1 //===- AMDGPULibCalls.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file does AMD library function optimizations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AMDGPU.h"
15 #include "AMDGPULibFunc.h"
16 #include "GCNSubtarget.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/Analysis/Loads.h"
19 #include "llvm/IR/IntrinsicsAMDGPU.h"
20 #include "llvm/InitializePasses.h"
21 #include "llvm/Target/TargetMachine.h"
22 
23 #define DEBUG_TYPE "amdgpu-simplifylib"
24 
25 using namespace llvm;
26 
27 static cl::opt<bool> EnablePreLink("amdgpu-prelink",
28   cl::desc("Enable pre-link mode optimizations"),
29   cl::init(false),
30   cl::Hidden);
31 
32 static cl::list<std::string> UseNative("amdgpu-use-native",
33   cl::desc("Comma separated list of functions to replace with native, or all"),
34   cl::CommaSeparated, cl::ValueOptional,
35   cl::Hidden);
36 
37 #define MATH_PI      numbers::pi
38 #define MATH_E       numbers::e
39 #define MATH_SQRT2   numbers::sqrt2
40 #define MATH_SQRT1_2 numbers::inv_sqrt2
41 
42 namespace llvm {
43 
44 class AMDGPULibCalls {
45 private:
46 
47   typedef llvm::AMDGPULibFunc FuncInfo;
48 
49   const TargetMachine *TM;
50 
51   // -fuse-native.
52   bool AllNative = false;
53 
54   bool useNativeFunc(const StringRef F) const;
55 
56   // Return a pointer (pointer expr) to the function if function defintion with
57   // "FuncName" exists. It may create a new function prototype in pre-link mode.
58   FunctionCallee getFunction(Module *M, const FuncInfo &fInfo);
59 
60   // Replace a normal function with its native version.
61   bool replaceWithNative(CallInst *CI, const FuncInfo &FInfo);
62 
63   bool parseFunctionName(const StringRef& FMangledName,
64                          FuncInfo *FInfo=nullptr /*out*/);
65 
66   bool TDOFold(CallInst *CI, const FuncInfo &FInfo);
67 
68   /* Specialized optimizations */
69 
70   // recip (half or native)
71   bool fold_recip(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
72 
73   // divide (half or native)
74   bool fold_divide(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
75 
76   // pow/powr/pown
77   bool fold_pow(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
78 
79   // rootn
80   bool fold_rootn(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
81 
82   // fma/mad
83   bool fold_fma_mad(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
84 
85   // -fuse-native for sincos
86   bool sincosUseNative(CallInst *aCI, const FuncInfo &FInfo);
87 
88   // evaluate calls if calls' arguments are constants.
89   bool evaluateScalarMathFunc(FuncInfo &FInfo, double& Res0,
90     double& Res1, Constant *copr0, Constant *copr1, Constant *copr2);
91   bool evaluateCall(CallInst *aCI, FuncInfo &FInfo);
92 
93   // exp
94   bool fold_exp(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
95 
96   // exp2
97   bool fold_exp2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
98 
99   // exp10
100   bool fold_exp10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
101 
102   // log
103   bool fold_log(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
104 
105   // log2
106   bool fold_log2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
107 
108   // log10
109   bool fold_log10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
110 
111   // sqrt
112   bool fold_sqrt(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
113 
114   // sin/cos
115   bool fold_sincos(CallInst * CI, IRBuilder<> &B, AliasAnalysis * AA);
116 
117   // __read_pipe/__write_pipe
118   bool fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, FuncInfo &FInfo);
119 
120   // llvm.amdgcn.wavefrontsize
121   bool fold_wavefrontsize(CallInst *CI, IRBuilder<> &B);
122 
123   // Get insertion point at entry.
124   BasicBlock::iterator getEntryIns(CallInst * UI);
125   // Insert an Alloc instruction.
126   AllocaInst* insertAlloca(CallInst * UI, IRBuilder<> &B, const char *prefix);
127   // Get a scalar native builtin signle argument FP function
128   FunctionCallee getNativeFunction(Module *M, const FuncInfo &FInfo);
129 
130 protected:
131   CallInst *CI;
132 
133   bool isUnsafeMath(const CallInst *CI) const;
134 
replaceCall(Value * With)135   void replaceCall(Value *With) {
136     CI->replaceAllUsesWith(With);
137     CI->eraseFromParent();
138   }
139 
140 public:
AMDGPULibCalls(const TargetMachine * TM_=nullptr)141   AMDGPULibCalls(const TargetMachine *TM_ = nullptr) : TM(TM_) {}
142 
143   bool fold(CallInst *CI, AliasAnalysis *AA = nullptr);
144 
145   void initNativeFuncs();
146 
147   // Replace a normal math function call with that native version
148   bool useNative(CallInst *CI);
149 };
150 
151 } // end llvm namespace
152 
153 namespace {
154 
155   class AMDGPUSimplifyLibCalls : public FunctionPass {
156 
157   AMDGPULibCalls Simplifier;
158 
159   public:
160     static char ID; // Pass identification
161 
AMDGPUSimplifyLibCalls(const TargetMachine * TM=nullptr)162     AMDGPUSimplifyLibCalls(const TargetMachine *TM = nullptr)
163       : FunctionPass(ID), Simplifier(TM) {
164       initializeAMDGPUSimplifyLibCallsPass(*PassRegistry::getPassRegistry());
165     }
166 
getAnalysisUsage(AnalysisUsage & AU) const167     void getAnalysisUsage(AnalysisUsage &AU) const override {
168       AU.addRequired<AAResultsWrapperPass>();
169     }
170 
171     bool runOnFunction(Function &M) override;
172   };
173 
174   class AMDGPUUseNativeCalls : public FunctionPass {
175 
176   AMDGPULibCalls Simplifier;
177 
178   public:
179     static char ID; // Pass identification
180 
AMDGPUUseNativeCalls()181     AMDGPUUseNativeCalls() : FunctionPass(ID) {
182       initializeAMDGPUUseNativeCallsPass(*PassRegistry::getPassRegistry());
183       Simplifier.initNativeFuncs();
184     }
185 
186     bool runOnFunction(Function &F) override;
187   };
188 
189 } // end anonymous namespace.
190 
191 char AMDGPUSimplifyLibCalls::ID = 0;
192 char AMDGPUUseNativeCalls::ID = 0;
193 
194 INITIALIZE_PASS_BEGIN(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib",
195                       "Simplify well-known AMD library calls", false, false)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)196 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
197 INITIALIZE_PASS_END(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib",
198                     "Simplify well-known AMD library calls", false, false)
199 
200 INITIALIZE_PASS(AMDGPUUseNativeCalls, "amdgpu-usenative",
201                 "Replace builtin math calls with that native versions.",
202                 false, false)
203 
204 template <typename IRB>
205 static CallInst *CreateCallEx(IRB &B, FunctionCallee Callee, Value *Arg,
206                               const Twine &Name = "") {
207   CallInst *R = B.CreateCall(Callee, Arg, Name);
208   if (Function *F = dyn_cast<Function>(Callee.getCallee()))
209     R->setCallingConv(F->getCallingConv());
210   return R;
211 }
212 
213 template <typename IRB>
CreateCallEx2(IRB & B,FunctionCallee Callee,Value * Arg1,Value * Arg2,const Twine & Name="")214 static CallInst *CreateCallEx2(IRB &B, FunctionCallee Callee, Value *Arg1,
215                                Value *Arg2, const Twine &Name = "") {
216   CallInst *R = B.CreateCall(Callee, {Arg1, Arg2}, Name);
217   if (Function *F = dyn_cast<Function>(Callee.getCallee()))
218     R->setCallingConv(F->getCallingConv());
219   return R;
220 }
221 
222 //  Data structures for table-driven optimizations.
