1073       return constant;
1074     auto *NewArrayTy = llvm::ArrayType::get(NewElemTy, Size);
1075     return llvm::ConstantArray::get(NewArrayTy, Values);
1076   }
1077   // FIXME: Add handling for tail padding in vectors. Vectors don't
1078   // have padding between or inside elements, but the total amount of
1079   // data can be less than the allocated size.
1080   return constant;
1081 }
1082 
createUnnamedGlobalFrom(const VarDecl & D,llvm::Constant * Constant,CharUnits Align)1083 Address CodeGenModule::createUnnamedGlobalFrom(const VarDecl &D,
1084                                                llvm::Constant *Constant,
1085                                                CharUnits Align) {
1086   auto FunctionName = [&](const DeclContext *DC) -> std::string {
1087     if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1088       if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD))
1089         return CC->getNameAsString();
1090       if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD))
1091         return CD->getNameAsString();
1092       return std::string(getMangledName(FD));
1093     } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) {
1094       return OM->getNameAsString();
1095     } else if (isa<BlockDecl>(DC)) {
1096       return "<block>";
1097     } else if (isa<CapturedDecl>(DC)) {
1098       return "<captured>";
1099     } else {
1100       llvm_unreachable("expected a function or method");
1101     }
1102   };
1103 
1104   // Form a simple per-variable cache of these values in case we find we
1105   // want to reuse them.
1106   llvm::GlobalVariable *&CacheEntry = InitializerConstants[&D];
1107   if (!CacheEntry || CacheEntry->getInitializer() != Constant) {
1108     auto *Ty = Constant->getType();
1109     bool isConstant = true;
1110     llvm::GlobalVariable *InsertBefore = nullptr;
1111     unsigned AS =
1112         getContext().getTargetAddressSpace(getStringLiteralAddressSpace());
1113     std::string Name;
1114     if (D.hasGlobalStorage())
1115       Name = getMangledName(&D).str() + ".const";
1116     else if (const DeclContext *DC = D.getParentFunctionOrMethod())
1117       Name = ("__const." + FunctionName(DC) + "." + D.getName()).str();
1118     else
1119       llvm_unreachable("local variable has no parent function or method");
1120     llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1121         getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage,
1122         Constant, Name, InsertBefore, llvm::GlobalValue::NotThreadLocal, AS);
1123     GV->setAlignment(Align.getAsAlign());
1124     GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1125     CacheEntry = GV;
1126   } else if (CacheEntry->getAlignment() < Align.getQuantity()) {
1127     CacheEntry->setAlignment(Align.getAsAlign());
1128   }
1129 
1130   return Address(CacheEntry, Align);
1131 }
1132 
createUnnamedGlobalForMemcpyFrom(CodeGenModule & CGM,const VarDecl & D,CGBuilderTy & Builder,llvm::Constant * Constant,CharUnits Align)1133 static Address createUnnamedGlobalForMemcpyFrom(CodeGenModule &CGM,
1134                                                 const VarDecl &D,
1135                                                 CGBuilderTy &Builder,
1136                                                 llvm::Constant *Constant,
1137                                                 CharUnits Align) {
1138   Address SrcPtr = CGM.createUnnamedGlobalFrom(D, Constant, Align);
1139   llvm::Type *BP = llvm::PointerType::getInt8PtrTy(CGM.getLLVMContext(),
1140                                                    SrcPtr.getAddressSpace());
1141   if (SrcPtr.getType() != BP)
1142     SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1143   return SrcPtr;
1144 }
1145 
emitStoresForConstant(CodeGenModule & CGM,const VarDecl & D,Address Loc,bool isVolatile,CGBuilderTy & Builder,llvm::Constant * constant)1146 static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D,
1147                                   Address Loc, bool isVolatile,
1148                                   CGBuilderTy &Builder,
1149                                   llvm::Constant *constant) {
1150   auto *Ty = constant->getType();
1151   uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty);
1152   if (!ConstantSize)
1153     return;
1154 
1155   bool canDoSingleStore = Ty->isIntOrIntVectorTy() ||
1156                           Ty->isPtrOrPtrVectorTy() || Ty->isFPOrFPVectorTy();
1157   if (canDoSingleStore) {
1158     Builder.CreateStore(constant, Loc, isVolatile);
1159     return;
1160   }
1161 
1162   auto *SizeVal = llvm::ConstantInt::get(CGM.IntPtrTy, ConstantSize);
1163 
1164   // If the initializer is all or mostly the same, codegen with bzero / memset
1165   // then do a few stores afterward.
1166   if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) {
1167     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, 0), SizeVal,
1168                          isVolatile);
1169 
1170     bool valueAlreadyCorrect =
1171         constant->isNullValue() || isa<llvm::UndefValue>(constant);
1172     if (!valueAlreadyCorrect) {
1173       Loc = Builder.CreateBitCast(Loc, Ty->getPointerTo(Loc.getAddressSpace()));
1174       emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder);
1175     }
1176     return;
1177   }
1178 
1179   // If the initializer is a repeated byte pattern, use memset.
1180   llvm::Value *Pattern =
1181       shouldUseMemSetToInitialize(constant, ConstantSize, CGM.getDataLayout());
1182   if (Pattern) {
1183     uint64_t Value = 0x00;
1184     if (!isa<llvm::UndefValue>(Pattern)) {
1185       const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue();
1186       assert(AP.getBitWidth() <= 8);
1187       Value = AP.getLimitedValue();
1188     }
1189     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, Value), SizeVal,
1190                          isVolatile);
1191     return;
1192   }
1193 
1194   // If the initializer is small, use a handful of stores.
1195   if (shouldSplitConstantStore(CGM, ConstantSize)) {
1196     if (auto *STy = dyn_cast<llvm::StructType>(Ty)) {
1197       // FIXME: handle the case when STy != Loc.getElementType().
1198       if (STy == Loc.getElementType()) {
1199         for (unsigned i = 0; i != constant->getNumOperands(); i++) {
1200           Address EltPtr = Builder.CreateStructGEP(Loc, i);
1201           emitStoresForConstant(
1202               CGM, D, EltPtr, isVolatile, Builder,
1203               cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)));
1204         }
1205         return;
1206       }
1207     } else if (auto *ATy = dyn_cast<llvm::ArrayType>(Ty)) {
1208       // FIXME: handle the case when ATy != Loc.getElementType().
1209       if (ATy == Loc.getElementType()) {
1210         for (unsigned i = 0; i != ATy->getNumElements(); i++) {
1211           Address EltPtr = Builder.CreateConstArrayGEP(Loc, i);
1212           emitStoresForConstant(
1213               CGM, D, EltPtr, isVolatile, Builder,
1214               cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)));
1215         }
1216         return;
1217       }
1218     }
1219   }
1220 
1221   // Copy from a global.
