1 //===- llvm/unittest/Analysis/LoopPassManagerTest.cpp - LPM tests ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Transforms/Scalar/LoopPassManager.h"
10 #include "llvm/Analysis/AliasAnalysis.h"
11 #include "llvm/Analysis/AssumptionCache.h"
12 #include "llvm/Analysis/MemorySSA.h"
13 #include "llvm/Analysis/ScalarEvolution.h"
14 #include "llvm/Analysis/TargetLibraryInfo.h"
15 #include "llvm/Analysis/TargetTransformInfo.h"
16 #include "llvm/AsmParser/Parser.h"
17 #include "llvm/IR/Dominators.h"
18 #include "llvm/IR/Function.h"
19 #include "llvm/IR/LLVMContext.h"
20 #include "llvm/IR/Module.h"
21 #include "llvm/IR/PassManager.h"
22 #include "llvm/Support/SourceMgr.h"
23 
24 #include "gmock/gmock.h"
25 #include "gtest/gtest.h"
26 
27 using namespace llvm;
28 
29 namespace {
30 
31 using testing::DoDefault;
32 using testing::Return;
33 using testing::Expectation;
34 using testing::Invoke;
35 using testing::InvokeWithoutArgs;
36 using testing::_;
37 
38 template <typename DerivedT, typename IRUnitT,
39           typename AnalysisManagerT = AnalysisManager<IRUnitT>,
40           typename... ExtraArgTs>
41 class MockAnalysisHandleBase {
42 public:
43   class Analysis : public AnalysisInfoMixin<Analysis> {
44     friend AnalysisInfoMixin<Analysis>;
45     friend MockAnalysisHandleBase;
46     static AnalysisKey Key;
47 
48     DerivedT *Handle;
49 
Analysis(DerivedT & Handle)50     Analysis(DerivedT &Handle) : Handle(&Handle) {
51       static_assert(std::is_base_of<MockAnalysisHandleBase, DerivedT>::value,
52                     "Must pass the derived type to this template!");
53     }
54 
55   public:
56     class Result {
57       friend MockAnalysisHandleBase;
58 
59       DerivedT *Handle;
60 
Result(DerivedT & Handle)61       Result(DerivedT &Handle) : Handle(&Handle) {}
62 
63     public:
64       // Forward invalidation events to the mock handle.
invalidate(IRUnitT & IR,const PreservedAnalyses & PA,typename AnalysisManagerT::Invalidator & Inv)65       bool invalidate(IRUnitT &IR, const PreservedAnalyses &PA,
66                       typename AnalysisManagerT::Invalidator &Inv) {
67         return Handle->invalidate(IR, PA, Inv);
68       }
69     };
70 
run(IRUnitT & IR,AnalysisManagerT & AM,ExtraArgTs...ExtraArgs)71     Result run(IRUnitT &IR, AnalysisManagerT &AM, ExtraArgTs... ExtraArgs) {
72       return Handle->run(IR, AM, ExtraArgs...);
73     }
74   };
75 
getAnalysis()76   Analysis getAnalysis() { return Analysis(static_cast<DerivedT &>(*this)); }
getResult()77   typename Analysis::Result getResult() {
78     return typename Analysis::Result(static_cast<DerivedT &>(*this));
79   }
80 
81 protected:
82   // FIXME: MSVC seems unable to handle a lambda argument to Invoke from within
83   // the template, so we use a boring static function.
invalidateCallback(IRUnitT & IR,const PreservedAnalyses & PA,typename AnalysisManagerT::Invalidator & Inv)84   static bool invalidateCallback(IRUnitT &IR, const PreservedAnalyses &PA,
85                                  typename AnalysisManagerT::Invalidator &Inv) {
86     auto PAC = PA.template getChecker<Analysis>();
87     return !PAC.preserved() &&
88            !PAC.template preservedSet<AllAnalysesOn<IRUnitT>>();
89   }
90 
91   /// Derived classes should call this in their constructor to set up default
92   /// mock actions. (We can't do this in our constructor because this has to
93   /// run after the DerivedT is constructed.)
setDefaults()94   void setDefaults() {
95     ON_CALL(static_cast<DerivedT &>(*this),
96             run(_, _, testing::Matcher<ExtraArgTs>(_)...))
97         .WillByDefault(Return(this->getResult()));
98     ON_CALL(static_cast<DerivedT &>(*this), invalidate(_, _, _))
99         .WillByDefault(Invoke(&invalidateCallback));
100   }
101 };
102 
103 template <typename DerivedT, typename IRUnitT, typename AnalysisManagerT,
104           typename... ExtraArgTs>
105 AnalysisKey MockAnalysisHandleBase<DerivedT, IRUnitT, AnalysisManagerT,
106                                    ExtraArgTs...>::Analysis::Key;
107 
108 /// Mock handle for loop analyses.
109 ///
110 /// This is provided as a template accepting an (optional) integer. Because
111 /// analyses are identified and queried by type, this allows constructing
112 /// multiple handles with distinctly typed nested 'Analysis' types that can be
113 /// registered and queried. If you want to register multiple loop analysis
114 /// passes, you'll need to instantiate this type with different values for I.
115 /// For example:
116 ///
117 ///   MockLoopAnalysisHandleTemplate<0> h0;
118 ///   MockLoopAnalysisHandleTemplate<1> h1;
119 ///   typedef decltype(h0)::Analysis Analysis0;
120 ///   typedef decltype(h1)::Analysis Analysis1;
121 template <size_t I = static_cast<size_t>(-1)>
122 struct MockLoopAnalysisHandleTemplate
123     : MockAnalysisHandleBase<MockLoopAnalysisHandleTemplate<I>, Loop,
124                              LoopAnalysisManager,
125                              LoopStandardAnalysisResults &> {
126   typedef typename MockLoopAnalysisHandleTemplate::Analysis Analysis;
127 
128   MOCK_METHOD3_T(run, typename Analysis::Result(Loop &, LoopAnalysisManager &,
129                                                 LoopStandardAnalysisResults &));
130 
131   MOCK_METHOD3_T(invalidate, bool(Loop &, const PreservedAnalyses &,
132                                   LoopAnalysisManager::Invalidator &));
133 
MockLoopAnalysisHandleTemplate__anon998250a30111::MockLoopAnalysisHandleTemplate134   MockLoopAnalysisHandleTemplate() { this->setDefaults(); }
135 };
136 
137 typedef MockLoopAnalysisHandleTemplate<> MockLoopAnalysisHandle;
138 
139 struct MockFunctionAnalysisHandle
140     : MockAnalysisHandleBase<MockFunctionAnalysisHandle, Function> {
141   MOCK_METHOD2(run, Analysis::Result(Function &, FunctionAnalysisManager &));
142 
143   MOCK_METHOD3(invalidate, bool(Function &, const PreservedAnalyses &,
144                                 FunctionAnalysisManager::Invalidator &));
145 
MockFunctionAnalysisHandle__anon998250a30111::MockFunctionAnalysisHandle146   MockFunctionAnalysisHandle() { setDefaults(); }
147 };
148 
149 template <typename DerivedT, typename IRUnitT,
150           typename AnalysisManagerT = AnalysisManager<IRUnitT>,
151           typename... ExtraArgTs>
152 class MockPassHandleBase {
153 public:
154   class Pass : public PassInfoMixin<Pass> {
155     friend MockPassHandleBase;
156 
157     DerivedT *Handle;
158 
Pass(DerivedT & Handle)159     Pass(DerivedT &Handle) : Handle(&Handle) {
160       static_assert(std::is_base_of<MockPassHandleBase, DerivedT>::value,
161                     "Must pass the derived type to this template!");
162     }
163 
164   public:
run(IRUnitT & IR,AnalysisManagerT & AM,ExtraArgTs...ExtraArgs)165     PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM,
166                           ExtraArgTs... ExtraArgs) {
167       return Handle->run(IR, AM, ExtraArgs...);
168     }
169   };
170 
getPass()171   Pass getPass() { return Pass(static_cast<DerivedT &>(*this)); }
172 
173 protected:
174   /// Derived classes should call this in their constructor to set up default
175   /// mock actions. (We can't do this in our constructor because this has to
176   /// run after the DerivedT is constructed.)
setDefaults()177   void setDefaults() {
178     ON_CALL(static_cast<DerivedT &>(*this),
179             run(_, _, testing::Matcher<ExtraArgTs>(_)...))
180         .WillByDefault(Return(PreservedAnalyses::all()));
181   }
182 };
183 
184 struct MockLoopPassHandle
185     : MockPassHandleBase<MockLoopPassHandle, Loop, LoopAnalysisManager,
186                          LoopStandardAnalysisResults &, LPMUpdater &> {
187   MOCK_METHOD4(run,
188                PreservedAnalyses(Loop &, LoopAnalysisManager &,
189                                  LoopStandardAnalysisResults &, LPMUpdater &));
MockLoopPassHandle__anon998250a30111::MockLoopPassHandle190   MockLoopPassHandle() { setDefaults(); }
191 };
192 
193 struct MockFunctionPassHandle
194     : MockPassHandleBase<MockFunctionPassHandle, Function> {
195   MOCK_METHOD2(run, PreservedAnalyses(Function &, FunctionAnalysisManager &));
196 
MockFunctionPassHandle__anon998250a30111::MockFunctionPassHandle197   MockFunctionPassHandle() { setDefaults(); }
198 };
199 
200 struct MockModulePassHandle : MockPassHandleBase<MockModulePassHandle, Module> {
201   MOCK_METHOD2(run, PreservedAnalyses(Module &, ModuleAnalysisManager &));
202 
MockModulePassHandle__anon998250a30111::MockModulePassHandle203   MockModulePassHandle() { setDefaults(); }
204 };
205 
206 /// Define a custom matcher for objects which support a 'getName' method
207 /// returning a StringRef.