223 //  FuncTbl works for both f32 and f64 functions with 1 input argument
224 
225 struct TableEntry {
226   double   result;
227   double   input;
228 };
229 
230 /* a list of {result, input} */
231 static const TableEntry tbl_acos[] = {
232   {MATH_PI / 2.0, 0.0},
233   {MATH_PI / 2.0, -0.0},
234   {0.0, 1.0},
235   {MATH_PI, -1.0}
236 };
237 static const TableEntry tbl_acosh[] = {
238   {0.0, 1.0}
239 };
240 static const TableEntry tbl_acospi[] = {
241   {0.5, 0.0},
242   {0.5, -0.0},
243   {0.0, 1.0},
244   {1.0, -1.0}
245 };
246 static const TableEntry tbl_asin[] = {
247   {0.0, 0.0},
248   {-0.0, -0.0},
249   {MATH_PI / 2.0, 1.0},
250   {-MATH_PI / 2.0, -1.0}
251 };
252 static const TableEntry tbl_asinh[] = {
253   {0.0, 0.0},
254   {-0.0, -0.0}
255 };
256 static const TableEntry tbl_asinpi[] = {
257   {0.0, 0.0},
258   {-0.0, -0.0},
259   {0.5, 1.0},
260   {-0.5, -1.0}
261 };
262 static const TableEntry tbl_atan[] = {
263   {0.0, 0.0},
264   {-0.0, -0.0},
265   {MATH_PI / 4.0, 1.0},
266   {-MATH_PI / 4.0, -1.0}
267 };
268 static const TableEntry tbl_atanh[] = {
269   {0.0, 0.0},
270   {-0.0, -0.0}
271 };
272 static const TableEntry tbl_atanpi[] = {
273   {0.0, 0.0},
274   {-0.0, -0.0},
275   {0.25, 1.0},
276   {-0.25, -1.0}
277 };
278 static const TableEntry tbl_cbrt[] = {
279   {0.0, 0.0},
280   {-0.0, -0.0},
281   {1.0, 1.0},
282   {-1.0, -1.0},
283 };
284 static const TableEntry tbl_cos[] = {
285   {1.0, 0.0},
286   {1.0, -0.0}
287 };
288 static const TableEntry tbl_cosh[] = {
289   {1.0, 0.0},
290   {1.0, -0.0}
291 };
292 static const TableEntry tbl_cospi[] = {
293   {1.0, 0.0},
294   {1.0, -0.0}
295 };
296 static const TableEntry tbl_erfc[] = {
297   {1.0, 0.0},
298   {1.0, -0.0}
299 };
300 static const TableEntry tbl_erf[] = {
301   {0.0, 0.0},
302   {-0.0, -0.0}
303 };
304 static const TableEntry tbl_exp[] = {
305   {1.0, 0.0},
306   {1.0, -0.0},
307   {MATH_E, 1.0}
308 };
309 static const TableEntry tbl_exp2[] = {
310   {1.0, 0.0},
311   {1.0, -0.0},
312   {2.0, 1.0}
313 };
314 static const TableEntry tbl_exp10[] = {
315   {1.0, 0.0},
316   {1.0, -0.0},
317   {10.0, 1.0}
318 };
319 static const TableEntry tbl_expm1[] = {
320   {0.0, 0.0},
321   {-0.0, -0.0}
322 };
323 static const TableEntry tbl_log[] = {
324   {0.0, 1.0},
325   {1.0, MATH_E}
326 };
327 static const TableEntry tbl_log2[] = {
328   {0.0, 1.0},
329   {1.0, 2.0}
330 };
331 static const TableEntry tbl_log10[] = {
332   {0.0, 1.0},
333   {1.0, 10.0}
334 };
335 static const TableEntry tbl_rsqrt[] = {
336   {1.0, 1.0},
337   {MATH_SQRT1_2, 2.0}
338 };
339 static const TableEntry tbl_sin[] = {
340   {0.0, 0.0},
341   {-0.0, -0.0}
342 };
343 static const TableEntry tbl_sinh[] = {
344   {0.0, 0.0},
345   {-0.0, -0.0}
346 };
347 static const TableEntry tbl_sinpi[] = {
348   {0.0, 0.0},
349   {-0.0, -0.0}
350 };
351 static const TableEntry tbl_sqrt[] = {
352   {0.0, 0.0},
353   {1.0, 1.0},
354   {MATH_SQRT2, 2.0}
355 };
356 static const TableEntry tbl_tan[] = {
357   {0.0, 0.0},
358   {-0.0, -0.0}
359 };
360 static const TableEntry tbl_tanh[] = {
361   {0.0, 0.0},
362   {-0.0, -0.0}
363 };
364 static const TableEntry tbl_tanpi[] = {
365   {0.0, 0.0},
366   {-0.0, -0.0}
367 };
368 static const TableEntry tbl_tgamma[] = {
369   {1.0, 1.0},
370   {1.0, 2.0},
371   {2.0, 3.0},
372   {6.0, 4.0}
373 };
374 
HasNative(AMDGPULibFunc::EFuncId id)375 static bool HasNative(AMDGPULibFunc::EFuncId id) {
376   switch(id) {
377   case AMDGPULibFunc::EI_DIVIDE:
378   case AMDGPULibFunc::EI_COS:
379   case AMDGPULibFunc::EI_EXP:
380   case AMDGPULibFunc::EI_EXP2:
381   case AMDGPULibFunc::EI_EXP10:
382   case AMDGPULibFunc::EI_LOG:
383   case AMDGPULibFunc::EI_LOG2:
384   case AMDGPULibFunc::EI_LOG10:
385   case AMDGPULibFunc::EI_POWR:
386   case AMDGPULibFunc::EI_RECIP:
387   case AMDGPULibFunc::EI_RSQRT:
388   case AMDGPULibFunc::EI_SIN:
389   case AMDGPULibFunc::EI_SINCOS:
390   case AMDGPULibFunc::EI_SQRT:
391   case AMDGPULibFunc::EI_TAN:
392     return true;
393   default:;
394   }
395   return false;
396 }
397 
398 struct TableRef {
399   size_t size;
400   const TableEntry *table; // variable size: from 0 to (size - 1)
401 
TableRefTableRef402   TableRef() : size(0), table(nullptr) {}
403 
404   template <size_t N>
TableRefTableRef405   TableRef(const TableEntry (&tbl)[N]) : size(N), table(&tbl[0]) {}
406 };
407 
getOptTable(AMDGPULibFunc::EFuncId id)408 static TableRef getOptTable(AMDGPULibFunc::EFuncId id) {
409   switch(id) {
410   case AMDGPULibFunc::EI_ACOS:    return TableRef(tbl_acos);
411   case AMDGPULibFunc::EI_ACOSH:   return TableRef(tbl_acosh);
412   case AMDGPULibFunc::EI_ACOSPI:  return TableRef(tbl_acospi);
413   case AMDGPULibFunc::EI_ASIN:    return TableRef(tbl_asin);
414   case AMDGPULibFunc::EI_ASINH:   return TableRef(tbl_asinh);
415   case AMDGPULibFunc::EI_ASINPI:  return TableRef(tbl_asinpi);
416   case AMDGPULibFunc::EI_ATAN:    return TableRef(tbl_atan);
417   case AMDGPULibFunc::EI_ATANH:   return TableRef(tbl_atanh);
418   case AMDGPULibFunc::EI_ATANPI:  return TableRef(tbl_atanpi);
419   case AMDGPULibFunc::EI_CBRT:    return TableRef(tbl_cbrt);
420   case AMDGPULibFunc::EI_NCOS:
421   case AMDGPULibFunc::EI_COS:     return TableRef(tbl_cos);
422   case AMDGPULibFunc::EI_COSH:    return TableRef(tbl_cosh);
423   case AMDGPULibFunc::EI_COSPI:   return TableRef(tbl_cospi);
424   case AMDGPULibFunc::EI_ERFC:    return TableRef(tbl_erfc);
425   case AMDGPULibFunc::EI_ERF:     return TableRef(tbl_erf);
426   case AMDGPULibFunc::EI_EXP:     return TableRef(tbl_exp);
427   case AMDGPULibFunc::EI_NEXP2:
428   case AMDGPULibFunc::EI_EXP2:    return TableRef(tbl_exp2);
429   case AMDGPULibFunc::EI_EXP10:   return TableRef(tbl_exp10);
430   case AMDGPULibFunc::EI_EXPM1:   return TableRef(tbl_expm1);
431   case AMDGPULibFunc::EI_LOG:     return TableRef(tbl_log);
432   case AMDGPULibFunc::EI_NLOG2:
433   case AMDGPULibFunc::EI_LOG2:    return TableRef(tbl_log2);
434   case AMDGPULibFunc::EI_LOG10:   return TableRef(tbl_log10);
435   case AMDGPULibFunc::EI_NRSQRT:
436   case AMDGPULibFunc::EI_RSQRT:   return TableRef(tbl_rsqrt);
437   case AMDGPULibFunc::EI_NSIN:
438   case AMDGPULibFunc::EI_SIN:     return TableRef(tbl_sin);
439   case AMDGPULibFunc::EI_SINH:    return TableRef(tbl_sinh);
440   case AMDGPULibFunc::EI_SINPI:   return TableRef(tbl_sinpi);
441   case AMDGPULibFunc::EI_NSQRT:
442   case AMDGPULibFunc::EI_SQRT:    return TableRef(tbl_sqrt);
443   case AMDGPULibFunc::EI_TAN:     return TableRef(tbl_tan);
444   case AMDGPULibFunc::EI_TANH:    return TableRef(tbl_tanh);
445   case AMDGPULibFunc::EI_TANPI:   return TableRef(tbl_tanpi);
446   case AMDGPULibFunc::EI_TGAMMA:  return TableRef(tbl_tgamma);
447   default:;
448   }
449   return TableRef();
450 }
451 
getVecSize(const AMDGPULibFunc & FInfo)452 static inline int getVecSize(const AMDGPULibFunc& FInfo) {
453   return FInfo.getLeads()[0].VectorSize;
454 }
455 
getArgType(const AMDGPULibFunc & FInfo)456 static inline AMDGPULibFunc::EType getArgType(const AMDGPULibFunc& FInfo) {
457   return (AMDGPULibFunc::EType)FInfo.getLeads()[0].ArgType;
458 }
459 
getFunction(Module * M,const FuncInfo & fInfo)460 FunctionCallee AMDGPULibCalls::getFunction(Module *M, const FuncInfo &fInfo) {
461   // If we are doing PreLinkOpt, the function is external. So it is safe to
462   // use getOrInsertFunction() at this stage.
