1 //===- lib/CodeGen/DIE.h - DWARF Info Entries -------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Data structures for DWARF info entries.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_LIB_CODEGEN_ASMPRINTER_DIE_H
14 #define LLVM_LIB_CODEGEN_ASMPRINTER_DIE_H
15 
16 #include "llvm/ADT/FoldingSet.h"
17 #include "llvm/ADT/PointerIntPair.h"
18 #include "llvm/ADT/PointerUnion.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/iterator.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/BinaryFormat/Dwarf.h"
24 #include "llvm/CodeGen/DwarfStringPoolEntry.h"
25 #include "llvm/Support/AlignOf.h"
26 #include "llvm/Support/Allocator.h"
27 #include <cassert>
28 #include <cstddef>
29 #include <cstdint>
30 #include <iterator>
31 #include <new>
32 #include <type_traits>
33 #include <utility>
34 #include <vector>
35 
36 namespace llvm {
37 
38 class AsmPrinter;
39 class DIE;
40 class DIEUnit;
41 class DwarfCompileUnit;
42 class MCExpr;
43 class MCSection;
44 class MCSymbol;
45 class raw_ostream;
46 
47 //===--------------------------------------------------------------------===//
48 /// Dwarf abbreviation data, describes one attribute of a Dwarf abbreviation.
49 class DIEAbbrevData {
50   /// Dwarf attribute code.
51   dwarf::Attribute Attribute;
52 
53   /// Dwarf form code.
54   dwarf::Form Form;
55 
56   /// Dwarf attribute value for DW_FORM_implicit_const
57   int64_t Value = 0;
58 
59 public:
DIEAbbrevData(dwarf::Attribute A,dwarf::Form F)60   DIEAbbrevData(dwarf::Attribute A, dwarf::Form F)
61       : Attribute(A), Form(F) {}
DIEAbbrevData(dwarf::Attribute A,int64_t V)62   DIEAbbrevData(dwarf::Attribute A, int64_t V)
63       : Attribute(A), Form(dwarf::DW_FORM_implicit_const), Value(V) {}
64 
65   /// Accessors.
66   /// @{
getAttribute()67   dwarf::Attribute getAttribute() const { return Attribute; }
getForm()68   dwarf::Form getForm() const { return Form; }
getValue()69   int64_t getValue() const { return Value; }
70   /// @}
71 
72   /// Used to gather unique data for the abbreviation folding set.
73   void Profile(FoldingSetNodeID &ID) const;
74 };
75 
76 //===--------------------------------------------------------------------===//
77 /// Dwarf abbreviation, describes the organization of a debug information
78 /// object.
79 class DIEAbbrev : public FoldingSetNode {
80   /// Unique number for node.
81   unsigned Number = 0;
82 
83   /// Dwarf tag code.
84   dwarf::Tag Tag;
85 
86   /// Whether or not this node has children.
87   ///
88   /// This cheats a bit in all of the uses since the values in the standard
89   /// are 0 and 1 for no children and children respectively.
90   bool Children;
91 
92   /// Raw data bytes for abbreviation.
93   SmallVector<DIEAbbrevData, 12> Data;
94 
95 public:
DIEAbbrev(dwarf::Tag T,bool C)96   DIEAbbrev(dwarf::Tag T, bool C) : Tag(T), Children(C) {}
97 
98   /// Accessors.
99   /// @{
getTag()100   dwarf::Tag getTag() const { return Tag; }
getNumber()101   unsigned getNumber() const { return Number; }
hasChildren()102   bool hasChildren() const { return Children; }
getData()103   const SmallVectorImpl<DIEAbbrevData> &getData() const { return Data; }
setChildrenFlag(bool hasChild)104   void setChildrenFlag(bool hasChild) { Children = hasChild; }
setNumber(unsigned N)105   void setNumber(unsigned N) { Number = N; }
106   /// @}
107 
108   /// Adds another set of attribute information to the abbreviation.
AddAttribute(dwarf::Attribute Attribute,dwarf::Form Form)109   void AddAttribute(dwarf::Attribute Attribute, dwarf::Form Form) {
110     Data.push_back(DIEAbbrevData(Attribute, Form));
111   }
112 
113   /// Adds attribute with DW_FORM_implicit_const value
AddImplicitConstAttribute(dwarf::Attribute Attribute,int64_t Value)114   void AddImplicitConstAttribute(dwarf::Attribute Attribute, int64_t Value) {
115     Data.push_back(DIEAbbrevData(Attribute, Value));
116   }
117 
118   /// Used to gather unique data for the abbreviation folding set.
119   void Profile(FoldingSetNodeID &ID) const;
120 
121   /// Print the abbreviation using the specified asm printer.
122   void Emit(const AsmPrinter *AP) const;
123 
124   void print(raw_ostream &O) const;
125   void dump() const;
126 };
127 
128 //===--------------------------------------------------------------------===//
129 /// Helps unique DIEAbbrev objects and assigns abbreviation numbers.
