1 //=== AArch64PostLegalizerCombiner.cpp --------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Post-legalization combines on generic MachineInstrs.
11 ///
12 /// The combines here must preserve instruction legality.
13 ///
14 /// Lowering combines (e.g. pseudo matching) should be handled by
15 /// AArch64PostLegalizerLowering.
16 ///
17 /// Combines which don't rely on instruction legality should go in the
18 /// AArch64PreLegalizerCombiner.
19 ///
20 //===----------------------------------------------------------------------===//
21 
22 #include "AArch64TargetMachine.h"
23 #include "llvm/CodeGen/GlobalISel/Combiner.h"
24 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h"
25 #include "llvm/CodeGen/GlobalISel/CombinerInfo.h"
26 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
27 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
28 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
29 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
30 #include "llvm/CodeGen/GlobalISel/Utils.h"
31 #include "llvm/CodeGen/MachineDominators.h"
32 #include "llvm/CodeGen/MachineFunctionPass.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/TargetOpcodes.h"
35 #include "llvm/CodeGen/TargetPassConfig.h"
36 #include "llvm/Support/Debug.h"
37 
38 #define DEBUG_TYPE "aarch64-postlegalizer-combiner"
39 
40 using namespace llvm;
41 using namespace MIPatternMatch;
42 
43 /// This combine tries do what performExtractVectorEltCombine does in SDAG.
44 /// Rewrite for pairwise fadd pattern
45 ///   (s32 (g_extract_vector_elt
46 ///           (g_fadd (vXs32 Other)
47 ///                  (g_vector_shuffle (vXs32 Other) undef <1,X,...> )) 0))
48 /// ->
49 ///   (s32 (g_fadd (g_extract_vector_elt (vXs32 Other) 0)
50 ///              (g_extract_vector_elt (vXs32 Other) 1))
matchExtractVecEltPairwiseAdd(MachineInstr & MI,MachineRegisterInfo & MRI,std::tuple<unsigned,LLT,Register> & MatchInfo)51 bool matchExtractVecEltPairwiseAdd(
52     MachineInstr &MI, MachineRegisterInfo &MRI,
53     std::tuple<unsigned, LLT, Register> &MatchInfo) {
54   Register Src1 = MI.getOperand(1).getReg();
55   Register Src2 = MI.getOperand(2).getReg();
56   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
57 
58   auto Cst = getConstantVRegValWithLookThrough(Src2, MRI);
59   if (!Cst || Cst->Value != 0)
60     return false;
61   // SDAG also checks for FullFP16, but this looks to be beneficial anyway.
62 
63   // Now check for an fadd operation. TODO: expand this for integer add?
64   auto *FAddMI = getOpcodeDef(TargetOpcode::G_FADD, Src1, MRI);
65   if (!FAddMI)
66     return false;
67 
68   // If we add support for integer add, must restrict these types to just s64.
69   unsigned DstSize = DstTy.getSizeInBits();
70   if (DstSize != 16 && DstSize != 32 && DstSize != 64)
71     return false;
72 
73   Register Src1Op1 = FAddMI->getOperand(1).getReg();
74   Register Src1Op2 = FAddMI->getOperand(2).getReg();
75   MachineInstr *Shuffle =
76       getOpcodeDef(TargetOpcode::G_SHUFFLE_VECTOR, Src1Op2, MRI);
77   MachineInstr *Other = MRI.getVRegDef(Src1Op1);
78   if (!Shuffle) {
79     Shuffle = getOpcodeDef(TargetOpcode::G_SHUFFLE_VECTOR, Src1Op1, MRI);
80     Other = MRI.getVRegDef(Src1Op2);
81   }
82 
83   // We're looking for a shuffle that moves the second element to index 0.
