1 //===- YAMLParser.cpp - Simple YAML parser --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements a YAML parser.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Support/YAMLParser.h"
14 #include "llvm/ADT/AllocatorList.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Support/Compiler.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/MemoryBuffer.h"
26 #include "llvm/Support/SMLoc.h"
27 #include "llvm/Support/SourceMgr.h"
28 #include "llvm/Support/Unicode.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include <algorithm>
31 #include <cassert>
32 #include <cstddef>
33 #include <cstdint>
34 #include <map>
35 #include <memory>
36 #include <string>
37 #include <system_error>
38 #include <utility>
39 
40 using namespace llvm;
41 using namespace yaml;
42 
43 enum UnicodeEncodingForm {
44   UEF_UTF32_LE, ///< UTF-32 Little Endian
45   UEF_UTF32_BE, ///< UTF-32 Big Endian
46   UEF_UTF16_LE, ///< UTF-16 Little Endian
47   UEF_UTF16_BE, ///< UTF-16 Big Endian
48   UEF_UTF8,     ///< UTF-8 or ascii.
49   UEF_Unknown   ///< Not a valid Unicode encoding.
50 };
51 
52 /// EncodingInfo - Holds the encoding type and length of the byte order mark if
53 ///                it exists. Length is in {0, 2, 3, 4}.
54 using EncodingInfo = std::pair<UnicodeEncodingForm, unsigned>;
55 
56 /// getUnicodeEncoding - Reads up to the first 4 bytes to determine the Unicode
57 ///                      encoding form of \a Input.
58 ///
59 /// @param Input A string of length 0 or more.
60 /// @returns An EncodingInfo indicating the Unicode encoding form of the input
61 ///          and how long the byte order mark is if one exists.
getUnicodeEncoding(StringRef Input)62 static EncodingInfo getUnicodeEncoding(StringRef Input) {
63   if (Input.empty())
64     return std::make_pair(UEF_Unknown, 0);
65 
66   switch (uint8_t(Input[0])) {
67   case 0x00:
68     if (Input.size() >= 4) {
69       if (  Input[1] == 0
70          && uint8_t(Input[2]) == 0xFE
71          && uint8_t(Input[3]) == 0xFF)
72         return std::make_pair(UEF_UTF32_BE, 4);
73       if (Input[1] == 0 && Input[2] == 0 && Input[3] != 0)
74         return std::make_pair(UEF_UTF32_BE, 0);
75     }
76 
77     if (Input.size() >= 2 && Input[1] != 0)
78       return std::make_pair(UEF_UTF16_BE, 0);
79     return std::make_pair(UEF_Unknown, 0);
80   case 0xFF:
81     if (  Input.size() >= 4
82        && uint8_t(Input[1]) == 0xFE
83        && Input[2] == 0
84        && Input[3] == 0)
85       return std::make_pair(UEF_UTF32_LE, 4);
86 
87     if (Input.size() >= 2 && uint8_t(Input[1]) == 0xFE)
88       return std::make_pair(UEF_UTF16_LE, 2);
89     return std::make_pair(UEF_Unknown, 0);
90   case 0xFE:
91     if (Input.size() >= 2 && uint8_t(Input[1]) == 0xFF)
92       return std::make_pair(UEF_UTF16_BE, 2);
93     return std::make_pair(UEF_Unknown, 0);
94   case 0xEF:
95     if (  Input.size() >= 3
96        && uint8_t(Input[1]) == 0xBB
97        && uint8_t(Input[2]) == 0xBF)
98       return std::make_pair(UEF_UTF8, 3);
99     return std::make_pair(UEF_Unknown, 0);
100   }
101 
102   // It could still be utf-32 or utf-16.
103   if (Input.size() >= 4 && Input[1] == 0 && Input[2] == 0 && Input[3] == 0)
104     return std::make_pair(UEF_UTF32_LE, 0);
105 
106   if (Input.size() >= 2 && Input[1] == 0)
107     return std::make_pair(UEF_UTF16_LE, 0);
108 
109   return std::make_pair(UEF_UTF8, 0);
110 }
111 
112 /// Pin the vtables to this file.
anchor()113 void Node::anchor() {}
anchor()114 void NullNode::anchor() {}
anchor()115 void ScalarNode::anchor() {}
anchor()116 void BlockScalarNode::anchor() {}
anchor()117 void KeyValueNode::anchor() {}
anchor()118 void MappingNode::anchor() {}
anchor()119 void SequenceNode::anchor() {}
anchor()120 void AliasNode::anchor() {}
121 
122 namespace llvm {
123 namespace yaml {
124 
125 /// Token - A single YAML token.
126 struct Token {
127   enum TokenKind {
128     TK_Error, // Uninitialized token.
129     TK_StreamStart,
130     TK_StreamEnd,
131     TK_VersionDirective,
132     TK_TagDirective,
133     TK_DocumentStart,
134     TK_DocumentEnd,
135     TK_BlockEntry,
136     TK_BlockEnd,
137     TK_BlockSequenceStart,
138     TK_BlockMappingStart,
139     TK_FlowEntry,
140     TK_FlowSequenceStart,
141     TK_FlowSequenceEnd,
142     TK_FlowMappingStart,
143     TK_FlowMappingEnd,
144     TK_Key,
145     TK_Value,
146     TK_Scalar,
147     TK_BlockScalar,
148     TK_Alias,
149     TK_Anchor,
150     TK_Tag
151   } Kind = TK_Error;
152 
153   /// A string of length 0 or more whose begin() points to the logical location
154   /// of the token in the input.
155   StringRef Range;
156 
157   /// The value of a block scalar node.
158   std::string Value;
159 
160   Token() = default;
161 };
162 
163 } // end namespace yaml
164 } // end namespace llvm
165 
166 using TokenQueueT = BumpPtrList<Token>;
167 
168 namespace {
169 
170 /// This struct is used to track simple keys.
171 ///
172 /// Simple keys are handled by creating an entry in SimpleKeys for each Token
173 /// which could legally be the start of a simple key. When peekNext is called,
174 /// if the Token To be returned is referenced by a SimpleKey, we continue
175 /// tokenizing until that potential simple key has either been found to not be
176 /// a simple key (we moved on to the next line or went further than 1024 chars).
177 /// Or when we run into a Value, and then insert a Key token (and possibly
178 /// others) before the SimpleKey's Tok.
179 struct SimpleKey {
180   TokenQueueT::iterator Tok;
181   unsigned Column = 0;
182   unsigned Line = 0;
183   unsigned FlowLevel = 0;
184   bool IsRequired = false;
185 
operator ==__anon6a944a940111::SimpleKey186   bool operator ==(const SimpleKey &Other) {
187     return Tok == Other.Tok;
188   }
189 };
190 
191 } // end anonymous namespace
192 
193 /// The Unicode scalar value of a UTF-8 minimal well-formed code unit
194 ///        subsequence and the subsequence's length in code units (uint8_t).
195 ///        A length of 0 represents an error.
196 using UTF8Decoded = std::pair<uint32_t, unsigned>;
197 
decodeUTF8(StringRef Range)198 static UTF8Decoded decodeUTF8(StringRef Range) {
199   StringRef::iterator Position= Range.begin();
200   StringRef::iterator End = Range.end();
201   // 1 byte: [0x00, 0x7f]
202   // Bit pattern: 0xxxxxxx
203   if (Position < End && (*Position & 0x80) == 0) {
204     return std::make_pair(*Position, 1);
205   }
206   // 2 bytes: [0x80, 0x7ff]
207   // Bit pattern: 110xxxxx 10xxxxxx
208   if (Position + 1 < End && ((*Position & 0xE0) == 0xC0) &&
209       ((*(Position + 1) & 0xC0) == 0x80)) {
210     uint32_t codepoint = ((*Position & 0x1F) << 6) |
211                           (*(Position + 1) & 0x3F);
212     if (codepoint >= 0x80)
213       return std::make_pair(codepoint, 2);
214   }
215   // 3 bytes: [0x8000, 0xffff]
216   // Bit pattern: 1110xxxx 10xxxxxx 10xxxxxx
217   if (Position + 2 < End && ((*Position & 0xF0) == 0xE0) &&
218       ((*(Position + 1) & 0xC0) == 0x80) &&
219       ((*(Position + 2) & 0xC0) == 0x80)) {
220     uint32_t codepoint = ((*Position & 0x0F) << 12) |
221                          ((*(Position + 1) & 0x3F) << 6) |
222                           (*(Position + 2) & 0x3F);
223     // Codepoints between 0xD800 and 0xDFFF are invalid, as
224     // they are high / low surrogate halves used by UTF-16.
225     if (codepoint >= 0x800 &&
226         (codepoint < 0xD800 || codepoint > 0xDFFF))
227       return std::make_pair(codepoint, 3);
228   }
229   // 4 bytes: [0x10000, 0x10FFFF]
230   // Bit pattern: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
231   if (Position + 3 < End && ((*Position & 0xF8) == 0xF0) &&
232       ((*(Position + 1) & 0xC0) == 0x80) &&
233       ((*(Position + 2) & 0xC0) == 0x80) &&
234       ((*(Position + 3) & 0xC0) == 0x80)) {
235     uint32_t codepoint = ((*Position & 0x07) << 18) |
236                          ((*(Position + 1) & 0x3F) << 12) |
237                          ((*(Position + 2) & 0x3F) << 6) |
238                           (*(Position + 3) & 0x3F);
239     if (codepoint >= 0x10000 && codepoint <= 0x10FFFF)
240       return std::make_pair(codepoint, 4);
241   }
242   return std::make_pair(0, 0);
243 }
244 
245 namespace llvm {
246 namespace yaml {
247 
248 /// Scans YAML tokens from a MemoryBuffer.
249 class Scanner {
250 public:
251   Scanner(StringRef Input, SourceMgr &SM, bool ShowColors = true,
252           std::error_code *EC = nullptr);
253   Scanner(MemoryBufferRef Buffer, SourceMgr &SM_, bool ShowColors = true,
254           std::error_code *EC = nullptr);
255 
256   /// Parse the next token and return it without popping it.
257   Token &peekNext();
258 
259   /// Parse the next token and pop it from the queue.
260   Token getNext();
261 
printError(SMLoc Loc,SourceMgr::DiagKind Kind,const Twine & Message,ArrayRef<SMRange> Ranges=None)262   void printError(SMLoc Loc, SourceMgr::DiagKind Kind, const Twine &Message,
263                   ArrayRef<SMRange> Ranges = None) {
264     SM.PrintMessage(Loc, Kind, Message, Ranges, /* FixIts= */ None, ShowColors);
265   }
266 
setError(const Twine & Message,StringRef::iterator Position)267   void setError(const Twine &Message, StringRef::iterator Position) {
268     if (Position >= End)
269       Position = End - 1;
270 
271     // propagate the error if possible
272     if (EC)
273       *EC = make_error_code(std::errc::invalid_argument);
274 
275     // Don't print out more errors after the first one we encounter. The rest
276     // are just the result of the first, and have no meaning.
277     if (!Failed)
278       printError(SMLoc::getFromPointer(Position), SourceMgr::DK_Error, Message);
279     Failed = true;
280   }
281 
282   /// Returns true if an error occurred while parsing.
failed()283   bool failed() {
284     return Failed;
285   }
286 
287 private:
288   void init(MemoryBufferRef Buffer);
289 
currentInput()290   StringRef currentInput() {
291     return StringRef(Current, End - Current);
292   }
293 
294   /// Decode a UTF-8 minimal well-formed code unit subsequence starting
295   ///        at \a Position.
296   ///
297   /// If the UTF-8 code units starting at Position do not form a well-formed
298   /// code unit subsequence, then the Unicode scalar value is 0, and the length
299   /// is 0.
decodeUTF8(StringRef::iterator Position)300   UTF8Decoded decodeUTF8(StringRef::iterator Position) {
301     return ::decodeUTF8(StringRef(Position, End - Position));
302   }
303 
304   // The following functions are based on the gramar rules in the YAML spec. The
305   // style of the function names it meant to closely match how they are written
306   // in the spec. The number within the [] is the number of the grammar rule in
307   // the spec.