130 ///
131 /// This class will unique the DIE abbreviations for a llvm::DIE object and
132 /// assign a unique abbreviation number to each unique DIEAbbrev object it
133 /// finds. The resulting collection of DIEAbbrev objects can then be emitted
134 /// into the .debug_abbrev section.
135 class DIEAbbrevSet {
136   /// The bump allocator to use when creating DIEAbbrev objects in the uniqued
137   /// storage container.
138   BumpPtrAllocator &Alloc;
139   /// FoldingSet that uniques the abbreviations.
140   FoldingSet<DIEAbbrev> AbbreviationsSet;
141   /// A list of all the unique abbreviations in use.
142   std::vector<DIEAbbrev *> Abbreviations;
143 
144 public:
DIEAbbrevSet(BumpPtrAllocator & A)145   DIEAbbrevSet(BumpPtrAllocator &A) : Alloc(A) {}
146   ~DIEAbbrevSet();
147 
148   /// Generate the abbreviation declaration for a DIE and return a pointer to
149   /// the generated abbreviation.
150   ///
151   /// \param Die the debug info entry to generate the abbreviation for.
152   /// \returns A reference to the uniqued abbreviation declaration that is
153   /// owned by this class.
154   DIEAbbrev &uniqueAbbreviation(DIE &Die);
155 
156   /// Print all abbreviations using the specified asm printer.
157   void Emit(const AsmPrinter *AP, MCSection *Section) const;
158 };
159 
160 //===--------------------------------------------------------------------===//
161 /// An integer value DIE.
162 ///
163 class DIEInteger {
164   uint64_t Integer;
165 
166 public:
DIEInteger(uint64_t I)167   explicit DIEInteger(uint64_t I) : Integer(I) {}
168 
169   /// Choose the best form for integer.
BestForm(bool IsSigned,uint64_t Int)170   static dwarf::Form BestForm(bool IsSigned, uint64_t Int) {
171     if (IsSigned) {
172       const int64_t SignedInt = Int;
173       if ((char)Int == SignedInt)
174         return dwarf::DW_FORM_data1;
175       if ((short)Int == SignedInt)
176         return dwarf::DW_FORM_data2;
177       if ((int)Int == SignedInt)
178         return dwarf::DW_FORM_data4;
179     } else {
180       if ((unsigned char)Int == Int)
181         return dwarf::DW_FORM_data1;
182       if ((unsigned short)Int == Int)
183         return dwarf::DW_FORM_data2;
184       if ((unsigned int)Int == Int)
185         return dwarf::DW_FORM_data4;
186     }
187     return dwarf::DW_FORM_data8;
188   }
189 
getValue()190   uint64_t getValue() const { return Integer; }
setValue(uint64_t Val)191   void setValue(uint64_t Val) { Integer = Val; }
192 
193   void emitValue(const AsmPrinter *Asm, dwarf::Form Form) const;
194   unsigned SizeOf(const AsmPrinter *AP, dwarf::Form Form) const;
195 
196   void print(raw_ostream &O) const;
197 };
198 
199 //===--------------------------------------------------------------------===//
200 /// An expression DIE.
201 class DIEExpr {
202   const MCExpr *Expr;
203 
204 public:
DIEExpr(const MCExpr * E)205   explicit DIEExpr(const MCExpr *E) : Expr(E) {}
206 
207   /// Get MCExpr.
getValue()208   const MCExpr *getValue() const { return Expr; }
209 
210   void emitValue(const AsmPrinter *AP, dwarf::Form Form) const;
211   unsigned SizeOf(const AsmPrinter *AP, dwarf::Form Form) const;
212 
213   void print(raw_ostream &O) const;
214 };
215 
216 //===--------------------------------------------------------------------===//
217 /// A label DIE.
218 class DIELabel {
219   const MCSymbol *Label;
220 
221 public:
DIELabel(const MCSymbol * L)222   explicit DIELabel(const MCSymbol *L) : Label(L) {}
223 
224   /// Get MCSymbol.
getValue()225   const MCSymbol *getValue() const { return Label; }
226 
227   void emitValue(const AsmPrinter *AP, dwarf::Form Form) const;
228   unsigned SizeOf(const AsmPrinter *AP, dwarf::Form Form) const;
229 
230   void print(raw_ostream &O) const;
231 };
232 
233 //===--------------------------------------------------------------------===//
234 /// A BaseTypeRef DIE.
235 class DIEBaseTypeRef {
236   const DwarfCompileUnit *CU;
237   const uint64_t Index;
238   static constexpr unsigned ULEB128PadSize = 4;
239 
240 public:
DIEBaseTypeRef(const DwarfCompileUnit * TheCU,uint64_t Idx)241   explicit DIEBaseTypeRef(const DwarfCompileUnit *TheCU, uint64_t Idx)
242     : CU(TheCU), Index(Idx) {}
243 
244   /// EmitValue - Emit base type reference.
245   void emitValue(const AsmPrinter *AP, dwarf::Form Form) const;
246   /// SizeOf - Determine size of the base type reference in bytes.