1222   Builder.CreateMemCpy(Loc,
1223                        createUnnamedGlobalForMemcpyFrom(
1224                            CGM, D, Builder, constant, Loc.getAlignment()),
1225                        SizeVal, isVolatile);
1226 }
1227 
emitStoresForZeroInit(CodeGenModule & CGM,const VarDecl & D,Address Loc,bool isVolatile,CGBuilderTy & Builder)1228 static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D,
1229                                   Address Loc, bool isVolatile,
1230                                   CGBuilderTy &Builder) {
1231   llvm::Type *ElTy = Loc.getElementType();
1232   llvm::Constant *constant =
1233       constWithPadding(CGM, IsPattern::No, llvm::Constant::getNullValue(ElTy));
1234   emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant);
1235 }
1236 
emitStoresForPatternInit(CodeGenModule & CGM,const VarDecl & D,Address Loc,bool isVolatile,CGBuilderTy & Builder)1237 static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D,
1238                                      Address Loc, bool isVolatile,
1239                                      CGBuilderTy &Builder) {
1240   llvm::Type *ElTy = Loc.getElementType();
1241   llvm::Constant *constant = constWithPadding(
1242       CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
1243   assert(!isa<llvm::UndefValue>(constant));
1244   emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant);
1245 }
1246 
containsUndef(llvm::Constant * constant)1247 static bool containsUndef(llvm::Constant *constant) {
1248   auto *Ty = constant->getType();
1249   if (isa<llvm::UndefValue>(constant))
1250     return true;
1251   if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())
1252     for (llvm::Use &Op : constant->operands())
1253       if (containsUndef(cast<llvm::Constant>(Op)))
1254         return true;
1255   return false;
1256 }
1257 
replaceUndef(CodeGenModule & CGM,IsPattern isPattern,llvm::Constant * constant)1258 static llvm::Constant *replaceUndef(CodeGenModule &CGM, IsPattern isPattern,
1259                                     llvm::Constant *constant) {
1260   auto *Ty = constant->getType();
1261   if (isa<llvm::UndefValue>(constant))
1262     return patternOrZeroFor(CGM, isPattern, Ty);
1263   if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()))
1264     return constant;
1265   if (!containsUndef(constant))
1266     return constant;
1267   llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands());
1268   for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) {
1269     auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op));
1270     Values[Op] = replaceUndef(CGM, isPattern, OpValue);
1271   }
1272   if (Ty->isStructTy())
1273     return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values);
1274   if (Ty->isArrayTy())
1275     return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values);
1276   assert(Ty->isVectorTy());
1277   return llvm::ConstantVector::get(Values);
1278 }
1279 
1280 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
1281 /// variable declaration with auto, register, or no storage class specifier.
1282 /// These turn into simple stack objects, or GlobalValues depending on target.
EmitAutoVarDecl(const VarDecl & D)1283 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
1284   AutoVarEmission emission = EmitAutoVarAlloca(D);
1285   EmitAutoVarInit(emission);
1286   EmitAutoVarCleanups(emission);
1287 }
1288 
1289 /// Emit a lifetime.begin marker if some criteria are satisfied.
1290 /// \return a pointer to the temporary size Value if a marker was emitted, null
1291 /// otherwise
EmitLifetimeStart(uint64_t Size,llvm::Value * Addr)1292 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size,
1293                                                 llvm::Value *Addr) {
1294   if (!ShouldEmitLifetimeMarkers)
1295     return nullptr;
1296 
1297   assert(Addr->getType()->getPointerAddressSpace() ==
1298              CGM.getDataLayout().getAllocaAddrSpace() &&
1299          "Pointer should be in alloca address space");
1300   llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size);
1301   Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
1302   llvm::CallInst *C =
1303       Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr});
1304   C->setDoesNotThrow();
1305   return SizeV;
1306 }
1307 
EmitLifetimeEnd(llvm::Value * Size,llvm::Value * Addr)1308 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) {
1309   assert(Addr->getType()->getPointerAddressSpace() ==
1310              CGM.getDataLayout().getAllocaAddrSpace() &&
1311          "Pointer should be in alloca address space");
1312   Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
1313   llvm::CallInst *C =
1314       Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr});
1315   C->setDoesNotThrow();
1316 }
1317 
EmitAndRegisterVariableArrayDimensions(CGDebugInfo * DI,const VarDecl & D,bool EmitDebugInfo)1318 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions(
1319     CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) {
1320   // For each dimension stores its QualType and corresponding
1321   // size-expression Value.
1322   SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions;
1323   SmallVector<IdentifierInfo *, 4> VLAExprNames;
1324 
1325   // Break down the array into individual dimensions.
1326   QualType Type1D = D.getType();
1327   while (getContext().getAsVariableArrayType(Type1D)) {
1328     auto VlaSize = getVLAElements1D(Type1D);
1329     if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1330       Dimensions.emplace_back(C, Type1D.getUnqualifiedType());
1331     else {
1332       // Generate a locally unique name for the size expression.
1333       Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++);
1334       SmallString<12> Buffer;
1335       StringRef NameRef = Name.toStringRef(Buffer);
1336       auto &Ident = getContext().Idents.getOwn(NameRef);
1337       VLAExprNames.push_back(&Ident);
1338       auto SizeExprAddr =
1339           CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef);
1340       Builder.CreateStore(VlaSize.NumElts, SizeExprAddr);
1341       Dimensions.emplace_back(SizeExprAddr.getPointer(),
1342                               Type1D.getUnqualifiedType());
1343     }
1344     Type1D = VlaSize.Type;
1345   }
1346 
1347   if (!EmitDebugInfo)
1348     return;
1349 
1350   // Register each dimension's size-expression with a DILocalVariable,
1351   // so that it can be used by CGDebugInfo when instantiating a DISubrange
1352   // to describe this array.
1353   unsigned NameIdx = 0;
1354   for (auto &VlaSize : Dimensions) {
1355     llvm::Metadata *MD;
1356     if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1357       MD = llvm::ConstantAsMetadata::get(C);
1358     else {
1359       // Create an artificial VarDecl to generate debug info for.
1360       IdentifierInfo *NameIdent = VLAExprNames[NameIdx++];
1361       auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType();
1362       auto QT = getContext().getIntTypeForBitwidth(
1363           VlaExprTy->getScalarSizeInBits(), false);
1364       auto *ArtificialDecl = VarDecl::Create(
1365           getContext(), const_cast<DeclContext *>(D.getDeclContext()),
1366           D.getLocation(), D.getLocation(), NameIdent, QT,
1367           getContext().CreateTypeSourceInfo(QT), SC_Auto);
1368       ArtificialDecl->setImplicit();
1369 
1370       MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts,
1371                                          Builder);
1372     }
1373     assert(MD && "No Size expression debug node created");
1374     DI->registerVLASizeExpression(VlaSize.Type, MD);
1375   }
1376 }
1377 
1378 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
1379 /// local variable.  Does not emit initialization or destruction.
1380 CodeGenFunction::AutoVarEmission
EmitAutoVarAlloca(const VarDecl & D)1381 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
1382   QualType Ty = D.getType();
1383   assert(
1384       Ty.getAddressSpace() == LangAS::Default ||
1385       (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL));
1386 
1387   AutoVarEmission emission(D);
1388 
1389   bool isEscapingByRef = D.isEscapingByref();
1390   emission.IsEscapingByRef = isEscapingByRef;
1391 
1392   CharUnits alignment = getContext().getDeclAlign(&D);
1393 
1394   // If the type is variably-modified, emit all the VLA sizes for it.
1395   if (Ty->isVariablyModifiedType())
1396     EmitVariablyModifiedType(Ty);
1397 
1398   auto *DI = getDebugInfo();
1399   bool EmitDebugInfo = DI && CGM.getCodeGenOpts().hasReducedDebugInfo();
1400 
1401   Address address = Address::invalid();
1402   Address AllocaAddr = Address::invalid();
1403   Address OpenMPLocalAddr = Address::invalid();
1404   if (CGM.getLangOpts().OpenMPIRBuilder)
1405     OpenMPLocalAddr = OMPBuilderCBHelpers::getAddressOfLocalVariable(*this, &D);
1406   else
1407     OpenMPLocalAddr =
1408         getLangOpts().OpenMP
1409             ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
1410             : Address::invalid();
1411 
1412   bool NRVO = getLangOpts().ElideConstructors && D.isNRVOVariable();
1413 
1414   if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
1415     address = OpenMPLocalAddr;
1416   } else if (Ty->isConstantSizeType()) {
1417     // If this value is an array or struct with a statically determinable
1418     // constant initializer, there are optimizations we can do.
1419     //
1420     // TODO: We should constant-evaluate the initializer of any variable,
1421     // as long as it is initialized by a constant expression. Currently,
1422     // isConstantInitializer produces wrong answers for structs with
1423     // reference or bitfield members, and a few other cases, and checking
1424     // for POD-ness protects us from some of these.