308   //
309   // See 4.2 [Production Naming Conventions] for the meaning of the prefixes.
310   //
311   // c-
312   //   A production starting and ending with a special character.
313   // b-
314   //   A production matching a single line break.
315   // nb-
316   //   A production starting and ending with a non-break character.
317   // s-
318   //   A production starting and ending with a white space character.
319   // ns-
320   //   A production starting and ending with a non-space character.
321   // l-
322   //   A production matching complete line(s).
323 
324   /// Skip a single nb-char[27] starting at Position.
325   ///
326   /// A nb-char is 0x9 | [0x20-0x7E] | 0x85 | [0xA0-0xD7FF] | [0xE000-0xFEFE]
327   ///                  | [0xFF00-0xFFFD] | [0x10000-0x10FFFF]
328   ///
329   /// @returns The code unit after the nb-char, or Position if it's not an
330   ///          nb-char.
331   StringRef::iterator skip_nb_char(StringRef::iterator Position);
332 
333   /// Skip a single b-break[28] starting at Position.
334   ///
335   /// A b-break is 0xD 0xA | 0xD | 0xA
336   ///
337   /// @returns The code unit after the b-break, or Position if it's not a
338   ///          b-break.
339   StringRef::iterator skip_b_break(StringRef::iterator Position);
340 
341   /// Skip a single s-space[31] starting at Position.
342   ///
343   /// An s-space is 0x20
344   ///
345   /// @returns The code unit after the s-space, or Position if it's not a
346   ///          s-space.
347   StringRef::iterator skip_s_space(StringRef::iterator Position);
348 
349   /// Skip a single s-white[33] starting at Position.
350   ///
351   /// A s-white is 0x20 | 0x9
352   ///
353   /// @returns The code unit after the s-white, or Position if it's not a
354   ///          s-white.
355   StringRef::iterator skip_s_white(StringRef::iterator Position);
356 
357   /// Skip a single ns-char[34] starting at Position.
358   ///
359   /// A ns-char is nb-char - s-white
360   ///
361   /// @returns The code unit after the ns-char, or Position if it's not a
362   ///          ns-char.
363   StringRef::iterator skip_ns_char(StringRef::iterator Position);
364 
365   using SkipWhileFunc = StringRef::iterator (Scanner::*)(StringRef::iterator);
366 
367   /// Skip minimal well-formed code unit subsequences until Func
368   ///        returns its input.
369   ///
370   /// @returns The code unit after the last minimal well-formed code unit
371   ///          subsequence that Func accepted.
372   StringRef::iterator skip_while( SkipWhileFunc Func
373                                 , StringRef::iterator Position);
374 
375   /// Skip minimal well-formed code unit subsequences until Func returns its
376   /// input.
377   void advanceWhile(SkipWhileFunc Func);
378 
379   /// Scan ns-uri-char[39]s starting at Cur.
380   ///
381   /// This updates Cur and Column while scanning.
382   void scan_ns_uri_char();
383 
384   /// Consume a minimal well-formed code unit subsequence starting at
385   ///        \a Cur. Return false if it is not the same Unicode scalar value as
386   ///        \a Expected. This updates \a Column.
387   bool consume(uint32_t Expected);
388 
389   /// Skip \a Distance UTF-8 code units. Updates \a Cur and \a Column.
390   void skip(uint32_t Distance);
391 
392   /// Return true if the minimal well-formed code unit subsequence at
393   ///        Pos is whitespace or a new line
394   bool isBlankOrBreak(StringRef::iterator Position);
395 
396   /// Consume a single b-break[28] if it's present at the current position.
397   ///
398   /// Return false if the code unit at the current position isn't a line break.
399   bool consumeLineBreakIfPresent();
400 
401   /// If IsSimpleKeyAllowed, create and push_back a new SimpleKey.
402   void saveSimpleKeyCandidate( TokenQueueT::iterator Tok
403                              , unsigned AtColumn
404                              , bool IsRequired);
405 
406   /// Remove simple keys that can no longer be valid simple keys.
407   ///
408   /// Invalid simple keys are not on the current line or are further than 1024
409   /// columns back.
410   void removeStaleSimpleKeyCandidates();
411 
412   /// Remove all simple keys on FlowLevel \a Level.
413   void removeSimpleKeyCandidatesOnFlowLevel(unsigned Level);
414 
415   /// Unroll indentation in \a Indents back to \a Col. Creates BlockEnd
416   ///        tokens if needed.
417   bool unrollIndent(int ToColumn);
418 
419   /// Increase indent to \a Col. Creates \a Kind token at \a InsertPoint
420   ///        if needed.
421   bool rollIndent( int ToColumn
422                  , Token::TokenKind Kind
423                  , TokenQueueT::iterator InsertPoint);
424 
425   /// Skip a single-line comment when the comment starts at the current
426   /// position of the scanner.
427   void skipComment();
428 
429   /// Skip whitespace and comments until the start of the next token.
430   void scanToNextToken();
431 
432   /// Must be the first token generated.
433   bool scanStreamStart();
434 
435   /// Generate tokens needed to close out the stream.
436   bool scanStreamEnd();
437 
438   /// Scan a %BLAH directive.
439   bool scanDirective();
440 
441   /// Scan a ... or ---.
442   bool scanDocumentIndicator(bool IsStart);
443 
444   /// Scan a [ or { and generate the proper flow collection start token.
445   bool scanFlowCollectionStart(bool IsSequence);
446 
447   /// Scan a ] or } and generate the proper flow collection end token.
448   bool scanFlowCollectionEnd(bool IsSequence);
449 
450   /// Scan the , that separates entries in a flow collection.
451   bool scanFlowEntry();
452 
453   /// Scan the - that starts block sequence entries.
454   bool scanBlockEntry();
455 
456   /// Scan an explicit ? indicating a key.
457   bool scanKey();
458 
459   /// Scan an explicit : indicating a value.
460   bool scanValue();
461 
462   /// Scan a quoted scalar.
463   bool scanFlowScalar(bool IsDoubleQuoted);
464 
465   /// Scan an unquoted scalar.
466   bool scanPlainScalar();
467 
468   /// Scan an Alias or Anchor starting with * or &.
469   bool scanAliasOrAnchor(bool IsAlias);
470 
471   /// Scan a block scalar starting with | or >.
472   bool scanBlockScalar(bool IsLiteral);
473 
474   /// Scan a chomping indicator in a block scalar header.
475   char scanBlockChompingIndicator();
476 
477   /// Scan an indentation indicator in a block scalar header.
478   unsigned scanBlockIndentationIndicator();
479 
480   /// Scan a block scalar header.
481   ///
482   /// Return false if an error occurred.
483   bool scanBlockScalarHeader(char &ChompingIndicator, unsigned &IndentIndicator,
484                              bool &IsDone);
485 
486   /// Look for the indentation level of a block scalar.
487   ///
488   /// Return false if an error occurred.
489   bool findBlockScalarIndent(unsigned &BlockIndent, unsigned BlockExitIndent,
490                              unsigned &LineBreaks, bool &IsDone);
491 
492   /// Scan the indentation of a text line in a block scalar.
493   ///
494   /// Return false if an error occurred.
495   bool scanBlockScalarIndent(unsigned BlockIndent, unsigned BlockExitIndent,
496                              bool &IsDone);
497 
498   /// Scan a tag of the form !stuff.
499   bool scanTag();
500 
501   /// Dispatch to the next scanning function based on \a *Cur.
502   bool fetchMoreTokens();
503 
504   /// The SourceMgr used for diagnostics and buffer management.
505   SourceMgr &SM;
506 
507   /// The original input.
508   MemoryBufferRef InputBuffer;
509 
510   /// The current position of the scanner.
511   StringRef::iterator Current;
512 
513   /// The end of the input (one past the last character).
514   StringRef::iterator End;
515 
516   /// Current YAML indentation level in spaces.
517   int Indent;
518 
519   /// Current column number in Unicode code points.
520   unsigned Column;
521 
522   /// Current line number.
523   unsigned Line;
524 
525   /// How deep we are in flow style containers. 0 Means at block level.
526   unsigned FlowLevel;
527 
528   /// Are we at the start of the stream?
529   bool IsStartOfStream;
530 
531   /// Can the next token be the start of a simple key?
532   bool IsSimpleKeyAllowed;
533 
534   /// True if an error has occurred.
535   bool Failed;
536 
537   /// Should colors be used when printing out the diagnostic messages?
538   bool ShowColors;
539 
540   /// Queue of tokens. This is required to queue up tokens while looking
541   ///        for the end of a simple key. And for cases where a single character
542   ///        can produce multiple tokens (e.g. BlockEnd).
543   TokenQueueT TokenQueue;
544 
545   /// Indentation levels.
546   SmallVector<int, 4> Indents;
547 
548   /// Potential simple keys.
549   SmallVector<SimpleKey, 4> SimpleKeys;
550 
551   std::error_code *EC;
552 };
553 
554 } // end namespace yaml
555 } // end namespace llvm
556 
557 /// encodeUTF8 - Encode \a UnicodeScalarValue in UTF-8 and append it to result.