463 
464   return EnablePreLink ? AMDGPULibFunc::getOrInsertFunction(M, fInfo)
465                        : AMDGPULibFunc::getFunction(M, fInfo);
466 }
467 
parseFunctionName(const StringRef & FMangledName,FuncInfo * FInfo)468 bool AMDGPULibCalls::parseFunctionName(const StringRef& FMangledName,
469                                     FuncInfo *FInfo) {
470   return AMDGPULibFunc::parse(FMangledName, *FInfo);
471 }
472 
isUnsafeMath(const CallInst * CI) const473 bool AMDGPULibCalls::isUnsafeMath(const CallInst *CI) const {
474   if (auto Op = dyn_cast<FPMathOperator>(CI))
475     if (Op->isFast())
476       return true;
477   const Function *F = CI->getParent()->getParent();
478   Attribute Attr = F->getFnAttribute("unsafe-fp-math");
479   return Attr.getValueAsString() == "true";
480 }
481 
useNativeFunc(const StringRef F) const482 bool AMDGPULibCalls::useNativeFunc(const StringRef F) const {
483   return AllNative || llvm::is_contained(UseNative, F);
484 }
485 
initNativeFuncs()486 void AMDGPULibCalls::initNativeFuncs() {
487   AllNative = useNativeFunc("all") ||
488               (UseNative.getNumOccurrences() && UseNative.size() == 1 &&
489                UseNative.begin()->empty());
490 }
491 
sincosUseNative(CallInst * aCI,const FuncInfo & FInfo)492 bool AMDGPULibCalls::sincosUseNative(CallInst *aCI, const FuncInfo &FInfo) {
493   bool native_sin = useNativeFunc("sin");
494   bool native_cos = useNativeFunc("cos");
495 
496   if (native_sin && native_cos) {
497     Module *M = aCI->getModule();
498     Value *opr0 = aCI->getArgOperand(0);
499 
500     AMDGPULibFunc nf;
501     nf.getLeads()[0].ArgType = FInfo.getLeads()[0].ArgType;
502     nf.getLeads()[0].VectorSize = FInfo.getLeads()[0].VectorSize;
503 
504     nf.setPrefix(AMDGPULibFunc::NATIVE);
505     nf.setId(AMDGPULibFunc::EI_SIN);
506     FunctionCallee sinExpr = getFunction(M, nf);
507 
508     nf.setPrefix(AMDGPULibFunc::NATIVE);
509     nf.setId(AMDGPULibFunc::EI_COS);
510     FunctionCallee cosExpr = getFunction(M, nf);
511     if (sinExpr && cosExpr) {
512       Value *sinval = CallInst::Create(sinExpr, opr0, "splitsin", aCI);
513       Value *cosval = CallInst::Create(cosExpr, opr0, "splitcos", aCI);
514       new StoreInst(cosval, aCI->getArgOperand(1), aCI);
515 
516       DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI
517                                           << " with native version of sin/cos");
518 
519       replaceCall(sinval);
520       return true;
521     }
522   }
523   return false;
524 }
525 
useNative(CallInst * aCI)526 bool AMDGPULibCalls::useNative(CallInst *aCI) {
527   CI = aCI;
528   Function *Callee = aCI->getCalledFunction();
529 
530   FuncInfo FInfo;
531   if (!parseFunctionName(Callee->getName(), &FInfo) || !FInfo.isMangled() ||
532       FInfo.getPrefix() != AMDGPULibFunc::NOPFX ||
533       getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()) ||
534       !(AllNative || useNativeFunc(FInfo.getName()))) {
535     return false;
536   }
537 
538   if (FInfo.getId() == AMDGPULibFunc::EI_SINCOS)
539     return sincosUseNative(aCI, FInfo);
540 
541   FInfo.setPrefix(AMDGPULibFunc::NATIVE);
542   FunctionCallee F = getFunction(aCI->getModule(), FInfo);
543   if (!F)
544     return false;
545 
546   aCI->setCalledFunction(F);
547   DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI
548                                       << " with native version");
549   return true;
550 }
551 
552 // Clang emits call of __read_pipe_2 or __read_pipe_4 for OpenCL read_pipe
553 // builtin, with appended type size and alignment arguments, where 2 or 4
554 // indicates the original number of arguments. The library has optimized version
555 // of __read_pipe_2/__read_pipe_4 when the type size and alignment has the same
556 // power of 2 value. This function transforms __read_pipe_2 to __read_pipe_2_N
557 // for such cases where N is the size in bytes of the type (N = 1, 2, 4, 8, ...,
558 // 128). The same for __read_pipe_4, write_pipe_2, and write_pipe_4.
fold_read_write_pipe(CallInst * CI,IRBuilder<> & B,FuncInfo & FInfo)559 bool AMDGPULibCalls::fold_read_write_pipe(CallInst *CI, IRBuilder<> &B,
560                                           FuncInfo &FInfo) {
561   auto *Callee = CI->getCalledFunction();
562   if (!Callee->isDeclaration())
563     return false;
564 
565   assert(Callee->hasName() && "Invalid read_pipe/write_pipe function");
566   auto *M = Callee->getParent();
567   auto &Ctx = M->getContext();
568   std::string Name = std::string(Callee->getName());
569   auto NumArg = CI->getNumArgOperands();
570   if (NumArg != 4 && NumArg != 6)
571     return false;
572   auto *PacketSize = CI->getArgOperand(NumArg - 2);
573   auto *PacketAlign = CI->getArgOperand(NumArg - 1);
574   if (!isa<ConstantInt>(PacketSize) || !isa<ConstantInt>(PacketAlign))
575     return false;
576   unsigned Size = cast<ConstantInt>(PacketSize)->getZExtValue();
577   Align Alignment = cast<ConstantInt>(PacketAlign)->getAlignValue();
578   if (Alignment != Size)
579     return false;
580 
581   Type *PtrElemTy;
582   if (Size <= 8)
583     PtrElemTy = Type::getIntNTy(Ctx, Size * 8);
584   else
585     PtrElemTy = FixedVectorType::get(Type::getInt64Ty(Ctx), Size / 8);
586   unsigned PtrArgLoc = CI->getNumArgOperands() - 3;
587   auto PtrArg = CI->getArgOperand(PtrArgLoc);
588   unsigned PtrArgAS = PtrArg->getType()->getPointerAddressSpace();
589   auto *PtrTy = llvm::PointerType::get(PtrElemTy, PtrArgAS);
590 
591   SmallVector<llvm::Type *, 6> ArgTys;
592   for (unsigned I = 0; I != PtrArgLoc; ++I)
593     ArgTys.push_back(CI->getArgOperand(I)->getType());
594   ArgTys.push_back(PtrTy);
595 
596   Name = Name + "_" + std::to_string(Size);
597   auto *FTy = FunctionType::get(Callee->getReturnType(),
598                                 ArrayRef<Type *>(ArgTys), false);
599   AMDGPULibFunc NewLibFunc(Name, FTy);
600   FunctionCallee F = AMDGPULibFunc::getOrInsertFunction(M, NewLibFunc);
601   if (!F)
602     return false;
603 
604   auto *BCast = B.CreatePointerCast(PtrArg, PtrTy);
605   SmallVector<Value *, 6> Args;
606   for (unsigned I = 0; I != PtrArgLoc; ++I)
607     Args.push_back(CI->getArgOperand(I));
608   Args.push_back(BCast);
609 
610   auto *NCI = B.CreateCall(F, Args);
611   NCI->setAttributes(CI->getAttributes());
612   CI->replaceAllUsesWith(NCI);
613   CI->dropAllReferences();
614   CI->eraseFromParent();
615 
616   return true;
617 }
618 
619 // This function returns false if no change; return true otherwise.
fold(CallInst * CI,AliasAnalysis * AA)620 bool AMDGPULibCalls::fold(CallInst *CI, AliasAnalysis *AA) {
621   this->CI = CI;
622   Function *Callee = CI->getCalledFunction();
623 
624   // Ignore indirect calls.
625   if (Callee == 0) return false;
626 
627   BasicBlock *BB = CI->getParent();
628   LLVMContext &Context = CI->getParent()->getContext();
629   IRBuilder<> B(Context);
630 
631   // Set the builder to the instruction after the call.
632   B.SetInsertPoint(BB, CI->getIterator());
633 
634   // Copy fast flags from the original call.
635   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(CI))
636     B.setFastMathFlags(FPOp->getFastMathFlags());
637 
638   switch (Callee->getIntrinsicID()) {
639   default:
640     break;
641   case Intrinsic::amdgcn_wavefrontsize:
642     return !EnablePreLink && fold_wavefrontsize(CI, B);
643   }
644 
645   FuncInfo FInfo;
646   if (!parseFunctionName(Callee->getName(), &FInfo))
647     return false;
648 
649   // Further check the number of arguments to see if they match.
650   if (CI->getNumArgOperands() != FInfo.getNumArgs())
651     return false;
652 
653   if (TDOFold(CI, FInfo))
654     return true;
655 
656   // Under unsafe-math, evaluate calls if possible.
657   // According to Brian Sumner, we can do this for all f32 function calls
658   // using host's double function calls.
