1 //===- AArch64StackTagging.cpp - Stack tagging in IR --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //===----------------------------------------------------------------------===//
10 
11 #include "AArch64.h"
12 #include "AArch64InstrInfo.h"
13 #include "AArch64Subtarget.h"
14 #include "AArch64TargetMachine.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DepthFirstIterator.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/CFG.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/PostDominators.h"
26 #include "llvm/Analysis/ScalarEvolution.h"
27 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
28 #include "llvm/Analysis/StackSafetyAnalysis.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/CodeGen/LiveRegUnits.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineFunctionPass.h"
34 #include "llvm/CodeGen/MachineInstr.h"
35 #include "llvm/CodeGen/MachineInstrBuilder.h"
36 #include "llvm/CodeGen/MachineLoopInfo.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/CodeGen/TargetPassConfig.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/GetElementPtrTypeIterator.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/IntrinsicsAArch64.h"
49 #include "llvm/IR/Metadata.h"
50 #include "llvm/InitializePasses.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Transforms/Utils/Local.h"
56 #include <cassert>
57 #include <iterator>
58 #include <utility>
59 
60 using namespace llvm;
61 
62 #define DEBUG_TYPE "aarch64-stack-tagging"
63 
64 static cl::opt<bool> ClMergeInit(
65     "stack-tagging-merge-init", cl::Hidden, cl::init(true), cl::ZeroOrMore,
66     cl::desc("merge stack variable initializers with tagging when possible"));
67 
68 static cl::opt<bool>
69     ClUseStackSafety("stack-tagging-use-stack-safety", cl::Hidden,
70                      cl::init(true), cl::ZeroOrMore,
71                      cl::desc("Use Stack Safety analysis results"));
72 
73 static cl::opt<unsigned> ClScanLimit("stack-tagging-merge-init-scan-limit",
74                                      cl::init(40), cl::Hidden);
75 
76 static cl::opt<unsigned>
77     ClMergeInitSizeLimit("stack-tagging-merge-init-size-limit", cl::init(272),
78                          cl::Hidden);
79 
80 static const Align kTagGranuleSize = Align(16);
81 
82 namespace {
83 
84 class InitializerBuilder {
85   uint64_t Size;
86   const DataLayout *DL;
87   Value *BasePtr;
88   Function *SetTagFn;
89   Function *SetTagZeroFn;
90   Function *StgpFn;
91 
92   // List of initializers sorted by start offset.
93   struct Range {
94     uint64_t Start, End;
95     Instruction *Inst;
96   };
97   SmallVector<Range, 4> Ranges;
98   // 8-aligned offset => 8-byte initializer
99   // Missing keys are zero initialized.
100   std::map<uint64_t, Value *> Out;
101 
102 public:
InitializerBuilder(uint64_t Size,const DataLayout * DL,Value * BasePtr,Function * SetTagFn,Function * SetTagZeroFn,Function * StgpFn)103   InitializerBuilder(uint64_t Size, const DataLayout *DL, Value *BasePtr,
104                      Function *SetTagFn, Function *SetTagZeroFn,
105                      Function *StgpFn)
106       : Size(Size), DL(DL), BasePtr(BasePtr), SetTagFn(SetTagFn),
107         SetTagZeroFn(SetTagZeroFn), StgpFn(StgpFn) {}
108 
addRange(uint64_t Start,uint64_t End,Instruction * Inst)109   bool addRange(uint64_t Start, uint64_t End, Instruction *Inst) {
110     auto I =
111         llvm::lower_bound(Ranges, Start, [](const Range &LHS, uint64_t RHS) {
112           return LHS.End <= RHS;
113         });
114     if (I != Ranges.end() && End > I->Start) {
115       // Overlap - bail.