encodeUTF8(uint32_t UnicodeScalarValue,SmallVectorImpl<char> & Result)558 static void encodeUTF8( uint32_t UnicodeScalarValue
559                       , SmallVectorImpl<char> &Result) {
560   if (UnicodeScalarValue <= 0x7F) {
561     Result.push_back(UnicodeScalarValue & 0x7F);
562   } else if (UnicodeScalarValue <= 0x7FF) {
563     uint8_t FirstByte = 0xC0 | ((UnicodeScalarValue & 0x7C0) >> 6);
564     uint8_t SecondByte = 0x80 | (UnicodeScalarValue & 0x3F);
565     Result.push_back(FirstByte);
566     Result.push_back(SecondByte);
567   } else if (UnicodeScalarValue <= 0xFFFF) {
568     uint8_t FirstByte = 0xE0 | ((UnicodeScalarValue & 0xF000) >> 12);
569     uint8_t SecondByte = 0x80 | ((UnicodeScalarValue & 0xFC0) >> 6);
570     uint8_t ThirdByte = 0x80 | (UnicodeScalarValue & 0x3F);
571     Result.push_back(FirstByte);
572     Result.push_back(SecondByte);
573     Result.push_back(ThirdByte);
574   } else if (UnicodeScalarValue <= 0x10FFFF) {
575     uint8_t FirstByte = 0xF0 | ((UnicodeScalarValue & 0x1F0000) >> 18);
576     uint8_t SecondByte = 0x80 | ((UnicodeScalarValue & 0x3F000) >> 12);
577     uint8_t ThirdByte = 0x80 | ((UnicodeScalarValue & 0xFC0) >> 6);
578     uint8_t FourthByte = 0x80 | (UnicodeScalarValue & 0x3F);
579     Result.push_back(FirstByte);
580     Result.push_back(SecondByte);
581     Result.push_back(ThirdByte);
582     Result.push_back(FourthByte);
583   }
584 }
585 
dumpTokens(StringRef Input,raw_ostream & OS)586 bool yaml::dumpTokens(StringRef Input, raw_ostream &OS) {
587   SourceMgr SM;
588   Scanner scanner(Input, SM);
589   while (true) {
590     Token T = scanner.getNext();
591     switch (T.Kind) {
592     case Token::TK_StreamStart:
593       OS << "Stream-Start: ";
594       break;
595     case Token::TK_StreamEnd:
596       OS << "Stream-End: ";
597       break;
598     case Token::TK_VersionDirective:
599       OS << "Version-Directive: ";
600       break;
601     case Token::TK_TagDirective:
602       OS << "Tag-Directive: ";
603       break;
604     case Token::TK_DocumentStart:
605       OS << "Document-Start: ";
606       break;
607     case Token::TK_DocumentEnd:
608       OS << "Document-End: ";
609       break;
610     case Token::TK_BlockEntry:
611       OS << "Block-Entry: ";
612       break;
613     case Token::TK_BlockEnd:
614       OS << "Block-End: ";
615       break;
616     case Token::TK_BlockSequenceStart:
617       OS << "Block-Sequence-Start: ";
618       break;
619     case Token::TK_BlockMappingStart:
620       OS << "Block-Mapping-Start: ";
621       break;
622     case Token::TK_FlowEntry:
623       OS << "Flow-Entry: ";
624       break;
625     case Token::TK_FlowSequenceStart:
626       OS << "Flow-Sequence-Start: ";
627       break;
628     case Token::TK_FlowSequenceEnd:
629       OS << "Flow-Sequence-End: ";
630       break;
631     case Token::TK_FlowMappingStart:
632       OS << "Flow-Mapping-Start: ";
633       break;
634     case Token::TK_FlowMappingEnd:
635       OS << "Flow-Mapping-End: ";
636       break;
637     case Token::TK_Key:
638       OS << "Key: ";
639       break;
640     case Token::TK_Value:
641       OS << "Value: ";
642       break;
643     case Token::TK_Scalar:
644       OS << "Scalar: ";
645       break;
646     case Token::TK_BlockScalar:
647       OS << "Block Scalar: ";
648       break;
649     case Token::TK_Alias:
650       OS << "Alias: ";
651       break;
652     case Token::TK_Anchor:
653       OS << "Anchor: ";
654       break;
655     case Token::TK_Tag:
656       OS << "Tag: ";
657       break;
658     case Token::TK_Error:
659       break;
660     }
661     OS << T.Range << "\n";
662     if (T.Kind == Token::TK_StreamEnd)
663       break;
664     else if (T.Kind == Token::TK_Error)
665       return false;
666   }
667   return true;
668 }
669 
scanTokens(StringRef Input)670 bool yaml::scanTokens(StringRef Input) {
671   SourceMgr SM;
672   Scanner scanner(Input, SM);
673   while (true) {
674     Token T = scanner.getNext();
675     if (T.Kind == Token::TK_StreamEnd)
676       break;
677     else if (T.Kind == Token::TK_Error)
678       return false;
679   }
680   return true;
681 }
682 
escape(StringRef Input,bool EscapePrintable)683 std::string yaml::escape(StringRef Input, bool EscapePrintable) {
684   std::string EscapedInput;
685   for (StringRef::iterator i = Input.begin(), e = Input.end(); i != e; ++i) {
686     if (*i == '\\')
687       EscapedInput += "\\\\";
688     else if (*i == '"')
689       EscapedInput += "\\\"";
690     else if (*i == 0)
691       EscapedInput += "\\0";
692     else if (*i == 0x07)
693       EscapedInput += "\\a";
694     else if (*i == 0x08)
695       EscapedInput += "\\b";
696     else if (*i == 0x09)
697       EscapedInput += "\\t";
698     else if (*i == 0x0A)
699       EscapedInput += "\\n";
700     else if (*i == 0x0B)
701       EscapedInput += "\\v";
702     else if (*i == 0x0C)
703       EscapedInput += "\\f";
704     else if (*i == 0x0D)
705       EscapedInput += "\\r";
706     else if (*i == 0x1B)
707       EscapedInput += "\\e";
708     else if ((unsigned char)*i < 0x20) { // Control characters not handled above.
709       std::string HexStr = utohexstr(*i);
710       EscapedInput += "\\x" + std::string(2 - HexStr.size(), '0') + HexStr;
711     } else if (*i & 0x80) { // UTF-8 multiple code unit subsequence.
712       UTF8Decoded UnicodeScalarValue
713         = decodeUTF8(StringRef(i, Input.end() - i));
714       if (UnicodeScalarValue.second == 0) {
715         // Found invalid char.
716         SmallString<4> Val;
717         encodeUTF8(0xFFFD, Val);
718         llvm::append_range(EscapedInput, Val);
719         // FIXME: Error reporting.
720         return EscapedInput;
721       }
722       if (UnicodeScalarValue.first == 0x85)
723         EscapedInput += "\\N";
724       else if (UnicodeScalarValue.first == 0xA0)
725         EscapedInput += "\\_";
726       else if (UnicodeScalarValue.first == 0x2028)
727         EscapedInput += "\\L";
728       else if (UnicodeScalarValue.first == 0x2029)
729         EscapedInput += "\\P";
730       else if (!EscapePrintable &&
731                sys::unicode::isPrintable(UnicodeScalarValue.first))
732         EscapedInput += StringRef(i, UnicodeScalarValue.second);
733       else {
734         std::string HexStr = utohexstr(UnicodeScalarValue.first);
735         if (HexStr.size() <= 2)
736           EscapedInput += "\\x" + std::string(2 - HexStr.size(), '0') + HexStr;
737         else if (HexStr.size() <= 4)
738           EscapedInput += "\\u" + std::string(4 - HexStr.size(), '0') + HexStr;
739         else if (HexStr.size() <= 8)
740           EscapedInput += "\\U" + std::string(8 - HexStr.size(), '0') + HexStr;
741       }
742       i += UnicodeScalarValue.second - 1;
743     } else
744       EscapedInput.push_back(*i);
745   }
746   return EscapedInput;
747 }
748 
parseBool(StringRef S)749 llvm::Optional<bool> yaml::parseBool(StringRef S) {
750   switch (S.size()) {
751   case 1:
752     switch (S.front()) {
753     case 'y':
754     case 'Y':
755       return true;
756     case 'n':
757     case 'N':
758       return false;
759     default:
760       return None;
761     }
762   case 2:
763     switch (S.front()) {
764     case 'O':
765       if (S[1] == 'N') // ON
766         return true;
767       LLVM_FALLTHROUGH;
768     case 'o':
769       if (S[1] == 'n') //[Oo]n
770         return true;
771       return None;
772     case 'N':
773       if (S[1] == 'O') // NO
774         return false;
775       LLVM_FALLTHROUGH;
776     case 'n':
777       if (S[1] == 'o') //[Nn]o
778         return false;
779       return None;
780     default:
781       return None;
782     }
783   case 3:
784     switch (S.front()) {
785     case 'O':
786       if (S.drop_front() == "FF") // OFF
787         return false;
788       LLVM_FALLTHROUGH;
789     case 'o':
790       if (S.drop_front() == "ff") //[Oo]ff
791         return false;
792       return None;
793     case 'Y':
794       if (S.drop_front() == "ES") // YES
795         return true;
796       LLVM_FALLTHROUGH;
797     case 'y':
798       if (S.drop_front() == "es") //[Yy]es
799         return true;
800       return None;
801     default:
802       return None;
803     }
804   case 4:
805     switch (S.front()) {
806     case 'T':
807       if (S.drop_front() == "RUE") // TRUE
808         return true;
809       LLVM_FALLTHROUGH;
810     case 't':
811       if (S.drop_front() == "rue") //[Tt]rue
812         return true;
813       return None;
814     default:
815       return None;
816     }
817   case 5:
818     switch (S.front()) {
819     case 'F':
820       if (S.drop_front() == "ALSE") // FALSE
821         return false;
822       LLVM_FALLTHROUGH;
823     case 'f':
824       if (S.drop_front() == "alse") //[Ff]alse
825         return false;
826       return None;
827     default:
828       return None;
829     }
830   default:
831     return None;
832   }
833 }
834 
Scanner(StringRef Input,SourceMgr & sm,bool ShowColors,std::error_code * EC)835 Scanner::Scanner(StringRef Input, SourceMgr &sm, bool ShowColors,
836                  std::error_code *EC)
837     : SM(sm), ShowColors(ShowColors), EC(EC) {
838   init(MemoryBufferRef(Input, "YAML"));
839 }
840 
Scanner(MemoryBufferRef Buffer,SourceMgr & SM_,bool ShowColors,std::error_code * EC)841 Scanner::Scanner(MemoryBufferRef Buffer, SourceMgr &SM_, bool ShowColors,
842                  std::error_code *EC)
843     : SM(SM_), ShowColors(ShowColors), EC(EC) {
844   init(Buffer);
845 }
846 
init(MemoryBufferRef Buffer)847 void Scanner::init(MemoryBufferRef Buffer) {
848   InputBuffer = Buffer;
849   Current = InputBuffer.getBufferStart();
850   End = InputBuffer.getBufferEnd();
851   Indent = -1;
852   Column = 0;
853   Line = 0;
854   FlowLevel = 0;
855   IsStartOfStream = true;
856   IsSimpleKeyAllowed = true;
857   Failed = false;
858   std::unique_ptr<MemoryBuffer> InputBufferOwner =
859       MemoryBuffer::getMemBuffer(Buffer, /*RequiresNullTerminator=*/false);
860   SM.AddNewSourceBuffer(std::move(InputBufferOwner), SMLoc());
861 }
862 
peekNext()863 Token &Scanner::peekNext() {
864   // If the current token is a possible simple key, keep parsing until we
865   // can confirm.
866   bool NeedMore = false;
867   while (true) {
868     if (TokenQueue.empty() || NeedMore) {
869       if (!fetchMoreTokens()) {
870         TokenQueue.clear();
871         SimpleKeys.clear();
872         TokenQueue.push_back(Token());
873         return TokenQueue.front();
874       }
875     }
876     assert(!TokenQueue.empty() &&
877             "fetchMoreTokens lied about getting tokens!");
878 
879     removeStaleSimpleKeyCandidates();
880     SimpleKey SK;
881     SK.Tok = TokenQueue.begin();
882     if (!is_contained(SimpleKeys, SK))
883       break;
884     else
885       NeedMore = true;
886   }
887   return TokenQueue.front();
888 }
889 
getNext()890 Token Scanner::getNext() {
891   Token Ret = peekNext();
892   // TokenQueue can be empty if there was an error getting the next token.
893   if (!TokenQueue.empty())
894     TokenQueue.pop_front();
895 
896   // There cannot be any referenced Token's if the TokenQueue is empty. So do a
897   // quick deallocation of them all.
898   if (TokenQueue.empty())
899     TokenQueue.resetAlloc();
900 
901   return Ret;
902 }
903 
skip_nb_char(StringRef::iterator Position)904 StringRef::iterator Scanner::skip_nb_char(StringRef::iterator Position) {
905   if (Position == End)
906     return Position;
907   // Check 7 bit c-printable - b-char.
908   if (   *Position == 0x09
909       || (*Position >= 0x20 && *Position <= 0x7E))
910     return Position + 1;
911 
912   // Check for valid UTF-8.