659   if (isUnsafeMath(CI) && evaluateCall(CI, FInfo))
660     return true;
661 
662   // Specilized optimizations for each function call
663   switch (FInfo.getId()) {
664   case AMDGPULibFunc::EI_RECIP:
665     // skip vector function
666     assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE ||
667              FInfo.getPrefix() == AMDGPULibFunc::HALF) &&
668             "recip must be an either native or half function");
669     return (getVecSize(FInfo) != 1) ? false : fold_recip(CI, B, FInfo);
670 
671   case AMDGPULibFunc::EI_DIVIDE:
672     // skip vector function
673     assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE ||
674              FInfo.getPrefix() == AMDGPULibFunc::HALF) &&
675             "divide must be an either native or half function");
676     return (getVecSize(FInfo) != 1) ? false : fold_divide(CI, B, FInfo);
677 
678   case AMDGPULibFunc::EI_POW:
679   case AMDGPULibFunc::EI_POWR:
680   case AMDGPULibFunc::EI_POWN:
681     return fold_pow(CI, B, FInfo);
682 
683   case AMDGPULibFunc::EI_ROOTN:
684     // skip vector function
685     return (getVecSize(FInfo) != 1) ? false : fold_rootn(CI, B, FInfo);
686 
687   case AMDGPULibFunc::EI_FMA:
688   case AMDGPULibFunc::EI_MAD:
689   case AMDGPULibFunc::EI_NFMA:
690     // skip vector function
691     return (getVecSize(FInfo) != 1) ? false : fold_fma_mad(CI, B, FInfo);
692 
693   case AMDGPULibFunc::EI_SQRT:
694     return isUnsafeMath(CI) && fold_sqrt(CI, B, FInfo);
695   case AMDGPULibFunc::EI_COS:
696   case AMDGPULibFunc::EI_SIN:
697     if ((getArgType(FInfo) == AMDGPULibFunc::F32 ||
698          getArgType(FInfo) == AMDGPULibFunc::F64)
699         && (FInfo.getPrefix() == AMDGPULibFunc::NOPFX))
700       return fold_sincos(CI, B, AA);
701 
702     break;
703   case AMDGPULibFunc::EI_READ_PIPE_2:
704   case AMDGPULibFunc::EI_READ_PIPE_4:
705   case AMDGPULibFunc::EI_WRITE_PIPE_2:
706   case AMDGPULibFunc::EI_WRITE_PIPE_4:
707     return fold_read_write_pipe(CI, B, FInfo);
708 
709   default:
710     break;
711   }
712 
713   return false;
714 }
715 
TDOFold(CallInst * CI,const FuncInfo & FInfo)716 bool AMDGPULibCalls::TDOFold(CallInst *CI, const FuncInfo &FInfo) {
717   // Table-Driven optimization
718   const TableRef tr = getOptTable(FInfo.getId());
719   if (tr.size==0)
720     return false;
721 
722   int const sz = (int)tr.size;
723   const TableEntry * const ftbl = tr.table;
724   Value *opr0 = CI->getArgOperand(0);
725 
726   if (getVecSize(FInfo) > 1) {
727     if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(opr0)) {
728       SmallVector<double, 0> DVal;
729       for (int eltNo = 0; eltNo < getVecSize(FInfo); ++eltNo) {
730         ConstantFP *eltval = dyn_cast<ConstantFP>(
731                                CV->getElementAsConstant((unsigned)eltNo));
732         assert(eltval && "Non-FP arguments in math function!");
733         bool found = false;
734         for (int i=0; i < sz; ++i) {
735           if (eltval->isExactlyValue(ftbl[i].input)) {
736             DVal.push_back(ftbl[i].result);
737             found = true;
738             break;
739           }
740         }
741         if (!found) {
742           // This vector constants not handled yet.
743           return false;
744         }
745       }
746       LLVMContext &context = CI->getParent()->getParent()->getContext();
747       Constant *nval;
748       if (getArgType(FInfo) == AMDGPULibFunc::F32) {
749         SmallVector<float, 0> FVal;
750         for (unsigned i = 0; i < DVal.size(); ++i) {
751           FVal.push_back((float)DVal[i]);
752         }
753         ArrayRef<float> tmp(FVal);
754         nval = ConstantDataVector::get(context, tmp);
755       } else { // F64
756         ArrayRef<double> tmp(DVal);
757         nval = ConstantDataVector::get(context, tmp);
758       }
759       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
760       replaceCall(nval);
761       return true;
762     }
763   } else {
764     // Scalar version
765     if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) {
766       for (int i = 0; i < sz; ++i) {
767         if (CF->isExactlyValue(ftbl[i].input)) {
768           Value *nval = ConstantFP::get(CF->getType(), ftbl[i].result);
769           LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
770           replaceCall(nval);
771           return true;
772         }
773       }
774     }
775   }
776 
777   return false;
778 }
779 
replaceWithNative(CallInst * CI,const FuncInfo & FInfo)780 bool AMDGPULibCalls::replaceWithNative(CallInst *CI, const FuncInfo &FInfo) {
781   Module *M = CI->getModule();
782   if (getArgType(FInfo) != AMDGPULibFunc::F32 ||
783       FInfo.getPrefix() != AMDGPULibFunc::NOPFX ||
784       !HasNative(FInfo.getId()))
785     return false;
786 
787   AMDGPULibFunc nf = FInfo;
788   nf.setPrefix(AMDGPULibFunc::NATIVE);
789   if (FunctionCallee FPExpr = getFunction(M, nf)) {
790     LLVM_DEBUG(dbgs() << "AMDIC: " << *CI << " ---> ");
791 
792     CI->setCalledFunction(FPExpr);
793 
794     LLVM_DEBUG(dbgs() << *CI << '\n');
795 
796     return true;
797   }
798   return false;
799 }
800 
801 //  [native_]half_recip(c) ==> 1.0/c
fold_recip(CallInst * CI,IRBuilder<> & B,const FuncInfo & FInfo)802 bool AMDGPULibCalls::fold_recip(CallInst *CI, IRBuilder<> &B,
803                                 const FuncInfo &FInfo) {
804   Value *opr0 = CI->getArgOperand(0);
805   if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) {
806     // Just create a normal div. Later, InstCombine will be able
807     // to compute the divide into a constant (avoid check float infinity
808     // or subnormal at this point).
809     Value *nval = B.CreateFDiv(ConstantFP::get(CF->getType(), 1.0),
810                                opr0,
811                                "recip2div");
812     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
813     replaceCall(nval);
814     return true;
815   }
816   return false;
817 }
818 
819 //  [native_]half_divide(x, c) ==> x/c
fold_divide(CallInst * CI,IRBuilder<> & B,const FuncInfo & FInfo)820 bool AMDGPULibCalls::fold_divide(CallInst *CI, IRBuilder<> &B,
821                                  const FuncInfo &FInfo) {
822   Value *opr0 = CI->getArgOperand(0);
823   Value *opr1 = CI->getArgOperand(1);
824   ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0);
825   ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1);
826 
827   if ((CF0 && CF1) ||  // both are constants
828       (CF1 && (getArgType(FInfo) == AMDGPULibFunc::F32)))
829       // CF1 is constant && f32 divide
830   {
831     Value *nval1 = B.CreateFDiv(ConstantFP::get(opr1->getType(), 1.0),
832                                 opr1, "__div2recip");
833     Value *nval  = B.CreateFMul(opr0, nval1, "__div2mul");
834     replaceCall(nval);
835     return true;
836   }
837   return false;
838 }
839 
840 namespace llvm {
log2(double V)841 static double log2(double V) {
842 #if _XOPEN_SOURCE >= 600 || defined(_ISOC99_SOURCE) || _POSIX_C_SOURCE >= 200112L
843   return ::log2(V);
844 #else
845   return log(V) / numbers::ln2;
846 #endif
847 }
848 }
849 
fold_pow(CallInst * CI,IRBuilder<> & B,const FuncInfo & FInfo)850 bool AMDGPULibCalls::fold_pow(CallInst *CI, IRBuilder<> &B,
851                               const FuncInfo &FInfo) {
852   assert((FInfo.getId() == AMDGPULibFunc::EI_POW ||
853           FInfo.getId() == AMDGPULibFunc::EI_POWR ||
854           FInfo.getId() == AMDGPULibFunc::EI_POWN) &&
855          "fold_pow: encounter a wrong function call");
856 
857   Value *opr0, *opr1;
858   ConstantFP *CF;
859   ConstantInt *CINT;
860   ConstantAggregateZero *CZero;
861   Type *eltType;
862 
863   opr0 = CI->getArgOperand(0);
864   opr1 = CI->getArgOperand(1);
865   CZero = dyn_cast<ConstantAggregateZero>(opr1);
866   if (getVecSize(FInfo) == 1) {
867     eltType = opr0->getType();
868     CF = dyn_cast<ConstantFP>(opr1);
869     CINT = dyn_cast<ConstantInt>(opr1);
870   } else {
871     VectorType *VTy = dyn_cast<VectorType>(opr0->getType());
872     assert(VTy && "Oprand of vector function should be of vectortype");
873     eltType = VTy->getElementType();
874     ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1);
875 
876     // Now, only Handle vector const whose elements have the same value.
877     CF = CDV ? dyn_cast_or_null<ConstantFP>(CDV->getSplatValue()) : nullptr;
878     CINT = CDV ? dyn_cast_or_null<ConstantInt>(CDV->getSplatValue()) : nullptr;
879   }
880 
881   // No unsafe math , no constant argument, do nothing
882   if (!isUnsafeMath(CI) && !CF && !CINT && !CZero)
883     return false;
884 
885   // 0x1111111 means that we don't do anything for this call.