247   unsigned SizeOf(const AsmPrinter *AP, dwarf::Form Form) const;
248 
249   void print(raw_ostream &O) const;
getIndex()250   uint64_t getIndex() const { return Index; }
251 };
252 
253 //===--------------------------------------------------------------------===//
254 /// A simple label difference DIE.
255 ///
256 class DIEDelta {
257   const MCSymbol *LabelHi;
258   const MCSymbol *LabelLo;
259 
260 public:
DIEDelta(const MCSymbol * Hi,const MCSymbol * Lo)261   DIEDelta(const MCSymbol *Hi, const MCSymbol *Lo) : LabelHi(Hi), LabelLo(Lo) {}
262 
263   void emitValue(const AsmPrinter *AP, dwarf::Form Form) const;
264   unsigned SizeOf(const AsmPrinter *AP, dwarf::Form Form) const;
265 
266   void print(raw_ostream &O) const;
267 };
268 
269 //===--------------------------------------------------------------------===//
270 /// A container for string pool string values.
271 ///
272 /// This class is used with the DW_FORM_strp and DW_FORM_GNU_str_index forms.
273 class DIEString {
274   DwarfStringPoolEntryRef S;
275 
276 public:
DIEString(DwarfStringPoolEntryRef S)277   DIEString(DwarfStringPoolEntryRef S) : S(S) {}
278 
279   /// Grab the string out of the object.
getString()280   StringRef getString() const { return S.getString(); }
281 
282   void emitValue(const AsmPrinter *AP, dwarf::Form Form) const;
283   unsigned SizeOf(const AsmPrinter *AP, dwarf::Form Form) const;
284 
285   void print(raw_ostream &O) const;
286 };
287 
288 //===--------------------------------------------------------------------===//
289 /// A container for inline string values.
290 ///
291 /// This class is used with the DW_FORM_string form.
292 class DIEInlineString {
293   StringRef S;
294 
295 public:
296   template <typename Allocator>
DIEInlineString(StringRef Str,Allocator & A)297   explicit DIEInlineString(StringRef Str, Allocator &A) : S(Str.copy(A)) {}
298 
299   ~DIEInlineString() = default;
300 
301   /// Grab the string out of the object.
getString()302   StringRef getString() const { return S; }
303 
304   void emitValue(const AsmPrinter *AP, dwarf::Form Form) const;
305   unsigned SizeOf(const AsmPrinter *AP, dwarf::Form Form) const;
306 
307   void print(raw_ostream &O) const;
308 };
309 
310 //===--------------------------------------------------------------------===//
311 /// A pointer to another debug information entry.  An instance of this class can
312 /// also be used as a proxy for a debug information entry not yet defined
313 /// (ie. types.)
314 class DIEEntry {
315   DIE *Entry;
316 
317 public:
318   DIEEntry() = delete;
DIEEntry(DIE & E)319   explicit DIEEntry(DIE &E) : Entry(&E) {}
320 
getEntry()321   DIE &getEntry() const { return *Entry; }
322 
323   void emitValue(const AsmPrinter *AP, dwarf::Form Form) const;
324   unsigned SizeOf(const AsmPrinter *AP, dwarf::Form Form) const;
325 
326   void print(raw_ostream &O) const;
327 };
328 
329 //===--------------------------------------------------------------------===//
330 /// Represents a pointer to a location list in the debug_loc
331 /// section.
332 class DIELocList {
333   /// Index into the .debug_loc vector.
334   size_t Index;
335 
336 public:
DIELocList(size_t I)337   DIELocList(size_t I) : Index(I) {}
338 
339   /// Grab the current index out.
getValue()340   size_t getValue() const { return Index; }
341 
342   void emitValue(const AsmPrinter *AP, dwarf::Form Form) const;
343   unsigned SizeOf(const AsmPrinter *AP, dwarf::Form Form) const;
344 
345   void print(raw_ostream &O) const;
346 };
347 
348 //===--------------------------------------------------------------------===//
349 /// A debug information entry value. Some of these roughly correlate
350 /// to DWARF attribute classes.
351 class DIEBlock;
352 class DIELoc;
353 class DIEValue {
354 public:
355   enum Type {
356     isNone,
357 #define HANDLE_DIEVALUE(T) is##T,
358 #include "llvm/CodeGen/DIEValue.def"
359   };
360 
361 private:
362   /// Type of data stored in the value.
363   Type Ty = isNone;
364   dwarf::Attribute Attribute = (dwarf::Attribute)0;
365   dwarf::Form Form = (dwarf::Form)0;
366 
367   /// Storage for the value.
368   ///
369   /// All values that aren't standard layout (or are larger than 8 bytes)
370   /// should be stored by reference instead of by value.
371   using ValTy = AlignedCharArrayUnion<DIEInteger, DIEString, DIEExpr, DIELabel,
372                                       DIEDelta *, DIEEntry, DIEBlock *,
373                                       DIELoc *, DIELocList, DIEBaseTypeRef *>;
374 
375   static_assert(sizeof(ValTy) <= sizeof(uint64_t) ||
376                     sizeof(ValTy) <= sizeof(void *),
377                 "Expected all large types to be stored via pointer");
378 
379   /// Underlying stored value.