913   if (uint8_t(*Position) & 0x80) {
914     UTF8Decoded u8d = decodeUTF8(Position);
915     if (   u8d.second != 0
916         && u8d.first != 0xFEFF
917         && ( u8d.first == 0x85
918           || ( u8d.first >= 0xA0
919             && u8d.first <= 0xD7FF)
920           || ( u8d.first >= 0xE000
921             && u8d.first <= 0xFFFD)
922           || ( u8d.first >= 0x10000
923             && u8d.first <= 0x10FFFF)))
924       return Position + u8d.second;
925   }
926   return Position;
927 }
928 
skip_b_break(StringRef::iterator Position)929 StringRef::iterator Scanner::skip_b_break(StringRef::iterator Position) {
930   if (Position == End)
931     return Position;
932   if (*Position == 0x0D) {
933     if (Position + 1 != End && *(Position + 1) == 0x0A)
934       return Position + 2;
935     return Position + 1;
936   }
937 
938   if (*Position == 0x0A)
939     return Position + 1;
940   return Position;
941 }
942 
skip_s_space(StringRef::iterator Position)943 StringRef::iterator Scanner::skip_s_space(StringRef::iterator Position) {
944   if (Position == End)
945     return Position;
946   if (*Position == ' ')
947     return Position + 1;
948   return Position;
949 }
950 
skip_s_white(StringRef::iterator Position)951 StringRef::iterator Scanner::skip_s_white(StringRef::iterator Position) {
952   if (Position == End)
953     return Position;
954   if (*Position == ' ' || *Position == '\t')
955     return Position + 1;
956   return Position;
957 }
958 
skip_ns_char(StringRef::iterator Position)959 StringRef::iterator Scanner::skip_ns_char(StringRef::iterator Position) {
960   if (Position == End)
961     return Position;
962   if (*Position == ' ' || *Position == '\t')
963     return Position;
964   return skip_nb_char(Position);
965 }
966 
skip_while(SkipWhileFunc Func,StringRef::iterator Position)967 StringRef::iterator Scanner::skip_while( SkipWhileFunc Func
968                                        , StringRef::iterator Position) {
969   while (true) {
970     StringRef::iterator i = (this->*Func)(Position);
971     if (i == Position)
972       break;
973     Position = i;
974   }
975   return Position;
976 }
977 
advanceWhile(SkipWhileFunc Func)978 void Scanner::advanceWhile(SkipWhileFunc Func) {
979   auto Final = skip_while(Func, Current);
980   Column += Final - Current;
981   Current = Final;
982 }
983 
is_ns_hex_digit(const char C)984 static bool is_ns_hex_digit(const char C) { return isAlnum(C); }
985 
is_ns_word_char(const char C)986 static bool is_ns_word_char(const char C) { return C == '-' || isAlpha(C); }
987 
scan_ns_uri_char()988 void Scanner::scan_ns_uri_char() {
989   while (true) {
990     if (Current == End)
991       break;
992     if ((   *Current == '%'
993           && Current + 2 < End
994           && is_ns_hex_digit(*(Current + 1))
995           && is_ns_hex_digit(*(Current + 2)))
996         || is_ns_word_char(*Current)
997         || StringRef(Current, 1).find_first_of("#;/?:@&=+$,_.!~*'()[]")
998           != StringRef::npos) {
999       ++Current;
1000       ++Column;
1001     } else
1002       break;
1003   }
1004 }
1005 
consume(uint32_t Expected)1006 bool Scanner::consume(uint32_t Expected) {
1007   if (Expected >= 0x80) {
1008     setError("Cannot consume non-ascii characters", Current);
1009     return false;
1010   }
1011   if (Current == End)
1012     return false;
1013   if (uint8_t(*Current) >= 0x80) {
1014     setError("Cannot consume non-ascii characters", Current);
1015     return false;
1016   }
1017   if (uint8_t(*Current) == Expected) {
1018     ++Current;
1019     ++Column;
1020     return true;
1021   }
1022   return false;
1023 }
1024 
skip(uint32_t Distance)1025 void Scanner::skip(uint32_t Distance) {
1026   Current += Distance;
1027   Column += Distance;
1028   assert(Current <= End && "Skipped past the end");
1029 }
1030 
isBlankOrBreak(StringRef::iterator Position)1031 bool Scanner::isBlankOrBreak(StringRef::iterator Position) {
1032   if (Position == End)
1033     return false;
1034   return *Position == ' ' || *Position == '\t' || *Position == '\r' ||
1035          *Position == '\n';
1036 }
1037 
consumeLineBreakIfPresent()1038 bool Scanner::consumeLineBreakIfPresent() {
1039   auto Next = skip_b_break(Current);
1040   if (Next == Current)
1041     return false;
1042   Column = 0;
1043   ++Line;
1044   Current = Next;
1045   return true;
1046 }
1047 
saveSimpleKeyCandidate(TokenQueueT::iterator Tok,unsigned AtColumn,bool IsRequired)1048 void Scanner::saveSimpleKeyCandidate( TokenQueueT::iterator Tok
1049                                     , unsigned AtColumn
1050                                     , bool IsRequired) {
1051   if (IsSimpleKeyAllowed) {
1052     SimpleKey SK;
1053     SK.Tok = Tok;
1054     SK.Line = Line;
1055     SK.Column = AtColumn;
1056     SK.IsRequired = IsRequired;
1057     SK.FlowLevel = FlowLevel;
1058     SimpleKeys.push_back(SK);
1059   }
1060 }
1061 
removeStaleSimpleKeyCandidates()1062 void Scanner::removeStaleSimpleKeyCandidates() {
1063   for (SmallVectorImpl<SimpleKey>::iterator i = SimpleKeys.begin();
1064                                             i != SimpleKeys.end();) {
1065     if (i->Line != Line || i->Column + 1024 < Column) {
1066       if (i->IsRequired)
1067         setError( "Could not find expected : for simple key"
1068                 , i->Tok->Range.begin());
1069       i = SimpleKeys.erase(i);
1070     } else
1071       ++i;
1072   }
1073 }
1074 
removeSimpleKeyCandidatesOnFlowLevel(unsigned Level)1075 void Scanner::removeSimpleKeyCandidatesOnFlowLevel(unsigned Level) {
1076   if (!SimpleKeys.empty() && (SimpleKeys.end() - 1)->FlowLevel == Level)
1077     SimpleKeys.pop_back();
1078 }
1079 
unrollIndent(int ToColumn)1080 bool Scanner::unrollIndent(int ToColumn) {
1081   Token T;
1082   // Indentation is ignored in flow.
1083   if (FlowLevel != 0)
1084     return true;
1085 
1086   while (Indent > ToColumn) {
1087     T.Kind = Token::TK_BlockEnd;
1088     T.Range = StringRef(Current, 1);
1089     TokenQueue.push_back(T);
1090     Indent = Indents.pop_back_val();
1091   }
1092 
1093   return true;
1094 }
1095 
rollIndent(int ToColumn,Token::TokenKind Kind,TokenQueueT::iterator InsertPoint)1096 bool Scanner::rollIndent( int ToColumn
1097                         , Token::TokenKind Kind
1098                         , TokenQueueT::iterator InsertPoint) {
1099   if (FlowLevel)
1100     return true;
1101   if (Indent < ToColumn) {
1102     Indents.push_back(Indent);
1103     Indent = ToColumn;
1104 
1105     Token T;
1106     T.Kind = Kind;
1107     T.Range = StringRef(Current, 0);
1108     TokenQueue.insert(InsertPoint, T);
1109   }
1110   return true;
1111 }
1112 
skipComment()1113 void Scanner::skipComment() {
1114   if (Current == End || *Current != '#')
1115     return;
1116   while (true) {
1117     // This may skip more than one byte, thus Column is only incremented
1118     // for code points.
1119     StringRef::iterator I = skip_nb_char(Current);
1120     if (I == Current)
1121       break;
1122     Current = I;
1123     ++Column;
1124   }
1125 }
1126 
scanToNextToken()1127 void Scanner::scanToNextToken() {
1128   while (true) {
1129     while (Current != End && (*Current == ' ' || *Current == '\t')) {
1130       skip(1);
1131     }
1132 
1133     skipComment();
1134 
1135     // Skip EOL.
1136     StringRef::iterator i = skip_b_break(Current);
1137     if (i == Current)
1138       break;
1139     Current = i;
1140     ++Line;
1141     Column = 0;
1142     // New lines may start a simple key.
1143     if (!FlowLevel)
1144       IsSimpleKeyAllowed = true;
1145   }
1146 }
1147 
scanStreamStart()1148 bool Scanner::scanStreamStart() {
1149   IsStartOfStream = false;
1150 
1151   EncodingInfo EI = getUnicodeEncoding(currentInput());
1152 
1153   Token T;
1154   T.Kind = Token::TK_StreamStart;
1155   T.Range = StringRef(Current, EI.second);
1156   TokenQueue.push_back(T);
1157   Current += EI.second;
1158   return true;
1159 }
1160 
scanStreamEnd()1161 bool Scanner::scanStreamEnd() {
1162   // Force an ending new line if one isn't present.
1163   if (Column != 0) {
1164     Column = 0;
1165     ++Line;
1166   }
1167 
1168   unrollIndent(-1);
1169   SimpleKeys.clear();
1170   IsSimpleKeyAllowed = false;
1171 
1172   Token T;
1173   T.Kind = Token::TK_StreamEnd;
1174   T.Range = StringRef(Current, 0);
1175   TokenQueue.push_back(T);
1176   return true;
1177 }
1178 
scanDirective()1179 bool Scanner::scanDirective() {
1180   // Reset the indentation level.
1181   unrollIndent(-1);
1182   SimpleKeys.clear();
1183   IsSimpleKeyAllowed = false;
1184 
1185   StringRef::iterator Start = Current;
1186   consume('%');
1187   StringRef::iterator NameStart = Current;
1188   Current = skip_while(&Scanner::skip_ns_char, Current);
1189   StringRef Name(NameStart, Current - NameStart);
1190   Current = skip_while(&Scanner::skip_s_white, Current);
1191 
1192   Token T;
1193   if (Name == "YAML") {
1194     Current = skip_while(&Scanner::skip_ns_char, Current);
1195     T.Kind = Token::TK_VersionDirective;
1196     T.Range = StringRef(Start, Current - Start);
1197     TokenQueue.push_back(T);
1198     return true;
1199   } else if(Name == "TAG") {
1200     Current = skip_while(&Scanner::skip_ns_char, Current);
1201     Current = skip_while(&Scanner::skip_s_white, Current);
1202     Current = skip_while(&Scanner::skip_ns_char, Current);
1203     T.Kind = Token::TK_TagDirective;
1204     T.Range = StringRef(Start, Current - Start);
1205     TokenQueue.push_back(T);
1206     return true;
1207   }
1208   return false;
1209 }
1210 
scanDocumentIndicator(bool IsStart)1211 bool Scanner::scanDocumentIndicator(bool IsStart) {
1212   unrollIndent(-1);
1213   SimpleKeys.clear();
1214   IsSimpleKeyAllowed = false;
1215 
1216   Token T;
1217   T.Kind = IsStart ? Token::TK_DocumentStart : Token::TK_DocumentEnd;
1218   T.Range = StringRef(Current, 3);
1219   skip(3);
1220   TokenQueue.push_back(T);
1221   return true;
1222 }
1223 
scanFlowCollectionStart(bool IsSequence)1224 bool Scanner::scanFlowCollectionStart(bool IsSequence) {
1225   Token T;
1226   T.Kind = IsSequence ? Token::TK_FlowSequenceStart
1227                       : Token::TK_FlowMappingStart;
1228   T.Range = StringRef(Current, 1);
1229   skip(1);
1230   TokenQueue.push_back(T);
1231 
1232   // [ and { may begin a simple key.
1233   saveSimpleKeyCandidate(--TokenQueue.end(), Column - 1, false);
1234 
1235   // And may also be followed by a simple key.
1236   IsSimpleKeyAllowed = true;
1237   ++FlowLevel;
1238   return true;
1239 }
1240 
scanFlowCollectionEnd(bool IsSequence)1241 bool Scanner::scanFlowCollectionEnd(bool IsSequence) {
1242   removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1243   IsSimpleKeyAllowed = false;
1244   Token T;
1245   T.Kind = IsSequence ? Token::TK_FlowSequenceEnd
1246                       : Token::TK_FlowMappingEnd;
1247   T.Range = StringRef(Current, 1);
1248   skip(1);
1249   TokenQueue.push_back(T);
1250   if (FlowLevel)
1251     --FlowLevel;
1252   return true;
1253 }
1254 
scanFlowEntry()1255 bool Scanner::scanFlowEntry() {
1256   removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1257   IsSimpleKeyAllowed = true;
1258   Token T;
1259   T.Kind = Token::TK_FlowEntry;
1260   T.Range = StringRef(Current, 1);
1261   skip(1);
1262   TokenQueue.push_back(T);
1263   return true;
1264 }
1265 
scanBlockEntry()1266 bool Scanner::scanBlockEntry() {
1267   rollIndent(Column, Token::TK_BlockSequenceStart, TokenQueue.end());
1268   removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1269   IsSimpleKeyAllowed = true;
1270   Token T;
1271   T.Kind = Token::TK_BlockEntry;
1272   T.Range = StringRef(Current, 1);
1273   skip(1);
1274   TokenQueue.push_back(T);
1275   return true;
1276 }
1277 
scanKey()1278 bool Scanner::scanKey() {
1279   if (!FlowLevel)
1280     rollIndent(Column, Token::TK_BlockMappingStart, TokenQueue.end());
1281 
1282   removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1283   IsSimpleKeyAllowed = !FlowLevel;
1284 
1285   Token T;
1286   T.Kind = Token::TK_Key;
1287   T.Range = StringRef(Current, 1);
1288   skip(1);
1289   TokenQueue.push_back(T);
1290   return true;
1291 }
1292 
scanValue()1293 bool Scanner::scanValue() {
1294   // If the previous token could have been a simple key, insert the key token
1295   // into the token queue.