886   int ci_opr1 = (CINT ? (int)CINT->getSExtValue() : 0x1111111);
887 
888   if ((CF && CF->isZero()) || (CINT && ci_opr1 == 0) || CZero) {
889     //  pow/powr/pown(x, 0) == 1
890     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1\n");
891     Constant *cnval = ConstantFP::get(eltType, 1.0);
892     if (getVecSize(FInfo) > 1) {
893       cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
894     }
895     replaceCall(cnval);
896     return true;
897   }
898   if ((CF && CF->isExactlyValue(1.0)) || (CINT && ci_opr1 == 1)) {
899     // pow/powr/pown(x, 1.0) = x
900     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n");
901     replaceCall(opr0);
902     return true;
903   }
904   if ((CF && CF->isExactlyValue(2.0)) || (CINT && ci_opr1 == 2)) {
905     // pow/powr/pown(x, 2.0) = x*x
906     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * " << *opr0
907                       << "\n");
908     Value *nval = B.CreateFMul(opr0, opr0, "__pow2");
909     replaceCall(nval);
910     return true;
911   }
912   if ((CF && CF->isExactlyValue(-1.0)) || (CINT && ci_opr1 == -1)) {
913     // pow/powr/pown(x, -1.0) = 1.0/x
914     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1 / " << *opr0 << "\n");
915     Constant *cnval = ConstantFP::get(eltType, 1.0);
916     if (getVecSize(FInfo) > 1) {
917       cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
918     }
919     Value *nval = B.CreateFDiv(cnval, opr0, "__powrecip");
920     replaceCall(nval);
921     return true;
922   }
923 
924   Module *M = CI->getModule();
925   if (CF && (CF->isExactlyValue(0.5) || CF->isExactlyValue(-0.5))) {
926     // pow[r](x, [-]0.5) = sqrt(x)
927     bool issqrt = CF->isExactlyValue(0.5);
928     if (FunctionCallee FPExpr =
929             getFunction(M, AMDGPULibFunc(issqrt ? AMDGPULibFunc::EI_SQRT
930                                                 : AMDGPULibFunc::EI_RSQRT,
931                                          FInfo))) {
932       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
933                         << FInfo.getName().c_str() << "(" << *opr0 << ")\n");
934       Value *nval = CreateCallEx(B,FPExpr, opr0, issqrt ? "__pow2sqrt"
935                                                         : "__pow2rsqrt");
936       replaceCall(nval);
937       return true;
938     }
939   }
940 
941   if (!isUnsafeMath(CI))
942     return false;
943 
944   // Unsafe Math optimization
945 
946   // Remember that ci_opr1 is set if opr1 is integral
947   if (CF) {
948     double dval = (getArgType(FInfo) == AMDGPULibFunc::F32)
949                     ? (double)CF->getValueAPF().convertToFloat()
950                     : CF->getValueAPF().convertToDouble();
951     int ival = (int)dval;
952     if ((double)ival == dval) {
953       ci_opr1 = ival;
954     } else
955       ci_opr1 = 0x11111111;
956   }
957 
958   // pow/powr/pown(x, c) = [1/](x*x*..x); where
959   //   trunc(c) == c && the number of x == c && |c| <= 12
960   unsigned abs_opr1 = (ci_opr1 < 0) ? -ci_opr1 : ci_opr1;
961   if (abs_opr1 <= 12) {
962     Constant *cnval;
963     Value *nval;
964     if (abs_opr1 == 0) {
965       cnval = ConstantFP::get(eltType, 1.0);
966       if (getVecSize(FInfo) > 1) {
967         cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
968       }
969       nval = cnval;
970     } else {
971       Value *valx2 = nullptr;
972       nval = nullptr;
973       while (abs_opr1 > 0) {
974         valx2 = valx2 ? B.CreateFMul(valx2, valx2, "__powx2") : opr0;
975         if (abs_opr1 & 1) {
976           nval = nval ? B.CreateFMul(nval, valx2, "__powprod") : valx2;
977         }
978         abs_opr1 >>= 1;
979       }
980     }
981 
982     if (ci_opr1 < 0) {
983       cnval = ConstantFP::get(eltType, 1.0);
984       if (getVecSize(FInfo) > 1) {
985         cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
986       }
987       nval = B.CreateFDiv(cnval, nval, "__1powprod");
988     }
989     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
990                       << ((ci_opr1 < 0) ? "1/prod(" : "prod(") << *opr0
991                       << ")\n");
992     replaceCall(nval);
993     return true;
994   }
995 
996   // powr ---> exp2(y * log2(x))
997   // pown/pow ---> powr(fabs(x), y) | (x & ((int)y << 31))
998   FunctionCallee ExpExpr =
999       getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_EXP2, FInfo));
1000   if (!ExpExpr)
1001     return false;
1002 
1003   bool needlog = false;
1004   bool needabs = false;
1005   bool needcopysign = false;
1006   Constant *cnval = nullptr;
1007   if (getVecSize(FInfo) == 1) {
1008     CF = dyn_cast<ConstantFP>(opr0);
1009 
1010     if (CF) {
1011       double V = (getArgType(FInfo) == AMDGPULibFunc::F32)
1012                    ? (double)CF->getValueAPF().convertToFloat()
1013                    : CF->getValueAPF().convertToDouble();
1014 
1015       V = log2(std::abs(V));
1016       cnval = ConstantFP::get(eltType, V);
1017       needcopysign = (FInfo.getId() != AMDGPULibFunc::EI_POWR) &&
1018                      CF->isNegative();
1019     } else {
1020       needlog = true;
1021       needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR &&
1022                                (!CF || CF->isNegative());
1023     }
1024   } else {
1025     ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr0);
1026 
1027     if (!CDV) {
1028       needlog = true;
1029       needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR;
1030     } else {
1031       assert ((int)CDV->getNumElements() == getVecSize(FInfo) &&
1032               "Wrong vector size detected");
1033 
1034       SmallVector<double, 0> DVal;
1035       for (int i=0; i < getVecSize(FInfo); ++i) {
1036         double V = (getArgType(FInfo) == AMDGPULibFunc::F32)
1037                      ? (double)CDV->getElementAsFloat(i)
1038                      : CDV->getElementAsDouble(i);
1039         if (V < 0.0) needcopysign = true;
1040         V = log2(std::abs(V));
1041         DVal.push_back(V);
1042       }
1043       if (getArgType(FInfo) == AMDGPULibFunc::F32) {
1044         SmallVector<float, 0> FVal;
1045         for (unsigned i=0; i < DVal.size(); ++i) {
1046           FVal.push_back((float)DVal[i]);
1047         }
1048         ArrayRef<float> tmp(FVal);
1049         cnval = ConstantDataVector::get(M->getContext(), tmp);
1050       } else {
1051         ArrayRef<double> tmp(DVal);
1052         cnval = ConstantDataVector::get(M->getContext(), tmp);
1053       }
1054     }
1055   }
1056 
1057   if (needcopysign && (FInfo.getId() == AMDGPULibFunc::EI_POW)) {
1058     // We cannot handle corner cases for a general pow() function, give up
1059     // unless y is a constant integral value. Then proceed as if it were pown.
1060     if (getVecSize(FInfo) == 1) {
1061       if (const ConstantFP *CF = dyn_cast<ConstantFP>(opr1)) {
1062         double y = (getArgType(FInfo) == AMDGPULibFunc::F32)
1063                    ? (double)CF->getValueAPF().convertToFloat()
1064                    : CF->getValueAPF().convertToDouble();
1065         if (y != (double)(int64_t)y)
1066           return false;
1067       } else
1068         return false;
1069     } else {
1070       if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1)) {
1071         for (int i=0; i < getVecSize(FInfo); ++i) {
1072           double y = (getArgType(FInfo) == AMDGPULibFunc::F32)
1073                      ? (double)CDV->getElementAsFloat(i)
1074                      : CDV->getElementAsDouble(i);
1075           if (y != (double)(int64_t)y)
1076             return false;
1077         }
1078       } else
1079         return false;
1080     }
1081   }
1082 
1083   Value *nval;
1084   if (needabs) {
1085     FunctionCallee AbsExpr =
1086         getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_FABS, FInfo));
1087     if (!AbsExpr)
1088       return false;
1089     nval = CreateCallEx(B, AbsExpr, opr0, "__fabs");
1090   } else {
1091     nval = cnval ? cnval : opr0;
1092   }
1093   if (needlog) {
1094     FunctionCallee LogExpr =
1095         getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_LOG2, FInfo));
1096     if (!LogExpr)
1097       return false;
1098     nval = CreateCallEx(B,LogExpr, nval, "__log2");
1099   }
1100 
1101   if (FInfo.getId() == AMDGPULibFunc::EI_POWN) {
1102     // convert int(32) to fp(f32 or f64)
1103     opr1 = B.CreateSIToFP(opr1, nval->getType(), "pownI2F");
1104   }
1105   nval = B.CreateFMul(opr1, nval, "__ylogx");
1106   nval = CreateCallEx(B,ExpExpr, nval, "__exp2");
1107 
1108   if (needcopysign) {
1109     Value *opr_n;
1110     Type* rTy = opr0->getType();
1111     Type* nTyS = eltType->isDoubleTy() ? B.getInt64Ty() : B.getInt32Ty();
1112     Type *nTy = nTyS;
1113     if (const auto *vTy = dyn_cast<FixedVectorType>(rTy))
1114       nTy = FixedVectorType::get(nTyS, vTy);
1115     unsigned size = nTy->getScalarSizeInBits();
1116     opr_n = CI->getArgOperand(1);
1117     if (opr_n->getType()->isIntegerTy())
1118       opr_n = B.CreateZExtOrBitCast(opr_n, nTy, "__ytou");
1119     else