116       return false;
117     }
118     Ranges.insert(I, {Start, End, Inst});
119     return true;
120   }
121 
addStore(uint64_t Offset,StoreInst * SI,const DataLayout * DL)122   bool addStore(uint64_t Offset, StoreInst *SI, const DataLayout *DL) {
123     int64_t StoreSize = DL->getTypeStoreSize(SI->getOperand(0)->getType());
124     if (!addRange(Offset, Offset + StoreSize, SI))
125       return false;
126     IRBuilder<> IRB(SI);
127     applyStore(IRB, Offset, Offset + StoreSize, SI->getOperand(0));
128     return true;
129   }
130 
addMemSet(uint64_t Offset,MemSetInst * MSI)131   bool addMemSet(uint64_t Offset, MemSetInst *MSI) {
132     uint64_t StoreSize = cast<ConstantInt>(MSI->getLength())->getZExtValue();
133     if (!addRange(Offset, Offset + StoreSize, MSI))
134       return false;
135     IRBuilder<> IRB(MSI);
136     applyMemSet(IRB, Offset, Offset + StoreSize,
137                 cast<ConstantInt>(MSI->getValue()));
138     return true;
139   }
140 
applyMemSet(IRBuilder<> & IRB,int64_t Start,int64_t End,ConstantInt * V)141   void applyMemSet(IRBuilder<> &IRB, int64_t Start, int64_t End,
142                    ConstantInt *V) {
143     // Out[] does not distinguish between zero and undef, and we already know
144     // that this memset does not overlap with any other initializer. Nothing to
145     // do for memset(0).
146     if (V->isZero())
147       return;
148     for (int64_t Offset = Start - Start % 8; Offset < End; Offset += 8) {
149       uint64_t Cst = 0x0101010101010101UL;
150       int LowBits = Offset < Start ? (Start - Offset) * 8 : 0;
151       if (LowBits)
152         Cst = (Cst >> LowBits) << LowBits;
153       int HighBits = End - Offset < 8 ? (8 - (End - Offset)) * 8 : 0;
154       if (HighBits)
155         Cst = (Cst << HighBits) >> HighBits;
156       ConstantInt *C =
157           ConstantInt::get(IRB.getInt64Ty(), Cst * V->getZExtValue());
158 
159       Value *&CurrentV = Out[Offset];
160       if (!CurrentV) {
161         CurrentV = C;
162       } else {
163         CurrentV = IRB.CreateOr(CurrentV, C);
164       }
165     }
166   }
167 
168   // Take a 64-bit slice of the value starting at the given offset (in bytes).
169   // Offset can be negative. Pad with zeroes on both sides when necessary.
sliceValue(IRBuilder<> & IRB,Value * V,int64_t Offset)170   Value *sliceValue(IRBuilder<> &IRB, Value *V, int64_t Offset) {
171     if (Offset > 0) {
172       V = IRB.CreateLShr(V, Offset * 8);
173       V = IRB.CreateZExtOrTrunc(V, IRB.getInt64Ty());
174     } else if (Offset < 0) {
175       V = IRB.CreateZExtOrTrunc(V, IRB.getInt64Ty());
176       V = IRB.CreateShl(V, -Offset * 8);
177     } else {
178       V = IRB.CreateZExtOrTrunc(V, IRB.getInt64Ty());
179     }
180     return V;
181   }
182 
applyStore(IRBuilder<> & IRB,int64_t Start,int64_t End,Value * StoredValue)183   void applyStore(IRBuilder<> &IRB, int64_t Start, int64_t End,
184                   Value *StoredValue) {
185     StoredValue = flatten(IRB, StoredValue);
186     for (int64_t Offset = Start - Start % 8; Offset < End; Offset += 8) {
187       Value *V = sliceValue(IRB, StoredValue, Offset - Start);
188       Value *&CurrentV = Out[Offset];
189       if (!CurrentV) {
190         CurrentV = V;
191       } else {
192         CurrentV = IRB.CreateOr(CurrentV, V);
193       }
194     }
195   }
196 
generate(IRBuilder<> & IRB)197   void generate(IRBuilder<> &IRB) {
198     LLVM_DEBUG(dbgs() << "Combined initializer\n");
199     // No initializers => the entire allocation is undef.