1296   if (!SimpleKeys.empty()) {
1297     SimpleKey SK = SimpleKeys.pop_back_val();
1298     Token T;
1299     T.Kind = Token::TK_Key;
1300     T.Range = SK.Tok->Range;
1301     TokenQueueT::iterator i, e;
1302     for (i = TokenQueue.begin(), e = TokenQueue.end(); i != e; ++i) {
1303       if (i == SK.Tok)
1304         break;
1305     }
1306     if (i == e) {
1307       Failed = true;
1308       return false;
1309     }
1310     i = TokenQueue.insert(i, T);
1311 
1312     // We may also need to add a Block-Mapping-Start token.
1313     rollIndent(SK.Column, Token::TK_BlockMappingStart, i);
1314 
1315     IsSimpleKeyAllowed = false;
1316   } else {
1317     if (!FlowLevel)
1318       rollIndent(Column, Token::TK_BlockMappingStart, TokenQueue.end());
1319     IsSimpleKeyAllowed = !FlowLevel;
1320   }
1321 
1322   Token T;
1323   T.Kind = Token::TK_Value;
1324   T.Range = StringRef(Current, 1);
1325   skip(1);
1326   TokenQueue.push_back(T);
1327   return true;
1328 }
1329 
1330 // Forbidding inlining improves performance by roughly 20%.
1331 // FIXME: Remove once llvm optimizes this to the faster version without hints.
1332 LLVM_ATTRIBUTE_NOINLINE static bool
1333 wasEscaped(StringRef::iterator First, StringRef::iterator Position);
1334 
1335 // Returns whether a character at 'Position' was escaped with a leading '\'.
1336 // 'First' specifies the position of the first character in the string.
wasEscaped(StringRef::iterator First,StringRef::iterator Position)1337 static bool wasEscaped(StringRef::iterator First,
1338                        StringRef::iterator Position) {
1339   assert(Position - 1 >= First);
1340   StringRef::iterator I = Position - 1;
1341   // We calculate the number of consecutive '\'s before the current position
1342   // by iterating backwards through our string.
1343   while (I >= First && *I == '\\') --I;
1344   // (Position - 1 - I) now contains the number of '\'s before the current
1345   // position. If it is odd, the character at 'Position' was escaped.
1346   return (Position - 1 - I) % 2 == 1;
1347 }
1348 
scanFlowScalar(bool IsDoubleQuoted)1349 bool Scanner::scanFlowScalar(bool IsDoubleQuoted) {
1350   StringRef::iterator Start = Current;
1351   unsigned ColStart = Column;
1352   if (IsDoubleQuoted) {
1353     do {
1354       ++Current;
1355       while (Current != End && *Current != '"')
1356         ++Current;
1357       // Repeat until the previous character was not a '\' or was an escaped
1358       // backslash.
1359     } while (   Current != End
1360              && *(Current - 1) == '\\'
1361              && wasEscaped(Start + 1, Current));
1362   } else {
1363     skip(1);
1364     while (Current != End) {
1365       // Skip a ' followed by another '.
1366       if (Current + 1 < End && *Current == '\'' && *(Current + 1) == '\'') {
1367         skip(2);
1368         continue;
1369       } else if (*Current == '\'')
1370         break;
1371       StringRef::iterator i = skip_nb_char(Current);
1372       if (i == Current) {
1373         i = skip_b_break(Current);
1374         if (i == Current)
1375           break;
1376         Current = i;
1377         Column = 0;
1378         ++Line;
1379       } else {
1380         if (i == End)
1381           break;
1382         Current = i;
1383         ++Column;
1384       }
1385     }
1386   }
1387 
1388   if (Current == End) {
1389     setError("Expected quote at end of scalar", Current);
1390     return false;
1391   }
1392 
1393   skip(1); // Skip ending quote.
1394   Token T;
1395   T.Kind = Token::TK_Scalar;
1396   T.Range = StringRef(Start, Current - Start);
1397   TokenQueue.push_back(T);
1398 
1399   saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false);
1400 
1401   IsSimpleKeyAllowed = false;
1402 
1403   return true;
1404 }
1405 
scanPlainScalar()1406 bool Scanner::scanPlainScalar() {
1407   StringRef::iterator Start = Current;
1408   unsigned ColStart = Column;
1409   unsigned LeadingBlanks = 0;
1410   assert(Indent >= -1 && "Indent must be >= -1 !");
1411   unsigned indent = static_cast<unsigned>(Indent + 1);
1412   while (Current != End) {
1413     if (*Current == '#')
1414       break;
1415 
1416     while (Current != End && !isBlankOrBreak(Current)) {
1417       if (FlowLevel && *Current == ':' &&
1418           (Current + 1 == End ||
1419            !(isBlankOrBreak(Current + 1) || *(Current + 1) == ','))) {
1420         setError("Found unexpected ':' while scanning a plain scalar", Current);
1421         return false;
1422       }
1423 
1424       // Check for the end of the plain scalar.
1425       if (  (*Current == ':' && isBlankOrBreak(Current + 1))
1426           || (  FlowLevel
1427           && (StringRef(Current, 1).find_first_of(",:?[]{}")
1428               != StringRef::npos)))
1429         break;
1430 
1431       StringRef::iterator i = skip_nb_char(Current);
1432       if (i == Current)
1433         break;
1434       Current = i;
1435       ++Column;
1436     }
1437 
1438     // Are we at the end?
1439     if (!isBlankOrBreak(Current))
1440       break;
1441 
1442     // Eat blanks.
1443     StringRef::iterator Tmp = Current;
1444     while (isBlankOrBreak(Tmp)) {
1445       StringRef::iterator i = skip_s_white(Tmp);
1446       if (i != Tmp) {
1447         if (LeadingBlanks && (Column < indent) && *Tmp == '\t') {
1448           setError("Found invalid tab character in indentation", Tmp);
1449           return false;
1450         }
1451         Tmp = i;
1452         ++Column;
1453       } else {
1454         i = skip_b_break(Tmp);
1455         if (!LeadingBlanks)
1456           LeadingBlanks = 1;
1457         Tmp = i;
1458         Column = 0;
1459         ++Line;
1460       }
1461     }
1462 
1463     if (!FlowLevel && Column < indent)
1464       break;
1465 
1466     Current = Tmp;
1467   }
1468   if (Start == Current) {
1469     setError("Got empty plain scalar", Start);
1470     return false;
1471   }
1472   Token T;
1473   T.Kind = Token::TK_Scalar;
1474   T.Range = StringRef(Start, Current - Start);
1475   TokenQueue.push_back(T);
1476 
1477   // Plain scalars can be simple keys.
1478   saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false);
1479 
1480   IsSimpleKeyAllowed = false;
1481 
1482   return true;
1483 }
1484 
scanAliasOrAnchor(bool IsAlias)1485 bool Scanner::scanAliasOrAnchor(bool IsAlias) {
1486   StringRef::iterator Start = Current;
1487   unsigned ColStart = Column;
1488   skip(1);
1489   while (Current != End) {
1490     if (   *Current == '[' || *Current == ']'
1491         || *Current == '{' || *Current == '}'
1492         || *Current == ','
1493         || *Current == ':')
1494       break;
1495     StringRef::iterator i = skip_ns_char(Current);
1496     if (i == Current)
1497       break;
1498     Current = i;
1499     ++Column;
1500   }
1501 
1502   if (Start + 1 == Current) {
1503     setError("Got empty alias or anchor", Start);
1504     return false;
1505   }
1506 
1507   Token T;
1508   T.Kind = IsAlias ? Token::TK_Alias : Token::TK_Anchor;
1509   T.Range = StringRef(Start, Current - Start);
1510   TokenQueue.push_back(T);
1511 
1512   // Alias and anchors can be simple keys.
1513   saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false);
1514 
1515   IsSimpleKeyAllowed = false;
1516 
1517   return true;
1518 }
1519 
scanBlockChompingIndicator()1520 char Scanner::scanBlockChompingIndicator() {
1521   char Indicator = ' ';
1522   if (Current != End && (*Current == '+' || *Current == '-')) {
1523     Indicator = *Current;
1524     skip(1);
1525   }
1526   return Indicator;
1527 }
1528 
1529 /// Get the number of line breaks after chomping.
1530 ///
1531 /// Return the number of trailing line breaks to emit, depending on
1532 /// \p ChompingIndicator.
getChompedLineBreaks(char ChompingIndicator,unsigned LineBreaks,StringRef Str)1533 static unsigned getChompedLineBreaks(char ChompingIndicator,
1534                                      unsigned LineBreaks, StringRef Str) {
1535   if (ChompingIndicator == '-') // Strip all line breaks.
1536     return 0;
1537   if (ChompingIndicator == '+') // Keep all line breaks.
1538     return LineBreaks;
1539   // Clip trailing lines.
1540   return Str.empty() ? 0 : 1;
1541 }
1542 
scanBlockIndentationIndicator()1543 unsigned Scanner::scanBlockIndentationIndicator() {
1544   unsigned Indent = 0;
1545   if (Current != End && (*Current >= '1' && *Current <= '9')) {
1546     Indent = unsigned(*Current - '0');
1547     skip(1);
1548   }
1549   return Indent;
1550 }
1551 
scanBlockScalarHeader(char & ChompingIndicator,unsigned & IndentIndicator,bool & IsDone)1552 bool Scanner::scanBlockScalarHeader(char &ChompingIndicator,
1553                                     unsigned &IndentIndicator, bool &IsDone) {
1554   auto Start = Current;
1555 
1556   ChompingIndicator = scanBlockChompingIndicator();
1557   IndentIndicator = scanBlockIndentationIndicator();
1558   // Check for the chomping indicator once again.
1559   if (ChompingIndicator == ' ')
1560     ChompingIndicator = scanBlockChompingIndicator();
1561   Current = skip_while(&Scanner::skip_s_white, Current);
1562   skipComment();
1563 
1564   if (Current == End) { // EOF, we have an empty scalar.
1565     Token T;
1566     T.Kind = Token::TK_BlockScalar;
1567     T.Range = StringRef(Start, Current - Start);
1568     TokenQueue.push_back(T);
1569     IsDone = true;
1570     return true;
1571   }
1572 
1573   if (!consumeLineBreakIfPresent()) {
1574     setError("Expected a line break after block scalar header", Current);
1575     return false;
1576   }
1577   return true;
1578 }
1579 
findBlockScalarIndent(unsigned & BlockIndent,unsigned BlockExitIndent,unsigned & LineBreaks,bool & IsDone)1580 bool Scanner::findBlockScalarIndent(unsigned &BlockIndent,
1581                                     unsigned BlockExitIndent,
1582                                     unsigned &LineBreaks, bool &IsDone) {
1583   unsigned MaxAllSpaceLineCharacters = 0;
1584   StringRef::iterator LongestAllSpaceLine;
1585 
1586   while (true) {
1587     advanceWhile(&Scanner::skip_s_space);
1588     if (skip_nb_char(Current) != Current) {
1589       // This line isn't empty, so try and find the indentation.
