1 //===--- CodeGenTypes.h - Type translation for LLVM CodeGen -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the code that handles AST -> LLVM type lowering.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENTYPES_H
14 #define LLVM_CLANG_LIB_CODEGEN_CODEGENTYPES_H
15 
16 #include "CGCall.h"
17 #include "clang/Basic/ABI.h"
18 #include "clang/CodeGen/CGFunctionInfo.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/IR/Module.h"
21 
22 namespace llvm {
23 class FunctionType;
24 class DataLayout;
25 class Type;
26 class LLVMContext;
27 class StructType;
28 }
29 
30 namespace clang {
31 class ASTContext;
32 template <typename> class CanQual;
33 class CXXConstructorDecl;
34 class CXXDestructorDecl;
35 class CXXMethodDecl;
36 class CodeGenOptions;
37 class FieldDecl;
38 class FunctionProtoType;
39 class ObjCInterfaceDecl;
40 class ObjCIvarDecl;
41 class PointerType;
42 class QualType;
43 class RecordDecl;
44 class TagDecl;
45 class TargetInfo;
46 class Type;
47 typedef CanQual<Type> CanQualType;
48 class GlobalDecl;
49 
50 namespace CodeGen {
51 class ABIInfo;
52 class CGCXXABI;
53 class CGRecordLayout;
54 class CodeGenModule;
55 class RequiredArgs;
56 
57 /// This class organizes the cross-module state that is used while lowering
58 /// AST types to LLVM types.
59 class CodeGenTypes {
60   CodeGenModule &CGM;
61   // Some of this stuff should probably be left on the CGM.
62   ASTContext &Context;
63   llvm::Module &TheModule;
64   const TargetInfo &Target;
65   CGCXXABI &TheCXXABI;
66 
67   // This should not be moved earlier, since its initialization depends on some
68   // of the previous reference members being already initialized
69   const ABIInfo &TheABIInfo;
70 
71   /// The opaque type map for Objective-C interfaces. All direct
72   /// manipulation is done by the runtime interfaces, which are
73   /// responsible for coercing to the appropriate type; these opaque
74   /// types are never refined.
75   llvm::DenseMap<const ObjCInterfaceType*, llvm::Type *> InterfaceTypes;
76 
77   /// Maps clang struct type with corresponding record layout info.
78   llvm::DenseMap<const Type*, std::unique_ptr<CGRecordLayout>> CGRecordLayouts;
79 
80   /// Contains the LLVM IR type for any converted RecordDecl.
81   llvm::DenseMap<const Type*, llvm::StructType *> RecordDeclTypes;
82 
83   /// Hold memoized CGFunctionInfo results.
84   llvm::FoldingSet<CGFunctionInfo> FunctionInfos;
85 
86   /// This set keeps track of records that we're currently converting
87   /// to an IR type.  For example, when converting:
88   /// struct A { struct B { int x; } } when processing 'x', the 'A' and 'B'
89   /// types will be in this set.
90   llvm::SmallPtrSet<const Type*, 4> RecordsBeingLaidOut;
91 
92   llvm::SmallPtrSet<const CGFunctionInfo*, 4> FunctionsBeingProcessed;
93 
94   /// True if we didn't layout a function due to a being inside
95   /// a recursive struct conversion, set this to true.
96   bool SkippedLayout;
97 
98   SmallVector<const RecordDecl *, 8> DeferredRecords;
99 
100   /// This map keeps cache of llvm::Types and maps clang::Type to
101   /// corresponding llvm::Type.
102   llvm::DenseMap<const Type *, llvm::Type *> TypeCache;
103 
104   llvm::SmallSet<const Type *, 8> RecordsWithOpaqueMemberPointers;
105 
106   /// Helper for ConvertType.
107   llvm::Type *ConvertFunctionTypeInternal(QualType FT);
108 
109 public:
110   CodeGenTypes(CodeGenModule &cgm);
111   ~CodeGenTypes();
112 
getDataLayout()113   const llvm::DataLayout &getDataLayout() const {
114     return TheModule.getDataLayout();
115   }
getContext()116   ASTContext &getContext() const { return Context; }
getABIInfo()117   const ABIInfo &getABIInfo() const { return TheABIInfo; }
getTarget()118   const TargetInfo &getTarget() const { return Target; }
getCXXABI()119   CGCXXABI &getCXXABI() const { return TheCXXABI; }
getLLVMContext()120   llvm::LLVMContext &getLLVMContext() { return TheModule.getContext(); }
121   const CodeGenOptions &getCodeGenOpts() const;
122 
123   /// Convert clang calling convention to LLVM callilng convention.
124   unsigned ClangCallConvToLLVMCallConv(CallingConv CC);
125 
126   /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
127   /// qualification.