84   if (Shuffle && Shuffle->getOperand(3).getShuffleMask()[0] == 1 &&
85       Other == MRI.getVRegDef(Shuffle->getOperand(1).getReg())) {
86     std::get<0>(MatchInfo) = TargetOpcode::G_FADD;
87     std::get<1>(MatchInfo) = DstTy;
88     std::get<2>(MatchInfo) = Other->getOperand(0).getReg();
89     return true;
90   }
91   return false;
92 }
93 
applyExtractVecEltPairwiseAdd(MachineInstr & MI,MachineRegisterInfo & MRI,MachineIRBuilder & B,std::tuple<unsigned,LLT,Register> & MatchInfo)94 bool applyExtractVecEltPairwiseAdd(
95     MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B,
96     std::tuple<unsigned, LLT, Register> &MatchInfo) {
97   unsigned Opc = std::get<0>(MatchInfo);
98   assert(Opc == TargetOpcode::G_FADD && "Unexpected opcode!");
99   // We want to generate two extracts of elements 0 and 1, and add them.
100   LLT Ty = std::get<1>(MatchInfo);
101   Register Src = std::get<2>(MatchInfo);
102   LLT s64 = LLT::scalar(64);
103   B.setInstrAndDebugLoc(MI);
104   auto Elt0 = B.buildExtractVectorElement(Ty, Src, B.buildConstant(s64, 0));
105   auto Elt1 = B.buildExtractVectorElement(Ty, Src, B.buildConstant(s64, 1));
106   B.buildInstr(Opc, {MI.getOperand(0).getReg()}, {Elt0, Elt1});
107   MI.eraseFromParent();
108   return true;
109 }
110 
isSignExtended(Register R,MachineRegisterInfo & MRI)111 static bool isSignExtended(Register R, MachineRegisterInfo &MRI) {
112   // TODO: check if extended build vector as well.
113   unsigned Opc = MRI.getVRegDef(R)->getOpcode();
114   return Opc == TargetOpcode::G_SEXT || Opc == TargetOpcode::G_SEXT_INREG;
115 }
116 
isZeroExtended(Register R,MachineRegisterInfo & MRI)117 static bool isZeroExtended(Register R, MachineRegisterInfo &MRI) {
118   // TODO: check if extended build vector as well.
119   return MRI.getVRegDef(R)->getOpcode() == TargetOpcode::G_ZEXT;
120 }
121 
matchAArch64MulConstCombine(MachineInstr & MI,MachineRegisterInfo & MRI,std::function<void (MachineIRBuilder & B,Register DstReg)> & ApplyFn)122 bool matchAArch64MulConstCombine(
123     MachineInstr &MI, MachineRegisterInfo &MRI,
124     std::function<void(MachineIRBuilder &B, Register DstReg)> &ApplyFn) {
125   assert(MI.getOpcode() == TargetOpcode::G_MUL);
126   Register LHS = MI.getOperand(1).getReg();
127   Register RHS = MI.getOperand(2).getReg();
128   Register Dst = MI.getOperand(0).getReg();
129   const LLT Ty = MRI.getType(LHS);
130 
131   // The below optimizations require a constant RHS.
132   auto Const = getConstantVRegValWithLookThrough(RHS, MRI);
133   if (!Const)
134     return false;
135 
136   const APInt ConstValue = Const->Value.sextOrSelf(Ty.getSizeInBits());
137   // The following code is ported from AArch64ISelLowering.
138   // Multiplication of a power of two plus/minus one can be done more
139   // cheaply as as shift+add/sub. For now, this is true unilaterally. If
140   // future CPUs have a cheaper MADD instruction, this may need to be
141   // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
142   // 64-bit is 5 cycles, so this is always a win.
143   // More aggressively, some multiplications N0 * C can be lowered to
144   // shift+add+shift if the constant C = A * B where A = 2^N + 1 and B = 2^M,
145   // e.g. 6=3*2=(2+1)*2.
146   // TODO: consider lowering more cases, e.g. C = 14, -6, -14 or even 45
147   // which equals to (1+2)*16-(1+2).
148   // TrailingZeroes is used to test if the mul can be lowered to
149   // shift+add+shift.
150   unsigned TrailingZeroes = ConstValue.countTrailingZeros();
151   if (TrailingZeroes) {
152     // Conservatively do not lower to shift+add+shift if the mul might be
153     // folded into smul or umul.