1590       if (Column <= BlockExitIndent) { // End of the block literal.
1591         IsDone = true;
1592         return true;
1593       }
1594       // We found the block's indentation.
1595       BlockIndent = Column;
1596       if (MaxAllSpaceLineCharacters > BlockIndent) {
1597         setError(
1598             "Leading all-spaces line must be smaller than the block indent",
1599             LongestAllSpaceLine);
1600         return false;
1601       }
1602       return true;
1603     }
1604     if (skip_b_break(Current) != Current &&
1605         Column > MaxAllSpaceLineCharacters) {
1606       // Record the longest all-space line in case it's longer than the
1607       // discovered block indent.
1608       MaxAllSpaceLineCharacters = Column;
1609       LongestAllSpaceLine = Current;
1610     }
1611 
1612     // Check for EOF.
1613     if (Current == End) {
1614       IsDone = true;
1615       return true;
1616     }
1617 
1618     if (!consumeLineBreakIfPresent()) {
1619       IsDone = true;
1620       return true;
1621     }
1622     ++LineBreaks;
1623   }
1624   return true;
1625 }
1626 
scanBlockScalarIndent(unsigned BlockIndent,unsigned BlockExitIndent,bool & IsDone)1627 bool Scanner::scanBlockScalarIndent(unsigned BlockIndent,
1628                                     unsigned BlockExitIndent, bool &IsDone) {
1629   // Skip the indentation.
1630   while (Column < BlockIndent) {
1631     auto I = skip_s_space(Current);
1632     if (I == Current)
1633       break;
1634     Current = I;
1635     ++Column;
1636   }
1637 
1638   if (skip_nb_char(Current) == Current)
1639     return true;
1640 
1641   if (Column <= BlockExitIndent) { // End of the block literal.
1642     IsDone = true;
1643     return true;
1644   }
1645 
1646   if (Column < BlockIndent) {
1647     if (Current != End && *Current == '#') { // Trailing comment.
1648       IsDone = true;
1649       return true;
1650     }
1651     setError("A text line is less indented than the block scalar", Current);
1652     return false;
1653   }
1654   return true; // A normal text line.
1655 }
1656 
scanBlockScalar(bool IsLiteral)1657 bool Scanner::scanBlockScalar(bool IsLiteral) {
1658   // Eat '|' or '>'
1659   assert(*Current == '|' || *Current == '>');
1660   skip(1);
1661 
1662   char ChompingIndicator;
1663   unsigned BlockIndent;
1664   bool IsDone = false;
1665   if (!scanBlockScalarHeader(ChompingIndicator, BlockIndent, IsDone))
1666     return false;
1667   if (IsDone)
1668     return true;
1669 
1670   auto Start = Current;
1671   unsigned BlockExitIndent = Indent < 0 ? 0 : (unsigned)Indent;
1672   unsigned LineBreaks = 0;
1673   if (BlockIndent == 0) {
1674     if (!findBlockScalarIndent(BlockIndent, BlockExitIndent, LineBreaks,
1675                                IsDone))
1676       return false;
1677   }
1678 
1679   // Scan the block's scalars body.
1680   SmallString<256> Str;
1681   while (!IsDone) {
1682     if (!scanBlockScalarIndent(BlockIndent, BlockExitIndent, IsDone))
1683       return false;
1684     if (IsDone)
1685       break;
1686 
1687     // Parse the current line.
1688     auto LineStart = Current;
1689     advanceWhile(&Scanner::skip_nb_char);
1690     if (LineStart != Current) {
1691       Str.append(LineBreaks, '\n');
1692       Str.append(StringRef(LineStart, Current - LineStart));
1693       LineBreaks = 0;
1694     }
1695 
1696     // Check for EOF.
1697     if (Current == End)
1698       break;
1699 
1700     if (!consumeLineBreakIfPresent())
1701       break;
1702     ++LineBreaks;
1703   }
1704 
1705   if (Current == End && !LineBreaks)
1706     // Ensure that there is at least one line break before the end of file.
1707     LineBreaks = 1;
1708   Str.append(getChompedLineBreaks(ChompingIndicator, LineBreaks, Str), '\n');
1709 
1710   // New lines may start a simple key.
1711   if (!FlowLevel)
1712     IsSimpleKeyAllowed = true;
1713 
1714   Token T;
1715   T.Kind = Token::TK_BlockScalar;
1716   T.Range = StringRef(Start, Current - Start);
1717   T.Value = std::string(Str);
1718   TokenQueue.push_back(T);
1719   return true;
1720 }
1721 
scanTag()1722 bool Scanner::scanTag() {
1723   StringRef::iterator Start = Current;
1724   unsigned ColStart = Column;
1725   skip(1); // Eat !.
1726   if (Current == End || isBlankOrBreak(Current)); // An empty tag.
1727   else if (*Current == '<') {
1728     skip(1);
1729     scan_ns_uri_char();
1730     if (!consume('>'))
1731       return false;
1732   } else {
1733     // FIXME: Actually parse the c-ns-shorthand-tag rule.
1734     Current = skip_while(&Scanner::skip_ns_char, Current);
1735   }
1736 
1737   Token T;
1738   T.Kind = Token::TK_Tag;
1739   T.Range = StringRef(Start, Current - Start);
1740   TokenQueue.push_back(T);
1741 
1742   // Tags can be simple keys.
1743   saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false);
1744 
1745   IsSimpleKeyAllowed = false;
1746 
1747   return true;
1748 }
1749 
fetchMoreTokens()1750 bool Scanner::fetchMoreTokens() {
1751   if (IsStartOfStream)
1752     return scanStreamStart();
1753 
1754   scanToNextToken();
1755 
1756   if (Current == End)
1757     return scanStreamEnd();
1758 
1759   removeStaleSimpleKeyCandidates();
1760 
1761   unrollIndent(Column);
1762 
1763   if (Column == 0 && *Current == '%')
1764     return scanDirective();
1765 
1766   if (Column == 0 && Current + 4 <= End
1767       && *Current == '-'
1768       && *(Current + 1) == '-'
1769       && *(Current + 2) == '-'
1770       && (Current + 3 == End || isBlankOrBreak(Current + 3)))
1771     return scanDocumentIndicator(true);
1772 
1773   if (Column == 0 && Current + 4 <= End
1774       && *Current == '.'
1775       && *(Current + 1) == '.'
1776       && *(Current + 2) == '.'
1777       && (Current + 3 == End || isBlankOrBreak(Current + 3)))
1778     return scanDocumentIndicator(false);
1779 
1780   if (*Current == '[')
1781     return scanFlowCollectionStart(true);
1782 
1783   if (*Current == '{')
1784     return scanFlowCollectionStart(false);
1785 
1786   if (*Current == ']')
1787     return scanFlowCollectionEnd(true);
1788 
1789   if (*Current == '}')
1790     return scanFlowCollectionEnd(false);
1791 
1792   if (*Current == ',')
1793     return scanFlowEntry();
1794 
1795   if (*Current == '-' && isBlankOrBreak(Current + 1))
1796     return scanBlockEntry();
1797 
1798   if (*Current == '?' && (FlowLevel || isBlankOrBreak(Current + 1)))
1799     return scanKey();
1800 
1801   if (*Current == ':' && (FlowLevel || isBlankOrBreak(Current + 1)))
1802     return scanValue();
1803 
1804   if (*Current == '*')
1805     return scanAliasOrAnchor(true);
1806 
1807   if (*Current == '&')
1808     return scanAliasOrAnchor(false);
1809 
1810   if (*Current == '!')
1811     return scanTag();
1812 
1813   if (*Current == '|' && !FlowLevel)
1814     return scanBlockScalar(true);
1815 
1816   if (*Current == '>' && !FlowLevel)
1817     return scanBlockScalar(false);
1818 
1819   if (*Current == '\'')
1820     return scanFlowScalar(false);
1821 
1822   if (*Current == '"')
1823     return scanFlowScalar(true);
1824 
1825   // Get a plain scalar.
1826   StringRef FirstChar(Current, 1);
1827   if (!(isBlankOrBreak(Current)
1828         || FirstChar.find_first_of("-?:,[]{}#&*!|>'\"%@`") != StringRef::npos)
1829       || (*Current == '-' && !isBlankOrBreak(Current + 1))
1830       || (!FlowLevel && (*Current == '?' || *Current == ':')
1831           && isBlankOrBreak(Current + 1))
1832       || (!FlowLevel && *Current == ':'
1833                       && Current + 2 < End
1834                       && *(Current + 1) == ':'
1835                       && !isBlankOrBreak(Current + 2)))
1836     return scanPlainScalar();
1837 
1838   setError("Unrecognized character while tokenizing.", Current);
1839   return false;
1840 }
1841 
Stream(StringRef Input,SourceMgr & SM,bool ShowColors,std::error_code * EC)1842 Stream::Stream(StringRef Input, SourceMgr &SM, bool ShowColors,
1843                std::error_code *EC)
1844     : scanner(new Scanner(Input, SM, ShowColors, EC)), CurrentDoc() {}
1845 
Stream(MemoryBufferRef InputBuffer,SourceMgr & SM,bool ShowColors,std::error_code * EC)1846 Stream::Stream(MemoryBufferRef InputBuffer, SourceMgr &SM, bool ShowColors,
1847                std::error_code *EC)
1848     : scanner(new Scanner(InputBuffer, SM, ShowColors, EC)), CurrentDoc() {}
1849 
1850 Stream::~Stream() = default;
1851 
failed()1852 bool Stream::failed() { return scanner->failed(); }
1853 
printError(Node * N,const Twine & Msg,SourceMgr::DiagKind Kind)1854 void Stream::printError(Node *N, const Twine &Msg, SourceMgr::DiagKind Kind) {
1855   printError(N ? N->getSourceRange() : SMRange(), Msg, Kind);
1856 }
1857 
printError(const SMRange & Range,const Twine & Msg,SourceMgr::DiagKind Kind)1858 void Stream::printError(const SMRange &Range, const Twine &Msg,
1859                         SourceMgr::DiagKind Kind) {
1860   scanner->printError(Range.Start, Kind, Msg, Range);
1861 }
1862 
begin()1863 document_iterator Stream::begin() {
1864   if (CurrentDoc)
1865     report_fatal_error("Can only iterate over the stream once");
1866 
1867   // Skip Stream-Start.
1868   scanner->getNext();
1869 
1870   CurrentDoc.reset(new Document(*this));
1871   return document_iterator(CurrentDoc);
1872 }
1873 
end()1874 document_iterator Stream::end() {
1875   return document_iterator();
1876 }
1877 
skip()1878 void Stream::skip() {
1879   for (document_iterator i = begin(), e = end(); i != e; ++i)
1880     i->skip();
1881 }
1882 
Node(unsigned int Type,std::unique_ptr<Document> & D,StringRef A,StringRef T)1883 Node::Node(unsigned int Type, std::unique_ptr<Document> &D, StringRef A,
1884            StringRef T)
1885     : Doc(D), TypeID(Type), Anchor(A), Tag(T) {
1886   SMLoc Start = SMLoc::getFromPointer(peekNext().Range.begin());
1887   SourceRange = SMRange(Start, Start);
1888 }
1889 
getVerbatimTag() const1890 std::string Node::getVerbatimTag() const {
1891   StringRef Raw = getRawTag();
1892   if (!Raw.empty() && Raw != "!") {
1893     std::string Ret;
1894     if (Raw.find_last_of('!') == 0) {
1895       Ret = std::string(Doc->getTagMap().find("!")->second);
1896       Ret += Raw.substr(1);
1897       return Ret;
1898     } else if (Raw.startswith("!!")) {
1899       Ret = std::string(Doc->getTagMap().find("!!")->second);
1900       Ret += Raw.substr(2);
1901       return Ret;
1902     } else {
1903       StringRef TagHandle = Raw.substr(0, Raw.find_last_of('!') + 1);
1904       std::map<StringRef, StringRef>::const_iterator It =
1905           Doc->getTagMap().find(TagHandle);
1906       if (It != Doc->getTagMap().end())
1907         Ret = std::string(It->second);
1908       else {
1909         Token T;
1910         T.Kind = Token::TK_Tag;
1911         T.Range = TagHandle;
1912         setError(Twine("Unknown tag handle ") + TagHandle, T);
1913       }
1914       Ret += Raw.substr(Raw.find_last_of('!') + 1);
1915       return Ret;
1916     }
1917   }
1918 
1919   switch (getType()) {
1920   case NK_Null:
1921     return "tag:yaml.org,2002:null";
1922   case NK_Scalar:
1923   case NK_BlockScalar:
1924     // TODO: Tag resolution.