128   CanQualType DeriveThisType(const CXXRecordDecl *RD, const CXXMethodDecl *MD);
129 
130   /// ConvertType - Convert type T into a llvm::Type.
131   llvm::Type *ConvertType(QualType T);
132 
133   /// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
134   /// ConvertType in that it is used to convert to the memory representation for
135   /// a type.  For example, the scalar representation for _Bool is i1, but the
136   /// memory representation is usually i8 or i32, depending on the target.
137   llvm::Type *ConvertTypeForMem(QualType T, bool ForBitField = false);
138 
139   /// GetFunctionType - Get the LLVM function type for \arg Info.
140   llvm::FunctionType *GetFunctionType(const CGFunctionInfo &Info);
141 
142   llvm::FunctionType *GetFunctionType(GlobalDecl GD);
143 
144   /// isFuncTypeConvertible - Utility to check whether a function type can
145   /// be converted to an LLVM type (i.e. doesn't depend on an incomplete tag
146   /// type).
147   bool isFuncTypeConvertible(const FunctionType *FT);
148   bool isFuncParamTypeConvertible(QualType Ty);
149 
150   /// Determine if a C++ inheriting constructor should have parameters matching
151   /// those of its inherited constructor.
152   bool inheritingCtorHasParams(const InheritedConstructor &Inherited,
153                                CXXCtorType Type);
154 
155   /// GetFunctionTypeForVTable - Get the LLVM function type for use in a vtable,
156   /// given a CXXMethodDecl. If the method to has an incomplete return type,
157   /// and/or incomplete argument types, this will return the opaque type.
158   llvm::Type *GetFunctionTypeForVTable(GlobalDecl GD);
159 
160   const CGRecordLayout &getCGRecordLayout(const RecordDecl*);
161 
162   /// UpdateCompletedType - When we find the full definition for a TagDecl,
163   /// replace the 'opaque' type we previously made for it if applicable.
164   void UpdateCompletedType(const TagDecl *TD);
165 
166   /// Remove stale types from the type cache when an inheritance model
167   /// gets assigned to a class.
168   void RefreshTypeCacheForClass(const CXXRecordDecl *RD);
169 
170   // The arrangement methods are split into three families:
171   //   - those meant to drive the signature and prologue/epilogue
172   //     of a function declaration or definition,
173   //   - those meant for the computation of the LLVM type for an abstract
174   //     appearance of a function, and
175   //   - those meant for performing the IR-generation of a call.
176   // They differ mainly in how they deal with optional (i.e. variadic)
177   // arguments, as well as unprototyped functions.
178   //
179   // Key points:
180   // - The CGFunctionInfo for emitting a specific call site must include
181   //   entries for the optional arguments.
182   // - The function type used at the call site must reflect the formal
183   //   signature of the declaration being called, or else the call will
184   //   go awry.
185   // - For the most part, unprototyped functions are called by casting to
186   //   a formal signature inferred from the specific argument types used
187   //   at the call-site.  However, some targets (e.g. x86-64) screw with
188   //   this for compatibility reasons.
189 
190   const CGFunctionInfo &arrangeGlobalDeclaration(GlobalDecl GD);
191 
192   /// Given a function info for a declaration, return the function info
193   /// for a call with the given arguments.
194   ///
195   /// Often this will be able to simply return the declaration info.
196   const CGFunctionInfo &arrangeCall(const CGFunctionInfo &declFI,
197                                     const CallArgList &args);
198 
199   /// Free functions are functions that are compatible with an ordinary
200   /// C function pointer type.
201   const CGFunctionInfo &arrangeFunctionDeclaration(const FunctionDecl *FD);
202   const CGFunctionInfo &arrangeFreeFunctionCall(const CallArgList &Args,
203                                                 const FunctionType *Ty,
204                                                 bool ChainCall);
205   const CGFunctionInfo &arrangeFreeFunctionType(CanQual<FunctionProtoType> Ty);
206   const CGFunctionInfo &arrangeFreeFunctionType(CanQual<FunctionNoProtoType> Ty);
207 
208   /// A nullary function is a freestanding function of type 'void ()'.
209   /// This method works for both calls and declarations.
210   const CGFunctionInfo &arrangeNullaryFunction();
211 
212   /// A builtin function is a freestanding function using the default
213   /// C conventions.
214   const CGFunctionInfo &
215   arrangeBuiltinFunctionDeclaration(QualType resultType,
216                                     const FunctionArgList &args);
217   const CGFunctionInfo &
218   arrangeBuiltinFunctionDeclaration(CanQualType resultType,
219                                     ArrayRef<CanQualType> argTypes);
220   const CGFunctionInfo &arrangeBuiltinFunctionCall(QualType resultType,
221                                                    const CallArgList &args);
222 
223   /// Objective-C methods are C functions with some implicit parameters.