1120       opr_n = B.CreateFPToSI(opr1, nTy, "__ytou");
1121 
1122     Value *sign = B.CreateShl(opr_n, size-1, "__yeven");
1123     sign = B.CreateAnd(B.CreateBitCast(opr0, nTy), sign, "__pow_sign");
1124     nval = B.CreateOr(B.CreateBitCast(nval, nTy), sign);
1125     nval = B.CreateBitCast(nval, opr0->getType());
1126   }
1127 
1128   LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
1129                     << "exp2(" << *opr1 << " * log2(" << *opr0 << "))\n");
1130   replaceCall(nval);
1131 
1132   return true;
1133 }
1134 
fold_rootn(CallInst * CI,IRBuilder<> & B,const FuncInfo & FInfo)1135 bool AMDGPULibCalls::fold_rootn(CallInst *CI, IRBuilder<> &B,
1136                                 const FuncInfo &FInfo) {
1137   Value *opr0 = CI->getArgOperand(0);
1138   Value *opr1 = CI->getArgOperand(1);
1139 
1140   ConstantInt *CINT = dyn_cast<ConstantInt>(opr1);
1141   if (!CINT) {
1142     return false;
1143   }
1144   int ci_opr1 = (int)CINT->getSExtValue();
1145   if (ci_opr1 == 1) {  // rootn(x, 1) = x
1146     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n");
1147     replaceCall(opr0);
1148     return true;
1149   }
1150   if (ci_opr1 == 2) {  // rootn(x, 2) = sqrt(x)
1151     Module *M = CI->getModule();
1152     if (FunctionCallee FPExpr =
1153             getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) {
1154       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> sqrt(" << *opr0 << ")\n");
1155       Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2sqrt");
1156       replaceCall(nval);
1157       return true;
1158     }
1159   } else if (ci_opr1 == 3) { // rootn(x, 3) = cbrt(x)
1160     Module *M = CI->getModule();
1161     if (FunctionCallee FPExpr =
1162             getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_CBRT, FInfo))) {
1163       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> cbrt(" << *opr0 << ")\n");
1164       Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2cbrt");
1165       replaceCall(nval);
1166       return true;
1167     }
1168   } else if (ci_opr1 == -1) { // rootn(x, -1) = 1.0/x
1169     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1.0 / " << *opr0 << "\n");
1170     Value *nval = B.CreateFDiv(ConstantFP::get(opr0->getType(), 1.0),
1171                                opr0,
1172                                "__rootn2div");
1173     replaceCall(nval);
1174     return true;
1175   } else if (ci_opr1 == -2) {  // rootn(x, -2) = rsqrt(x)
1176     Module *M = CI->getModule();
1177     if (FunctionCallee FPExpr =
1178             getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_RSQRT, FInfo))) {
1179       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> rsqrt(" << *opr0
1180                         << ")\n");
1181       Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2rsqrt");
1182       replaceCall(nval);
1183       return true;
1184     }
1185   }
1186   return false;
1187 }
1188 
fold_fma_mad(CallInst * CI,IRBuilder<> & B,const FuncInfo & FInfo)1189 bool AMDGPULibCalls::fold_fma_mad(CallInst *CI, IRBuilder<> &B,
1190                                   const FuncInfo &FInfo) {
1191   Value *opr0 = CI->getArgOperand(0);
1192   Value *opr1 = CI->getArgOperand(1);
1193   Value *opr2 = CI->getArgOperand(2);
1194 
1195   ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0);
1196   ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1);
1197   if ((CF0 && CF0->isZero()) || (CF1 && CF1->isZero())) {
1198     // fma/mad(a, b, c) = c if a=0 || b=0
1199     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr2 << "\n");
1200     replaceCall(opr2);
1201     return true;
1202   }
1203   if (CF0 && CF0->isExactlyValue(1.0f)) {
1204     // fma/mad(a, b, c) = b+c if a=1
1205     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr1 << " + " << *opr2
1206                       << "\n");
1207     Value *nval = B.CreateFAdd(opr1, opr2, "fmaadd");
1208     replaceCall(nval);
1209     return true;
1210   }
1211   if (CF1 && CF1->isExactlyValue(1.0f)) {
1212     // fma/mad(a, b, c) = a+c if b=1
1213     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " + " << *opr2
1214                       << "\n");
1215     Value *nval = B.CreateFAdd(opr0, opr2, "fmaadd");
1216     replaceCall(nval);
1217     return true;
1218   }
1219   if (ConstantFP *CF = dyn_cast<ConstantFP>(opr2)) {
1220     if (CF->isZero()) {
1221       // fma/mad(a, b, c) = a*b if c=0
1222       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * "
1223                         << *opr1 << "\n");
1224       Value *nval = B.CreateFMul(opr0, opr1, "fmamul");
1225       replaceCall(nval);
1226       return true;
1227     }
1228   }
1229 
1230   return false;
1231 }
1232 
1233 // Get a scalar native builtin signle argument FP function
getNativeFunction(Module * M,const FuncInfo & FInfo)1234 FunctionCallee AMDGPULibCalls::getNativeFunction(Module *M,
1235                                                  const FuncInfo &FInfo) {
1236   if (getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()))
1237     return nullptr;
1238   FuncInfo nf = FInfo;
1239   nf.setPrefix(AMDGPULibFunc::NATIVE);
1240   return getFunction(M, nf);
1241 }
1242 
1243 // fold sqrt -> native_sqrt (x)
fold_sqrt(CallInst * CI,IRBuilder<> & B,const FuncInfo & FInfo)1244 bool AMDGPULibCalls::fold_sqrt(CallInst *CI, IRBuilder<> &B,
1245                                const FuncInfo &FInfo) {
1246   if (getArgType(FInfo) == AMDGPULibFunc::F32 && (getVecSize(FInfo) == 1) &&
1247       (FInfo.getPrefix() != AMDGPULibFunc::NATIVE)) {
1248     if (FunctionCallee FPExpr = getNativeFunction(
1249             CI->getModule(), AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) {
1250       Value *opr0 = CI->getArgOperand(0);
1251       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
1252                         << "sqrt(" << *opr0 << ")\n");
1253       Value *nval = CreateCallEx(B,FPExpr, opr0, "__sqrt");
1254       replaceCall(nval);
1255       return true;
1256     }
1257   }
1258   return false;
1259 }
1260 
1261 // fold sin, cos -> sincos.
fold_sincos(CallInst * CI,IRBuilder<> & B,AliasAnalysis * AA)1262 bool AMDGPULibCalls::fold_sincos(CallInst *CI, IRBuilder<> &B,
1263                                  AliasAnalysis *AA) {
1264   AMDGPULibFunc fInfo;
1265   if (!AMDGPULibFunc::parse(CI->getCalledFunction()->getName(), fInfo))
1266     return false;
1267 
1268   assert(fInfo.getId() == AMDGPULibFunc::EI_SIN ||
1269          fInfo.getId() == AMDGPULibFunc::EI_COS);
1270   bool const isSin = fInfo.getId() == AMDGPULibFunc::EI_SIN;
1271 
1272   Value *CArgVal = CI->getArgOperand(0);
1273   BasicBlock * const CBB = CI->getParent();
1274 
1275   int const MaxScan = 30;
1276   bool Changed = false;
1277 
1278   { // fold in load value.
1279     LoadInst *LI = dyn_cast<LoadInst>(CArgVal);
1280     if (LI && LI->getParent() == CBB) {
1281       BasicBlock::iterator BBI = LI->getIterator();
1282       Value *AvailableVal = FindAvailableLoadedValue(LI, CBB, BBI, MaxScan, AA);
1283       if (AvailableVal) {
1284         Changed = true;
1285         CArgVal->replaceAllUsesWith(AvailableVal);
1286         if (CArgVal->getNumUses() == 0)
1287           LI->eraseFromParent();
1288         CArgVal = CI->getArgOperand(0);
1289       }
1290     }
1291   }
1292 
1293   Module *M = CI->getModule();
1294   fInfo.setId(isSin ? AMDGPULibFunc::EI_COS : AMDGPULibFunc::EI_SIN);
1295   std::string const PairName = fInfo.mangle();
1296 
1297   CallInst *UI = nullptr;
1298   for (User* U : CArgVal->users()) {
1299     CallInst *XI = dyn_cast_or_null<CallInst>(U);
1300     if (!XI || XI == CI || XI->getParent() != CBB)
1301       continue;
1302 
1303     Function *UCallee = XI->getCalledFunction();
1304     if (!UCallee || !UCallee->getName().equals(PairName))
1305       continue;
1306 
1307     BasicBlock::iterator BBI = CI->getIterator();
1308     if (BBI == CI->getParent()->begin())
1309       break;
1310     --BBI;
1311     for (int I = MaxScan; I > 0 && BBI != CBB->begin(); --BBI, --I) {
1312       if (cast<Instruction>(BBI) == XI) {
1313         UI = XI;
1314         break;
1315       }
1316     }
1317     if (UI) break;
1318   }
1319 
1320   if (!UI)
1321     return Changed;
1322 
1323   // Merge the sin and cos.
1324 
1325   // for OpenCL 2.0 we have only generic implementation of sincos
1326   // function.
1327   AMDGPULibFunc nf(AMDGPULibFunc::EI_SINCOS, fInfo);
1328   nf.getLeads()[0].PtrKind = AMDGPULibFunc::getEPtrKindFromAddrSpace(AMDGPUAS::FLAT_ADDRESS);
1329   FunctionCallee Fsincos = getFunction(M, nf);
1330   if (!Fsincos)
1331     return Changed;
1332 
1333   BasicBlock::iterator ItOld = B.GetInsertPoint();
1334   AllocaInst *Alloc = insertAlloca(UI, B, "__sincos_");
1335   B.SetInsertPoint(UI);
1336 
1337   Value *P = Alloc;
1338   Type *PTy = Fsincos.getFunctionType()->getParamType(1);
1339   // The allocaInst allocates the memory in private address space. This need
1340   // to be bitcasted to point to the address space of cos pointer type.
1341   // In OpenCL 2.0 this is generic, while in 1.2 that is private.