1925     return "tag:yaml.org,2002:str";
1926   case NK_Mapping:
1927     return "tag:yaml.org,2002:map";
1928   case NK_Sequence:
1929     return "tag:yaml.org,2002:seq";
1930   }
1931 
1932   return "";
1933 }
1934 
peekNext()1935 Token &Node::peekNext() {
1936   return Doc->peekNext();
1937 }
1938 
getNext()1939 Token Node::getNext() {
1940   return Doc->getNext();
1941 }
1942 
parseBlockNode()1943 Node *Node::parseBlockNode() {
1944   return Doc->parseBlockNode();
1945 }
1946 
getAllocator()1947 BumpPtrAllocator &Node::getAllocator() {
1948   return Doc->NodeAllocator;
1949 }
1950 
setError(const Twine & Msg,Token & Tok) const1951 void Node::setError(const Twine &Msg, Token &Tok) const {
1952   Doc->setError(Msg, Tok);
1953 }
1954 
failed() const1955 bool Node::failed() const {
1956   return Doc->failed();
1957 }
1958 
getValue(SmallVectorImpl<char> & Storage) const1959 StringRef ScalarNode::getValue(SmallVectorImpl<char> &Storage) const {
1960   // TODO: Handle newlines properly. We need to remove leading whitespace.
1961   if (Value[0] == '"') { // Double quoted.
1962     // Pull off the leading and trailing "s.
1963     StringRef UnquotedValue = Value.substr(1, Value.size() - 2);
1964     // Search for characters that would require unescaping the value.
1965     StringRef::size_type i = UnquotedValue.find_first_of("\\\r\n");
1966     if (i != StringRef::npos)
1967       return unescapeDoubleQuoted(UnquotedValue, i, Storage);
1968     return UnquotedValue;
1969   } else if (Value[0] == '\'') { // Single quoted.
1970     // Pull off the leading and trailing 's.
1971     StringRef UnquotedValue = Value.substr(1, Value.size() - 2);
1972     StringRef::size_type i = UnquotedValue.find('\'');
1973     if (i != StringRef::npos) {
1974       // We're going to need Storage.
1975       Storage.clear();
1976       Storage.reserve(UnquotedValue.size());
1977       for (; i != StringRef::npos; i = UnquotedValue.find('\'')) {
1978         StringRef Valid(UnquotedValue.begin(), i);
1979         llvm::append_range(Storage, Valid);
1980         Storage.push_back('\'');
1981         UnquotedValue = UnquotedValue.substr(i + 2);
1982       }
1983       llvm::append_range(Storage, UnquotedValue);
1984       return StringRef(Storage.begin(), Storage.size());
1985     }
1986     return UnquotedValue;
1987   }
1988   // Plain or block.
1989   return Value.rtrim(' ');
1990 }
1991 
unescapeDoubleQuoted(StringRef UnquotedValue,StringRef::size_type i,SmallVectorImpl<char> & Storage) const1992 StringRef ScalarNode::unescapeDoubleQuoted( StringRef UnquotedValue
1993                                           , StringRef::size_type i
1994                                           , SmallVectorImpl<char> &Storage)
1995                                           const {
1996   // Use Storage to build proper value.
1997   Storage.clear();
1998   Storage.reserve(UnquotedValue.size());
1999   for (; i != StringRef::npos; i = UnquotedValue.find_first_of("\\\r\n")) {
2000     // Insert all previous chars into Storage.
2001     StringRef Valid(UnquotedValue.begin(), i);
2002     llvm::append_range(Storage, Valid);
2003     // Chop off inserted chars.
2004     UnquotedValue = UnquotedValue.substr(i);
2005 
2006     assert(!UnquotedValue.empty() && "Can't be empty!");
2007 
2008     // Parse escape or line break.
2009     switch (UnquotedValue[0]) {
2010     case '\r':
2011     case '\n':
2012       Storage.push_back('\n');
2013       if (   UnquotedValue.size() > 1
2014           && (UnquotedValue[1] == '\r' || UnquotedValue[1] == '\n'))
2015         UnquotedValue = UnquotedValue.substr(1);
2016       UnquotedValue = UnquotedValue.substr(1);
2017       break;
2018     default:
2019       if (UnquotedValue.size() == 1) {
2020         Token T;
2021         T.Range = StringRef(UnquotedValue.begin(), 1);
2022         setError("Unrecognized escape code", T);
2023         return "";
2024       }
2025       UnquotedValue = UnquotedValue.substr(1);
2026       switch (UnquotedValue[0]) {
2027       default: {
2028           Token T;
2029           T.Range = StringRef(UnquotedValue.begin(), 1);
2030           setError("Unrecognized escape code", T);
2031           return "";
2032         }
2033       case '\r':
2034       case '\n':
2035         // Remove the new line.
2036         if (   UnquotedValue.size() > 1
2037             && (UnquotedValue[1] == '\r' || UnquotedValue[1] == '\n'))
2038           UnquotedValue = UnquotedValue.substr(1);
2039         // If this was just a single byte newline, it will get skipped
2040         // below.
2041         break;
2042       case '0':
2043         Storage.push_back(0x00);
2044         break;
2045       case 'a':
2046         Storage.push_back(0x07);
2047         break;
2048       case 'b':
2049         Storage.push_back(0x08);
2050         break;
2051       case 't':
2052       case 0x09:
2053         Storage.push_back(0x09);
2054         break;
2055       case 'n':
2056         Storage.push_back(0x0A);
2057         break;
2058       case 'v':
2059         Storage.push_back(0x0B);
2060         break;
2061       case 'f':
2062         Storage.push_back(0x0C);
2063         break;
2064       case 'r':
2065         Storage.push_back(0x0D);
2066         break;
2067       case 'e':
2068         Storage.push_back(0x1B);
2069         break;
2070       case ' ':
2071         Storage.push_back(0x20);
2072         break;
2073       case '"':
2074         Storage.push_back(0x22);
2075         break;
2076       case '/':
2077         Storage.push_back(0x2F);
2078         break;
2079       case '\\':
2080         Storage.push_back(0x5C);
2081         break;
2082       case 'N':
2083         encodeUTF8(0x85, Storage);
2084         break;
2085       case '_':
2086         encodeUTF8(0xA0, Storage);
2087         break;
2088       case 'L':
2089         encodeUTF8(0x2028, Storage);
2090         break;
2091       case 'P':
2092         encodeUTF8(0x2029, Storage);
2093         break;
2094       case 'x': {
2095           if (UnquotedValue.size() < 3)
2096             // TODO: Report error.
2097             break;
2098           unsigned int UnicodeScalarValue;
2099           if (UnquotedValue.substr(1, 2).getAsInteger(16, UnicodeScalarValue))
2100             // TODO: Report error.
2101             UnicodeScalarValue = 0xFFFD;
2102           encodeUTF8(UnicodeScalarValue, Storage);
2103           UnquotedValue = UnquotedValue.substr(2);
2104           break;
2105         }
2106       case 'u': {
2107           if (UnquotedValue.size() < 5)
2108             // TODO: Report error.
2109             break;
2110           unsigned int UnicodeScalarValue;
2111           if (UnquotedValue.substr(1, 4).getAsInteger(16, UnicodeScalarValue))
2112             // TODO: Report error.
2113             UnicodeScalarValue = 0xFFFD;
2114           encodeUTF8(UnicodeScalarValue, Storage);
2115           UnquotedValue = UnquotedValue.substr(4);
2116           break;
2117         }
2118       case 'U': {
2119           if (UnquotedValue.size() < 9)
2120             // TODO: Report error.
2121             break;
2122           unsigned int UnicodeScalarValue;
2123           if (UnquotedValue.substr(1, 8).getAsInteger(16, UnicodeScalarValue))
2124             // TODO: Report error.
2125             UnicodeScalarValue = 0xFFFD;
2126           encodeUTF8(UnicodeScalarValue, Storage);
2127           UnquotedValue = UnquotedValue.substr(8);
2128           break;
2129         }
2130       }
2131       UnquotedValue = UnquotedValue.substr(1);
2132     }
2133   }
2134   llvm::append_range(Storage, UnquotedValue);
2135   return StringRef(Storage.begin(), Storage.size());
2136 }
2137 
getKey()2138 Node *KeyValueNode::getKey() {
2139   if (Key)
2140     return Key;
2141   // Handle implicit null keys.
2142   {
2143     Token &t = peekNext();
2144     if (   t.Kind == Token::TK_BlockEnd
2145         || t.Kind == Token::TK_Value
2146         || t.Kind == Token::TK_Error) {
2147       return Key = new (getAllocator()) NullNode(Doc);
2148     }
2149     if (t.Kind == Token::TK_Key)
2150       getNext(); // skip TK_Key.
2151   }
2152 
2153   // Handle explicit null keys.
2154   Token &t = peekNext();
2155   if (t.Kind == Token::TK_BlockEnd || t.Kind == Token::TK_Value) {
2156     return Key = new (getAllocator()) NullNode(Doc);
2157   }
2158 
2159   // We've got a normal key.
2160   return Key = parseBlockNode();
2161 }
2162 
getValue()2163 Node *KeyValueNode::getValue() {
2164   if (Value)
2165     return Value;
2166 
2167   if (Node* Key = getKey())
2168     Key->skip();
2169   else {
2170     setError("Null key in Key Value.", peekNext());
2171     return Value = new (getAllocator()) NullNode(Doc);
2172   }
2173 
2174   if (failed())
2175     return Value = new (getAllocator()) NullNode(Doc);
2176 
2177   // Handle implicit null values.
2178   {
2179     Token &t = peekNext();
2180     if (   t.Kind == Token::TK_BlockEnd
2181         || t.Kind == Token::TK_FlowMappingEnd
2182         || t.Kind == Token::TK_Key
2183         || t.Kind == Token::TK_FlowEntry
2184         || t.Kind == Token::TK_Error) {
2185       return Value = new (getAllocator()) NullNode(Doc);
2186     }
2187 
2188     if (t.Kind != Token::TK_Value) {
2189       setError("Unexpected token in Key Value.", t);
2190       return Value = new (getAllocator()) NullNode(Doc);
2191     }
2192     getNext(); // skip TK_Value.
2193   }
2194 
2195   // Handle explicit null values.
2196   Token &t = peekNext();
2197   if (t.Kind == Token::TK_BlockEnd || t.Kind == Token::TK_Key) {
2198     return Value = new (getAllocator()) NullNode(Doc);
2199   }
2200 
2201   // We got a normal value.
2202   return Value = parseBlockNode();
2203 }
2204 
increment()2205 void MappingNode::increment() {
2206   if (failed()) {
2207     IsAtEnd = true;
2208     CurrentEntry = nullptr;
2209     return;
2210   }
2211   if (CurrentEntry) {
2212     CurrentEntry->skip();
2213     if (Type == MT_Inline) {
2214       IsAtEnd = true;
2215       CurrentEntry = nullptr;
2216       return;
2217     }
2218   }
2219   Token T = peekNext();
2220   if (T.Kind == Token::TK_Key || T.Kind == Token::TK_Scalar) {
2221     // KeyValueNode eats the TK_Key. That way it can detect null keys.