224   const CGFunctionInfo &arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD);
225   const CGFunctionInfo &arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
226                                                         QualType receiverType);
227   const CGFunctionInfo &arrangeUnprototypedObjCMessageSend(
228                                                      QualType returnType,
229                                                      const CallArgList &args);
230 
231   /// Block invocation functions are C functions with an implicit parameter.
232   const CGFunctionInfo &arrangeBlockFunctionDeclaration(
233                                                  const FunctionProtoType *type,
234                                                  const FunctionArgList &args);
235   const CGFunctionInfo &arrangeBlockFunctionCall(const CallArgList &args,
236                                                  const FunctionType *type);
237 
238   /// C++ methods have some special rules and also have implicit parameters.
239   const CGFunctionInfo &arrangeCXXMethodDeclaration(const CXXMethodDecl *MD);
240   const CGFunctionInfo &arrangeCXXStructorDeclaration(GlobalDecl GD);
241   const CGFunctionInfo &arrangeCXXConstructorCall(const CallArgList &Args,
242                                                   const CXXConstructorDecl *D,
243                                                   CXXCtorType CtorKind,
244                                                   unsigned ExtraPrefixArgs,
245                                                   unsigned ExtraSuffixArgs,
246                                                   bool PassProtoArgs = true);
247 
248   const CGFunctionInfo &arrangeCXXMethodCall(const CallArgList &args,
249                                              const FunctionProtoType *type,
250                                              RequiredArgs required,
251                                              unsigned numPrefixArgs);
252   const CGFunctionInfo &
253   arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD);
254   const CGFunctionInfo &arrangeMSCtorClosure(const CXXConstructorDecl *CD,
255                                                  CXXCtorType CT);
256   const CGFunctionInfo &arrangeCXXMethodType(const CXXRecordDecl *RD,
257                                              const FunctionProtoType *FTP,
258                                              const CXXMethodDecl *MD);
259 
260   /// "Arrange" the LLVM information for a call or type with the given
261   /// signature.  This is largely an internal method; other clients
262   /// should use one of the above routines, which ultimately defer to
263   /// this.
264   ///
265   /// \param argTypes - must all actually be canonical as params
266   const CGFunctionInfo &arrangeLLVMFunctionInfo(CanQualType returnType,
267                                                 bool instanceMethod,
268                                                 bool chainCall,
269                                                 ArrayRef<CanQualType> argTypes,
270                                                 FunctionType::ExtInfo info,
271                     ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
272                                                 RequiredArgs args);
273 
274   /// Compute a new LLVM record layout object for the given record.
275   std::unique_ptr<CGRecordLayout> ComputeRecordLayout(const RecordDecl *D,
276                                                       llvm::StructType *Ty);
277 
278   /// addRecordTypeName - Compute a name from the given record decl with an
279   /// optional suffix and name the given LLVM type using it.
280   void addRecordTypeName(const RecordDecl *RD, llvm::StructType *Ty,
281                          StringRef suffix);
282 
283 
284 public:  // These are internal details of CGT that shouldn't be used externally.
285   /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
286   llvm::StructType *ConvertRecordDeclType(const RecordDecl *TD);
287 
288   /// getExpandedTypes - Expand the type \arg Ty into the LLVM
289   /// argument types it would be passed as. See ABIArgInfo::Expand.
290   void getExpandedTypes(QualType Ty,
291                         SmallVectorImpl<llvm::Type *>::iterator &TI);
292 
293   /// IsZeroInitializable - Return whether a type can be
294   /// zero-initialized (in the C++ sense) with an LLVM zeroinitializer.
295   bool isZeroInitializable(QualType T);
296 
297   /// Check if the pointer type can be zero-initialized (in the C++ sense)
298   /// with an LLVM zeroinitializer.
299   bool isPointerZeroInitializable(QualType T);
300 
301   /// IsZeroInitializable - Return whether a record type can be
302   /// zero-initialized (in the C++ sense) with an LLVM zeroinitializer.
303   bool isZeroInitializable(const RecordDecl *RD);
304 
305   bool isRecordLayoutComplete(const Type *Ty) const;
noRecordsBeingLaidOut()306   bool noRecordsBeingLaidOut() const {
307     return RecordsBeingLaidOut.empty();
308   }
isRecordBeingLaidOut(const Type * Ty)309   bool isRecordBeingLaidOut(const Type *Ty) const {
310     return RecordsBeingLaidOut.count(Ty);
311   }
312 
313 };
314 
315 }  // end namespace CodeGen
316 }  // end namespace clang
317 
318 #endif
319