1342   if (PTy->getPointerAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS)
1343     P = B.CreateAddrSpaceCast(Alloc, PTy);
1344   CallInst *Call = CreateCallEx2(B, Fsincos, UI->getArgOperand(0), P);
1345 
1346   LLVM_DEBUG(errs() << "AMDIC: fold_sincos (" << *CI << ", " << *UI << ") with "
1347                     << *Call << "\n");
1348 
1349   if (!isSin) { // CI->cos, UI->sin
1350     B.SetInsertPoint(&*ItOld);
1351     UI->replaceAllUsesWith(&*Call);
1352     Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc);
1353     CI->replaceAllUsesWith(Reload);
1354     UI->eraseFromParent();
1355     CI->eraseFromParent();
1356   } else { // CI->sin, UI->cos
1357     Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc);
1358     UI->replaceAllUsesWith(Reload);
1359     CI->replaceAllUsesWith(Call);
1360     UI->eraseFromParent();
1361     CI->eraseFromParent();
1362   }
1363   return true;
1364 }
1365 
fold_wavefrontsize(CallInst * CI,IRBuilder<> & B)1366 bool AMDGPULibCalls::fold_wavefrontsize(CallInst *CI, IRBuilder<> &B) {
1367   if (!TM)
1368     return false;
1369 
1370   StringRef CPU = TM->getTargetCPU();
1371   StringRef Features = TM->getTargetFeatureString();
1372   if ((CPU.empty() || CPU.equals_lower("generic")) &&
1373       (Features.empty() ||
1374        Features.find_lower("wavefrontsize") == StringRef::npos))
1375     return false;
1376 
1377   Function *F = CI->getParent()->getParent();
1378   const GCNSubtarget &ST = TM->getSubtarget<GCNSubtarget>(*F);
1379   unsigned N = ST.getWavefrontSize();
1380 
1381   LLVM_DEBUG(errs() << "AMDIC: fold_wavefrontsize (" << *CI << ") with "
1382                << N << "\n");
1383 
1384   CI->replaceAllUsesWith(ConstantInt::get(B.getInt32Ty(), N));
1385   CI->eraseFromParent();
1386   return true;
1387 }
1388 
1389 // Get insertion point at entry.
getEntryIns(CallInst * UI)1390 BasicBlock::iterator AMDGPULibCalls::getEntryIns(CallInst * UI) {
1391   Function * Func = UI->getParent()->getParent();
1392   BasicBlock * BB = &Func->getEntryBlock();
1393   assert(BB && "Entry block not found!");
1394   BasicBlock::iterator ItNew = BB->begin();
1395   return ItNew;
1396 }
1397 
1398 // Insert a AllocsInst at the beginning of function entry block.
insertAlloca(CallInst * UI,IRBuilder<> & B,const char * prefix)1399 AllocaInst* AMDGPULibCalls::insertAlloca(CallInst *UI, IRBuilder<> &B,
1400                                          const char *prefix) {
1401   BasicBlock::iterator ItNew = getEntryIns(UI);
1402   Function *UCallee = UI->getCalledFunction();
1403   Type *RetType = UCallee->getReturnType();
1404   B.SetInsertPoint(&*ItNew);
1405   AllocaInst *Alloc = B.CreateAlloca(RetType, 0,
1406     std::string(prefix) + UI->getName());
1407   Alloc->setAlignment(
1408       Align(UCallee->getParent()->getDataLayout().getTypeAllocSize(RetType)));
1409   return Alloc;
1410 }
1411 
evaluateScalarMathFunc(FuncInfo & FInfo,double & Res0,double & Res1,Constant * copr0,Constant * copr1,Constant * copr2)1412 bool AMDGPULibCalls::evaluateScalarMathFunc(FuncInfo &FInfo,
1413                                             double& Res0, double& Res1,
1414                                             Constant *copr0, Constant *copr1,
1415                                             Constant *copr2) {
1416   // By default, opr0/opr1/opr3 holds values of float/double type.
1417   // If they are not float/double, each function has to its
1418   // operand separately.
1419   double opr0=0.0, opr1=0.0, opr2=0.0;
1420   ConstantFP *fpopr0 = dyn_cast_or_null<ConstantFP>(copr0);
1421   ConstantFP *fpopr1 = dyn_cast_or_null<ConstantFP>(copr1);
1422   ConstantFP *fpopr2 = dyn_cast_or_null<ConstantFP>(copr2);
1423   if (fpopr0) {
1424     opr0 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1425              ? fpopr0->getValueAPF().convertToDouble()
1426              : (double)fpopr0->getValueAPF().convertToFloat();
1427   }
1428 
1429   if (fpopr1) {
1430     opr1 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1431              ? fpopr1->getValueAPF().convertToDouble()
1432              : (double)fpopr1->getValueAPF().convertToFloat();
1433   }
1434 
1435   if (fpopr2) {
1436     opr2 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1437              ? fpopr2->getValueAPF().convertToDouble()
1438              : (double)fpopr2->getValueAPF().convertToFloat();
1439   }
1440 
1441   switch (FInfo.getId()) {
1442   default : return false;
1443 
1444   case AMDGPULibFunc::EI_ACOS:
1445     Res0 = acos(opr0);
1446     return true;
1447 
1448   case AMDGPULibFunc::EI_ACOSH:
1449     // acosh(x) == log(x + sqrt(x*x - 1))
1450     Res0 = log(opr0 + sqrt(opr0*opr0 - 1.0));
1451     return true;
1452 
1453   case AMDGPULibFunc::EI_ACOSPI:
1454     Res0 = acos(opr0) / MATH_PI;
1455     return true;
1456 
1457   case AMDGPULibFunc::EI_ASIN:
1458     Res0 = asin(opr0);
1459     return true;
1460 
1461   case AMDGPULibFunc::EI_ASINH:
1462     // asinh(x) == log(x + sqrt(x*x + 1))
1463     Res0 = log(opr0 + sqrt(opr0*opr0 + 1.0));
1464     return true;
1465 
1466   case AMDGPULibFunc::EI_ASINPI:
1467     Res0 = asin(opr0) / MATH_PI;
1468     return true;
1469 
1470   case AMDGPULibFunc::EI_ATAN:
1471     Res0 = atan(opr0);
1472     return true;
1473 
1474   case AMDGPULibFunc::EI_ATANH:
1475     // atanh(x) == (log(x+1) - log(x-1))/2;
1476     Res0 = (log(opr0 + 1.0) - log(opr0 - 1.0))/2.0;
1477     return true;
1478 
1479   case AMDGPULibFunc::EI_ATANPI:
1480     Res0 = atan(opr0) / MATH_PI;
1481     return true;
1482 
1483   case AMDGPULibFunc::EI_CBRT:
1484     Res0 = (opr0 < 0.0) ? -pow(-opr0, 1.0/3.0) : pow(opr0, 1.0/3.0);
1485     return true;
1486 
1487   case AMDGPULibFunc::EI_COS:
1488     Res0 = cos(opr0);
1489     return true;
1490 
1491   case AMDGPULibFunc::EI_COSH:
1492     Res0 = cosh(opr0);
1493     return true;
1494 
1495   case AMDGPULibFunc::EI_COSPI:
1496     Res0 = cos(MATH_PI * opr0);
1497     return true;
1498 
1499   case AMDGPULibFunc::EI_EXP:
1500     Res0 = exp(opr0);
1501     return true;
1502 
1503   case AMDGPULibFunc::EI_EXP2:
1504     Res0 = pow(2.0, opr0);
1505     return true;
1506 
1507   case AMDGPULibFunc::EI_EXP10:
1508     Res0 = pow(10.0, opr0);
1509     return true;
1510 
1511   case AMDGPULibFunc::EI_EXPM1:
1512     Res0 = exp(opr0) - 1.0;
1513     return true;
1514 
1515   case AMDGPULibFunc::EI_LOG:
1516     Res0 = log(opr0);
1517     return true;
1518 
1519   case AMDGPULibFunc::EI_LOG2:
1520     Res0 = log(opr0) / log(2.0);
1521     return true;
1522 
1523   case AMDGPULibFunc::EI_LOG10:
1524     Res0 = log(opr0) / log(10.0);
1525     return true;
1526 
1527   case AMDGPULibFunc::EI_RSQRT:
1528     Res0 = 1.0 / sqrt(opr0);
1529     return true;
1530 
1531   case AMDGPULibFunc::EI_SIN:
1532     Res0 = sin(opr0);
1533     return true;
1534 
1535   case AMDGPULibFunc::EI_SINH:
1536     Res0 = sinh(opr0);
1537     return true;
1538 
1539   case AMDGPULibFunc::EI_SINPI:
1540     Res0 = sin(MATH_PI * opr0);
1541     return true;
1542 
1543   case AMDGPULibFunc::EI_SQRT:
1544     Res0 = sqrt(opr0);
1545     return true;
1546 
1547   case AMDGPULibFunc::EI_TAN:
1548     Res0 = tan(opr0);
1549     return true;
1550 
1551   case AMDGPULibFunc::EI_TANH:
1552     Res0 = tanh(opr0);
1553     return true;
1554 
1555   case AMDGPULibFunc::EI_TANPI:
1556     Res0 = tan(MATH_PI * opr0);
1557     return true;
1558 
1559   case AMDGPULibFunc::EI_RECIP:
1560     Res0 = 1.0 / opr0;
1561     return true;
1562 
1563   // two-arg functions
1564   case AMDGPULibFunc::EI_DIVIDE:
1565     Res0 = opr0 / opr1;
1566     return true;
1567 
1568   case AMDGPULibFunc::EI_POW:
1569   case AMDGPULibFunc::EI_POWR:
1570     Res0 = pow(opr0, opr1);
1571     return true;
1572 
1573   case AMDGPULibFunc::EI_POWN: {
1574     if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) {
1575       double val = (double)iopr1->getSExtValue();
1576       Res0 = pow(opr0, val);
1577       return true;
1578     }
1579     return false;
1580   }
1581 
1582   case AMDGPULibFunc::EI_ROOTN: {
1583     if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) {
1584       double val = (double)iopr1->getSExtValue();
1585       Res0 = pow(opr0, 1.0 / val);
1586       return true;
1587     }
1588     return false;
1589   }
1590 
1591   // with ptr arg
1592   case AMDGPULibFunc::EI_SINCOS:
1593     Res0 = sin(opr0);
1594     Res1 = cos(opr0);
1595     return true;
1596 
1597   // three-arg functions
1598   case AMDGPULibFunc::EI_FMA:
1599   case AMDGPULibFunc::EI_MAD:
1600     Res0 = opr0 * opr1 + opr2;
1601     return true;
1602   }
1603 
1604   return false;
1605 }
1606 
evaluateCall(CallInst * aCI,FuncInfo & FInfo)1607 bool AMDGPULibCalls::evaluateCall(CallInst *aCI, FuncInfo &FInfo) {
1608   int numArgs = (int)aCI->getNumArgOperands();
1609   if (numArgs > 3)
1610     return false;
1611 
1612   Constant *copr0 = nullptr;
1613   Constant *copr1 = nullptr;
1614   Constant *copr2 = nullptr;
1615   if (numArgs > 0) {
1616     if ((copr0 = dyn_cast<Constant>(aCI->getArgOperand(0))) == nullptr)
1617       return false;
1618   }
1619 
1620   if (numArgs > 1) {
1621     if ((copr1 = dyn_cast<Constant>(aCI->getArgOperand(1))) == nullptr) {
1622       if (FInfo.getId() != AMDGPULibFunc::EI_SINCOS)
1623         return false;
1624     }
1625   }
1626 
1627   if (numArgs > 2) {
1628     if ((copr2 = dyn_cast<Constant>(aCI->getArgOperand(2))) == nullptr)
1629       return false;
1630   }
1631 
1632   // At this point, all arguments to aCI are constants.