208 ///
209 /// LLVM often has IR objects or analysis objects which expose a StringRef name
210 /// and in tests it is convenient to match these by name for readability. This
211 /// matcher supports any type exposing a getName() method of this form.
212 ///
213 /// It should be used as:
214 ///
215 ///   HasName("my_function")
216 ///
217 /// No namespace or other qualification is required.
218 MATCHER_P(HasName, Name, "") {
219   // The matcher's name and argument are printed in the case of failure, but we
220   // also want to print out the name of the argument. This uses an implicitly
221   // avaiable std::ostream, so we have to construct a std::string.
222   *result_listener << "has name '" << arg.getName().str() << "'";
223   return Name == arg.getName();
224 }
225 
parseIR(LLVMContext & C,const char * IR)226 std::unique_ptr<Module> parseIR(LLVMContext &C, const char *IR) {
227   SMDiagnostic Err;
228   return parseAssemblyString(IR, Err, C);
229 }
230 
231 class LoopPassManagerTest : public ::testing::Test {
232 protected:
233   LLVMContext Context;
234   std::unique_ptr<Module> M;
235 
236   LoopAnalysisManager LAM;
237   FunctionAnalysisManager FAM;
238   ModuleAnalysisManager MAM;
239 
240   MockLoopAnalysisHandle MLAHandle;
241   MockLoopPassHandle MLPHandle;
242   MockFunctionPassHandle MFPHandle;
243   MockModulePassHandle MMPHandle;
244 
245   static PreservedAnalyses
getLoopAnalysisResult(Loop & L,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR,LPMUpdater &)246   getLoopAnalysisResult(Loop &L, LoopAnalysisManager &AM,
247                         LoopStandardAnalysisResults &AR, LPMUpdater &) {
248     (void)AM.getResult<MockLoopAnalysisHandle::Analysis>(L, AR);
249     return PreservedAnalyses::all();
250   };
251 
252 public:
LoopPassManagerTest()253   LoopPassManagerTest()
254       : M(parseIR(Context,
255                   "define void @f(i1* %ptr) {\n"
256                   "entry:\n"
257                   "  br label %loop.0\n"
258                   "loop.0:\n"
259                   "  %cond.0 = load volatile i1, i1* %ptr\n"
260                   "  br i1 %cond.0, label %loop.0.0.ph, label %end\n"
261                   "loop.0.0.ph:\n"
262                   "  br label %loop.0.0\n"
263                   "loop.0.0:\n"
264                   "  %cond.0.0 = load volatile i1, i1* %ptr\n"
265                   "  br i1 %cond.0.0, label %loop.0.0, label %loop.0.1.ph\n"
266                   "loop.0.1.ph:\n"
267                   "  br label %loop.0.1\n"
268                   "loop.0.1:\n"
269                   "  %cond.0.1 = load volatile i1, i1* %ptr\n"
270                   "  br i1 %cond.0.1, label %loop.0.1, label %loop.0.latch\n"
271                   "loop.0.latch:\n"
272                   "  br label %loop.0\n"
273                   "end:\n"
274                   "  ret void\n"
275                   "}\n"
276                   "\n"
277                   "define void @g(i1* %ptr) {\n"
278                   "entry:\n"
279                   "  br label %loop.g.0\n"
280                   "loop.g.0:\n"
281                   "  %cond.0 = load volatile i1, i1* %ptr\n"
282                   "  br i1 %cond.0, label %loop.g.0, label %end\n"
283                   "end:\n"
284                   "  ret void\n"
285                   "}\n")),
286         LAM(true), FAM(true), MAM(true) {
287     // Register our mock analysis.
288     LAM.registerPass([&] { return MLAHandle.getAnalysis(); });
289 
290     // We need DominatorTreeAnalysis for LoopAnalysis.
291     FAM.registerPass([&] { return DominatorTreeAnalysis(); });
292     FAM.registerPass([&] { return LoopAnalysis(); });
293     // We also allow loop passes to assume a set of other analyses and so need
294     // those.
295     FAM.registerPass([&] { return AAManager(); });
296     FAM.registerPass([&] { return AssumptionAnalysis(); });
297     FAM.registerPass([&] { return MemorySSAAnalysis(); });
298     FAM.registerPass([&] { return ScalarEvolutionAnalysis(); });
299     FAM.registerPass([&] { return TargetLibraryAnalysis(); });
300     FAM.registerPass([&] { return TargetIRAnalysis(); });
301 
302     // Register required pass instrumentation analysis.
303     LAM.registerPass([&] { return PassInstrumentationAnalysis(); });
304     FAM.registerPass([&] { return PassInstrumentationAnalysis(); });
305     MAM.registerPass([&] { return PassInstrumentationAnalysis(); });
306 
307     // Cross-register proxies.
308     LAM.registerPass([&] { return FunctionAnalysisManagerLoopProxy(FAM); });
309     FAM.registerPass([&] { return LoopAnalysisManagerFunctionProxy(LAM); });
310     FAM.registerPass([&] { return ModuleAnalysisManagerFunctionProxy(MAM); });
311     MAM.registerPass([&] { return FunctionAnalysisManagerModuleProxy(FAM); });
312   }
313 };
314 
TEST_F(LoopPassManagerTest,Basic)315 TEST_F(LoopPassManagerTest, Basic) {
316   ModulePassManager MPM(true);
317   ::testing::InSequence MakeExpectationsSequenced;
318 
319   // First we just visit all the loops in all the functions and get their
320   // analysis results. This will run the analysis a total of four times,
321   // once for each loop.
322   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
323       .WillOnce(Invoke(getLoopAnalysisResult));
324   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
325   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
326       .WillOnce(Invoke(getLoopAnalysisResult));
327   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
328   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
329       .WillOnce(Invoke(getLoopAnalysisResult));
330   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
331   EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _))
332       .WillOnce(Invoke(getLoopAnalysisResult));
333   EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
334   // Wire the loop pass through pass managers into the module pipeline.
335   {
336     LoopPassManager LPM(true);
337     LPM.addPass(MLPHandle.getPass());
338     FunctionPassManager FPM(true);
339     FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
340     MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
341   }
342 
343   // Next we run two passes over the loops. The first one invalidates the
344   // analyses for one loop, the second ones try to get the analysis results.
345   // This should force only one analysis to re-run within the loop PM, but will
346   // also invalidate everything after the loop pass manager finishes.
347   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
348       .WillOnce(DoDefault())
349       .WillOnce(Invoke(getLoopAnalysisResult));
350   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
351       .WillOnce(InvokeWithoutArgs([] { return PreservedAnalyses::none(); }))
352       .WillOnce(Invoke(getLoopAnalysisResult));
353   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
354   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
355       .WillOnce(DoDefault())
356       .WillOnce(Invoke(getLoopAnalysisResult));
357   EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _))
358       .WillOnce(DoDefault())
359       .WillOnce(Invoke(getLoopAnalysisResult));
360   // Wire two loop pass runs into the module pipeline.
361   {
362     LoopPassManager LPM(true);
363     LPM.addPass(MLPHandle.getPass());
364     LPM.addPass(MLPHandle.getPass());
365     FunctionPassManager FPM(true);
366     FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
367     MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
368   }
369 
370   // And now run the pipeline across the module.
371   MPM.run(*M, MAM);
372 }
373 
TEST_F(LoopPassManagerTest,FunctionPassInvalidationOfLoopAnalyses)374 TEST_F(LoopPassManagerTest, FunctionPassInvalidationOfLoopAnalyses) {
375   ModulePassManager MPM(true);
376   FunctionPassManager FPM(true);
377   // We process each function completely in sequence.
378   ::testing::Sequence FSequence, GSequence;
379 
380   // First, force the analysis result to be computed for each loop.
381   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _))
382       .InSequence(FSequence)
383       .WillOnce(DoDefault());
384   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _))
385       .InSequence(FSequence)
386       .WillOnce(DoDefault());
387   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _))
388       .InSequence(FSequence)
389       .WillOnce(DoDefault());
390   EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _))
391       .InSequence(GSequence)
392       .WillOnce(DoDefault());
393   FPM.addPass(createFunctionToLoopPassAdaptor(
394       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
395 
396   // No need to re-run if we require again from a fresh loop pass manager.
397   FPM.addPass(createFunctionToLoopPassAdaptor(
398       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
399   // For 'f', preserve most things but not the specific loop analyses.
400   auto PA = getLoopPassPreservedAnalyses();
401   if (EnableMSSALoopDependency)
402     PA.preserve<MemorySSAAnalysis>();
403   EXPECT_CALL(MFPHandle, run(HasName("f"), _))
404       .InSequence(FSequence)
405       .WillOnce(Return(PA));
406   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.0"), _, _))
407       .InSequence(FSequence)
408       .WillOnce(DoDefault());
409   // On one loop, skip the invalidation (as though we did an internal update).
410   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.1"), _, _))
411       .InSequence(FSequence)
412       .WillOnce(Return(false));
413   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0"), _, _))
414       .InSequence(FSequence)
415       .WillOnce(DoDefault());
416   // Now two loops still have to be recomputed.
417   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _))
418       .InSequence(FSequence)
419       .WillOnce(DoDefault());
420   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _))
421       .InSequence(FSequence)
422       .WillOnce(DoDefault());
423   // Preserve things in the second function to ensure invalidation remains
424   // isolated to one function.