200     if (Ranges.empty()) {
201       emitUndef(IRB, 0, Size);
202       return;
203     }
204 
205     // Look through 8-byte initializer list 16 bytes at a time;
206     // If one of the two 8-byte halfs is non-zero non-undef, emit STGP.
207     // Otherwise, emit zeroes up to next available item.
208     uint64_t LastOffset = 0;
209     for (uint64_t Offset = 0; Offset < Size; Offset += 16) {
210       auto I1 = Out.find(Offset);
211       auto I2 = Out.find(Offset + 8);
212       if (I1 == Out.end() && I2 == Out.end())
213         continue;
214 
215       if (Offset > LastOffset)
216         emitZeroes(IRB, LastOffset, Offset - LastOffset);
217 
218       Value *Store1 = I1 == Out.end() ? Constant::getNullValue(IRB.getInt64Ty())
219                                       : I1->second;
220       Value *Store2 = I2 == Out.end() ? Constant::getNullValue(IRB.getInt64Ty())
221                                       : I2->second;
222       emitPair(IRB, Offset, Store1, Store2);
223       LastOffset = Offset + 16;
224     }
225 
226     // memset(0) does not update Out[], therefore the tail can be either undef
227     // or zero.
228     if (LastOffset < Size)
229       emitZeroes(IRB, LastOffset, Size - LastOffset);
230 
231     for (const auto &R : Ranges) {
232       R.Inst->eraseFromParent();
233     }
234   }
235 
emitZeroes(IRBuilder<> & IRB,uint64_t Offset,uint64_t Size)236   void emitZeroes(IRBuilder<> &IRB, uint64_t Offset, uint64_t Size) {
237     LLVM_DEBUG(dbgs() << "  [" << Offset << ", " << Offset + Size
238                       << ") zero\n");
239     Value *Ptr = BasePtr;
240     if (Offset)
241       Ptr = IRB.CreateConstGEP1_32(Ptr, Offset);
242     IRB.CreateCall(SetTagZeroFn,
243                    {Ptr, ConstantInt::get(IRB.getInt64Ty(), Size)});
244   }
245 
emitUndef(IRBuilder<> & IRB,uint64_t Offset,uint64_t Size)246   void emitUndef(IRBuilder<> &IRB, uint64_t Offset, uint64_t Size) {
247     LLVM_DEBUG(dbgs() << "  [" << Offset << ", " << Offset + Size
248                       << ") undef\n");
249     Value *Ptr = BasePtr;
250     if (Offset)
251       Ptr = IRB.CreateConstGEP1_32(Ptr, Offset);
252     IRB.CreateCall(SetTagFn, {Ptr, ConstantInt::get(IRB.getInt64Ty(), Size)});
253   }
254 
emitPair(IRBuilder<> & IRB,uint64_t Offset,Value * A,Value * B)255   void emitPair(IRBuilder<> &IRB, uint64_t Offset, Value *A, Value *B) {
256     LLVM_DEBUG(dbgs() << "  [" << Offset << ", " << Offset + 16 << "):\n");
257     LLVM_DEBUG(dbgs() << "    " << *A << "\n    " << *B << "\n");
258     Value *Ptr = BasePtr;
259     if (Offset)
260       Ptr = IRB.CreateConstGEP1_32(Ptr, Offset);
261     IRB.CreateCall(StgpFn, {Ptr, A, B});
262   }
263 
flatten(IRBuilder<> & IRB,Value * V)264   Value *flatten(IRBuilder<> &IRB, Value *V) {
265     if (V->getType()->isIntegerTy())
266       return V;
267     // vector of pointers -> vector of ints
268     if (VectorType *VecTy = dyn_cast<VectorType>(V->getType())) {
269       LLVMContext &Ctx = IRB.getContext();
270       Type *EltTy = VecTy->getElementType();
271       if (EltTy->isPointerTy()) {
272         uint32_t EltSize = DL->getTypeSizeInBits(EltTy);
273         auto *NewTy = FixedVectorType::get(
274             IntegerType::get(Ctx, EltSize),
275             cast<FixedVectorType>(VecTy)->getNumElements());
276         V = IRB.CreatePointerCast(V, NewTy);
277       }
278     }
279     return IRB.CreateBitOrPointerCast(
280         V, IRB.getIntNTy(DL->getTypeStoreSize(V->getType()) * 8));
281   }
282 };
283 
284 class AArch64StackTagging : public FunctionPass {
285   struct AllocaInfo {
286     AllocaInst *AI;
287     SmallVector<IntrinsicInst *, 2> LifetimeStart;
288     SmallVector<IntrinsicInst *, 2> LifetimeEnd;
289     SmallVector<DbgVariableIntrinsic *, 2> DbgVariableIntrinsics;
290     int Tag; // -1 for non-tagged allocations
291   };
292 
293   const bool MergeInit;