1425     if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
1426         (D.isConstexpr() ||
1427          ((Ty.isPODType(getContext()) ||
1428            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
1429           D.getInit()->isConstantInitializer(getContext(), false)))) {
1430 
1431       // If the variable's a const type, and it's neither an NRVO
1432       // candidate nor a __block variable and has no mutable members,
1433       // emit it as a global instead.
1434       // Exception is if a variable is located in non-constant address space
1435       // in OpenCL.
1436       if ((!getLangOpts().OpenCL ||
1437            Ty.getAddressSpace() == LangAS::opencl_constant) &&
1438           (CGM.getCodeGenOpts().MergeAllConstants && !NRVO &&
1439            !isEscapingByRef && CGM.isTypeConstant(Ty, true))) {
1440         EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
1441 
1442         // Signal this condition to later callbacks.
1443         emission.Addr = Address::invalid();
1444         assert(emission.wasEmittedAsGlobal());
1445         return emission;
1446       }
1447 
1448       // Otherwise, tell the initialization code that we're in this case.
1449       emission.IsConstantAggregate = true;
1450     }
1451 
1452     // A normal fixed sized variable becomes an alloca in the entry block,
1453     // unless:
1454     // - it's an NRVO variable.
1455     // - we are compiling OpenMP and it's an OpenMP local variable.
1456     if (NRVO) {
1457       // The named return value optimization: allocate this variable in the
1458       // return slot, so that we can elide the copy when returning this
1459       // variable (C++0x [class.copy]p34).
1460       address = ReturnValue;
1461 
1462       if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1463         const auto *RD = RecordTy->getDecl();
1464         const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1465         if ((CXXRD && !CXXRD->hasTrivialDestructor()) ||
1466             RD->isNonTrivialToPrimitiveDestroy()) {
1467           // Create a flag that is used to indicate when the NRVO was applied
1468           // to this variable. Set it to zero to indicate that NRVO was not
1469           // applied.
1470           llvm::Value *Zero = Builder.getFalse();
1471           Address NRVOFlag =
1472             CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo");
1473           EnsureInsertPoint();
1474           Builder.CreateStore(Zero, NRVOFlag);
1475 
1476           // Record the NRVO flag for this variable.
1477           NRVOFlags[&D] = NRVOFlag.getPointer();
1478           emission.NRVOFlag = NRVOFlag.getPointer();
1479         }
1480       }
1481     } else {
1482       CharUnits allocaAlignment;
1483       llvm::Type *allocaTy;
1484       if (isEscapingByRef) {
1485         auto &byrefInfo = getBlockByrefInfo(&D);
1486         allocaTy = byrefInfo.Type;
1487         allocaAlignment = byrefInfo.ByrefAlignment;
1488       } else {
1489         allocaTy = ConvertTypeForMem(Ty);
1490         allocaAlignment = alignment;
1491       }
1492 
1493       // Create the alloca.  Note that we set the name separately from
1494       // building the instruction so that it's there even in no-asserts
1495       // builds.
1496       address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(),
1497                                  /*ArraySize=*/nullptr, &AllocaAddr);
1498 
1499       // Don't emit lifetime markers for MSVC catch parameters. The lifetime of
1500       // the catch parameter starts in the catchpad instruction, and we can't
1501       // insert code in those basic blocks.
1502       bool IsMSCatchParam =
1503           D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft();
1504 
1505       // Emit a lifetime intrinsic if meaningful. There's no point in doing this
1506       // if we don't have a valid insertion point (?).
1507       if (HaveInsertPoint() && !IsMSCatchParam) {
1508         // If there's a jump into the lifetime of this variable, its lifetime
1509         // gets broken up into several regions in IR, which requires more work
1510         // to handle correctly. For now, just omit the intrinsics; this is a
1511         // rare case, and it's better to just be conservatively correct.
1512         // PR28267.
1513         //
1514         // We have to do this in all language modes if there's a jump past the
1515         // declaration. We also have to do it in C if there's a jump to an
1516         // earlier point in the current block because non-VLA lifetimes begin as
1517         // soon as the containing block is entered, not when its variables
1518         // actually come into scope; suppressing the lifetime annotations
1519         // completely in this case is unnecessarily pessimistic, but again, this
1520         // is rare.
1521         if (!Bypasses.IsBypassed(&D) &&
1522             !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) {
1523           llvm::TypeSize size =
1524               CGM.getDataLayout().getTypeAllocSize(allocaTy);
1525           emission.SizeForLifetimeMarkers =
1526               size.isScalable() ? EmitLifetimeStart(-1, AllocaAddr.getPointer())
1527                                 : EmitLifetimeStart(size.getFixedSize(),
1528                                                     AllocaAddr.getPointer());
1529         }
1530       } else {
1531         assert(!emission.useLifetimeMarkers());
1532       }
1533     }
1534   } else {
1535     EnsureInsertPoint();
1536 
1537     if (!DidCallStackSave) {
1538       // Save the stack.
1539       Address Stack =
1540         CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack");
1541 
1542       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
1543       llvm::Value *V = Builder.CreateCall(F);
1544       Builder.CreateStore(V, Stack);
1545 
1546       DidCallStackSave = true;
1547 
1548       // Push a cleanup block and restore the stack there.
1549       // FIXME: in general circumstances, this should be an EH cleanup.
1550       pushStackRestore(NormalCleanup, Stack);
1551     }
1552 
1553     auto VlaSize = getVLASize(Ty);
1554     llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type);
1555 
1556     // Allocate memory for the array.
1557     address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts,
1558                                &AllocaAddr);
1559 
1560     // If we have debug info enabled, properly describe the VLA dimensions for
1561     // this type by registering the vla size expression for each of the
1562     // dimensions.
1563     EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo);
1564   }
1565 
1566   setAddrOfLocalVar(&D, address);
1567   emission.Addr = address;
1568   emission.AllocaAddr = AllocaAddr;
1569 
1570   // Emit debug info for local var declaration.
1571   if (EmitDebugInfo && HaveInsertPoint()) {
1572     Address DebugAddr = address;
1573     bool UsePointerValue = NRVO && ReturnValuePointer.isValid();
1574     DI->setLocation(D.getLocation());
1575 
1576     // If NRVO, use a pointer to the return address.
1577     if (UsePointerValue)
1578       DebugAddr = ReturnValuePointer;
1579 
1580     (void)DI->EmitDeclareOfAutoVariable(&D, DebugAddr.getPointer(), Builder,
1581                                         UsePointerValue);
1582   }
1583 
1584   if (D.hasAttr<AnnotateAttr>() && HaveInsertPoint())
1585     EmitVarAnnotations(&D, address.getPointer());
1586 
1587   // Make sure we call @llvm.lifetime.end.
1588   if (emission.useLifetimeMarkers())
1589     EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker,
1590                                          emission.getOriginalAllocatedAddress(),
1591                                          emission.getSizeForLifetimeMarkers());
1592 
1593   return emission;
1594 }
1595 
1596 static bool isCapturedBy(const VarDecl &, const Expr *);
1597 
1598 /// Determines whether the given __block variable is potentially
1599 /// captured by the given statement.
isCapturedBy(const VarDecl & Var,const Stmt * S)1600 static bool isCapturedBy(const VarDecl &Var, const Stmt *S) {
1601   if (const Expr *E = dyn_cast<Expr>(S))
1602     return isCapturedBy(Var, E);
1603   for (const Stmt *SubStmt : S->children())
1604     if (isCapturedBy(Var, SubStmt))
1605       return true;
1606   return false;
1607 }
1608 
1609 /// Determines whether the given __block variable is potentially
1610 /// captured by the given expression.
isCapturedBy(const VarDecl & Var,const Expr * E)1611 static bool isCapturedBy(const VarDecl &Var, const Expr *E) {
1612   // Skip the most common kinds of expressions that make
1613   // hierarchy-walking expensive.