154     if (MRI.hasOneNonDBGUse(LHS) &&
155         (isSignExtended(LHS, MRI) || isZeroExtended(LHS, MRI)))
156       return false;
157     // Conservatively do not lower to shift+add+shift if the mul might be
158     // folded into madd or msub.
159     if (MRI.hasOneNonDBGUse(Dst)) {
160       MachineInstr &UseMI = *MRI.use_instr_begin(Dst);
161       unsigned UseOpc = UseMI.getOpcode();
162       if (UseOpc == TargetOpcode::G_ADD || UseOpc == TargetOpcode::G_PTR_ADD ||
163           UseOpc == TargetOpcode::G_SUB)
164         return false;
165     }
166   }
167   // Use ShiftedConstValue instead of ConstValue to support both shift+add/sub
168   // and shift+add+shift.
169   APInt ShiftedConstValue = ConstValue.ashr(TrailingZeroes);
170 
171   unsigned ShiftAmt, AddSubOpc;
172   // Is the shifted value the LHS operand of the add/sub?
173   bool ShiftValUseIsLHS = true;
174   // Do we need to negate the result?
175   bool NegateResult = false;
176 
177   if (ConstValue.isNonNegative()) {
178     // (mul x, 2^N + 1) => (add (shl x, N), x)
179     // (mul x, 2^N - 1) => (sub (shl x, N), x)
180     // (mul x, (2^N + 1) * 2^M) => (shl (add (shl x, N), x), M)
181     APInt SCVMinus1 = ShiftedConstValue - 1;
182     APInt CVPlus1 = ConstValue + 1;
183     if (SCVMinus1.isPowerOf2()) {
184       ShiftAmt = SCVMinus1.logBase2();
185       AddSubOpc = TargetOpcode::G_ADD;
186     } else if (CVPlus1.isPowerOf2()) {
187       ShiftAmt = CVPlus1.logBase2();
188       AddSubOpc = TargetOpcode::G_SUB;
189     } else
190       return false;
191   } else {
192     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
193     // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
194     APInt CVNegPlus1 = -ConstValue + 1;
195     APInt CVNegMinus1 = -ConstValue - 1;
196     if (CVNegPlus1.isPowerOf2()) {
197       ShiftAmt = CVNegPlus1.logBase2();
198       AddSubOpc = TargetOpcode::G_SUB;
199       ShiftValUseIsLHS = false;
200     } else if (CVNegMinus1.isPowerOf2()) {
201       ShiftAmt = CVNegMinus1.logBase2();
202       AddSubOpc = TargetOpcode::G_ADD;
203       NegateResult = true;
204     } else
205       return false;
206   }
207 
208   if (NegateResult && TrailingZeroes)
209     return false;
210 
211   ApplyFn = [=](MachineIRBuilder &B, Register DstReg) {
212     auto Shift = B.buildConstant(LLT::scalar(64), ShiftAmt);
213     auto ShiftedVal = B.buildShl(Ty, LHS, Shift);
214 
215     Register AddSubLHS = ShiftValUseIsLHS ? ShiftedVal.getReg(0) : LHS;
216     Register AddSubRHS = ShiftValUseIsLHS ? LHS : ShiftedVal.getReg(0);
217     auto Res = B.buildInstr(AddSubOpc, {Ty}, {AddSubLHS, AddSubRHS});
218     assert(!(NegateResult && TrailingZeroes) &&
219            "NegateResult and TrailingZeroes cannot both be true for now.");
220     // Negate the result.
221     if (NegateResult) {
222       B.buildSub(DstReg, B.buildConstant(Ty, 0), Res);
223       return;
224     }
225     // Shift the result.