380   ValTy Val;
381 
construct(T V)382   template <class T> void construct(T V) {
383     static_assert(std::is_standard_layout<T>::value ||
384                       std::is_pointer<T>::value,
385                   "Expected standard layout or pointer");
386     new (reinterpret_cast<void *>(&Val)) T(V);
387   }
388 
get()389   template <class T> T *get() { return reinterpret_cast<T *>(&Val); }
get()390   template <class T> const T *get() const {
391     return reinterpret_cast<const T *>(&Val);
392   }
destruct()393   template <class T> void destruct() { get<T>()->~T(); }
394 
395   /// Destroy the underlying value.
396   ///
397   /// This should get optimized down to a no-op.  We could skip it if we could
398   /// add a static assert on \a std::is_trivially_copyable(), but we currently
399   /// support versions of GCC that don't understand that.
destroyVal()400   void destroyVal() {
401     switch (Ty) {
402     case isNone:
403       return;
404 #define HANDLE_DIEVALUE_SMALL(T)                                               \
405   case is##T:                                                                  \
406     destruct<DIE##T>();                                                        \
407     return;
408 #define HANDLE_DIEVALUE_LARGE(T)                                               \
409   case is##T:                                                                  \
410     destruct<const DIE##T *>();                                                \
411     return;
412 #include "llvm/CodeGen/DIEValue.def"
413     }
414   }
415 
416   /// Copy the underlying value.
417   ///
418   /// This should get optimized down to a simple copy.  We need to actually
419   /// construct the value, rather than calling memcpy, to satisfy strict
420   /// aliasing rules.
copyVal(const DIEValue & X)421   void copyVal(const DIEValue &X) {
422     switch (Ty) {
423     case isNone:
424       return;
425 #define HANDLE_DIEVALUE_SMALL(T)                                               \
426   case is##T:                                                                  \
427     construct<DIE##T>(*X.get<DIE##T>());                                       \
428     return;
429 #define HANDLE_DIEVALUE_LARGE(T)                                               \
430   case is##T:                                                                  \
431     construct<const DIE##T *>(*X.get<const DIE##T *>());                       \
432     return;
433 #include "llvm/CodeGen/DIEValue.def"
434     }
435   }
436 
437 public:
438   DIEValue() = default;
439 
DIEValue(const DIEValue & X)440   DIEValue(const DIEValue &X) : Ty(X.Ty), Attribute(X.Attribute), Form(X.Form) {
441     copyVal(X);
442   }
443 
444   DIEValue &operator=(const DIEValue &X) {
445     destroyVal();
446     Ty = X.Ty;
447     Attribute = X.Attribute;
448     Form = X.Form;
449     copyVal(X);
450     return *this;
451   }
452 
~DIEValue()453   ~DIEValue() { destroyVal(); }
454 
455 #define HANDLE_DIEVALUE_SMALL(T)                                               \
456   DIEValue(dwarf::Attribute Attribute, dwarf::Form Form, const DIE##T &V)      \
457       : Ty(is##T), Attribute(Attribute), Form(Form) {                          \
458     construct<DIE##T>(V);                                                      \
459   }
460 #define HANDLE_DIEVALUE_LARGE(T)                                               \
461   DIEValue(dwarf::Attribute Attribute, dwarf::Form Form, const DIE##T *V)      \
462       : Ty(is##T), Attribute(Attribute), Form(Form) {                          \
463     assert(V && "Expected valid value");                                       \
464     construct<const DIE##T *>(V);                                              \
465   }
466 #include "llvm/CodeGen/DIEValue.def"
467 
468   /// Accessors.
469   /// @{
getType()470   Type getType() const { return Ty; }
getAttribute()471   dwarf::Attribute getAttribute() const { return Attribute; }
getForm()472   dwarf::Form getForm() const { return Form; }
473   explicit operator bool() const { return Ty; }
474   /// @}
475 
476 #define HANDLE_DIEVALUE_SMALL(T)                                               \
477   const DIE##T &getDIE##T() const {                                            \
478     assert(getType() == is##T && "Expected " #T);                              \
479     return *get<DIE##T>();                                                     \
480   }
481 #define HANDLE_DIEVALUE_LARGE(T)                                               \
482   const DIE##T &getDIE##T() const {                                            \
483     assert(getType() == is##T && "Expected " #T);                              \
484     return **get<const DIE##T *>();                                            \
485   }
486 #include "llvm/CodeGen/DIEValue.def"
487 
488   /// Emit value via the Dwarf writer.
489   void emitValue(const AsmPrinter *AP) const;
490 
491   /// Return the size of a value in bytes.