1614   E = E->IgnoreParenCasts();
1615 
1616   if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) {
1617     const BlockDecl *Block = BE->getBlockDecl();
1618     for (const auto &I : Block->captures()) {
1619       if (I.getVariable() == &Var)
1620         return true;
1621     }
1622 
1623     // No need to walk into the subexpressions.
1624     return false;
1625   }
1626 
1627   if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
1628     const CompoundStmt *CS = SE->getSubStmt();
1629     for (const auto *BI : CS->body())
1630       if (const auto *BIE = dyn_cast<Expr>(BI)) {
1631         if (isCapturedBy(Var, BIE))
1632           return true;
1633       }
1634       else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
1635           // special case declarations
1636           for (const auto *I : DS->decls()) {
1637               if (const auto *VD = dyn_cast<VarDecl>((I))) {
1638                 const Expr *Init = VD->getInit();
1639                 if (Init && isCapturedBy(Var, Init))
1640                   return true;
1641               }
1642           }
1643       }
1644       else
1645         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1646         // Later, provide code to poke into statements for capture analysis.
1647         return true;
1648     return false;
1649   }
1650 
1651   for (const Stmt *SubStmt : E->children())
1652     if (isCapturedBy(Var, SubStmt))
1653       return true;
1654 
1655   return false;
1656 }
1657 
1658 /// Determine whether the given initializer is trivial in the sense
1659 /// that it requires no code to be generated.
isTrivialInitializer(const Expr * Init)1660 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
1661   if (!Init)
1662     return true;
1663 
1664   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1665     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1666       if (Constructor->isTrivial() &&
1667           Constructor->isDefaultConstructor() &&
1668           !Construct->requiresZeroInitialization())
1669         return true;
1670 
1671   return false;
1672 }
1673 
emitZeroOrPatternForAutoVarInit(QualType type,const VarDecl & D,Address Loc)1674 void CodeGenFunction::emitZeroOrPatternForAutoVarInit(QualType type,
1675                                                       const VarDecl &D,
1676                                                       Address Loc) {
1677   auto trivialAutoVarInit = getContext().getLangOpts().getTrivialAutoVarInit();
1678   CharUnits Size = getContext().getTypeSizeInChars(type);
1679   bool isVolatile = type.isVolatileQualified();
1680   if (!Size.isZero()) {
1681     switch (trivialAutoVarInit) {
1682     case LangOptions::TrivialAutoVarInitKind::Uninitialized:
1683       llvm_unreachable("Uninitialized handled by caller");
1684     case LangOptions::TrivialAutoVarInitKind::Zero:
1685       if (CGM.stopAutoInit())
1686         return;
1687       emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder);
1688       break;
1689     case LangOptions::TrivialAutoVarInitKind::Pattern:
1690       if (CGM.stopAutoInit())
1691         return;
1692       emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder);
1693       break;
1694     }
1695     return;
1696   }
1697 
1698   // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to
1699   // them, so emit a memcpy with the VLA size to initialize each element.
1700   // Technically zero-sized or negative-sized VLAs are undefined, and UBSan
1701   // will catch that code, but there exists code which generates zero-sized
1702   // VLAs. Be nice and initialize whatever they requested.
1703   const auto *VlaType = getContext().getAsVariableArrayType(type);
1704   if (!VlaType)
1705     return;
1706   auto VlaSize = getVLASize(VlaType);
1707   auto SizeVal = VlaSize.NumElts;
1708   CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1709   switch (trivialAutoVarInit) {
1710   case LangOptions::TrivialAutoVarInitKind::Uninitialized:
1711     llvm_unreachable("Uninitialized handled by caller");
1712 
1713   case LangOptions::TrivialAutoVarInitKind::Zero:
1714     if (CGM.stopAutoInit())
1715       return;
1716     if (!EltSize.isOne())
1717       SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
1718     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1719                          isVolatile);
1720     break;
1721 
1722   case LangOptions::TrivialAutoVarInitKind::Pattern: {
1723     if (CGM.stopAutoInit())
1724       return;
1725     llvm::Type *ElTy = Loc.getElementType();
1726     llvm::Constant *Constant = constWithPadding(
1727         CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
1728     CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type);
1729     llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop");
1730     llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop");
1731     llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont");
1732     llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ(
1733         SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0),
1734         "vla.iszerosized");
1735     Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB);
1736     EmitBlock(SetupBB);
1737     if (!EltSize.isOne())
1738       SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
1739     llvm::Value *BaseSizeInChars =
1740         llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity());
1741     Address Begin = Builder.CreateElementBitCast(Loc, Int8Ty, "vla.begin");
1742     llvm::Value *End =
1743         Builder.CreateInBoundsGEP(Begin.getPointer(), SizeVal, "vla.end");
1744     llvm::BasicBlock *OriginBB = Builder.GetInsertBlock();
1745     EmitBlock(LoopBB);
1746     llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur");
1747     Cur->addIncoming(Begin.getPointer(), OriginBB);
1748     CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize);
1749     Builder.CreateMemCpy(Address(Cur, CurAlign),
1750                          createUnnamedGlobalForMemcpyFrom(
1751                              CGM, D, Builder, Constant, ConstantAlign),
1752                          BaseSizeInChars, isVolatile);
1753     llvm::Value *Next =
1754         Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next");
1755     llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone");
1756     Builder.CreateCondBr(Done, ContBB, LoopBB);
1757     Cur->addIncoming(Next, LoopBB);
1758     EmitBlock(ContBB);
1759   } break;
1760   }
1761 }
1762 
EmitAutoVarInit(const AutoVarEmission & emission)1763 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1764   assert(emission.Variable && "emission was not valid!");
1765 
1766   // If this was emitted as a global constant, we're done.
1767   if (emission.wasEmittedAsGlobal()) return;
1768 
1769   const VarDecl &D = *emission.Variable;
1770   auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation());
1771   QualType type = D.getType();
1772 
1773   // If this local has an initializer, emit it now.
1774   const Expr *Init = D.getInit();
1775 
1776   // If we are at an unreachable point, we don't need to emit the initializer
1777   // unless it contains a label.
1778   if (!HaveInsertPoint()) {
1779     if (!Init || !ContainsLabel(Init)) return;
1780     EnsureInsertPoint();
1781   }
1782 
1783   // Initialize the structure of a __block variable.
1784   if (emission.IsEscapingByRef)
1785     emitByrefStructureInit(emission);
1786 
1787   // Initialize the variable here if it doesn't have a initializer and it is a
1788   // C struct that is non-trivial to initialize or an array containing such a
1789   // struct.
1790   if (!Init &&
1791       type.isNonTrivialToPrimitiveDefaultInitialize() ==
1792           QualType::PDIK_Struct) {
1793     LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type);
1794     if (emission.IsEscapingByRef)
1795       drillIntoBlockVariable(*this, Dst, &D);
1796     defaultInitNonTrivialCStructVar(Dst);
1797     return;
1798   }
1799 
1800   // Check whether this is a byref variable that's potentially
1801   // captured and moved by its own initializer.  If so, we'll need to
1802   // emit the initializer first, then copy into the variable.
1803   bool capturedByInit =
1804       Init && emission.IsEscapingByRef && isCapturedBy(D, Init);
1805 
1806   bool locIsByrefHeader = !capturedByInit;
1807   const Address Loc =
1808       locIsByrefHeader ? emission.getObjectAddress(*this) : emission.Addr;
1809 
1810   // Note: constexpr already initializes everything correctly.