425   EXPECT_CALL(MFPHandle, run(HasName("g"), _))
426       .InSequence(GSequence)
427       .WillOnce(DoDefault());
428   FPM.addPass(MFPHandle.getPass());
429   FPM.addPass(createFunctionToLoopPassAdaptor(
430       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
431 
432   EXPECT_CALL(MFPHandle, run(HasName("f"), _))
433       .InSequence(FSequence)
434       .WillOnce(DoDefault());
435   // For 'g', fail to preserve anything, causing the loops themselves to be
436   // cleared. We don't get an invalidation event here as the loop is gone, but
437   // we should still have to recompute the analysis.
438   EXPECT_CALL(MFPHandle, run(HasName("g"), _))
439       .InSequence(GSequence)
440       .WillOnce(Return(PreservedAnalyses::none()));
441   EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _))
442       .InSequence(GSequence)
443       .WillOnce(DoDefault());
444   FPM.addPass(MFPHandle.getPass());
445   FPM.addPass(createFunctionToLoopPassAdaptor(
446       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
447 
448   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
449 
450   // Verify with a separate function pass run that we didn't mess up 'f's
451   // cache. No analysis runs should be necessary here.
452   MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
453       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
454 
455   MPM.run(*M, MAM);
456 }
457 
TEST_F(LoopPassManagerTest,ModulePassInvalidationOfLoopAnalyses)458 TEST_F(LoopPassManagerTest, ModulePassInvalidationOfLoopAnalyses) {
459   ModulePassManager MPM(true);
460   ::testing::InSequence MakeExpectationsSequenced;
461 
462   // First, force the analysis result to be computed for each loop.
463   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
464   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
465   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
466   EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
467   MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
468       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
469 
470   // Walking all the way out and all the way back in doesn't re-run the
471   // analysis.
472   MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
473       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
474 
475   // But a module pass that doesn't preserve the actual mock loop analysis
476   // invalidates all the way down and forces recomputing.
477   EXPECT_CALL(MMPHandle, run(_, _)).WillOnce(InvokeWithoutArgs([] {
478     auto PA = getLoopPassPreservedAnalyses();
479     PA.preserve<FunctionAnalysisManagerModuleProxy>();
480     if (EnableMSSALoopDependency)
481       PA.preserve<MemorySSAAnalysis>();
482     return PA;
483   }));
484   // All the loop analyses from both functions get invalidated before we
485   // recompute anything.
486   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.0"), _, _));
487   // On one loop, again skip the invalidation (as though we did an internal
488   // update).
489   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.1"), _, _))
490       .WillOnce(Return(false));
491   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0"), _, _));
492   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.g.0"), _, _));
493   // Now all but one of the loops gets re-analyzed.
494   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
495   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
496   EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
497   MPM.addPass(MMPHandle.getPass());
498   MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
499       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
500 
501   // Verify that the cached values persist.
502   MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
503       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
504 
505   // Now we fail to preserve the loop analysis and observe that the loop
506   // analyses are cleared (so no invalidation event) as the loops themselves
507   // are no longer valid.
508   EXPECT_CALL(MMPHandle, run(_, _)).WillOnce(InvokeWithoutArgs([] {
509     auto PA = PreservedAnalyses::none();
510     PA.preserve<FunctionAnalysisManagerModuleProxy>();
511     return PA;
512   }));
513   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
514   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
515   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
516   EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
517   MPM.addPass(MMPHandle.getPass());
518   MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
519       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
520 
521   // Verify that the cached values persist.
522   MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
523       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
524 
525   // Next, check that even if we preserve everything within the function itelf,
526   // if the function's module pass proxy isn't preserved and the potential set
527   // of functions changes, the clear reaches the loop analyses as well. This
528   // will again trigger re-runs but not invalidation events.
529   EXPECT_CALL(MMPHandle, run(_, _)).WillOnce(InvokeWithoutArgs([] {
530     auto PA = PreservedAnalyses::none();
531     PA.preserveSet<AllAnalysesOn<Function>>();
532     PA.preserveSet<AllAnalysesOn<Loop>>();
533     return PA;
534   }));
535   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
536   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
537   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
538   EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
539   MPM.addPass(MMPHandle.getPass());
540   MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
541       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
542 
543   MPM.run(*M, MAM);
544 }
545 
546 // Test that if any of the bundled analyses provided in the LPM's signature
547 // become invalid, the analysis proxy itself becomes invalid and we clear all
548 // loop analysis results.
TEST_F(LoopPassManagerTest,InvalidationOfBundledAnalyses)549 TEST_F(LoopPassManagerTest, InvalidationOfBundledAnalyses) {
550   ModulePassManager MPM(true);
551   FunctionPassManager FPM(true);
552   ::testing::InSequence MakeExpectationsSequenced;
553 
554   // First, force the analysis result to be computed for each loop.
555   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
556   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
557   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
558   FPM.addPass(createFunctionToLoopPassAdaptor(
559       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
560 
561   // No need to re-run if we require again from a fresh loop pass manager.
562   FPM.addPass(createFunctionToLoopPassAdaptor(
563       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
564 
565   // Preserving everything but the loop analyses themselves results in
566   // invalidation and running.
567   EXPECT_CALL(MFPHandle, run(HasName("f"), _))
568       .WillOnce(Return(getLoopPassPreservedAnalyses()));
569   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
570   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
571   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
572   FPM.addPass(MFPHandle.getPass());
573   FPM.addPass(createFunctionToLoopPassAdaptor(
574       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
575 
576   // The rest don't invalidate analyses, they only trigger re-runs because we
577   // clear the cache completely.
578   EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
579     auto PA = PreservedAnalyses::none();
580     // Not preserving `AAManager`.
581     PA.preserve<DominatorTreeAnalysis>();
582     PA.preserve<LoopAnalysis>();
583     PA.preserve<LoopAnalysisManagerFunctionProxy>();
584     PA.preserve<ScalarEvolutionAnalysis>();
585     return PA;
586   }));
587   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
588   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
589   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
590   FPM.addPass(MFPHandle.getPass());
591   FPM.addPass(createFunctionToLoopPassAdaptor(
592       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
593 
594   EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
595     auto PA = PreservedAnalyses::none();
596     PA.preserve<AAManager>();
597     // Not preserving `DominatorTreeAnalysis`.
598     PA.preserve<LoopAnalysis>();
599     PA.preserve<LoopAnalysisManagerFunctionProxy>();
600     PA.preserve<ScalarEvolutionAnalysis>();
601     return PA;
602   }));
603   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
604   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
605   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
606   FPM.addPass(MFPHandle.getPass());
607   FPM.addPass(createFunctionToLoopPassAdaptor(
608       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
609 
610   EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
611     auto PA = PreservedAnalyses::none();
612     PA.preserve<AAManager>();
613     PA.preserve<DominatorTreeAnalysis>();
614     // Not preserving the `LoopAnalysis`.
615     PA.preserve<LoopAnalysisManagerFunctionProxy>();
616     PA.preserve<ScalarEvolutionAnalysis>();
617     return PA;
618   }));
619   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
620   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
621   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
622   FPM.addPass(MFPHandle.getPass());
623   FPM.addPass(createFunctionToLoopPassAdaptor(
624       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
625 
626   EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
627     auto PA = PreservedAnalyses::none();
628     PA.preserve<AAManager>();
629     PA.preserve<DominatorTreeAnalysis>();
630     PA.preserve<LoopAnalysis>();
631     // Not preserving the `LoopAnalysisManagerFunctionProxy`.
632     PA.preserve<ScalarEvolutionAnalysis>();
633     return PA;
634   }));
635   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
636   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
637   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
638   FPM.addPass(MFPHandle.getPass());
639   FPM.addPass(createFunctionToLoopPassAdaptor(
640       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
641 
642   EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
643     auto PA = PreservedAnalyses::none();
644     PA.preserve<AAManager>();
645     PA.preserve<DominatorTreeAnalysis>();
646     PA.preserve<LoopAnalysis>();
647     PA.preserve<LoopAnalysisManagerFunctionProxy>();
648     // Not preserving `ScalarEvolutionAnalysis`.
649     return PA;
650   }));
651   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
652   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
653   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
654   FPM.addPass(MFPHandle.getPass());
655   FPM.addPass(createFunctionToLoopPassAdaptor(
656       RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
657 
658   // After all the churn on 'f', we'll compute the loop analysis results for
659   // 'g' once with a requires pass and then run our mock pass over g a bunch
660   // but just get cached results each time.
661   EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
662   EXPECT_CALL(MFPHandle, run(HasName("g"), _)).Times(6);
663 
664   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
665   MPM.run(*M, MAM);
666 }
667 
TEST_F(LoopPassManagerTest,IndirectInvalidation)668 TEST_F(LoopPassManagerTest, IndirectInvalidation) {
669   // We need two distinct analysis types and handles.
670   enum { A, B };
671   MockLoopAnalysisHandleTemplate<A> MLAHandleA;
672   MockLoopAnalysisHandleTemplate<B> MLAHandleB;
673   LAM.registerPass([&] { return MLAHandleA.getAnalysis(); });
674   LAM.registerPass([&] { return MLAHandleB.getAnalysis(); });
675   typedef decltype(MLAHandleA)::Analysis AnalysisA;
676   typedef decltype(MLAHandleB)::Analysis AnalysisB;
677 
678   // Set up AnalysisA to depend on our AnalysisB. For testing purposes we just
679   // need to get the AnalysisB results in AnalysisA's run method and check if
680   // AnalysisB gets invalidated in AnalysisA's invalidate method.