294   const bool UseStackSafety;
295 
296 public:
297   static char ID; // Pass ID, replacement for typeid
298 
AArch64StackTagging(bool IsOptNone=false)299   AArch64StackTagging(bool IsOptNone = false)
300       : FunctionPass(ID),
301         MergeInit(ClMergeInit.getNumOccurrences() ? ClMergeInit : !IsOptNone),
302         UseStackSafety(ClUseStackSafety.getNumOccurrences() ? ClUseStackSafety
303                                                             : !IsOptNone) {
304     initializeAArch64StackTaggingPass(*PassRegistry::getPassRegistry());
305   }
306 
307   bool isInterestingAlloca(const AllocaInst &AI);
308   void alignAndPadAlloca(AllocaInfo &Info);
309 
310   void tagAlloca(AllocaInst *AI, Instruction *InsertBefore, Value *Ptr,
311                  uint64_t Size);
312   void untagAlloca(AllocaInst *AI, Instruction *InsertBefore, uint64_t Size);
313 
314   Instruction *collectInitializers(Instruction *StartInst, Value *StartPtr,
315                                    uint64_t Size, InitializerBuilder &IB);
316 
317   Instruction *
318   insertBaseTaggedPointer(const MapVector<AllocaInst *, AllocaInfo> &Allocas,
319                           const DominatorTree *DT);
320   bool runOnFunction(Function &F) override;
321 
getPassName() const322   StringRef getPassName() const override { return "AArch64 Stack Tagging"; }
323 
324 private:
325   Function *F = nullptr;
326   Function *SetTagFunc = nullptr;
327   const DataLayout *DL = nullptr;
328   AAResults *AA = nullptr;
329   const StackSafetyGlobalInfo *SSI = nullptr;
330 
getAnalysisUsage(AnalysisUsage & AU) const331   void getAnalysisUsage(AnalysisUsage &AU) const override {
332     AU.setPreservesCFG();
333     if (UseStackSafety)
334       AU.addRequired<StackSafetyGlobalInfoWrapperPass>();
335     if (MergeInit)
336       AU.addRequired<AAResultsWrapperPass>();
337   }
338 };
339 
340 } // end anonymous namespace
341 
342 char AArch64StackTagging::ID = 0;
343 
344 INITIALIZE_PASS_BEGIN(AArch64StackTagging, DEBUG_TYPE, "AArch64 Stack Tagging",
345                       false, false)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)346 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
347 INITIALIZE_PASS_DEPENDENCY(StackSafetyGlobalInfoWrapperPass)
348 INITIALIZE_PASS_END(AArch64StackTagging, DEBUG_TYPE, "AArch64 Stack Tagging",
349                     false, false)
350 
351 FunctionPass *llvm::createAArch64StackTaggingPass(bool IsOptNone) {
352   return new AArch64StackTagging(IsOptNone);
353 }
354 
collectInitializers(Instruction * StartInst,Value * StartPtr,uint64_t Size,InitializerBuilder & IB)355 Instruction *AArch64StackTagging::collectInitializers(Instruction *StartInst,
356                                                       Value *StartPtr,
357                                                       uint64_t Size,
358                                                       InitializerBuilder &IB) {
359   MemoryLocation AllocaLoc{StartPtr, Size};
360   Instruction *LastInst = StartInst;
361   BasicBlock::iterator BI(StartInst);
362 
363   unsigned Count = 0;
364   for (; Count < ClScanLimit && !BI->isTerminator(); ++BI) {
365     if (!isa<DbgInfoIntrinsic>(*BI))
366       ++Count;
367 
368     if (isNoModRef(AA->getModRefInfo(&*BI, AllocaLoc)))
369       continue;
370 
371     if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
372       // If the instruction is readnone, ignore it, otherwise bail out.  We
373       // don't even allow readonly here because we don't want something like:
374       // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
375       if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
376         break;
377       continue;
378     }
379 
380     if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
381       if (!NextStore->isSimple())
382         break;
383 
384       // Check to see if this store is to a constant offset from the start ptr.