1811   LangOptions::TrivialAutoVarInitKind trivialAutoVarInit =
1812       (D.isConstexpr()
1813            ? LangOptions::TrivialAutoVarInitKind::Uninitialized
1814            : (D.getAttr<UninitializedAttr>()
1815                   ? LangOptions::TrivialAutoVarInitKind::Uninitialized
1816                   : getContext().getLangOpts().getTrivialAutoVarInit()));
1817 
1818   auto initializeWhatIsTechnicallyUninitialized = [&](Address Loc) {
1819     if (trivialAutoVarInit ==
1820         LangOptions::TrivialAutoVarInitKind::Uninitialized)
1821       return;
1822 
1823     // Only initialize a __block's storage: we always initialize the header.
1824     if (emission.IsEscapingByRef && !locIsByrefHeader)
1825       Loc = emitBlockByrefAddress(Loc, &D, /*follow=*/false);
1826 
1827     return emitZeroOrPatternForAutoVarInit(type, D, Loc);
1828   };
1829 
1830   if (isTrivialInitializer(Init))
1831     return initializeWhatIsTechnicallyUninitialized(Loc);
1832 
1833   llvm::Constant *constant = nullptr;
1834   if (emission.IsConstantAggregate ||
1835       D.mightBeUsableInConstantExpressions(getContext())) {
1836     assert(!capturedByInit && "constant init contains a capturing block?");
1837     constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D);
1838     if (constant && !constant->isZeroValue() &&
1839         (trivialAutoVarInit !=
1840          LangOptions::TrivialAutoVarInitKind::Uninitialized)) {
1841       IsPattern isPattern =
1842           (trivialAutoVarInit == LangOptions::TrivialAutoVarInitKind::Pattern)
1843               ? IsPattern::Yes
1844               : IsPattern::No;
1845       // C guarantees that brace-init with fewer initializers than members in
1846       // the aggregate will initialize the rest of the aggregate as-if it were
1847       // static initialization. In turn static initialization guarantees that
1848       // padding is initialized to zero bits. We could instead pattern-init if D
1849       // has any ImplicitValueInitExpr, but that seems to be unintuitive
1850       // behavior.
1851       constant = constWithPadding(CGM, IsPattern::No,
1852                                   replaceUndef(CGM, isPattern, constant));
1853     }
1854   }
1855 
1856   if (!constant) {
1857     initializeWhatIsTechnicallyUninitialized(Loc);
1858     LValue lv = MakeAddrLValue(Loc, type);
1859     lv.setNonGC(true);
1860     return EmitExprAsInit(Init, &D, lv, capturedByInit);
1861   }
1862 
1863   if (!emission.IsConstantAggregate) {
1864     // For simple scalar/complex initialization, store the value directly.
1865     LValue lv = MakeAddrLValue(Loc, type);
1866     lv.setNonGC(true);
1867     return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1868   }
1869 
1870   llvm::Type *BP = CGM.Int8Ty->getPointerTo(Loc.getAddressSpace());
1871   emitStoresForConstant(
1872       CGM, D, (Loc.getType() == BP) ? Loc : Builder.CreateBitCast(Loc, BP),
1873       type.isVolatileQualified(), Builder, constant);
1874 }
1875 
1876 /// Emit an expression as an initializer for an object (variable, field, etc.)
1877 /// at the given location.  The expression is not necessarily the normal
1878 /// initializer for the object, and the address is not necessarily
1879 /// its normal location.
1880 ///
1881 /// \param init the initializing expression
1882 /// \param D the object to act as if we're initializing
1883 /// \param lvalue the lvalue to initialize
1884 /// \param capturedByInit true if \p D is a __block variable
1885 ///   whose address is potentially changed by the initializer
EmitExprAsInit(const Expr * init,const ValueDecl * D,LValue lvalue,bool capturedByInit)1886 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
1887                                      LValue lvalue, bool capturedByInit) {
1888   QualType type = D->getType();
1889 
1890   if (type->isReferenceType()) {
1891     RValue rvalue = EmitReferenceBindingToExpr(init);
1892     if (capturedByInit)
1893       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1894     EmitStoreThroughLValue(rvalue, lvalue, true);
1895     return;
1896   }
1897   switch (getEvaluationKind(type)) {
1898   case TEK_Scalar:
1899     EmitScalarInit(init, D, lvalue, capturedByInit);
1900     return;
1901   case TEK_Complex: {
1902     ComplexPairTy complex = EmitComplexExpr(init);
1903     if (capturedByInit)
1904       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1905     EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1906     return;
1907   }
1908   case TEK_Aggregate:
1909     if (type->isAtomicType()) {
1910       EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1911     } else {
1912       AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap;
1913       if (isa<VarDecl>(D))
1914         Overlap = AggValueSlot::DoesNotOverlap;
1915       else if (auto *FD = dyn_cast<FieldDecl>(D))
1916         Overlap = getOverlapForFieldInit(FD);
1917       // TODO: how can we delay here if D is captured by its initializer?
1918       EmitAggExpr(init, AggValueSlot::forLValue(
1919                             lvalue, *this, AggValueSlot::IsDestructed,
1920                             AggValueSlot::DoesNotNeedGCBarriers,
1921                             AggValueSlot::IsNotAliased, Overlap));
1922     }
1923     return;
1924   }
1925   llvm_unreachable("bad evaluation kind");
1926 }
1927 
1928 /// Enter a destroy cleanup for the given local variable.
emitAutoVarTypeCleanup(const CodeGenFunction::AutoVarEmission & emission,QualType::DestructionKind dtorKind)1929 void CodeGenFunction::emitAutoVarTypeCleanup(
1930                             const CodeGenFunction::AutoVarEmission &emission,
1931                             QualType::DestructionKind dtorKind) {
1932   assert(dtorKind != QualType::DK_none);
1933 
1934   // Note that for __block variables, we want to destroy the
1935   // original stack object, not the possibly forwarded object.
1936   Address addr = emission.getObjectAddress(*this);
1937 
1938   const VarDecl *var = emission.Variable;
1939   QualType type = var->getType();
1940 
1941   CleanupKind cleanupKind = NormalAndEHCleanup;
1942   CodeGenFunction::Destroyer *destroyer = nullptr;
1943 
1944   switch (dtorKind) {
1945   case QualType::DK_none:
1946     llvm_unreachable("no cleanup for trivially-destructible variable");
1947 
1948   case QualType::DK_cxx_destructor:
1949     // If there's an NRVO flag on the emission, we need a different
1950     // cleanup.
1951     if (emission.NRVOFlag) {
1952       assert(!type->isArrayType());
1953       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1954       EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, type, dtor,
1955                                                   emission.NRVOFlag);
1956       return;
1957     }
1958     break;
1959 
1960   case QualType::DK_objc_strong_lifetime:
1961     // Suppress cleanups for pseudo-strong variables.
1962     if (var->isARCPseudoStrong()) return;
1963 
1964     // Otherwise, consider whether to use an EH cleanup or not.
1965     cleanupKind = getARCCleanupKind();
1966 
1967     // Use the imprecise destroyer by default.
1968     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1969       destroyer = CodeGenFunction::destroyARCStrongImprecise;
1970     break;
1971 
1972   case QualType::DK_objc_weak_lifetime:
1973     break;
1974 
1975   case QualType::DK_nontrivial_c_struct:
1976     destroyer = CodeGenFunction::destroyNonTrivialCStruct;
1977     if (emission.NRVOFlag) {
1978       assert(!type->isArrayType());
1979       EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr,
1980                                                 emission.NRVOFlag, type);
1981       return;
1982     }
1983     break;
1984   }
1985 
1986   // If we haven't chosen a more specific destroyer, use the default.
1987   if (!destroyer) destroyer = getDestroyer(dtorKind);
1988 
1989   // Use an EH cleanup in array destructors iff the destructor itself
1990   // is being pushed as an EH cleanup.
1991   bool useEHCleanup = (cleanupKind & EHCleanup);
1992   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1993                                      useEHCleanup);
1994 }
1995 
EmitAutoVarCleanups(const AutoVarEmission & emission)1996 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1997   assert(emission.Variable && "emission was not valid!");
1998 
1999   // If this was emitted as a global constant, we're done.