681   ON_CALL(MLAHandleA, run(_, _, _))
682       .WillByDefault(Invoke([&](Loop &L, LoopAnalysisManager &AM,
683                                 LoopStandardAnalysisResults &AR) {
684         (void)AM.getResult<AnalysisB>(L, AR);
685         return MLAHandleA.getResult();
686       }));
687   ON_CALL(MLAHandleA, invalidate(_, _, _))
688       .WillByDefault(Invoke([](Loop &L, const PreservedAnalyses &PA,
689                                LoopAnalysisManager::Invalidator &Inv) {
690         auto PAC = PA.getChecker<AnalysisA>();
691         return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Loop>>()) ||
692                Inv.invalidate<AnalysisB>(L, PA);
693       }));
694 
695   ::testing::InSequence MakeExpectationsSequenced;
696 
697   // Compute the analyses across all of 'f' first.
698   EXPECT_CALL(MLAHandleA, run(HasName("loop.0.0"), _, _));
699   EXPECT_CALL(MLAHandleB, run(HasName("loop.0.0"), _, _));
700   EXPECT_CALL(MLAHandleA, run(HasName("loop.0.1"), _, _));
701   EXPECT_CALL(MLAHandleB, run(HasName("loop.0.1"), _, _));
702   EXPECT_CALL(MLAHandleA, run(HasName("loop.0"), _, _));
703   EXPECT_CALL(MLAHandleB, run(HasName("loop.0"), _, _));
704 
705   // Now we invalidate AnalysisB (but not AnalysisA) for one of the loops and
706   // preserve everything for the rest. This in turn triggers that one loop to
707   // recompute both AnalysisB *and* AnalysisA if indirect invalidation is
708   // working.
709   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
710       .WillOnce(InvokeWithoutArgs([] {
711         auto PA = getLoopPassPreservedAnalyses();
712         // Specifically preserve AnalysisA so that it would survive if it
713         // didn't depend on AnalysisB.
714         PA.preserve<AnalysisA>();
715         return PA;
716       }));
717   // It happens that AnalysisB is invalidated first. That shouldn't matter
718   // though, and we should still call AnalysisA's invalidation.
719   EXPECT_CALL(MLAHandleB, invalidate(HasName("loop.0.0"), _, _));
720   EXPECT_CALL(MLAHandleA, invalidate(HasName("loop.0.0"), _, _));
721   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
722       .WillOnce(Invoke([](Loop &L, LoopAnalysisManager &AM,
723                           LoopStandardAnalysisResults &AR, LPMUpdater &) {
724         (void)AM.getResult<AnalysisA>(L, AR);
725         return PreservedAnalyses::all();
726       }));
727   EXPECT_CALL(MLAHandleA, run(HasName("loop.0.0"), _, _));
728   EXPECT_CALL(MLAHandleB, run(HasName("loop.0.0"), _, _));
729   // The rest of the loops should run and get cached results.
730   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
731       .Times(2)
732       .WillRepeatedly(Invoke([](Loop &L, LoopAnalysisManager &AM,
733                                 LoopStandardAnalysisResults &AR, LPMUpdater &) {
734         (void)AM.getResult<AnalysisA>(L, AR);
735         return PreservedAnalyses::all();
736       }));
737   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
738       .Times(2)
739       .WillRepeatedly(Invoke([](Loop &L, LoopAnalysisManager &AM,
740                                 LoopStandardAnalysisResults &AR, LPMUpdater &) {
741         (void)AM.getResult<AnalysisA>(L, AR);
742         return PreservedAnalyses::all();
743       }));
744 
745   // The run over 'g' should be boring, with us just computing the analyses once
746   // up front and then running loop passes and getting cached results.
747   EXPECT_CALL(MLAHandleA, run(HasName("loop.g.0"), _, _));
748   EXPECT_CALL(MLAHandleB, run(HasName("loop.g.0"), _, _));
749   EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _))
750       .Times(2)
751       .WillRepeatedly(Invoke([](Loop &L, LoopAnalysisManager &AM,
752                                 LoopStandardAnalysisResults &AR, LPMUpdater &) {
753         (void)AM.getResult<AnalysisA>(L, AR);
754         return PreservedAnalyses::all();
755       }));
756 
757   // Build the pipeline and run it.
758   ModulePassManager MPM(true);
759   FunctionPassManager FPM(true);
760   FPM.addPass(
761       createFunctionToLoopPassAdaptor(RequireAnalysisLoopPass<AnalysisA>()));
762   LoopPassManager LPM(true);
763   LPM.addPass(MLPHandle.getPass());
764   LPM.addPass(MLPHandle.getPass());
765   FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
766   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
767   MPM.run(*M, MAM);
768 }
769 
TEST_F(LoopPassManagerTest,IndirectOuterPassInvalidation)770 TEST_F(LoopPassManagerTest, IndirectOuterPassInvalidation) {
771   typedef decltype(MLAHandle)::Analysis LoopAnalysis;
772 
773   MockFunctionAnalysisHandle MFAHandle;
774   FAM.registerPass([&] { return MFAHandle.getAnalysis(); });
775   typedef decltype(MFAHandle)::Analysis FunctionAnalysis;
776 
777   // Set up the loop analysis to depend on both the function and module
778   // analysis.
779   ON_CALL(MLAHandle, run(_, _, _))
780       .WillByDefault(Invoke([&](Loop &L, LoopAnalysisManager &AM,
781                                 LoopStandardAnalysisResults &AR) {
782         auto &FAMP = AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR);
783         Function &F = *L.getHeader()->getParent();
784         // This call will assert when trying to get the actual analysis if the
785         // FunctionAnalysis can be invalidated. Only check its existence.
786         // Alternatively, use FAM above, for the purposes of this unittest.
787         if (FAMP.cachedResultExists<FunctionAnalysis>(F))
788           FAMP.registerOuterAnalysisInvalidation<FunctionAnalysis,
789                                                  LoopAnalysis>();
790         return MLAHandle.getResult();
791       }));
792 
793   ::testing::InSequence MakeExpectationsSequenced;
794 
795   // Compute the analyses across all of 'f' first.
796   EXPECT_CALL(MFPHandle, run(HasName("f"), _))
797       .WillOnce(Invoke([](Function &F, FunctionAnalysisManager &AM) {
798         // Force the computing of the function analysis so it is available in
799         // this function.
800         (void)AM.getResult<FunctionAnalysis>(F);
801         return PreservedAnalyses::all();
802       }));
803   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
804   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
805   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
806 
807   // Now invalidate the function analysis but preserve the loop analyses.
808   // This should trigger immediate invalidation of the loop analyses, despite
809   // the fact that they were preserved.
810   EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
811     auto PA = getLoopPassPreservedAnalyses();
812     if (EnableMSSALoopDependency)
813       PA.preserve<MemorySSAAnalysis>();
814     PA.preserveSet<AllAnalysesOn<Loop>>();
815     return PA;
816   }));
817   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.0"), _, _));
818   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.1"), _, _));
819   EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0"), _, _));
820 
821   // And re-running a requires pass recomputes them.
822   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
823   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
824   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
825 
826   // When we run over 'g' we don't populate the cache with the function
827   // analysis.
828   EXPECT_CALL(MFPHandle, run(HasName("g"), _))
829       .WillOnce(Return(PreservedAnalyses::all()));
830   EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
831 
832   // Which means that no extra invalidation occurs and cached values are used.
833   EXPECT_CALL(MFPHandle, run(HasName("g"), _)).WillOnce(InvokeWithoutArgs([] {
834     auto PA = getLoopPassPreservedAnalyses();
835     if (EnableMSSALoopDependency)
836       PA.preserve<MemorySSAAnalysis>();
837     PA.preserveSet<AllAnalysesOn<Loop>>();
838     return PA;
839   }));
840 
841   // Build the pipeline and run it.
842   ModulePassManager MPM(true);
843   FunctionPassManager FPM(true);
844   FPM.addPass(MFPHandle.getPass());
845   FPM.addPass(
846       createFunctionToLoopPassAdaptor(RequireAnalysisLoopPass<LoopAnalysis>()));
847   FPM.addPass(MFPHandle.getPass());
848   FPM.addPass(
849       createFunctionToLoopPassAdaptor(RequireAnalysisLoopPass<LoopAnalysis>()));
850   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
851   MPM.run(*M, MAM);
852 }
853 
TEST_F(LoopPassManagerTest,LoopChildInsertion)854 TEST_F(LoopPassManagerTest, LoopChildInsertion) {
855   // Super boring module with three loops in a single loop nest.
856   M = parseIR(Context, "define void @f(i1* %ptr) {\n"
857                        "entry:\n"
858                        "  br label %loop.0\n"
859                        "loop.0:\n"
860                        "  %cond.0 = load volatile i1, i1* %ptr\n"
861                        "  br i1 %cond.0, label %loop.0.0.ph, label %end\n"
862                        "loop.0.0.ph:\n"
863                        "  br label %loop.0.0\n"
864                        "loop.0.0:\n"
865                        "  %cond.0.0 = load volatile i1, i1* %ptr\n"
866                        "  br i1 %cond.0.0, label %loop.0.0, label %loop.0.1.ph\n"
867                        "loop.0.1.ph:\n"
868                        "  br label %loop.0.1\n"
869                        "loop.0.1:\n"
870                        "  %cond.0.1 = load volatile i1, i1* %ptr\n"
871                        "  br i1 %cond.0.1, label %loop.0.1, label %loop.0.2.ph\n"
872                        "loop.0.2.ph:\n"
873                        "  br label %loop.0.2\n"
874                        "loop.0.2:\n"
875                        "  %cond.0.2 = load volatile i1, i1* %ptr\n"
876                        "  br i1 %cond.0.2, label %loop.0.2, label %loop.0.latch\n"
877                        "loop.0.latch:\n"
878                        "  br label %loop.0\n"
879                        "end:\n"
880                        "  ret void\n"
881                        "}\n");
882 
883   // Build up variables referring into the IR so we can rewrite it below
884   // easily.