226     if (TrailingZeroes) {
227       B.buildShl(DstReg, Res, B.buildConstant(LLT::scalar(64), TrailingZeroes));
228       return;
229     }
230     B.buildCopy(DstReg, Res.getReg(0));
231   };
232   return true;
233 }
234 
applyAArch64MulConstCombine(MachineInstr & MI,MachineRegisterInfo & MRI,MachineIRBuilder & B,std::function<void (MachineIRBuilder & B,Register DstReg)> & ApplyFn)235 bool applyAArch64MulConstCombine(
236     MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B,
237     std::function<void(MachineIRBuilder &B, Register DstReg)> &ApplyFn) {
238   B.setInstrAndDebugLoc(MI);
239   ApplyFn(B, MI.getOperand(0).getReg());
240   MI.eraseFromParent();
241   return true;
242 }
243 
244 /// Try to fold a G_MERGE_VALUES of 2 s32 sources, where the second source
245 /// is a zero, into a G_ZEXT of the first.
matchFoldMergeToZext(MachineInstr & MI,MachineRegisterInfo & MRI)246 bool matchFoldMergeToZext(MachineInstr &MI, MachineRegisterInfo &MRI) {
247   auto &Merge = cast<GMerge>(MI);
248   LLT SrcTy = MRI.getType(Merge.getSourceReg(0));
249   if (SrcTy != LLT::scalar(32) || Merge.getNumSources() != 2)
250     return false;
251   return mi_match(Merge.getSourceReg(1), MRI, m_SpecificICst(0));
252 }
253 
applyFoldMergeToZext(MachineInstr & MI,MachineRegisterInfo & MRI,MachineIRBuilder & B,GISelChangeObserver & Observer)254 void applyFoldMergeToZext(MachineInstr &MI, MachineRegisterInfo &MRI,
255                           MachineIRBuilder &B, GISelChangeObserver &Observer) {
256   // Mutate %d(s64) = G_MERGE_VALUES %a(s32), 0(s32)
257   //  ->
258   // %d(s64) = G_ZEXT %a(s32)
259   Observer.changingInstr(MI);
260   MI.setDesc(B.getTII().get(TargetOpcode::G_ZEXT));
261   MI.RemoveOperand(2);
262   Observer.changedInstr(MI);
263 }
264 
265 #define AARCH64POSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_DEPS
266 #include "AArch64GenPostLegalizeGICombiner.inc"
267 #undef AARCH64POSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_DEPS
268 
269 namespace {
270 #define AARCH64POSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_H
271 #include "AArch64GenPostLegalizeGICombiner.inc"
272 #undef AARCH64POSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_H
273 
274 class AArch64PostLegalizerCombinerInfo : public CombinerInfo {
275   GISelKnownBits *KB;
276   MachineDominatorTree *MDT;
277 
278 public:
279   AArch64GenPostLegalizerCombinerHelperRuleConfig GeneratedRuleCfg;
280 
AArch64PostLegalizerCombinerInfo(bool EnableOpt,bool OptSize,bool MinSize,GISelKnownBits * KB,MachineDominatorTree * MDT)281   AArch64PostLegalizerCombinerInfo(bool EnableOpt, bool OptSize, bool MinSize,
282                                    GISelKnownBits *KB,
283                                    MachineDominatorTree *MDT)
284       : CombinerInfo(/*AllowIllegalOps*/ true, /*ShouldLegalizeIllegal*/ false,
285                      /*LegalizerInfo*/ nullptr, EnableOpt, OptSize, MinSize),
286         KB(KB), MDT(MDT) {
287     if (!GeneratedRuleCfg.parseCommandLineOption())
288       report_fatal_error("Invalid rule identifier");
289   }
290 
291   virtual bool combine(GISelChangeObserver &Observer, MachineInstr &MI,
292                        MachineIRBuilder &B) const override;
293 };
294 
combine(GISelChangeObserver & Observer,MachineInstr & MI,MachineIRBuilder & B) const295 bool AArch64PostLegalizerCombinerInfo::combine(GISelChangeObserver &Observer,
296                                                MachineInstr &MI,
297                                                MachineIRBuilder &B) const {
298   const auto *LI =
299       MI.getParent()->getParent()->getSubtarget().getLegalizerInfo();
300   CombinerHelper Helper(Observer, B, KB, MDT, LI);