385       Optional<int64_t> Offset =
386           isPointerOffset(StartPtr, NextStore->getPointerOperand(), *DL);
387       if (!Offset)
388         break;
389 
390       if (!IB.addStore(*Offset, NextStore, DL))
391         break;
392       LastInst = NextStore;
393     } else {
394       MemSetInst *MSI = cast<MemSetInst>(BI);
395 
396       if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength()))
397         break;
398 
399       if (!isa<ConstantInt>(MSI->getValue()))
400         break;
401 
402       // Check to see if this store is to a constant offset from the start ptr.
403       Optional<int64_t> Offset = isPointerOffset(StartPtr, MSI->getDest(), *DL);
404       if (!Offset)
405         break;
406 
407       if (!IB.addMemSet(*Offset, MSI))
408         break;
409       LastInst = MSI;
410     }
411   }
412   return LastInst;
413 }
414 
isInterestingAlloca(const AllocaInst & AI)415 bool AArch64StackTagging::isInterestingAlloca(const AllocaInst &AI) {
416   // FIXME: support dynamic allocas
417   bool IsInteresting =
418       AI.getAllocatedType()->isSized() && AI.isStaticAlloca() &&
419       // alloca() may be called with 0 size, ignore it.
420       AI.getAllocationSizeInBits(*DL).getValue() > 0 &&
421       // inalloca allocas are not treated as static, and we don't want
422       // dynamic alloca instrumentation for them as well.
423       !AI.isUsedWithInAlloca() &&
424       // swifterror allocas are register promoted by ISel
425       !AI.isSwiftError() &&
426       // safe allocas are not interesting
427       !(SSI && SSI->isSafe(AI));
428   return IsInteresting;
429 }
430 
tagAlloca(AllocaInst * AI,Instruction * InsertBefore,Value * Ptr,uint64_t Size)431 void AArch64StackTagging::tagAlloca(AllocaInst *AI, Instruction *InsertBefore,
432                                     Value *Ptr, uint64_t Size) {
433   auto SetTagZeroFunc =
434       Intrinsic::getDeclaration(F->getParent(), Intrinsic::aarch64_settag_zero);
435   auto StgpFunc =
436       Intrinsic::getDeclaration(F->getParent(), Intrinsic::aarch64_stgp);
437 
438   InitializerBuilder IB(Size, DL, Ptr, SetTagFunc, SetTagZeroFunc, StgpFunc);
439   bool LittleEndian =
440       Triple(AI->getModule()->getTargetTriple()).isLittleEndian();
441   // Current implementation of initializer merging assumes little endianness.
442   if (MergeInit && !F->hasOptNone() && LittleEndian &&
443       Size < ClMergeInitSizeLimit) {
444     LLVM_DEBUG(dbgs() << "collecting initializers for " << *AI
445                       << ", size = " << Size << "\n");
446     InsertBefore = collectInitializers(InsertBefore, Ptr, Size, IB);
447   }
448 
449   IRBuilder<> IRB(InsertBefore);
450   IB.generate(IRB);
451 }
452 
untagAlloca(AllocaInst * AI,Instruction * InsertBefore,uint64_t Size)453 void AArch64StackTagging::untagAlloca(AllocaInst *AI, Instruction *InsertBefore,
454                                       uint64_t Size) {
455   IRBuilder<> IRB(InsertBefore);
456   IRB.CreateCall(SetTagFunc, {IRB.CreatePointerCast(AI, IRB.getInt8PtrTy()),
457                               ConstantInt::get(IRB.getInt64Ty(), Size)});
458 }
459 
insertBaseTaggedPointer(const MapVector<AllocaInst *,AllocaInfo> & Allocas,const DominatorTree * DT)460 Instruction *AArch64StackTagging::insertBaseTaggedPointer(
461     const MapVector<AllocaInst *, AllocaInfo> &Allocas,
462     const DominatorTree *DT) {
463   BasicBlock *PrologueBB = nullptr;
464   // Try sinking IRG as deep as possible to avoid hurting shrink wrap.