2000   if (emission.wasEmittedAsGlobal()) return;
2001 
2002   // If we don't have an insertion point, we're done.  Sema prevents
2003   // us from jumping into any of these scopes anyway.
2004   if (!HaveInsertPoint()) return;
2005 
2006   const VarDecl &D = *emission.Variable;
2007 
2008   // Check the type for a cleanup.
2009   if (QualType::DestructionKind dtorKind = D.needsDestruction(getContext()))
2010     emitAutoVarTypeCleanup(emission, dtorKind);
2011 
2012   // In GC mode, honor objc_precise_lifetime.
2013   if (getLangOpts().getGC() != LangOptions::NonGC &&
2014       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
2015     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
2016   }
2017 
2018   // Handle the cleanup attribute.
2019   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
2020     const FunctionDecl *FD = CA->getFunctionDecl();
2021 
2022     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
2023     assert(F && "Could not find function!");
2024 
2025     const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
2026     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
2027   }
2028 
2029   // If this is a block variable, call _Block_object_destroy
2030   // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC
2031   // mode.
2032   if (emission.IsEscapingByRef &&
2033       CGM.getLangOpts().getGC() != LangOptions::GCOnly) {
2034     BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF;
2035     if (emission.Variable->getType().isObjCGCWeak())
2036       Flags |= BLOCK_FIELD_IS_WEAK;
2037     enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags,
2038                       /*LoadBlockVarAddr*/ false,
2039                       cxxDestructorCanThrow(emission.Variable->getType()));
2040   }
2041 }
2042 
2043 CodeGenFunction::Destroyer *
getDestroyer(QualType::DestructionKind kind)2044 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
2045   switch (kind) {
2046   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
2047   case QualType::DK_cxx_destructor:
2048     return destroyCXXObject;
2049   case QualType::DK_objc_strong_lifetime:
2050     return destroyARCStrongPrecise;
2051   case QualType::DK_objc_weak_lifetime:
2052     return destroyARCWeak;
2053   case QualType::DK_nontrivial_c_struct:
2054     return destroyNonTrivialCStruct;
2055   }
2056   llvm_unreachable("Unknown DestructionKind");
2057 }
2058 
2059 /// pushEHDestroy - Push the standard destructor for the given type as
2060 /// an EH-only cleanup.
pushEHDestroy(QualType::DestructionKind dtorKind,Address addr,QualType type)2061 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
2062                                     Address addr, QualType type) {
2063   assert(dtorKind && "cannot push destructor for trivial type");
2064   assert(needsEHCleanup(dtorKind));
2065 
2066   pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
2067 }
2068 
2069 /// pushDestroy - Push the standard destructor for the given type as
2070 /// at least a normal cleanup.
pushDestroy(QualType::DestructionKind dtorKind,Address addr,QualType type)2071 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
2072                                   Address addr, QualType type) {
2073   assert(dtorKind && "cannot push destructor for trivial type");
2074 
2075   CleanupKind cleanupKind = getCleanupKind(dtorKind);
2076   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
2077               cleanupKind & EHCleanup);
2078 }
2079 
pushDestroy(CleanupKind cleanupKind,Address addr,QualType type,Destroyer * destroyer,bool useEHCleanupForArray)2080 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr,
2081                                   QualType type, Destroyer *destroyer,
2082                                   bool useEHCleanupForArray) {
2083   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
2084                                      destroyer, useEHCleanupForArray);
2085 }
2086 
pushStackRestore(CleanupKind Kind,Address SPMem)2087 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) {
2088   EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
2089 }
2090 
pushLifetimeExtendedDestroy(CleanupKind cleanupKind,Address addr,QualType type,Destroyer * destroyer,bool useEHCleanupForArray)2091 void CodeGenFunction::pushLifetimeExtendedDestroy(
2092     CleanupKind cleanupKind, Address addr, QualType type,
2093     Destroyer *destroyer, bool useEHCleanupForArray) {
2094   // Push an EH-only cleanup for the object now.
2095   // FIXME: When popping normal cleanups, we need to keep this EH cleanup
2096   // around in case a temporary's destructor throws an exception.
2097   if (cleanupKind & EHCleanup)
2098     EHStack.pushCleanup<DestroyObject>(
2099         static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
2100         destroyer, useEHCleanupForArray);
2101 
2102   // Remember that we need to push a full cleanup for the object at the
2103   // end of the full-expression.
2104   pushCleanupAfterFullExpr<DestroyObject>(
2105       cleanupKind, addr, type, destroyer, useEHCleanupForArray);
2106 }
2107 
2108 /// emitDestroy - Immediately perform the destruction of the given
2109 /// object.
2110 ///
2111 /// \param addr - the address of the object; a type*
2112 /// \param type - the type of the object; if an array type, all
2113 ///   objects are destroyed in reverse order
2114 /// \param destroyer - the function to call to destroy individual
2115 ///   elements
2116 /// \param useEHCleanupForArray - whether an EH cleanup should be
2117 ///   used when destroying array elements, in case one of the
2118 ///   destructions throws an exception
emitDestroy(Address addr,QualType type,Destroyer * destroyer,bool useEHCleanupForArray)2119 void CodeGenFunction::emitDestroy(Address addr, QualType type,
2120                                   Destroyer *destroyer,
2121                                   bool useEHCleanupForArray) {
2122   const ArrayType *arrayType = getContext().getAsArrayType(type);
2123   if (!arrayType)
2124     return destroyer(*this, addr, type);
2125 
2126   llvm::Value *length = emitArrayLength(arrayType, type, addr);
2127 
2128   CharUnits elementAlign =
2129     addr.getAlignment()
2130         .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
2131 
2132   // Normally we have to check whether the array is zero-length.
2133   bool checkZeroLength = true;
2134 
2135   // But if the array length is constant, we can suppress that.
2136   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
2137     // ...and if it's constant zero, we can just skip the entire thing.
2138     if (constLength->isZero()) return;
2139     checkZeroLength = false;
2140   }
2141 
2142   llvm::Value *begin = addr.getPointer();
2143   llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
2144   emitArrayDestroy(begin, end, type, elementAlign, destroyer,
2145                    checkZeroLength, useEHCleanupForArray);
2146 }
2147 
2148 /// emitArrayDestroy - Destroys all the elements of the given array,
2149 /// beginning from last to first.  The array cannot be zero-length.
2150 ///
2151 /// \param begin - a type* denoting the first element of the array
2152 /// \param end - a type* denoting one past the end of the array
2153 /// \param elementType - the element type of the array
2154 /// \param destroyer - the function to call to destroy elements
2155 /// \param useEHCleanup - whether to push an EH cleanup to destroy
2156 ///   the remaining elements in case the destruction of a single
2157 ///   element throws
emitArrayDestroy(llvm::Value * begin,llvm::Value * end,QualType elementType,CharUnits elementAlign,Destroyer * destroyer,bool checkZeroLength,bool useEHCleanup)2158 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
2159                                        llvm::Value *end,
2160                                        QualType elementType,
2161                                        CharUnits elementAlign,
2162                                        Destroyer *destroyer,
2163                                        bool checkZeroLength,
2164                                        bool useEHCleanup) {
2165   assert(!elementType->isArrayType());
2166 
2167   // The basic structure here is a do-while loop, because we don't
2168   // need to check for the zero-element case.
2169   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
2170   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
2171 
2172   if (checkZeroLength) {
2173     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
2174                                                 "arraydestroy.isempty");
2175     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
2176   }
2177 
2178   // Enter the loop body, making that address the current address.
2179   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
2180   EmitBlock(bodyBB);
2181   llvm::PHINode *elementPast =
2182     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
2183   elementPast->addIncoming(end, entryBB);
2184 
2185   // Shift the address back by one element.