1633 
1634   // max vector size is 16, and sincos will generate two results.
1635   double DVal0[16], DVal1[16];
1636   bool hasTwoResults = (FInfo.getId() == AMDGPULibFunc::EI_SINCOS);
1637   if (getVecSize(FInfo) == 1) {
1638     if (!evaluateScalarMathFunc(FInfo, DVal0[0],
1639                                 DVal1[0], copr0, copr1, copr2)) {
1640       return false;
1641     }
1642   } else {
1643     ConstantDataVector *CDV0 = dyn_cast_or_null<ConstantDataVector>(copr0);
1644     ConstantDataVector *CDV1 = dyn_cast_or_null<ConstantDataVector>(copr1);
1645     ConstantDataVector *CDV2 = dyn_cast_or_null<ConstantDataVector>(copr2);
1646     for (int i=0; i < getVecSize(FInfo); ++i) {
1647       Constant *celt0 = CDV0 ? CDV0->getElementAsConstant(i) : nullptr;
1648       Constant *celt1 = CDV1 ? CDV1->getElementAsConstant(i) : nullptr;
1649       Constant *celt2 = CDV2 ? CDV2->getElementAsConstant(i) : nullptr;
1650       if (!evaluateScalarMathFunc(FInfo, DVal0[i],
1651                                   DVal1[i], celt0, celt1, celt2)) {
1652         return false;
1653       }
1654     }
1655   }
1656 
1657   LLVMContext &context = CI->getParent()->getParent()->getContext();
1658   Constant *nval0, *nval1;
1659   if (getVecSize(FInfo) == 1) {
1660     nval0 = ConstantFP::get(CI->getType(), DVal0[0]);
1661     if (hasTwoResults)
1662       nval1 = ConstantFP::get(CI->getType(), DVal1[0]);
1663   } else {
1664     if (getArgType(FInfo) == AMDGPULibFunc::F32) {
1665       SmallVector <float, 0> FVal0, FVal1;
1666       for (int i=0; i < getVecSize(FInfo); ++i)
1667         FVal0.push_back((float)DVal0[i]);
1668       ArrayRef<float> tmp0(FVal0);
1669       nval0 = ConstantDataVector::get(context, tmp0);
1670       if (hasTwoResults) {
1671         for (int i=0; i < getVecSize(FInfo); ++i)
1672           FVal1.push_back((float)DVal1[i]);
1673         ArrayRef<float> tmp1(FVal1);
1674         nval1 = ConstantDataVector::get(context, tmp1);
1675       }
1676     } else {
1677       ArrayRef<double> tmp0(DVal0);
1678       nval0 = ConstantDataVector::get(context, tmp0);
1679       if (hasTwoResults) {
1680         ArrayRef<double> tmp1(DVal1);
1681         nval1 = ConstantDataVector::get(context, tmp1);
1682       }
1683     }
1684   }
1685 
1686   if (hasTwoResults) {
1687     // sincos
1688     assert(FInfo.getId() == AMDGPULibFunc::EI_SINCOS &&
1689            "math function with ptr arg not supported yet");
1690     new StoreInst(nval1, aCI->getArgOperand(1), aCI);
1691   }
1692 
1693   replaceCall(nval0);
1694   return true;
1695 }
1696 
1697 // Public interface to the Simplify LibCalls pass.
createAMDGPUSimplifyLibCallsPass(const TargetMachine * TM)1698 FunctionPass *llvm::createAMDGPUSimplifyLibCallsPass(const TargetMachine *TM) {
1699   return new AMDGPUSimplifyLibCalls(TM);
1700 }
1701 
createAMDGPUUseNativeCallsPass()1702 FunctionPass *llvm::createAMDGPUUseNativeCallsPass() {
1703   return new AMDGPUUseNativeCalls();
1704 }
1705 
runOnFunction(Function & F)1706 bool AMDGPUSimplifyLibCalls::runOnFunction(Function &F) {
1707   if (skipFunction(F))
1708     return false;
1709 
1710   bool Changed = false;
1711   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1712 
1713   LLVM_DEBUG(dbgs() << "AMDIC: process function ";
1714              F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';);
1715 
1716   for (auto &BB : F) {
1717     for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) {
1718       // Ignore non-calls.
1719       CallInst *CI = dyn_cast<CallInst>(I);
1720       ++I;
1721       // Ignore intrinsics that do not become real instructions.
1722       if (!CI || isa<DbgInfoIntrinsic>(CI) || CI->isLifetimeStartOrEnd())
1723         continue;
1724 
1725       // Ignore indirect calls.
1726       Function *Callee = CI->getCalledFunction();
1727       if (Callee == 0) continue;
1728 
1729       LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << "\n";
1730                  dbgs().flush());
1731       if(Simplifier.fold(CI, AA))
1732         Changed = true;
1733     }
1734   }
1735   return Changed;
1736 }
1737 
run(Function & F,FunctionAnalysisManager & AM)1738 PreservedAnalyses AMDGPUSimplifyLibCallsPass::run(Function &F,
1739                                                   FunctionAnalysisManager &AM) {
1740   AMDGPULibCalls Simplifier(&TM);
1741   Simplifier.initNativeFuncs();
1742 
1743   bool Changed = false;
1744   auto AA = &AM.getResult<AAManager>(F);
1745 
1746   LLVM_DEBUG(dbgs() << "AMDIC: process function ";
1747              F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';);
1748 
1749   for (auto &BB : F) {
1750     for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E;) {
1751       // Ignore non-calls.
1752       CallInst *CI = dyn_cast<CallInst>(I);
1753       ++I;
1754       // Ignore intrinsics that do not become real instructions.
1755       if (!CI || isa<DbgInfoIntrinsic>(CI) || CI->isLifetimeStartOrEnd())
1756         continue;
1757 
1758       // Ignore indirect calls.
1759       Function *Callee = CI->getCalledFunction();
1760       if (Callee == 0)
1761         continue;
1762 
1763       LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << "\n";
1764                  dbgs().flush());
1765       if (Simplifier.fold(CI, AA))
1766         Changed = true;
1767     }
1768   }
1769   return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
1770 }
1771 
runOnFunction(Function & F)1772 bool AMDGPUUseNativeCalls::runOnFunction(Function &F) {
1773   if (skipFunction(F) || UseNative.empty())
1774     return false;
1775 
1776   bool Changed = false;
1777   for (auto &BB : F) {
1778     for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) {
1779       // Ignore non-calls.
1780       CallInst *CI = dyn_cast<CallInst>(I);
1781       ++I;
1782       if (!CI) continue;
1783 
1784       // Ignore indirect calls.
1785       Function *Callee = CI->getCalledFunction();
1786       if (Callee == 0) continue;
1787 
1788       if(Simplifier.useNative(CI))
1789         Changed = true;
1790     }
1791   }
1792   return Changed;
1793 }
1794 
run(Function & F,FunctionAnalysisManager & AM)1795 PreservedAnalyses AMDGPUUseNativeCallsPass::run(Function &F,
1796                                                 FunctionAnalysisManager &AM) {
1797   if (UseNative.empty())
1798     return PreservedAnalyses::all();
1799 
1800   AMDGPULibCalls Simplifier;
1801   Simplifier.initNativeFuncs();
1802 
1803   bool Changed = false;
1804   for (auto &BB : F) {
1805     for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E;) {
1806       // Ignore non-calls.
1807       CallInst *CI = dyn_cast<CallInst>(I);
1808       ++I;
1809       if (!CI)
1810         continue;
1811 
1812       // Ignore indirect calls.
1813       Function *Callee = CI->getCalledFunction();
1814       if (Callee == 0)
1815         continue;
1816 
1817       if (Simplifier.useNative(CI))
1818         Changed = true;
1819     }
1820   }
1821   return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
1822 }
1823