885   Function &F = *M->begin();
886   ASSERT_THAT(F, HasName("f"));
887   Argument &Ptr = *F.arg_begin();
888   auto BBI = F.begin();
889   BasicBlock &EntryBB = *BBI++;
890   ASSERT_THAT(EntryBB, HasName("entry"));
891   BasicBlock &Loop0BB = *BBI++;
892   ASSERT_THAT(Loop0BB, HasName("loop.0"));
893   BasicBlock &Loop00PHBB = *BBI++;
894   ASSERT_THAT(Loop00PHBB, HasName("loop.0.0.ph"));
895   BasicBlock &Loop00BB = *BBI++;
896   ASSERT_THAT(Loop00BB, HasName("loop.0.0"));
897   BasicBlock &Loop01PHBB = *BBI++;
898   ASSERT_THAT(Loop01PHBB, HasName("loop.0.1.ph"));
899   BasicBlock &Loop01BB = *BBI++;
900   ASSERT_THAT(Loop01BB, HasName("loop.0.1"));
901   BasicBlock &Loop02PHBB = *BBI++;
902   ASSERT_THAT(Loop02PHBB, HasName("loop.0.2.ph"));
903   BasicBlock &Loop02BB = *BBI++;
904   ASSERT_THAT(Loop02BB, HasName("loop.0.2"));
905   BasicBlock &Loop0LatchBB = *BBI++;
906   ASSERT_THAT(Loop0LatchBB, HasName("loop.0.latch"));
907   BasicBlock &EndBB = *BBI++;
908   ASSERT_THAT(EndBB, HasName("end"));
909   ASSERT_THAT(BBI, F.end());
910   auto CreateCondBr = [&](BasicBlock *TrueBB, BasicBlock *FalseBB,
911                           const char *Name, BasicBlock *BB) {
912     auto *Cond = new LoadInst(Type::getInt1Ty(Context), &Ptr, Name,
913                               /*isVolatile*/ true, BB);
914     BranchInst::Create(TrueBB, FalseBB, Cond, BB);
915   };
916 
917   // Build the pass managers and register our pipeline. We build a single loop
918   // pass pipeline consisting of three mock pass runs over each loop. After
919   // this we run both domtree and loop verification passes to make sure that
920   // the IR remained valid during our mutations.
921   ModulePassManager MPM(true);
922   FunctionPassManager FPM(true);
923   LoopPassManager LPM(true);
924   LPM.addPass(MLPHandle.getPass());
925   LPM.addPass(MLPHandle.getPass());
926   LPM.addPass(MLPHandle.getPass());
927   FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
928   FPM.addPass(DominatorTreeVerifierPass());
929   FPM.addPass(LoopVerifierPass());
930   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
931 
932   // All the visit orders are deterministic, so we use simple fully order
933   // expectations.
934   ::testing::InSequence MakeExpectationsSequenced;
935 
936   // We run loop passes three times over each of the loops.
937   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
938       .WillOnce(Invoke(getLoopAnalysisResult));
939   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
940   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
941       .Times(2)
942       .WillRepeatedly(Invoke(getLoopAnalysisResult));
943 
944   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
945       .WillOnce(Invoke(getLoopAnalysisResult));
946   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
947 
948   // When running over the middle loop, the second run inserts two new child
949   // loops, inserting them and itself into the worklist.
950   BasicBlock *NewLoop010BB, *NewLoop01LatchBB;
951   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
952       .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
953                            LoopStandardAnalysisResults &AR,
954                            LPMUpdater &Updater) {
955         auto *NewLoop = AR.LI.AllocateLoop();
956         L.addChildLoop(NewLoop);
957         auto *NewLoop010PHBB =
958             BasicBlock::Create(Context, "loop.0.1.0.ph", &F, &Loop02PHBB);
959         NewLoop010BB =
960             BasicBlock::Create(Context, "loop.0.1.0", &F, &Loop02PHBB);
961         NewLoop01LatchBB =
962             BasicBlock::Create(Context, "loop.0.1.latch", &F, &Loop02PHBB);
963         Loop01BB.getTerminator()->replaceUsesOfWith(&Loop01BB, NewLoop010PHBB);
964         BranchInst::Create(NewLoop010BB, NewLoop010PHBB);
965         CreateCondBr(NewLoop01LatchBB, NewLoop010BB, "cond.0.1.0",
966                      NewLoop010BB);
967         BranchInst::Create(&Loop01BB, NewLoop01LatchBB);
968         AR.DT.addNewBlock(NewLoop010PHBB, &Loop01BB);
969         AR.DT.addNewBlock(NewLoop010BB, NewLoop010PHBB);
970         AR.DT.addNewBlock(NewLoop01LatchBB, NewLoop010BB);
971         EXPECT_TRUE(AR.DT.verify());
972         L.addBasicBlockToLoop(NewLoop010PHBB, AR.LI);
973         NewLoop->addBasicBlockToLoop(NewLoop010BB, AR.LI);
974         L.addBasicBlockToLoop(NewLoop01LatchBB, AR.LI);
975         NewLoop->verifyLoop();
976         L.verifyLoop();
977         Updater.addChildLoops({NewLoop});
978         return PreservedAnalyses::all();
979       }));
980 
981   // We should immediately drop down to fully visit the new inner loop.
982   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.0"), _, _, _))
983       .WillOnce(Invoke(getLoopAnalysisResult));
984   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1.0"), _, _));
985   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.0"), _, _, _))
986       .Times(2)
987       .WillRepeatedly(Invoke(getLoopAnalysisResult));
988 
989   // After visiting the inner loop, we should re-visit the second loop
990   // reflecting its new loop nest structure.
991   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
992       .WillOnce(Invoke(getLoopAnalysisResult));
993 
994   // In the second run over the middle loop after we've visited the new child,
995   // we add another child to check that we can repeatedly add children, and add
996   // children to a loop that already has children.
997   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
998       .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
999                            LoopStandardAnalysisResults &AR,
1000                            LPMUpdater &Updater) {
1001         auto *NewLoop = AR.LI.AllocateLoop();
1002         L.addChildLoop(NewLoop);
1003         auto *NewLoop011PHBB = BasicBlock::Create(Context, "loop.0.1.1.ph", &F, NewLoop01LatchBB);
1004         auto *NewLoop011BB = BasicBlock::Create(Context, "loop.0.1.1", &F, NewLoop01LatchBB);
1005         NewLoop010BB->getTerminator()->replaceUsesOfWith(NewLoop01LatchBB,
1006                                                          NewLoop011PHBB);
1007         BranchInst::Create(NewLoop011BB, NewLoop011PHBB);
1008         CreateCondBr(NewLoop01LatchBB, NewLoop011BB, "cond.0.1.1",
1009                      NewLoop011BB);
1010         AR.DT.addNewBlock(NewLoop011PHBB, NewLoop010BB);
1011         auto *NewDTNode = AR.DT.addNewBlock(NewLoop011BB, NewLoop011PHBB);
1012         AR.DT.changeImmediateDominator(AR.DT[NewLoop01LatchBB], NewDTNode);
1013         EXPECT_TRUE(AR.DT.verify());
1014         L.addBasicBlockToLoop(NewLoop011PHBB, AR.LI);
1015         NewLoop->addBasicBlockToLoop(NewLoop011BB, AR.LI);
1016         NewLoop->verifyLoop();
1017         L.verifyLoop();
1018         Updater.addChildLoops({NewLoop});
1019         return PreservedAnalyses::all();
1020       }));
1021 
1022   // Again, we should immediately drop down to visit the new, unvisited child
1023   // loop. We don't need to revisit the other child though.
1024   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.1"), _, _, _))
1025       .WillOnce(Invoke(getLoopAnalysisResult));
1026   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1.1"), _, _));
1027   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.1"), _, _, _))
1028       .Times(2)
1029       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1030 
1031   // And now we should pop back up to the second loop and do a full pipeline of
1032   // three passes on its current form.
1033   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
1034       .Times(3)
1035       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1036 
1037   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1038       .WillOnce(Invoke(getLoopAnalysisResult));
1039   EXPECT_CALL(MLAHandle, run(HasName("loop.0.2"), _, _));
1040   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1041       .Times(2)
1042       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1043 
1044   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1045       .WillOnce(Invoke(getLoopAnalysisResult));
1046   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
1047   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1048       .Times(2)
1049       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1050 
1051   // Now that all the expected actions are registered, run the pipeline over
1052   // our module. All of our expectations are verified when the test finishes.
1053   MPM.run(*M, MAM);
1054 }
1055 
TEST_F(LoopPassManagerTest,LoopPeerInsertion)1056 TEST_F(LoopPassManagerTest, LoopPeerInsertion) {
1057   // Super boring module with two loop nests and loop nest with two child
1058   // loops.