2186   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
2187   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
2188                                                    "arraydestroy.element");
2189 
2190   if (useEHCleanup)
2191     pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign,
2192                                    destroyer);
2193 
2194   // Perform the actual destruction there.
2195   destroyer(*this, Address(element, elementAlign), elementType);
2196 
2197   if (useEHCleanup)
2198     PopCleanupBlock();
2199 
2200   // Check whether we've reached the end.
2201   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
2202   Builder.CreateCondBr(done, doneBB, bodyBB);
2203   elementPast->addIncoming(element, Builder.GetInsertBlock());
2204 
2205   // Done.
2206   EmitBlock(doneBB);
2207 }
2208 
2209 /// Perform partial array destruction as if in an EH cleanup.  Unlike
2210 /// emitArrayDestroy, the element type here may still be an array type.
emitPartialArrayDestroy(CodeGenFunction & CGF,llvm::Value * begin,llvm::Value * end,QualType type,CharUnits elementAlign,CodeGenFunction::Destroyer * destroyer)2211 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
2212                                     llvm::Value *begin, llvm::Value *end,
2213                                     QualType type, CharUnits elementAlign,
2214                                     CodeGenFunction::Destroyer *destroyer) {
2215   // If the element type is itself an array, drill down.
2216   unsigned arrayDepth = 0;
2217   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
2218     // VLAs don't require a GEP index to walk into.
2219     if (!isa<VariableArrayType>(arrayType))
2220       arrayDepth++;
2221     type = arrayType->getElementType();
2222   }
2223 
2224   if (arrayDepth) {
2225     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
2226 
2227     SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero);
2228     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
2229     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
2230   }
2231 
2232   // Destroy the array.  We don't ever need an EH cleanup because we
2233   // assume that we're in an EH cleanup ourselves, so a throwing
2234   // destructor causes an immediate terminate.
2235   CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer,
2236                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
2237 }
2238 
2239 namespace {
2240   /// RegularPartialArrayDestroy - a cleanup which performs a partial
2241   /// array destroy where the end pointer is regularly determined and
2242   /// does not need to be loaded from a local.
2243   class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup {
2244     llvm::Value *ArrayBegin;
2245     llvm::Value *ArrayEnd;
2246     QualType ElementType;
2247     CodeGenFunction::Destroyer *Destroyer;
2248     CharUnits ElementAlign;
2249   public:
RegularPartialArrayDestroy(llvm::Value * arrayBegin,llvm::Value * arrayEnd,QualType elementType,CharUnits elementAlign,CodeGenFunction::Destroyer * destroyer)2250     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
2251                                QualType elementType, CharUnits elementAlign,
2252                                CodeGenFunction::Destroyer *destroyer)
2253       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
2254         ElementType(elementType), Destroyer(destroyer),
2255         ElementAlign(elementAlign) {}
2256 
Emit(CodeGenFunction & CGF,Flags flags)2257     void Emit(CodeGenFunction &CGF, Flags flags) override {
2258       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
2259                               ElementType, ElementAlign, Destroyer);
2260     }
2261   };
2262 
2263   /// IrregularPartialArrayDestroy - a cleanup which performs a
2264   /// partial array destroy where the end pointer is irregularly
2265   /// determined and must be loaded from a local.
2266   class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup {
2267     llvm::Value *ArrayBegin;
2268     Address ArrayEndPointer;
2269     QualType ElementType;
2270     CodeGenFunction::Destroyer *Destroyer;
2271     CharUnits ElementAlign;
2272   public:
IrregularPartialArrayDestroy(llvm::Value * arrayBegin,Address arrayEndPointer,QualType elementType,CharUnits elementAlign,CodeGenFunction::Destroyer * destroyer)2273     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
2274                                  Address arrayEndPointer,
2275                                  QualType elementType,
2276                                  CharUnits elementAlign,
2277                                  CodeGenFunction::Destroyer *destroyer)
2278       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
2279         ElementType(elementType), Destroyer(destroyer),
2280         ElementAlign(elementAlign) {}
2281 
Emit(CodeGenFunction & CGF,Flags flags)2282     void Emit(CodeGenFunction &CGF, Flags flags) override {
2283       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
2284       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
2285                               ElementType, ElementAlign, Destroyer);
2286     }
2287   };
2288 } // end anonymous namespace
2289 
2290 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
2291 /// already-constructed elements of the given array.  The cleanup
2292 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
2293 ///
2294 /// \param elementType - the immediate element type of the array;
2295 ///   possibly still an array type
pushIrregularPartialArrayCleanup(llvm::Value * arrayBegin,Address arrayEndPointer,QualType elementType,CharUnits elementAlign,Destroyer * destroyer)2296 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
2297                                                        Address arrayEndPointer,
2298                                                        QualType elementType,
2299                                                        CharUnits elementAlign,
2300                                                        Destroyer *destroyer) {
2301   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
2302                                                     arrayBegin, arrayEndPointer,
2303                                                     elementType, elementAlign,
2304                                                     destroyer);
2305 }
2306 
2307 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
2308 /// already-constructed elements of the given array.  The cleanup
2309 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
2310 ///
2311 /// \param elementType - the immediate element type of the array;
2312 ///   possibly still an array type
pushRegularPartialArrayCleanup(llvm::Value * arrayBegin,llvm::Value * arrayEnd,QualType elementType,CharUnits elementAlign,Destroyer * destroyer)2313 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
2314                                                      llvm::Value *arrayEnd,
2315                                                      QualType elementType,
2316                                                      CharUnits elementAlign,
2317                                                      Destroyer *destroyer) {
2318   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
2319                                                   arrayBegin, arrayEnd,
2320                                                   elementType, elementAlign,
2321                                                   destroyer);
2322 }
2323 
2324 /// Lazily declare the @llvm.lifetime.start intrinsic.
getLLVMLifetimeStartFn()2325 llvm::Function *CodeGenModule::getLLVMLifetimeStartFn() {
2326   if (LifetimeStartFn)
2327     return LifetimeStartFn;
2328   LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
2329     llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy);
2330   return LifetimeStartFn;
2331 }
2332 
2333 /// Lazily declare the @llvm.lifetime.end intrinsic.
getLLVMLifetimeEndFn()2334 llvm::Function *CodeGenModule::getLLVMLifetimeEndFn() {
2335   if (LifetimeEndFn)
2336     return LifetimeEndFn;
2337   LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
2338     llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy);
2339   return LifetimeEndFn;
2340 }
2341 
2342 namespace {
2343   /// A cleanup to perform a release of an object at the end of a
2344   /// function.  This is used to balance out the incoming +1 of a
2345   /// ns_consumed argument when we can't reasonably do that just by
2346   /// not doing the initial retain for a __block argument.
2347   struct ConsumeARCParameter final : EHScopeStack::Cleanup {
ConsumeARCParameter__anona90623d20511::ConsumeARCParameter2348     ConsumeARCParameter(llvm::Value *param,
2349                         ARCPreciseLifetime_t precise)
2350       : Param(param), Precise(precise) {}
2351 
2352     llvm::Value *Param;
2353     ARCPreciseLifetime_t Precise;
2354 
Emit__anona90623d20511::ConsumeARCParameter2355     void Emit(CodeGenFunction &CGF, Flags flags) override {
2356       CGF.EmitARCRelease(Param, Precise);
2357     }
2358   };
2359 } // end anonymous namespace
2360 
2361 /// Emit an alloca (or GlobalValue depending on target)
2362 /// for the specified parameter and set up LocalDeclMap.
EmitParmDecl(const VarDecl & D,ParamValue Arg,unsigned ArgNo)2363 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg,
2364                                    unsigned ArgNo) {
2365   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
2366   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
2367          "Invalid argument to EmitParmDecl");
2368 
2369   Arg.getAnyValue()->setName(D.getName());
2370 
2371   QualType Ty = D.getType();
2372 
2373   // Use better IR generation for certain implicit parameters.