492   unsigned SizeOf(const AsmPrinter *AP) const;
493 
494   void print(raw_ostream &O) const;
495   void dump() const;
496 };
497 
498 struct IntrusiveBackListNode {
499   PointerIntPair<IntrusiveBackListNode *, 1> Next;
500 
IntrusiveBackListNodeIntrusiveBackListNode501   IntrusiveBackListNode() : Next(this, true) {}
502 
getNextIntrusiveBackListNode503   IntrusiveBackListNode *getNext() const {
504     return Next.getInt() ? nullptr : Next.getPointer();
505   }
506 };
507 
508 struct IntrusiveBackListBase {
509   using Node = IntrusiveBackListNode;
510 
511   Node *Last = nullptr;
512 
emptyIntrusiveBackListBase513   bool empty() const { return !Last; }
514 
push_backIntrusiveBackListBase515   void push_back(Node &N) {
516     assert(N.Next.getPointer() == &N && "Expected unlinked node");
517     assert(N.Next.getInt() == true && "Expected unlinked node");
518 
519     if (Last) {
520       N.Next = Last->Next;
521       Last->Next.setPointerAndInt(&N, false);
522     }
523     Last = &N;
524   }
525 
push_frontIntrusiveBackListBase526   void push_front(Node &N) {
527     assert(N.Next.getPointer() == &N && "Expected unlinked node");
528     assert(N.Next.getInt() == true && "Expected unlinked node");
529 
530     if (Last) {
531       N.Next.setPointerAndInt(Last->Next.getPointer(), false);
532       Last->Next.setPointerAndInt(&N, true);
533     } else {
534       Last = &N;
535     }
536   }
537 };
538 
539 template <class T> class IntrusiveBackList : IntrusiveBackListBase {
540 public:
541   using IntrusiveBackListBase::empty;
542 
push_back(T & N)543   void push_back(T &N) { IntrusiveBackListBase::push_back(N); }
push_front(T & N)544   void push_front(T &N) { IntrusiveBackListBase::push_front(N); }
back()545   T &back() { return *static_cast<T *>(Last); }
back()546   const T &back() const { return *static_cast<T *>(Last); }
front()547   T &front() {
548     return *static_cast<T *>(Last ? Last->Next.getPointer() : nullptr);
549   }
front()550   const T &front() const {
551     return *static_cast<T *>(Last ? Last->Next.getPointer() : nullptr);
552   }
553 
takeNodes(IntrusiveBackList<T> & Other)554   void takeNodes(IntrusiveBackList<T> &Other) {
555     if (Other.empty())
556       return;
557 
558     T *FirstNode = static_cast<T *>(Other.Last->Next.getPointer());
559     T *IterNode = FirstNode;
560     do {
561       // Keep a pointer to the node and increment the iterator.
562       T *TmpNode = IterNode;
563       IterNode = static_cast<T *>(IterNode->Next.getPointer());
564 
565       // Unlink the node and push it back to this list.
566       TmpNode->Next.setPointerAndInt(TmpNode, true);
567       push_back(*TmpNode);
568     } while (IterNode != FirstNode);
569 
570     Other.Last = nullptr;
571   }
572 
573   class const_iterator;
574   class iterator
575       : public iterator_facade_base<iterator, std::forward_iterator_tag, T> {
576     friend class const_iterator;
577 
578     Node *N = nullptr;
579 
580   public:
581     iterator() = default;
iterator(T * N)582     explicit iterator(T *N) : N(N) {}
583 
584     iterator &operator++() {
585       N = N->getNext();
586       return *this;
587     }
588 
589     explicit operator bool() const { return N; }
590     T &operator*() const { return *static_cast<T *>(N); }
591 
592     bool operator==(const iterator &X) const { return N == X.N; }
593   };
594 
595   class const_iterator
596       : public iterator_facade_base<const_iterator, std::forward_iterator_tag,
597                                     const T> {
598     const Node *N = nullptr;
599 
600   public:
601     const_iterator() = default;
602     // Placate MSVC by explicitly scoping 'iterator'.
const_iterator(typename IntrusiveBackList<T>::iterator X)603     const_iterator(typename IntrusiveBackList<T>::iterator X) : N(X.N) {}
const_iterator(const T * N)604     explicit const_iterator(const T *N) : N(N) {}
605 
606     const_iterator &operator++() {
607       N = N->getNext();
608       return *this;
609     }
610 
611     explicit operator bool() const { return N; }
612     const T &operator*() const { return *static_cast<const T *>(N); }
613 
614     bool operator==(const const_iterator &X) const { return N == X.N; }
615   };
616 
begin()617   iterator begin() {
618     return Last ? iterator(static_cast<T *>(Last->Next.getPointer())) : end();
619   }
begin()620   const_iterator begin() const {
621     return const_cast<IntrusiveBackList *>(this)->begin();
622   }
end()623   iterator end() { return iterator(); }
end()624   const_iterator end() const { return const_iterator(); }
625 
toIterator(T & N)626   static iterator toIterator(T &N) { return iterator(&N); }
toIterator(const T & N)627   static const_iterator toIterator(const T &N) { return const_iterator(&N); }
628 };
629 
630 /// A list of DIE values.
631 ///
632 /// This is a singly-linked list, but instead of reversing the order of
633 /// insertion, we keep a pointer to the back of the list so we can push in
634 /// order.
635 ///
636 /// There are two main reasons to choose a linked list over a customized
637 /// vector-like data structure.