465   for (auto &I : Allocas) {
466     const AllocaInfo &Info = I.second;
467     AllocaInst *AI = Info.AI;
468     if (Info.Tag < 0)
469       continue;
470     if (!PrologueBB) {
471       PrologueBB = AI->getParent();
472       continue;
473     }
474     PrologueBB = DT->findNearestCommonDominator(PrologueBB, AI->getParent());
475   }
476   assert(PrologueBB);
477 
478   IRBuilder<> IRB(&PrologueBB->front());
479   Function *IRG_SP =
480       Intrinsic::getDeclaration(F->getParent(), Intrinsic::aarch64_irg_sp);
481   Instruction *Base =
482       IRB.CreateCall(IRG_SP, {Constant::getNullValue(IRB.getInt64Ty())});
483   Base->setName("basetag");
484   return Base;
485 }
486 
alignAndPadAlloca(AllocaInfo & Info)487 void AArch64StackTagging::alignAndPadAlloca(AllocaInfo &Info) {
488   const Align NewAlignment =
489       max(MaybeAlign(Info.AI->getAlignment()), kTagGranuleSize);
490   Info.AI->setAlignment(NewAlignment);
491 
492   uint64_t Size = Info.AI->getAllocationSizeInBits(*DL).getValue() / 8;
493   uint64_t AlignedSize = alignTo(Size, kTagGranuleSize);
494   if (Size == AlignedSize)
495     return;
496 
497   // Add padding to the alloca.
498   Type *AllocatedType =
499       Info.AI->isArrayAllocation()
500           ? ArrayType::get(
501                 Info.AI->getAllocatedType(),
502                 cast<ConstantInt>(Info.AI->getArraySize())->getZExtValue())
503           : Info.AI->getAllocatedType();
504   Type *PaddingType =
505       ArrayType::get(Type::getInt8Ty(F->getContext()), AlignedSize - Size);
506   Type *TypeWithPadding = StructType::get(AllocatedType, PaddingType);
507   auto *NewAI = new AllocaInst(
508       TypeWithPadding, Info.AI->getType()->getAddressSpace(), nullptr, "", Info.AI);
509   NewAI->takeName(Info.AI);
510   NewAI->setAlignment(Info.AI->getAlign());
511   NewAI->setUsedWithInAlloca(Info.AI->isUsedWithInAlloca());
512   NewAI->setSwiftError(Info.AI->isSwiftError());
513   NewAI->copyMetadata(*Info.AI);
514 
515   auto *NewPtr = new BitCastInst(NewAI, Info.AI->getType(), "", Info.AI);
516   Info.AI->replaceAllUsesWith(NewPtr);
517   Info.AI->eraseFromParent();
518   Info.AI = NewAI;
519 }
520 
521 // Helper function to check for post-dominance.