1059   M = parseIR(Context, "define void @f(i1* %ptr) {\n"
1060                        "entry:\n"
1061                        "  br label %loop.0\n"
1062                        "loop.0:\n"
1063                        "  %cond.0 = load volatile i1, i1* %ptr\n"
1064                        "  br i1 %cond.0, label %loop.0.0.ph, label %loop.2.ph\n"
1065                        "loop.0.0.ph:\n"
1066                        "  br label %loop.0.0\n"
1067                        "loop.0.0:\n"
1068                        "  %cond.0.0 = load volatile i1, i1* %ptr\n"
1069                        "  br i1 %cond.0.0, label %loop.0.0, label %loop.0.2.ph\n"
1070                        "loop.0.2.ph:\n"
1071                        "  br label %loop.0.2\n"
1072                        "loop.0.2:\n"
1073                        "  %cond.0.2 = load volatile i1, i1* %ptr\n"
1074                        "  br i1 %cond.0.2, label %loop.0.2, label %loop.0.latch\n"
1075                        "loop.0.latch:\n"
1076                        "  br label %loop.0\n"
1077                        "loop.2.ph:\n"
1078                        "  br label %loop.2\n"
1079                        "loop.2:\n"
1080                        "  %cond.2 = load volatile i1, i1* %ptr\n"
1081                        "  br i1 %cond.2, label %loop.2, label %end\n"
1082                        "end:\n"
1083                        "  ret void\n"
1084                        "}\n");
1085 
1086   // Build up variables referring into the IR so we can rewrite it below
1087   // easily.
1088   Function &F = *M->begin();
1089   ASSERT_THAT(F, HasName("f"));
1090   Argument &Ptr = *F.arg_begin();
1091   auto BBI = F.begin();
1092   BasicBlock &EntryBB = *BBI++;
1093   ASSERT_THAT(EntryBB, HasName("entry"));
1094   BasicBlock &Loop0BB = *BBI++;
1095   ASSERT_THAT(Loop0BB, HasName("loop.0"));
1096   BasicBlock &Loop00PHBB = *BBI++;
1097   ASSERT_THAT(Loop00PHBB, HasName("loop.0.0.ph"));
1098   BasicBlock &Loop00BB = *BBI++;
1099   ASSERT_THAT(Loop00BB, HasName("loop.0.0"));
1100   BasicBlock &Loop02PHBB = *BBI++;
1101   ASSERT_THAT(Loop02PHBB, HasName("loop.0.2.ph"));
1102   BasicBlock &Loop02BB = *BBI++;
1103   ASSERT_THAT(Loop02BB, HasName("loop.0.2"));
1104   BasicBlock &Loop0LatchBB = *BBI++;
1105   ASSERT_THAT(Loop0LatchBB, HasName("loop.0.latch"));
1106   BasicBlock &Loop2PHBB = *BBI++;
1107   ASSERT_THAT(Loop2PHBB, HasName("loop.2.ph"));
1108   BasicBlock &Loop2BB = *BBI++;
1109   ASSERT_THAT(Loop2BB, HasName("loop.2"));
1110   BasicBlock &EndBB = *BBI++;
1111   ASSERT_THAT(EndBB, HasName("end"));
1112   ASSERT_THAT(BBI, F.end());
1113   auto CreateCondBr = [&](BasicBlock *TrueBB, BasicBlock *FalseBB,
1114                           const char *Name, BasicBlock *BB) {
1115     auto *Cond = new LoadInst(Type::getInt1Ty(Context), &Ptr, Name,
1116                               /*isVolatile*/ true, BB);
1117     BranchInst::Create(TrueBB, FalseBB, Cond, BB);
1118   };
1119 
1120   // Build the pass managers and register our pipeline. We build a single loop
1121   // pass pipeline consisting of three mock pass runs over each loop. After
1122   // this we run both domtree and loop verification passes to make sure that
1123   // the IR remained valid during our mutations.
1124   ModulePassManager MPM(true);
1125   FunctionPassManager FPM(true);
1126   LoopPassManager LPM(true);
1127   LPM.addPass(MLPHandle.getPass());
1128   LPM.addPass(MLPHandle.getPass());
1129   LPM.addPass(MLPHandle.getPass());
1130   FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
1131   FPM.addPass(DominatorTreeVerifierPass());
1132   FPM.addPass(LoopVerifierPass());
1133   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
1134 
1135   // All the visit orders are deterministic, so we use simple fully order
1136   // expectations.
1137   ::testing::InSequence MakeExpectationsSequenced;
1138 
1139   // We run loop passes three times over each of the loops.
1140   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1141       .WillOnce(Invoke(getLoopAnalysisResult));
1142   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
1143 
1144   // On the second run, we insert a sibling loop.
1145   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1146       .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
1147                            LoopStandardAnalysisResults &AR,
1148                            LPMUpdater &Updater) {
1149         auto *NewLoop = AR.LI.AllocateLoop();
1150         L.getParentLoop()->addChildLoop(NewLoop);
1151         auto *NewLoop01PHBB = BasicBlock::Create(Context, "loop.0.1.ph", &F, &Loop02PHBB);
1152         auto *NewLoop01BB = BasicBlock::Create(Context, "loop.0.1", &F, &Loop02PHBB);
1153         BranchInst::Create(NewLoop01BB, NewLoop01PHBB);
1154         CreateCondBr(&Loop02PHBB, NewLoop01BB, "cond.0.1", NewLoop01BB);
1155         Loop00BB.getTerminator()->replaceUsesOfWith(&Loop02PHBB, NewLoop01PHBB);
1156         AR.DT.addNewBlock(NewLoop01PHBB, &Loop00BB);
1157         auto *NewDTNode = AR.DT.addNewBlock(NewLoop01BB, NewLoop01PHBB);
1158         AR.DT.changeImmediateDominator(AR.DT[&Loop02PHBB], NewDTNode);
1159         EXPECT_TRUE(AR.DT.verify());
1160         L.getParentLoop()->addBasicBlockToLoop(NewLoop01PHBB, AR.LI);
1161         NewLoop->addBasicBlockToLoop(NewLoop01BB, AR.LI);
1162         L.getParentLoop()->verifyLoop();
1163         Updater.addSiblingLoops({NewLoop});
1164         return PreservedAnalyses::all();
1165       }));
1166   // We finish processing this loop as sibling loops don't perturb the
1167   // postorder walk.
1168   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1169       .WillOnce(Invoke(getLoopAnalysisResult));
1170 
1171   // We visit the inserted sibling next.
1172   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
1173       .WillOnce(Invoke(getLoopAnalysisResult));
1174   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
1175   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
1176       .Times(2)
1177       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1178 
1179   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1180       .WillOnce(Invoke(getLoopAnalysisResult));
1181   EXPECT_CALL(MLAHandle, run(HasName("loop.0.2"), _, _));
1182   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1183       .WillOnce(Invoke(getLoopAnalysisResult));
1184   // Next, on the third pass run on the last inner loop we add more new
1185   // siblings, more than one, and one with nested child loops. By doing this at
1186   // the end we make sure that edge case works well.
1187   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1188       .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
1189                            LoopStandardAnalysisResults &AR,
1190                            LPMUpdater &Updater) {
1191         Loop *NewLoops[] = {AR.LI.AllocateLoop(), AR.LI.AllocateLoop(),
1192                             AR.LI.AllocateLoop()};
1193         L.getParentLoop()->addChildLoop(NewLoops[0]);
1194         L.getParentLoop()->addChildLoop(NewLoops[1]);
1195         NewLoops[1]->addChildLoop(NewLoops[2]);
1196         auto *NewLoop03PHBB =
1197             BasicBlock::Create(Context, "loop.0.3.ph", &F, &Loop0LatchBB);
1198         auto *NewLoop03BB =
1199             BasicBlock::Create(Context, "loop.0.3", &F, &Loop0LatchBB);
1200         auto *NewLoop04PHBB =
1201             BasicBlock::Create(Context, "loop.0.4.ph", &F, &Loop0LatchBB);
1202         auto *NewLoop04BB =
1203             BasicBlock::Create(Context, "loop.0.4", &F, &Loop0LatchBB);
1204         auto *NewLoop040PHBB =
1205             BasicBlock::Create(Context, "loop.0.4.0.ph", &F, &Loop0LatchBB);
1206         auto *NewLoop040BB =
1207             BasicBlock::Create(Context, "loop.0.4.0", &F, &Loop0LatchBB);
1208         auto *NewLoop04LatchBB =
1209             BasicBlock::Create(Context, "loop.0.4.latch", &F, &Loop0LatchBB);
1210         Loop02BB.getTerminator()->replaceUsesOfWith(&Loop0LatchBB, NewLoop03PHBB);
1211         BranchInst::Create(NewLoop03BB, NewLoop03PHBB);
1212         CreateCondBr(NewLoop04PHBB, NewLoop03BB, "cond.0.3", NewLoop03BB);
1213         BranchInst::Create(NewLoop04BB, NewLoop04PHBB);
1214         CreateCondBr(&Loop0LatchBB, NewLoop040PHBB, "cond.0.4", NewLoop04BB);
1215         BranchInst::Create(NewLoop040BB, NewLoop040PHBB);
1216         CreateCondBr(NewLoop04LatchBB, NewLoop040BB, "cond.0.4.0", NewLoop040BB);
1217         BranchInst::Create(NewLoop04BB, NewLoop04LatchBB);
1218         AR.DT.addNewBlock(NewLoop03PHBB, &Loop02BB);
1219         AR.DT.addNewBlock(NewLoop03BB, NewLoop03PHBB);
1220         AR.DT.addNewBlock(NewLoop04PHBB, NewLoop03BB);
1221         auto *NewDTNode = AR.DT.addNewBlock(NewLoop04BB, NewLoop04PHBB);
1222         AR.DT.changeImmediateDominator(AR.DT[&Loop0LatchBB], NewDTNode);
1223         AR.DT.addNewBlock(NewLoop040PHBB, NewLoop04BB);
1224         AR.DT.addNewBlock(NewLoop040BB, NewLoop040PHBB);
1225         AR.DT.addNewBlock(NewLoop04LatchBB, NewLoop040BB);
1226         EXPECT_TRUE(AR.DT.verify());
1227         L.getParentLoop()->addBasicBlockToLoop(NewLoop03PHBB, AR.LI);
1228         NewLoops[0]->addBasicBlockToLoop(NewLoop03BB, AR.LI);
1229         L.getParentLoop()->addBasicBlockToLoop(NewLoop04PHBB, AR.LI);
1230         NewLoops[1]->addBasicBlockToLoop(NewLoop04BB, AR.LI);
1231         NewLoops[1]->addBasicBlockToLoop(NewLoop040PHBB, AR.LI);
1232         NewLoops[2]->addBasicBlockToLoop(NewLoop040BB, AR.LI);
1233         NewLoops[1]->addBasicBlockToLoop(NewLoop04LatchBB, AR.LI);
1234         L.getParentLoop()->verifyLoop();
1235         Updater.addSiblingLoops({NewLoops[0], NewLoops[1]});
1236         return PreservedAnalyses::all();
1237       }));
1238 
1239   EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
1240       .WillOnce(Invoke(getLoopAnalysisResult));
1241   EXPECT_CALL(MLAHandle, run(HasName("loop.0.3"), _, _));
1242   EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
1243       .Times(2)
1244       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1245 
1246   // Note that we need to visit the inner loop of this added sibling before the
1247   // sibling itself!