638 ///
639 ///  1. For teardown efficiency, we want DIEs to be BumpPtrAllocated.  Using a
640 ///     linked list here makes this way easier to accomplish.
641 ///  2. Carrying an extra pointer per \a DIEValue isn't expensive.  45% of DIEs
642 ///     have 2 or fewer values, and 90% have 5 or fewer.  A vector would be
643 ///     over-allocated by 50% on average anyway, the same cost as the
644 ///     linked-list node.
645 class DIEValueList {
646   struct Node : IntrusiveBackListNode {
647     DIEValue V;
648 
NodeNode649     explicit Node(DIEValue V) : V(V) {}
650   };
651 
652   using ListTy = IntrusiveBackList<Node>;
653 
654   ListTy List;
655 
656 public:
657   class const_value_iterator;
658   class value_iterator
659       : public iterator_adaptor_base<value_iterator, ListTy::iterator,
660                                      std::forward_iterator_tag, DIEValue> {
661     friend class const_value_iterator;
662 
663     using iterator_adaptor =
664         iterator_adaptor_base<value_iterator, ListTy::iterator,
665                               std::forward_iterator_tag, DIEValue>;
666 
667   public:
668     value_iterator() = default;
value_iterator(ListTy::iterator X)669     explicit value_iterator(ListTy::iterator X) : iterator_adaptor(X) {}
670 
671     explicit operator bool() const { return bool(wrapped()); }
672     DIEValue &operator*() const { return wrapped()->V; }
673   };
674 
675   class const_value_iterator : public iterator_adaptor_base<
676                                    const_value_iterator, ListTy::const_iterator,
677                                    std::forward_iterator_tag, const DIEValue> {
678     using iterator_adaptor =
679         iterator_adaptor_base<const_value_iterator, ListTy::const_iterator,
680                               std::forward_iterator_tag, const DIEValue>;
681 
682   public:
683     const_value_iterator() = default;
const_value_iterator(DIEValueList::value_iterator X)684     const_value_iterator(DIEValueList::value_iterator X)
685         : iterator_adaptor(X.wrapped()) {}
const_value_iterator(ListTy::const_iterator X)686     explicit const_value_iterator(ListTy::const_iterator X)
687         : iterator_adaptor(X) {}
688 
689     explicit operator bool() const { return bool(wrapped()); }
690     const DIEValue &operator*() const { return wrapped()->V; }
691   };
692 
693   using value_range = iterator_range<value_iterator>;
694   using const_value_range = iterator_range<const_value_iterator>;
695 
addValue(BumpPtrAllocator & Alloc,const DIEValue & V)696   value_iterator addValue(BumpPtrAllocator &Alloc, const DIEValue &V) {
697     List.push_back(*new (Alloc) Node(V));
698     return value_iterator(ListTy::toIterator(List.back()));
699   }
700   template <class T>
addValue(BumpPtrAllocator & Alloc,dwarf::Attribute Attribute,dwarf::Form Form,T && Value)701   value_iterator addValue(BumpPtrAllocator &Alloc, dwarf::Attribute Attribute,
702                     dwarf::Form Form, T &&Value) {
703     return addValue(Alloc, DIEValue(Attribute, Form, std::forward<T>(Value)));
704   }
705 
706   /// Take ownership of the nodes in \p Other, and append them to the back of
707   /// the list.
takeValues(DIEValueList & Other)708   void takeValues(DIEValueList &Other) { List.takeNodes(Other.List); }
709 
values()710   value_range values() {
711     return make_range(value_iterator(List.begin()), value_iterator(List.end()));
712   }
values()713   const_value_range values() const {
714     return make_range(const_value_iterator(List.begin()),
715                       const_value_iterator(List.end()));
716   }
717 };
718 
719 //===--------------------------------------------------------------------===//
720 /// A structured debug information entry.  Has an abbreviation which
721 /// describes its organization.
722 class DIE : IntrusiveBackListNode, public DIEValueList {
723   friend class IntrusiveBackList<DIE>;
724   friend class DIEUnit;
725 
726   /// Dwarf unit relative offset.
727   unsigned Offset = 0;
728   /// Size of instance + children.
729   unsigned Size = 0;
730   unsigned AbbrevNumber = ~0u;
731   /// Dwarf tag code.
732   dwarf::Tag Tag = (dwarf::Tag)0;
733   /// Set to true to force a DIE to emit an abbreviation that says it has
734   /// children even when it doesn't. This is used for unit testing purposes.
735   bool ForceChildren = false;
736   /// Children DIEs.
737   IntrusiveBackList<DIE> Children;
738 
739   /// The owner is either the parent DIE for children of other DIEs, or a
740   /// DIEUnit which contains this DIE as its unit DIE.