postDominates(const PostDominatorTree * PDT,const IntrinsicInst * A,const IntrinsicInst * B)522 static bool postDominates(const PostDominatorTree *PDT, const IntrinsicInst *A,
523                           const IntrinsicInst *B) {
524   const BasicBlock *ABB = A->getParent();
525   const BasicBlock *BBB = B->getParent();
526 
527   if (ABB != BBB)
528     return PDT->dominates(ABB, BBB);
529 
530   for (const Instruction &I : *ABB) {
531     if (&I == B)
532       return true;
533     if (&I == A)
534       return false;
535   }
536   llvm_unreachable("Corrupt instruction list");
537 }
538 
539 // FIXME: check for MTE extension
runOnFunction(Function & Fn)540 bool AArch64StackTagging::runOnFunction(Function &Fn) {
541   if (!Fn.hasFnAttribute(Attribute::SanitizeMemTag))
542     return false;
543 
544   if (UseStackSafety)
545     SSI = &getAnalysis<StackSafetyGlobalInfoWrapperPass>().getResult();
546   F = &Fn;
547   DL = &Fn.getParent()->getDataLayout();
548   if (MergeInit)
549     AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
550 
551   MapVector<AllocaInst *, AllocaInfo> Allocas; // need stable iteration order
552   SmallVector<Instruction *, 8> RetVec;
553   SmallVector<Instruction *, 4> UnrecognizedLifetimes;
554 
555   for (auto &BB : *F) {
556     for (BasicBlock::iterator IT = BB.begin(); IT != BB.end(); ++IT) {
557       Instruction *I = &*IT;
558       if (auto *AI = dyn_cast<AllocaInst>(I)) {
559         Allocas[AI].AI = AI;
560         continue;
561       }
562 
563       if (auto *DVI = dyn_cast<DbgVariableIntrinsic>(I)) {
564         if (auto *AI =
565                 dyn_cast_or_null<AllocaInst>(DVI->getVariableLocation())) {
566           Allocas[AI].DbgVariableIntrinsics.push_back(DVI);
567         }
568         continue;
569       }
570 
571       auto *II = dyn_cast<IntrinsicInst>(I);
572       if (II && (II->getIntrinsicID() == Intrinsic::lifetime_start ||
573                  II->getIntrinsicID() == Intrinsic::lifetime_end)) {
574         AllocaInst *AI = findAllocaForValue(II->getArgOperand(1));
575         if (!AI) {
576           UnrecognizedLifetimes.push_back(I);
577           continue;
578         }
579         if (II->getIntrinsicID() == Intrinsic::lifetime_start)
580           Allocas[AI].LifetimeStart.push_back(II);
581         else
582           Allocas[AI].LifetimeEnd.push_back(II);
583       }
584 
585       if (isa<ReturnInst>(I) || isa<ResumeInst>(I) || isa<CleanupReturnInst>(I))
586         RetVec.push_back(I);
587     }
588   }
589 
590   if (Allocas.empty())
591     return false;
592 
593   int NextTag = 0;
594   int NumInterestingAllocas = 0;
595   for (auto &I : Allocas) {
596     AllocaInfo &Info = I.second;
597     assert(Info.AI);
598 
599     if (!isInterestingAlloca(*Info.AI)) {
600       Info.Tag = -1;
601       continue;
602     }
603 
604     alignAndPadAlloca(Info);
605     NumInterestingAllocas++;
606     Info.Tag = NextTag;
607     NextTag = (NextTag + 1) % 16;
608   }
609 
610   if (NumInterestingAllocas == 0)
611     return true;
612 
613   std::unique_ptr<DominatorTree> DeleteDT;
614   DominatorTree *DT = nullptr;
615   if (auto *P = getAnalysisIfAvailable<DominatorTreeWrapperPass>())
616     DT = &P->getDomTree();
617 
618   if (DT == nullptr && (NumInterestingAllocas > 1 ||
619                         !F->hasFnAttribute(Attribute::OptimizeNone))) {
620     DeleteDT = std::make_unique<DominatorTree>(*F);
621     DT = DeleteDT.get();
622   }
623 
624   std::unique_ptr<PostDominatorTree> DeletePDT;
625   PostDominatorTree *PDT = nullptr;
626   if (auto *P = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>())
627     PDT = &P->getPostDomTree();
628 
629   if (PDT == nullptr && !F->hasFnAttribute(Attribute::OptimizeNone)) {
630     DeletePDT = std::make_unique<PostDominatorTree>(*F);
631     PDT = DeletePDT.get();
632   }
633 
634   SetTagFunc =
635       Intrinsic::getDeclaration(F->getParent(), Intrinsic::aarch64_settag);
636 
637   Instruction *Base = insertBaseTaggedPointer(Allocas, DT);
638 
639   for (auto &I : Allocas) {
640     const AllocaInfo &Info = I.second;
641     AllocaInst *AI = Info.AI;
642     if (Info.Tag < 0)
643       continue;
644 
645     // Replace alloca with tagp(alloca).