2222     CurrentEntry = new (getAllocator()) KeyValueNode(Doc);
2223   } else if (Type == MT_Block) {
2224     switch (T.Kind) {
2225     case Token::TK_BlockEnd:
2226       getNext();
2227       IsAtEnd = true;
2228       CurrentEntry = nullptr;
2229       break;
2230     default:
2231       setError("Unexpected token. Expected Key or Block End", T);
2232       LLVM_FALLTHROUGH;
2233     case Token::TK_Error:
2234       IsAtEnd = true;
2235       CurrentEntry = nullptr;
2236     }
2237   } else {
2238     switch (T.Kind) {
2239     case Token::TK_FlowEntry:
2240       // Eat the flow entry and recurse.
2241       getNext();
2242       return increment();
2243     case Token::TK_FlowMappingEnd:
2244       getNext();
2245       LLVM_FALLTHROUGH;
2246     case Token::TK_Error:
2247       // Set this to end iterator.
2248       IsAtEnd = true;
2249       CurrentEntry = nullptr;
2250       break;
2251     default:
2252       setError( "Unexpected token. Expected Key, Flow Entry, or Flow "
2253                 "Mapping End."
2254               , T);
2255       IsAtEnd = true;
2256       CurrentEntry = nullptr;
2257     }
2258   }
2259 }
2260 
increment()2261 void SequenceNode::increment() {
2262   if (failed()) {
2263     IsAtEnd = true;
2264     CurrentEntry = nullptr;
2265     return;
2266   }
2267   if (CurrentEntry)
2268     CurrentEntry->skip();
2269   Token T = peekNext();
2270   if (SeqType == ST_Block) {
2271     switch (T.Kind) {
2272     case Token::TK_BlockEntry:
2273       getNext();
2274       CurrentEntry = parseBlockNode();
2275       if (!CurrentEntry) { // An error occurred.
2276         IsAtEnd = true;
2277         CurrentEntry = nullptr;
2278       }
2279       break;
2280     case Token::TK_BlockEnd:
2281       getNext();
2282       IsAtEnd = true;
2283       CurrentEntry = nullptr;
2284       break;
2285     default:
2286       setError( "Unexpected token. Expected Block Entry or Block End."
2287               , T);
2288       LLVM_FALLTHROUGH;
2289     case Token::TK_Error:
2290       IsAtEnd = true;
2291       CurrentEntry = nullptr;
2292     }
2293   } else if (SeqType == ST_Indentless) {
2294     switch (T.Kind) {
2295     case Token::TK_BlockEntry:
2296       getNext();
2297       CurrentEntry = parseBlockNode();
2298       if (!CurrentEntry) { // An error occurred.
2299         IsAtEnd = true;
2300         CurrentEntry = nullptr;
2301       }
2302       break;
2303     default:
2304     case Token::TK_Error:
2305       IsAtEnd = true;
2306       CurrentEntry = nullptr;
2307     }
2308   } else if (SeqType == ST_Flow) {
2309     switch (T.Kind) {
2310     case Token::TK_FlowEntry:
2311       // Eat the flow entry and recurse.
2312       getNext();
2313       WasPreviousTokenFlowEntry = true;
2314       return increment();
2315     case Token::TK_FlowSequenceEnd:
2316       getNext();
2317       LLVM_FALLTHROUGH;
2318     case Token::TK_Error:
2319       // Set this to end iterator.
2320       IsAtEnd = true;
2321       CurrentEntry = nullptr;
2322       break;
2323     case Token::TK_StreamEnd:
2324     case Token::TK_DocumentEnd:
2325     case Token::TK_DocumentStart:
2326       setError("Could not find closing ]!", T);
2327       // Set this to end iterator.
2328       IsAtEnd = true;
2329       CurrentEntry = nullptr;
2330       break;
2331     default:
2332       if (!WasPreviousTokenFlowEntry) {
2333         setError("Expected , between entries!", T);
2334         IsAtEnd = true;
2335         CurrentEntry = nullptr;
2336         break;
2337       }
2338       // Otherwise it must be a flow entry.
2339       CurrentEntry = parseBlockNode();
2340       if (!CurrentEntry) {
2341         IsAtEnd = true;
2342       }
2343       WasPreviousTokenFlowEntry = false;
2344       break;
2345     }
2346   }
2347 }
2348 
Document(Stream & S)2349 Document::Document(Stream &S) : stream(S), Root(nullptr) {
2350   // Tag maps starts with two default mappings.
2351   TagMap["!"] = "!";
2352   TagMap["!!"] = "tag:yaml.org,2002:";
2353 
2354   if (parseDirectives())
2355     expectToken(Token::TK_DocumentStart);
2356   Token &T = peekNext();
2357   if (T.Kind == Token::TK_DocumentStart)
2358     getNext();
2359 }
2360 
skip()2361 bool Document::skip()  {
2362   if (stream.scanner->failed())
2363     return false;
2364   if (!Root && !getRoot())
2365     return false;
2366   Root->skip();
2367   Token &T = peekNext();
2368   if (T.Kind == Token::TK_StreamEnd)
2369     return false;
2370   if (T.Kind == Token::TK_DocumentEnd) {
2371     getNext();
2372     return skip();
2373   }
2374   return true;
2375 }
2376 
peekNext()2377 Token &Document::peekNext() {
2378   return stream.scanner->peekNext();
2379 }
2380 
getNext()2381 Token Document::getNext() {
2382   return stream.scanner->getNext();
2383 }
2384 
setError(const Twine & Message,Token & Location) const2385 void Document::setError(const Twine &Message, Token &Location) const {
2386   stream.scanner->setError(Message, Location.Range.begin());
2387 }
2388 
failed() const2389 bool Document::failed() const {
2390   return stream.scanner->failed();
2391 }
2392 
parseBlockNode()2393 Node *Document::parseBlockNode() {
2394   Token T = peekNext();
2395   // Handle properties.
2396   Token AnchorInfo;
2397   Token TagInfo;
2398 parse_property:
2399   switch (T.Kind) {
2400   case Token::TK_Alias:
2401     getNext();
2402     return new (NodeAllocator) AliasNode(stream.CurrentDoc, T.Range.substr(1));
2403   case Token::TK_Anchor:
2404     if (AnchorInfo.Kind == Token::TK_Anchor) {
2405       setError("Already encountered an anchor for this node!", T);
2406       return nullptr;
2407     }
2408     AnchorInfo = getNext(); // Consume TK_Anchor.
2409     T = peekNext();
2410     goto parse_property;
2411   case Token::TK_Tag:
2412     if (TagInfo.Kind == Token::TK_Tag) {
2413       setError("Already encountered a tag for this node!", T);
2414       return nullptr;
2415     }
2416     TagInfo = getNext(); // Consume TK_Tag.
2417     T = peekNext();
2418     goto parse_property;
2419   default:
2420     break;
2421   }
2422 
2423   switch (T.Kind) {
2424   case Token::TK_BlockEntry:
2425     // We got an unindented BlockEntry sequence. This is not terminated with
2426     // a BlockEnd.
2427     // Don't eat the TK_BlockEntry, SequenceNode needs it.
2428     return new (NodeAllocator) SequenceNode( stream.CurrentDoc
2429                                            , AnchorInfo.Range.substr(1)
2430                                            , TagInfo.Range
2431                                            , SequenceNode::ST_Indentless);
2432   case Token::TK_BlockSequenceStart:
2433     getNext();
2434     return new (NodeAllocator)
2435       SequenceNode( stream.CurrentDoc
2436                   , AnchorInfo.Range.substr(1)
2437                   , TagInfo.Range
2438                   , SequenceNode::ST_Block);
2439   case Token::TK_BlockMappingStart:
2440     getNext();
2441     return new (NodeAllocator)
2442       MappingNode( stream.CurrentDoc
2443                  , AnchorInfo.Range.substr(1)
2444                  , TagInfo.Range
2445                  , MappingNode::MT_Block);
2446   case Token::TK_FlowSequenceStart:
2447     getNext();
2448     return new (NodeAllocator)
2449       SequenceNode( stream.CurrentDoc
2450                   , AnchorInfo.Range.substr(1)
2451                   , TagInfo.Range
2452                   , SequenceNode::ST_Flow);
2453   case Token::TK_FlowMappingStart:
2454     getNext();
2455     return new (NodeAllocator)
2456       MappingNode( stream.CurrentDoc
2457                  , AnchorInfo.Range.substr(1)
2458                  , TagInfo.Range
2459                  , MappingNode::MT_Flow);
2460   case Token::TK_Scalar:
2461     getNext();
2462     return new (NodeAllocator)
2463       ScalarNode( stream.CurrentDoc
2464                 , AnchorInfo.Range.substr(1)
2465                 , TagInfo.Range
2466                 , T.Range);
2467   case Token::TK_BlockScalar: {
2468     getNext();
2469     StringRef NullTerminatedStr(T.Value.c_str(), T.Value.length() + 1);
2470     StringRef StrCopy = NullTerminatedStr.copy(NodeAllocator).drop_back();
2471     return new (NodeAllocator)
2472         BlockScalarNode(stream.CurrentDoc, AnchorInfo.Range.substr(1),
2473                         TagInfo.Range, StrCopy, T.Range);
2474   }
2475   case Token::TK_Key:
2476     // Don't eat the TK_Key, KeyValueNode expects it.
2477     return new (NodeAllocator)
2478       MappingNode( stream.CurrentDoc
2479                  , AnchorInfo.Range.substr(1)
2480                  , TagInfo.Range
2481                  , MappingNode::MT_Inline);
2482   case Token::TK_DocumentStart:
2483   case Token::TK_DocumentEnd:
2484   case Token::TK_StreamEnd:
2485   default:
2486     // TODO: Properly handle tags. "[!!str ]" should resolve to !!str "", not
2487     //       !!null null.
2488     return new (NodeAllocator) NullNode(stream.CurrentDoc);
2489   case Token::TK_FlowMappingEnd:
2490   case Token::TK_FlowSequenceEnd:
2491   case Token::TK_FlowEntry: {
2492     if (Root && (isa<MappingNode>(Root) || isa<SequenceNode>(Root)))
2493       return new (NodeAllocator) NullNode(stream.CurrentDoc);
2494 
2495     setError("Unexpected token", T);
2496     return nullptr;
2497   }
2498   case Token::TK_Error:
2499     return nullptr;
2500   }
2501   llvm_unreachable("Control flow shouldn't reach here.");
2502   return nullptr;
2503 }
2504 
parseDirectives()2505 bool Document::parseDirectives() {
2506   bool isDirective = false;
2507   while (true) {
2508     Token T = peekNext();
2509     if (T.Kind == Token::TK_TagDirective) {
2510       parseTAGDirective();
2511       isDirective = true;
2512     } else if (T.Kind == Token::TK_VersionDirective) {
2513       parseYAMLDirective();
2514       isDirective = true;
2515     } else
2516       break;
2517   }
2518   return isDirective;
2519 }
2520 
parseYAMLDirective()2521 void Document::parseYAMLDirective() {
2522   getNext(); // Eat %YAML <version>
2523 }
2524 
parseTAGDirective()2525 void Document::parseTAGDirective() {
2526   Token Tag = getNext(); // %TAG <handle> <prefix>
2527   StringRef T = Tag.Range;
2528   // Strip %TAG
2529   T = T.substr(T.find_first_of(" \t")).ltrim(" \t");
2530   std::size_t HandleEnd = T.find_first_of(" \t");
2531   StringRef TagHandle = T.substr(0, HandleEnd);
2532   StringRef TagPrefix = T.substr(HandleEnd).ltrim(" \t");
2533   TagMap[TagHandle] = TagPrefix;
2534 }
2535 
expectToken(int TK)2536 bool Document::expectToken(int TK) {
2537   Token T = getNext();
2538   if (T.Kind != TK) {
2539     setError("Unexpected token", T);
2540     return false;
2541   }
2542   return true;
2543 }
2544