301   AArch64GenPostLegalizerCombinerHelper Generated(GeneratedRuleCfg);
302   return Generated.tryCombineAll(Observer, MI, B, Helper);
303 }
304 
305 #define AARCH64POSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_CPP
306 #include "AArch64GenPostLegalizeGICombiner.inc"
307 #undef AARCH64POSTLEGALIZERCOMBINERHELPER_GENCOMBINERHELPER_CPP
308 
309 class AArch64PostLegalizerCombiner : public MachineFunctionPass {
310 public:
311   static char ID;
312 
313   AArch64PostLegalizerCombiner(bool IsOptNone = false);
314 
getPassName() const315   StringRef getPassName() const override {
316     return "AArch64PostLegalizerCombiner";
317   }
318 
319   bool runOnMachineFunction(MachineFunction &MF) override;
320   void getAnalysisUsage(AnalysisUsage &AU) const override;
321 
322 private:
323   bool IsOptNone;
324 };
325 } // end anonymous namespace
326 
getAnalysisUsage(AnalysisUsage & AU) const327 void AArch64PostLegalizerCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
328   AU.addRequired<TargetPassConfig>();
329   AU.setPreservesCFG();
330   getSelectionDAGFallbackAnalysisUsage(AU);
331   AU.addRequired<GISelKnownBitsAnalysis>();
332   AU.addPreserved<GISelKnownBitsAnalysis>();
333   if (!IsOptNone) {
334     AU.addRequired<MachineDominatorTree>();
335     AU.addPreserved<MachineDominatorTree>();
336     AU.addRequired<GISelCSEAnalysisWrapperPass>();
337     AU.addPreserved<GISelCSEAnalysisWrapperPass>();
338   }
339   MachineFunctionPass::getAnalysisUsage(AU);
340 }
341 
AArch64PostLegalizerCombiner(bool IsOptNone)342 AArch64PostLegalizerCombiner::AArch64PostLegalizerCombiner(bool IsOptNone)
343     : MachineFunctionPass(ID), IsOptNone(IsOptNone) {
344   initializeAArch64PostLegalizerCombinerPass(*PassRegistry::getPassRegistry());
345 }
346 
runOnMachineFunction(MachineFunction & MF)347 bool AArch64PostLegalizerCombiner::runOnMachineFunction(MachineFunction &MF) {
348   if (MF.getProperties().hasProperty(
349           MachineFunctionProperties::Property::FailedISel))
350     return false;
351   assert(MF.getProperties().hasProperty(
352              MachineFunctionProperties::Property::Legalized) &&
353          "Expected a legalized function?");
354   auto *TPC = &getAnalysis<TargetPassConfig>();
355   const Function &F = MF.getFunction();
356   bool EnableOpt =
357       MF.getTarget().getOptLevel() != CodeGenOpt::None && !skipFunction(F);
358   GISelKnownBits *KB = &getAnalysis<GISelKnownBitsAnalysis>().get(MF);
359   MachineDominatorTree *MDT =
360       IsOptNone ? nullptr : &getAnalysis<MachineDominatorTree>();
361   AArch64PostLegalizerCombinerInfo PCInfo(EnableOpt, F.hasOptSize(),
362                                           F.hasMinSize(), KB, MDT);
363   GISelCSEAnalysisWrapper &Wrapper =
364       getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper();
365   auto *CSEInfo = &Wrapper.get(TPC->getCSEConfig());
366   Combiner C(PCInfo, TPC);
367   return C.combineMachineInstrs(MF, CSEInfo);
368 }
369 
370 char AArch64PostLegalizerCombiner::ID = 0;
371 INITIALIZE_PASS_BEGIN(AArch64PostLegalizerCombiner, DEBUG_TYPE,
372                       "Combine AArch64 MachineInstrs after legalization", false,
373                       false)
374 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
375 INITIALIZE_PASS_DEPENDENCY(GISelKnownBitsAnalysis)
376 INITIALIZE_PASS_END(AArch64PostLegalizerCombiner, DEBUG_TYPE,
377                     "Combine AArch64 MachineInstrs after legalization", false,
378                     false)
379 
380 namespace llvm {
createAArch64PostLegalizerCombiner(bool IsOptNone)381 FunctionPass *createAArch64PostLegalizerCombiner(bool IsOptNone) {
382   return new AArch64PostLegalizerCombiner(IsOptNone);
383 }
384 } // end namespace llvm
385