741   PointerUnion<DIE *, DIEUnit *> Owner;
742 
DIE(dwarf::Tag Tag)743   explicit DIE(dwarf::Tag Tag) : Tag(Tag) {}
744 
745 public:
746   DIE() = delete;
747   DIE(const DIE &RHS) = delete;
748   DIE(DIE &&RHS) = delete;
749   DIE &operator=(const DIE &RHS) = delete;
750   DIE &operator=(const DIE &&RHS) = delete;
751 
get(BumpPtrAllocator & Alloc,dwarf::Tag Tag)752   static DIE *get(BumpPtrAllocator &Alloc, dwarf::Tag Tag) {
753     return new (Alloc) DIE(Tag);
754   }
755 
756   // Accessors.
getAbbrevNumber()757   unsigned getAbbrevNumber() const { return AbbrevNumber; }
getTag()758   dwarf::Tag getTag() const { return Tag; }
759   /// Get the compile/type unit relative offset of this DIE.
getOffset()760   unsigned getOffset() const { return Offset; }
getSize()761   unsigned getSize() const { return Size; }
hasChildren()762   bool hasChildren() const { return ForceChildren || !Children.empty(); }
setForceChildren(bool B)763   void setForceChildren(bool B) { ForceChildren = B; }
764 
765   using child_iterator = IntrusiveBackList<DIE>::iterator;
766   using const_child_iterator = IntrusiveBackList<DIE>::const_iterator;
767   using child_range = iterator_range<child_iterator>;
768   using const_child_range = iterator_range<const_child_iterator>;
769 
children()770   child_range children() {
771     return make_range(Children.begin(), Children.end());
772   }
children()773   const_child_range children() const {
774     return make_range(Children.begin(), Children.end());
775   }
776 
777   DIE *getParent() const;
778 
779   /// Generate the abbreviation for this DIE.
780   ///
781   /// Calculate the abbreviation for this, which should be uniqued and
782   /// eventually used to call \a setAbbrevNumber().
783   DIEAbbrev generateAbbrev() const;
784 
785   /// Set the abbreviation number for this DIE.
setAbbrevNumber(unsigned I)786   void setAbbrevNumber(unsigned I) { AbbrevNumber = I; }
787 
788   /// Get the absolute offset within the .debug_info or .debug_types section
789   /// for this DIE.
790   uint64_t getDebugSectionOffset() const;
791 
792   /// Compute the offset of this DIE and all its children.
793   ///
794   /// This function gets called just before we are going to generate the debug
795   /// information and gives each DIE a chance to figure out its CU relative DIE
796   /// offset, unique its abbreviation and fill in the abbreviation code, and
797   /// return the unit offset that points to where the next DIE will be emitted
798   /// within the debug unit section. After this function has been called for all
799   /// DIE objects, the DWARF can be generated since all DIEs will be able to
800   /// properly refer to other DIE objects since all DIEs have calculated their
801   /// offsets.
802   ///
803   /// \param AP AsmPrinter to use when calculating sizes.
804   /// \param AbbrevSet the abbreviation used to unique DIE abbreviations.
805   /// \param CUOffset the compile/type unit relative offset in bytes.
806   /// \returns the offset for the DIE that follows this DIE within the
807   /// current compile/type unit.
808   unsigned computeOffsetsAndAbbrevs(const AsmPrinter *AP,
809                                     DIEAbbrevSet &AbbrevSet, unsigned CUOffset);
810 
811   /// Climb up the parent chain to get the compile unit or type unit DIE that
812   /// this DIE belongs to.
813   ///
814   /// \returns the compile or type unit DIE that owns this DIE, or NULL if
815   /// this DIE hasn't been added to a unit DIE.
816   const DIE *getUnitDie() const;
817 
818   /// Climb up the parent chain to get the compile unit or type unit that this
819   /// DIE belongs to.
820   ///
821   /// \returns the DIEUnit that represents the compile or type unit that owns
822   /// this DIE, or NULL if this DIE hasn't been added to a unit DIE.
823   DIEUnit *getUnit() const;
824 
setOffset(unsigned O)825   void setOffset(unsigned O) { Offset = O; }
setSize(unsigned S)826   void setSize(unsigned S) { Size = S; }
827 
828   /// Add a child to the DIE.
addChild(DIE * Child)829   DIE &addChild(DIE *Child) {
830     assert(!Child->getParent() && "Child should be orphaned");
831     Child->Owner = this;
832     Children.push_back(*Child);
833     return Children.back();
834   }
835 
addChildFront(DIE * Child)836   DIE &addChildFront(DIE *Child) {
837     assert(!Child->getParent() && "Child should be orphaned");
838     Child->Owner = this;
839     Children.push_front(*Child);
840     return Children.front();
841   }
842 
843   /// Find a value in the DIE with the attribute given.
844   ///
845   /// Returns a default-constructed DIEValue (where \a DIEValue::getType()
846   /// gives \a DIEValue::isNone) if no such attribute exists.
847   DIEValue findAttribute(dwarf::Attribute Attribute) const;
848 
849   void print(raw_ostream &O, unsigned IndentCount = 0) const;
850   void dump() const;
851 };
852 
853 //===--------------------------------------------------------------------===//
854 /// Represents a compile or type unit.