1248   EXPECT_CALL(MLPHandle, run(HasName("loop.0.4.0"), _, _, _))
1249       .WillOnce(Invoke(getLoopAnalysisResult));
1250   EXPECT_CALL(MLAHandle, run(HasName("loop.0.4.0"), _, _));
1251   EXPECT_CALL(MLPHandle, run(HasName("loop.0.4.0"), _, _, _))
1252       .Times(2)
1253       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1254 
1255   EXPECT_CALL(MLPHandle, run(HasName("loop.0.4"), _, _, _))
1256       .WillOnce(Invoke(getLoopAnalysisResult));
1257   EXPECT_CALL(MLAHandle, run(HasName("loop.0.4"), _, _));
1258   EXPECT_CALL(MLPHandle, run(HasName("loop.0.4"), _, _, _))
1259       .Times(2)
1260       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1261 
1262   // And only now do we visit the outermost loop of the nest.
1263   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1264       .WillOnce(Invoke(getLoopAnalysisResult));
1265   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
1266   // On the second pass, we add sibling loops which become new top-level loops.
1267   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1268       .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
1269                            LoopStandardAnalysisResults &AR,
1270                            LPMUpdater &Updater) {
1271         auto *NewLoop = AR.LI.AllocateLoop();
1272         AR.LI.addTopLevelLoop(NewLoop);
1273         auto *NewLoop1PHBB = BasicBlock::Create(Context, "loop.1.ph", &F, &Loop2BB);
1274         auto *NewLoop1BB = BasicBlock::Create(Context, "loop.1", &F, &Loop2BB);
1275         BranchInst::Create(NewLoop1BB, NewLoop1PHBB);
1276         CreateCondBr(&Loop2PHBB, NewLoop1BB, "cond.1", NewLoop1BB);
1277         Loop0BB.getTerminator()->replaceUsesOfWith(&Loop2PHBB, NewLoop1PHBB);
1278         AR.DT.addNewBlock(NewLoop1PHBB, &Loop0BB);
1279         auto *NewDTNode = AR.DT.addNewBlock(NewLoop1BB, NewLoop1PHBB);
1280         AR.DT.changeImmediateDominator(AR.DT[&Loop2PHBB], NewDTNode);
1281         EXPECT_TRUE(AR.DT.verify());
1282         NewLoop->addBasicBlockToLoop(NewLoop1BB, AR.LI);
1283         NewLoop->verifyLoop();
1284         Updater.addSiblingLoops({NewLoop});
1285         return PreservedAnalyses::all();
1286       }));
1287   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1288       .WillOnce(Invoke(getLoopAnalysisResult));
1289 
1290   EXPECT_CALL(MLPHandle, run(HasName("loop.1"), _, _, _))
1291       .WillOnce(Invoke(getLoopAnalysisResult));
1292   EXPECT_CALL(MLAHandle, run(HasName("loop.1"), _, _));
1293   EXPECT_CALL(MLPHandle, run(HasName("loop.1"), _, _, _))
1294       .Times(2)
1295       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1296 
1297   EXPECT_CALL(MLPHandle, run(HasName("loop.2"), _, _, _))
1298       .WillOnce(Invoke(getLoopAnalysisResult));
1299   EXPECT_CALL(MLAHandle, run(HasName("loop.2"), _, _));
1300   EXPECT_CALL(MLPHandle, run(HasName("loop.2"), _, _, _))
1301       .Times(2)
1302       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1303 
1304   // Now that all the expected actions are registered, run the pipeline over
1305   // our module. All of our expectations are verified when the test finishes.
1306   MPM.run(*M, MAM);
1307 }
1308 
TEST_F(LoopPassManagerTest,LoopDeletion)1309 TEST_F(LoopPassManagerTest, LoopDeletion) {
1310   // Build a module with a single loop nest that contains one outer loop with
1311   // three subloops, and one of those with its own subloop. We will
1312   // incrementally delete all of these to test different deletion scenarios.
1313   M = parseIR(Context, "define void @f(i1* %ptr) {\n"
1314                        "entry:\n"
1315                        "  br label %loop.0\n"
1316                        "loop.0:\n"
1317                        "  %cond.0 = load volatile i1, i1* %ptr\n"
1318                        "  br i1 %cond.0, label %loop.0.0.ph, label %end\n"
1319                        "loop.0.0.ph:\n"
1320                        "  br label %loop.0.0\n"
1321                        "loop.0.0:\n"
1322                        "  %cond.0.0 = load volatile i1, i1* %ptr\n"
1323                        "  br i1 %cond.0.0, label %loop.0.0, label %loop.0.1.ph\n"
1324                        "loop.0.1.ph:\n"
1325                        "  br label %loop.0.1\n"
1326                        "loop.0.1:\n"
1327                        "  %cond.0.1 = load volatile i1, i1* %ptr\n"
1328                        "  br i1 %cond.0.1, label %loop.0.1, label %loop.0.2.ph\n"
1329                        "loop.0.2.ph:\n"
1330                        "  br label %loop.0.2\n"
1331                        "loop.0.2:\n"
1332                        "  %cond.0.2 = load volatile i1, i1* %ptr\n"
1333                        "  br i1 %cond.0.2, label %loop.0.2.0.ph, label %loop.0.latch\n"
1334                        "loop.0.2.0.ph:\n"
1335                        "  br label %loop.0.2.0\n"
1336                        "loop.0.2.0:\n"
1337                        "  %cond.0.2.0 = load volatile i1, i1* %ptr\n"
1338                        "  br i1 %cond.0.2.0, label %loop.0.2.0, label %loop.0.2.latch\n"
1339                        "loop.0.2.latch:\n"
1340                        "  br label %loop.0.2\n"
1341                        "loop.0.latch:\n"
1342                        "  br label %loop.0\n"
1343                        "end:\n"
1344                        "  ret void\n"
1345                        "}\n");
1346 
1347   // Build up variables referring into the IR so we can rewrite it below
1348   // easily.
1349   Function &F = *M->begin();
1350   ASSERT_THAT(F, HasName("f"));
1351   Argument &Ptr = *F.arg_begin();
1352   auto BBI = F.begin();
1353   BasicBlock &EntryBB = *BBI++;
1354   ASSERT_THAT(EntryBB, HasName("entry"));
1355   BasicBlock &Loop0BB = *BBI++;
1356   ASSERT_THAT(Loop0BB, HasName("loop.0"));
1357   BasicBlock &Loop00PHBB = *BBI++;
1358   ASSERT_THAT(Loop00PHBB, HasName("loop.0.0.ph"));
1359   BasicBlock &Loop00BB = *BBI++;
1360   ASSERT_THAT(Loop00BB, HasName("loop.0.0"));
1361   BasicBlock &Loop01PHBB = *BBI++;
1362   ASSERT_THAT(Loop01PHBB, HasName("loop.0.1.ph"));
1363   BasicBlock &Loop01BB = *BBI++;
1364   ASSERT_THAT(Loop01BB, HasName("loop.0.1"));
1365   BasicBlock &Loop02PHBB = *BBI++;
1366   ASSERT_THAT(Loop02PHBB, HasName("loop.0.2.ph"));
1367   BasicBlock &Loop02BB = *BBI++;
1368   ASSERT_THAT(Loop02BB, HasName("loop.0.2"));
1369   BasicBlock &Loop020PHBB = *BBI++;
1370   ASSERT_THAT(Loop020PHBB, HasName("loop.0.2.0.ph"));
1371   BasicBlock &Loop020BB = *BBI++;
1372   ASSERT_THAT(Loop020BB, HasName("loop.0.2.0"));
1373   BasicBlock &Loop02LatchBB = *BBI++;
1374   ASSERT_THAT(Loop02LatchBB, HasName("loop.0.2.latch"));
1375   BasicBlock &Loop0LatchBB = *BBI++;
1376   ASSERT_THAT(Loop0LatchBB, HasName("loop.0.latch"));
1377   BasicBlock &EndBB = *BBI++;
1378   ASSERT_THAT(EndBB, HasName("end"));
1379   ASSERT_THAT(BBI, F.end());
1380 
1381   // Helper to do the actual deletion of a loop. We directly encode this here
1382   // to isolate ourselves from the rest of LLVM and for simplicity. Here we can
1383   // egregiously cheat based on knowledge of the test case. For example, we
1384   // have no PHI nodes and there is always a single i-dom.