2374   if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) {
2375     // The only implicit argument a block has is its literal.
2376     // This may be passed as an inalloca'ed value on Windows x86.
2377     if (BlockInfo) {
2378       llvm::Value *V = Arg.isIndirect()
2379                            ? Builder.CreateLoad(Arg.getIndirectAddress())
2380                            : Arg.getDirectValue();
2381       setBlockContextParameter(IPD, ArgNo, V);
2382       return;
2383     }
2384   }
2385 
2386   Address DeclPtr = Address::invalid();
2387   bool DoStore = false;
2388   bool IsScalar = hasScalarEvaluationKind(Ty);
2389   // If we already have a pointer to the argument, reuse the input pointer.
2390   if (Arg.isIndirect()) {
2391     DeclPtr = Arg.getIndirectAddress();
2392     // If we have a prettier pointer type at this point, bitcast to that.
2393     unsigned AS = DeclPtr.getType()->getAddressSpace();
2394     llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
2395     if (DeclPtr.getType() != IRTy)
2396       DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName());
2397     // Indirect argument is in alloca address space, which may be different
2398     // from the default address space.
2399     auto AllocaAS = CGM.getASTAllocaAddressSpace();
2400     auto *V = DeclPtr.getPointer();
2401     auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS;
2402     auto DestLangAS =
2403         getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default;
2404     if (SrcLangAS != DestLangAS) {
2405       assert(getContext().getTargetAddressSpace(SrcLangAS) ==
2406              CGM.getDataLayout().getAllocaAddrSpace());
2407       auto DestAS = getContext().getTargetAddressSpace(DestLangAS);
2408       auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS);
2409       DeclPtr = Address(getTargetHooks().performAddrSpaceCast(
2410                             *this, V, SrcLangAS, DestLangAS, T, true),
2411                         DeclPtr.getAlignment());
2412     }
2413 
2414     // Push a destructor cleanup for this parameter if the ABI requires it.
2415     // Don't push a cleanup in a thunk for a method that will also emit a
2416     // cleanup.
2417     if (hasAggregateEvaluationKind(Ty) && !CurFuncIsThunk &&
2418         Ty->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
2419       if (QualType::DestructionKind DtorKind =
2420               D.needsDestruction(getContext())) {
2421         assert((DtorKind == QualType::DK_cxx_destructor ||
2422                 DtorKind == QualType::DK_nontrivial_c_struct) &&
2423                "unexpected destructor type");
2424         pushDestroy(DtorKind, DeclPtr, Ty);
2425         CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] =
2426             EHStack.stable_begin();
2427       }
2428     }
2429   } else {
2430     // Check if the parameter address is controlled by OpenMP runtime.
2431     Address OpenMPLocalAddr =
2432         getLangOpts().OpenMP
2433             ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
2434             : Address::invalid();
2435     if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
2436       DeclPtr = OpenMPLocalAddr;
2437     } else {
2438       // Otherwise, create a temporary to hold the value.
2439       DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D),
2440                               D.getName() + ".addr");
2441     }
2442     DoStore = true;
2443   }
2444 
2445   llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr);
2446 
2447   LValue lv = MakeAddrLValue(DeclPtr, Ty);
2448   if (IsScalar) {
2449     Qualifiers qs = Ty.getQualifiers();
2450     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
2451       // We honor __attribute__((ns_consumed)) for types with lifetime.
2452       // For __strong, it's handled by just skipping the initial retain;
2453       // otherwise we have to balance out the initial +1 with an extra
2454       // cleanup to do the release at the end of the function.
2455       bool isConsumed = D.hasAttr<NSConsumedAttr>();
2456 
2457       // If a parameter is pseudo-strong then we can omit the implicit retain.
2458       if (D.isARCPseudoStrong()) {
2459         assert(lt == Qualifiers::OCL_Strong &&
2460                "pseudo-strong variable isn't strong?");
2461         assert(qs.hasConst() && "pseudo-strong variable should be const!");
2462         lt = Qualifiers::OCL_ExplicitNone;
2463       }
2464 
2465       // Load objects passed indirectly.
2466       if (Arg.isIndirect() && !ArgVal)
2467         ArgVal = Builder.CreateLoad(DeclPtr);
2468 
2469       if (lt == Qualifiers::OCL_Strong) {
2470         if (!isConsumed) {
2471           if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2472             // use objc_storeStrong(&dest, value) for retaining the
2473             // object. But first, store a null into 'dest' because
2474             // objc_storeStrong attempts to release its old value.
2475             llvm::Value *Null = CGM.EmitNullConstant(D.getType());
2476             EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
2477             EmitARCStoreStrongCall(lv.getAddress(*this), ArgVal, true);
2478             DoStore = false;
2479           }
2480           else
2481           // Don't use objc_retainBlock for block pointers, because we
2482           // don't want to Block_copy something just because we got it
2483           // as a parameter.
2484             ArgVal = EmitARCRetainNonBlock(ArgVal);
2485         }
2486       } else {
2487         // Push the cleanup for a consumed parameter.
2488         if (isConsumed) {
2489           ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
2490                                 ? ARCPreciseLifetime : ARCImpreciseLifetime);
2491           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal,
2492                                                    precise);
2493         }
2494 
2495         if (lt == Qualifiers::OCL_Weak) {
2496           EmitARCInitWeak(DeclPtr, ArgVal);
2497           DoStore = false; // The weak init is a store, no need to do two.
2498         }
2499       }
2500 
2501       // Enter the cleanup scope.
2502       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
2503     }
2504   }
2505 
2506   // Store the initial value into the alloca.
2507   if (DoStore)
2508     EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true);
2509 
2510   setAddrOfLocalVar(&D, DeclPtr);
2511 
2512   // Emit debug info for param declarations in non-thunk functions.
2513   if (CGDebugInfo *DI = getDebugInfo()) {
2514     if (CGM.getCodeGenOpts().hasReducedDebugInfo() && !CurFuncIsThunk) {
2515       DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder);
2516     }
2517   }
2518 
2519   if (D.hasAttr<AnnotateAttr>())
2520     EmitVarAnnotations(&D, DeclPtr.getPointer());
2521 
2522   // We can only check return value nullability if all arguments to the
2523   // function satisfy their nullability preconditions. This makes it necessary
2524   // to emit null checks for args in the function body itself.
2525   if (requiresReturnValueNullabilityCheck()) {
2526     auto Nullability = Ty->getNullability(getContext());
2527     if (Nullability && *Nullability == NullabilityKind::NonNull) {
2528       SanitizerScope SanScope(this);
2529       RetValNullabilityPrecondition =
2530           Builder.CreateAnd(RetValNullabilityPrecondition,
2531                             Builder.CreateIsNotNull(Arg.getAnyValue()));
2532     }
2533   }
2534 }
2535 
EmitOMPDeclareReduction(const OMPDeclareReductionDecl * D,CodeGenFunction * CGF)2536 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D,
2537                                             CodeGenFunction *CGF) {
2538   if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed()))
2539     return;
2540   getOpenMPRuntime().emitUserDefinedReduction(CGF, D);
2541 }
2542 
EmitOMPDeclareMapper(const OMPDeclareMapperDecl * D,CodeGenFunction * CGF)2543 void CodeGenModule::EmitOMPDeclareMapper(const OMPDeclareMapperDecl *D,
2544                                          CodeGenFunction *CGF) {
2545   if (!LangOpts.OpenMP || LangOpts.OpenMPSimd ||
2546       (!LangOpts.EmitAllDecls && !D->isUsed()))
2547     return;
2548   getOpenMPRuntime().emitUserDefinedMapper(D, CGF);
2549 }
2550 
EmitOMPRequiresDecl(const OMPRequiresDecl * D)2551 void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) {
2552   getOpenMPRuntime().processRequiresDirective(D);
2553 }
2554