855 class DIEUnit {
856   /// The compile unit or type unit DIE. This variable must be an instance of
857   /// DIE so that we can calculate the DIEUnit from any DIE by traversing the
858   /// parent backchain and getting the Unit DIE, and then casting itself to a
859   /// DIEUnit. This allows us to be able to find the DIEUnit for any DIE without
860   /// having to store a pointer to the DIEUnit in each DIE instance.
861   DIE Die;
862   /// The section this unit will be emitted in. This may or may not be set to
863   /// a valid section depending on the client that is emitting DWARF.
864   MCSection *Section;
865   uint64_t Offset; /// .debug_info or .debug_types absolute section offset.
866 protected:
867   virtual ~DIEUnit() = default;
868 
869 public:
870   explicit DIEUnit(dwarf::Tag UnitTag);
871   DIEUnit(const DIEUnit &RHS) = delete;
872   DIEUnit(DIEUnit &&RHS) = delete;
873   void operator=(const DIEUnit &RHS) = delete;
874   void operator=(const DIEUnit &&RHS) = delete;
875   /// Set the section that this DIEUnit will be emitted into.
876   ///
877   /// This function is used by some clients to set the section. Not all clients
878   /// that emit DWARF use this section variable.
setSection(MCSection * Section)879   void setSection(MCSection *Section) {
880     assert(!this->Section);
881     this->Section = Section;
882   }
883 
getCrossSectionRelativeBaseAddress()884   virtual const MCSymbol *getCrossSectionRelativeBaseAddress() const {
885     return nullptr;
886   }
887 
888   /// Return the section that this DIEUnit will be emitted into.
889   ///
890   /// \returns Section pointer which can be NULL.
getSection()891   MCSection *getSection() const { return Section; }
setDebugSectionOffset(uint64_t O)892   void setDebugSectionOffset(uint64_t O) { Offset = O; }
getDebugSectionOffset()893   uint64_t getDebugSectionOffset() const { return Offset; }
getUnitDie()894   DIE &getUnitDie() { return Die; }
getUnitDie()895   const DIE &getUnitDie() const { return Die; }
896 };
897 
898 struct BasicDIEUnit final : DIEUnit {
BasicDIEUnitfinal899   explicit BasicDIEUnit(dwarf::Tag UnitTag) : DIEUnit(UnitTag) {}
900 };
901 
902 //===--------------------------------------------------------------------===//
903 /// DIELoc - Represents an expression location.
904 //
905 class DIELoc : public DIEValueList {
906   mutable unsigned Size = 0; // Size in bytes excluding size header.
907 
908 public:
909   DIELoc() = default;
910 
911   /// ComputeSize - Calculate the size of the location expression.
912   ///
913   unsigned ComputeSize(const AsmPrinter *AP) const;
914 
915   // TODO: move setSize() and Size to DIEValueList.
setSize(unsigned size)916   void setSize(unsigned size) { Size = size; }
917 
918   /// BestForm - Choose the best form for data.
919   ///
BestForm(unsigned DwarfVersion)920   dwarf::Form BestForm(unsigned DwarfVersion) const {
921     if (DwarfVersion > 3)
922       return dwarf::DW_FORM_exprloc;
923     // Pre-DWARF4 location expressions were blocks and not exprloc.
924     if ((unsigned char)Size == Size)
925       return dwarf::DW_FORM_block1;
926     if ((unsigned short)Size == Size)
927       return dwarf::DW_FORM_block2;
928     if ((unsigned int)Size == Size)
929       return dwarf::DW_FORM_block4;
930     return dwarf::DW_FORM_block;
931   }
932 
933   void emitValue(const AsmPrinter *Asm, dwarf::Form Form) const;
934   unsigned SizeOf(const AsmPrinter *AP, dwarf::Form Form) const;
935 
936   void print(raw_ostream &O) const;
937 };
938 
939 //===--------------------------------------------------------------------===//
940 /// DIEBlock - Represents a block of values.
941 //
942 class DIEBlock : public DIEValueList {
943   mutable unsigned Size = 0; // Size in bytes excluding size header.
944 
945 public:
946   DIEBlock() = default;
947 
948   /// ComputeSize - Calculate the size of the location expression.
949   ///
950   unsigned ComputeSize(const AsmPrinter *AP) const;
951 
952   // TODO: move setSize() and Size to DIEValueList.
setSize(unsigned size)953   void setSize(unsigned size) { Size = size; }
954 
955   /// BestForm - Choose the best form for data.
956   ///
BestForm()957   dwarf::Form BestForm() const {
958     if ((unsigned char)Size == Size)
959       return dwarf::DW_FORM_block1;
960     if ((unsigned short)Size == Size)
961       return dwarf::DW_FORM_block2;
962     if ((unsigned int)Size == Size)
963       return dwarf::DW_FORM_block4;
964     return dwarf::DW_FORM_block;
965   }
966 
967   void emitValue(const AsmPrinter *Asm, dwarf::Form Form) const;
968   unsigned SizeOf(const AsmPrinter *AP, dwarf::Form Form) const;
969 
970   void print(raw_ostream &O) const;
971 };
972 
973 } // end namespace llvm
974 
975 #endif // LLVM_LIB_CODEGEN_ASMPRINTER_DIE_H
976