1385   auto EraseLoop = [](Loop &L, BasicBlock &IDomBB,
1386                       LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
1387     assert(L.empty() && "Can only delete leaf loops with this routine!");
1388     SmallVector<BasicBlock *, 4> LoopBBs(L.block_begin(), L.block_end());
1389     Updater.markLoopAsDeleted(L, L.getName());
1390     IDomBB.getTerminator()->replaceUsesOfWith(L.getHeader(),
1391                                               L.getUniqueExitBlock());
1392     for (BasicBlock *LoopBB : LoopBBs) {
1393       SmallVector<DomTreeNode *, 4> ChildNodes(AR.DT[LoopBB]->begin(),
1394                                                AR.DT[LoopBB]->end());
1395       for (DomTreeNode *ChildNode : ChildNodes)
1396         AR.DT.changeImmediateDominator(ChildNode, AR.DT[&IDomBB]);
1397       AR.DT.eraseNode(LoopBB);
1398       AR.LI.removeBlock(LoopBB);
1399       LoopBB->dropAllReferences();
1400     }
1401     for (BasicBlock *LoopBB : LoopBBs)
1402       LoopBB->eraseFromParent();
1403 
1404     AR.LI.erase(&L);
1405   };
1406 
1407   // Build up the pass managers.
1408   ModulePassManager MPM(true);
1409   FunctionPassManager FPM(true);
1410   // We run several loop pass pipelines across the loop nest, but they all take
1411   // the same form of three mock pass runs in a loop pipeline followed by
1412   // domtree and loop verification. We use a lambda to stamp this out each
1413   // time.
1414   auto AddLoopPipelineAndVerificationPasses = [&] {
1415     LoopPassManager LPM(true);
1416     LPM.addPass(MLPHandle.getPass());
1417     LPM.addPass(MLPHandle.getPass());
1418     LPM.addPass(MLPHandle.getPass());
1419     FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
1420     FPM.addPass(DominatorTreeVerifierPass());
1421     FPM.addPass(LoopVerifierPass());
1422   };
1423 
1424   // All the visit orders are deterministic so we use simple fully order
1425   // expectations.
1426   ::testing::InSequence MakeExpectationsSequenced;
1427 
1428   // We run the loop pipeline with three passes over each of the loops. When
1429   // running over the middle loop, the second pass in the pipeline deletes it.
1430   // This should prevent the third pass from visiting it but otherwise leave
1431   // the process unimpacted.
1432   AddLoopPipelineAndVerificationPasses();
1433   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1434       .WillOnce(Invoke(getLoopAnalysisResult));
1435   EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
1436   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1437       .Times(2)
1438       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1439 
1440   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
1441       .WillOnce(Invoke(getLoopAnalysisResult));
1442   EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
1443   EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
1444       .WillOnce(
1445           Invoke([&](Loop &L, LoopAnalysisManager &AM,
1446                      LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
1447             Loop *ParentL = L.getParentLoop();
1448             AR.SE.forgetLoop(&L);
1449             EraseLoop(L, Loop01PHBB, AR, Updater);
1450             ParentL->verifyLoop();
1451             return PreservedAnalyses::all();
1452           }));
1453 
1454   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2.0"), _, _, _))
1455       .WillOnce(Invoke(getLoopAnalysisResult));
1456   EXPECT_CALL(MLAHandle, run(HasName("loop.0.2.0"), _, _));
1457   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2.0"), _, _, _))
1458       .Times(2)
1459       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1460 
1461   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1462       .WillOnce(Invoke(getLoopAnalysisResult));
1463   EXPECT_CALL(MLAHandle, run(HasName("loop.0.2"), _, _));
1464   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1465       .Times(2)
1466       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1467 
1468   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1469       .WillOnce(Invoke(getLoopAnalysisResult));
1470   EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
1471   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1472       .Times(2)
1473       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1474 
1475   // Run the loop pipeline again. This time we delete the last loop, which
1476   // contains a nested loop within it and insert a new loop into the nest. This
1477   // makes sure we can handle nested loop deletion.
1478   AddLoopPipelineAndVerificationPasses();
1479   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1480       .Times(3)
1481       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1482 
1483   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2.0"), _, _, _))
1484       .Times(3)
1485       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1486 
1487   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1488       .WillOnce(Invoke(getLoopAnalysisResult));
1489   BasicBlock *NewLoop03PHBB;
1490   EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1491       .WillOnce(
1492           Invoke([&](Loop &L, LoopAnalysisManager &AM,
1493                      LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
1494             AR.SE.forgetLoop(*L.begin());
1495             EraseLoop(**L.begin(), Loop020PHBB, AR, Updater);
1496 
1497             auto *ParentL = L.getParentLoop();
1498             AR.SE.forgetLoop(&L);
1499             EraseLoop(L, Loop02PHBB, AR, Updater);
1500 
1501             // Now insert a new sibling loop.
1502             auto *NewSibling = AR.LI.AllocateLoop();
1503             ParentL->addChildLoop(NewSibling);
1504             NewLoop03PHBB =
1505                 BasicBlock::Create(Context, "loop.0.3.ph", &F, &Loop0LatchBB);
1506             auto *NewLoop03BB =
1507                 BasicBlock::Create(Context, "loop.0.3", &F, &Loop0LatchBB);
1508             BranchInst::Create(NewLoop03BB, NewLoop03PHBB);
1509             auto *Cond =
1510                 new LoadInst(Type::getInt1Ty(Context), &Ptr, "cond.0.3",
1511                              /*isVolatile*/ true, NewLoop03BB);
1512             BranchInst::Create(&Loop0LatchBB, NewLoop03BB, Cond, NewLoop03BB);
1513             Loop02PHBB.getTerminator()->replaceUsesOfWith(&Loop0LatchBB,
1514                                                           NewLoop03PHBB);
1515             AR.DT.addNewBlock(NewLoop03PHBB, &Loop02PHBB);
1516             AR.DT.addNewBlock(NewLoop03BB, NewLoop03PHBB);
1517             AR.DT.changeImmediateDominator(AR.DT[&Loop0LatchBB],
1518                                            AR.DT[NewLoop03BB]);
1519             EXPECT_TRUE(AR.DT.verify());
1520             ParentL->addBasicBlockToLoop(NewLoop03PHBB, AR.LI);
1521             NewSibling->addBasicBlockToLoop(NewLoop03BB, AR.LI);
1522             NewSibling->verifyLoop();
1523             ParentL->verifyLoop();
1524             Updater.addSiblingLoops({NewSibling});
1525             return PreservedAnalyses::all();
1526           }));
1527 
1528   // To respect our inner-to-outer traversal order, we must visit the
1529   // newly-inserted sibling of the loop we just deleted before we visit the
1530   // outer loop. When we do so, this must compute a fresh analysis result, even
1531   // though our new loop has the same pointer value as the loop we deleted.
1532   EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
1533       .WillOnce(Invoke(getLoopAnalysisResult));
1534   EXPECT_CALL(MLAHandle, run(HasName("loop.0.3"), _, _));
1535   EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
1536       .Times(2)
1537       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1538 
1539   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1540       .Times(3)
1541       .WillRepeatedly(Invoke(getLoopAnalysisResult));
1542 
1543   // In the final loop pipeline run we delete every loop, including the last
1544   // loop of the nest. We do this again in the second pass in the pipeline, and
1545   // as a consequence we never make it to three runs on any loop. We also cover
1546   // deleting multiple loops in a single pipeline, deleting the first loop and
1547   // deleting the (last) top level loop.
1548   AddLoopPipelineAndVerificationPasses();
1549   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1550       .WillOnce(Invoke(getLoopAnalysisResult));
1551   EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1552       .WillOnce(
1553           Invoke([&](Loop &L, LoopAnalysisManager &AM,
1554                      LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
1555             AR.SE.forgetLoop(&L);
1556             EraseLoop(L, Loop00PHBB, AR, Updater);
1557             return PreservedAnalyses::all();
1558           }));
1559 
1560   EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
1561       .WillOnce(Invoke(getLoopAnalysisResult));
1562   EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
1563       .WillOnce(
1564           Invoke([&](Loop &L, LoopAnalysisManager &AM,
1565                      LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
1566             AR.SE.forgetLoop(&L);
1567             EraseLoop(L, *NewLoop03PHBB, AR, Updater);
1568             return PreservedAnalyses::all();
1569           }));
1570 
1571   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1572       .WillOnce(Invoke(getLoopAnalysisResult));
1573   EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1574       .WillOnce(
1575           Invoke([&](Loop &L, LoopAnalysisManager &AM,
1576                      LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
1577             AR.SE.forgetLoop(&L);
1578             EraseLoop(L, EntryBB, AR, Updater);
1579             return PreservedAnalyses::all();
1580           }));
1581 
1582   // Add the function pass pipeline now that it is fully built up and run it
1583   // over the module's one function.
1584   MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
1585   MPM.run(*M, MAM);
1586 }
1587 }
1588