646     IRBuilder<> IRB(Info.AI->getNextNode());
647     Function *TagP = Intrinsic::getDeclaration(
648         F->getParent(), Intrinsic::aarch64_tagp, {Info.AI->getType()});
649     Instruction *TagPCall =
650         IRB.CreateCall(TagP, {Constant::getNullValue(Info.AI->getType()), Base,
651                               ConstantInt::get(IRB.getInt64Ty(), Info.Tag)});
652     if (Info.AI->hasName())
653       TagPCall->setName(Info.AI->getName() + ".tag");
654     Info.AI->replaceAllUsesWith(TagPCall);
655     TagPCall->setOperand(0, Info.AI);
656 
657     if (UnrecognizedLifetimes.empty() && Info.LifetimeStart.size() == 1 &&
658         Info.LifetimeEnd.size() == 1) {
659       IntrinsicInst *Start = Info.LifetimeStart[0];
660       IntrinsicInst *End = Info.LifetimeEnd[0];
661       uint64_t Size =
662           cast<ConstantInt>(Start->getArgOperand(0))->getZExtValue();
663       Size = alignTo(Size, kTagGranuleSize);
664       tagAlloca(AI, Start->getNextNode(), Start->getArgOperand(1), Size);
665       // We need to ensure that if we tag some object, we certainly untag it
666       // before the function exits.
667       if (PDT != nullptr && postDominates(PDT, End, Start)) {
668         untagAlloca(AI, End, Size);
669       } else {
670         SmallVector<Instruction *, 8> ReachableRetVec;
671         unsigned NumCoveredExits = 0;
672         for (auto &RI : RetVec) {
673           if (!isPotentiallyReachable(Start, RI, nullptr, DT))
674             continue;
675           ReachableRetVec.push_back(RI);
676           if (DT != nullptr && DT->dominates(End, RI))
677             ++NumCoveredExits;
678         }
679         // If there's a mix of covered and non-covered exits, just put the untag
680         // on exits, so we avoid the redundancy of untagging twice.
681         if (NumCoveredExits == ReachableRetVec.size()) {
682           untagAlloca(AI, End, Size);
683         } else {
684           for (auto &RI : ReachableRetVec)
685             untagAlloca(AI, RI, Size);
686           // We may have inserted untag outside of the lifetime interval.
687           // Remove the lifetime end call for this alloca.
688           End->eraseFromParent();
689         }
690       }
691     } else {
692       uint64_t Size = Info.AI->getAllocationSizeInBits(*DL).getValue() / 8;
693       Value *Ptr = IRB.CreatePointerCast(TagPCall, IRB.getInt8PtrTy());
694       tagAlloca(AI, &*IRB.GetInsertPoint(), Ptr, Size);
695       for (auto &RI : RetVec) {
696         untagAlloca(AI, RI, Size);
697       }
698       // We may have inserted tag/untag outside of any lifetime interval.
699       // Remove all lifetime intrinsics for this alloca.
700       for (auto &II : Info.LifetimeStart)
701         II->eraseFromParent();
702       for (auto &II : Info.LifetimeEnd)
703         II->eraseFromParent();
704     }
705 
706     // Fixup debug intrinsics to point to the new alloca.
707     for (auto DVI : Info.DbgVariableIntrinsics)
708       DVI->setArgOperand(
709           0,
710           MetadataAsValue::get(F->getContext(), LocalAsMetadata::get(Info.AI)));
711   }
712 
713   // If we have instrumented at least one alloca, all unrecognized lifetime
714   // instrinsics have to go.
715   for (auto &I : UnrecognizedLifetimes)
716     I->eraseFromParent();
717 
718   return true;
719 }
720