1 //===- Twine.h - Fast Temporary String Concatenation ------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #ifndef LLVM_ADT_TWINE_H
11 #define LLVM_ADT_TWINE_H
12 
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/Support/ErrorHandling.h"
16 #include <cassert>
17 #include <cstdint>
18 #include <string>
19 
20 namespace llvm {
21 
22   class formatv_object_base;
23   class raw_ostream;
24 
25   /// Twine - A lightweight data structure for efficiently representing the
26   /// concatenation of temporary values as strings.
27   ///
28   /// A Twine is a kind of rope, it represents a concatenated string using a
29   /// binary-tree, where the string is the preorder of the nodes. Since the
30   /// Twine can be efficiently rendered into a buffer when its result is used,
31   /// it avoids the cost of generating temporary values for intermediate string
32   /// results -- particularly in cases when the Twine result is never
33   /// required. By explicitly tracking the type of leaf nodes, we can also avoid
34   /// the creation of temporary strings for conversions operations (such as
35   /// appending an integer to a string).
36   ///
37   /// A Twine is not intended for use directly and should not be stored, its
38   /// implementation relies on the ability to store pointers to temporary stack
39   /// objects which may be deallocated at the end of a statement. Twines should
40   /// only be used accepted as const references in arguments, when an API wishes
41   /// to accept possibly-concatenated strings.
42   ///
43   /// Twines support a special 'null' value, which always concatenates to form
44   /// itself, and renders as an empty string. This can be returned from APIs to
45   /// effectively nullify any concatenations performed on the result.
46   ///
47   /// \b Implementation
48   ///
49   /// Given the nature of a Twine, it is not possible for the Twine's
50   /// concatenation method to construct interior nodes; the result must be
51   /// represented inside the returned value. For this reason a Twine object
52   /// actually holds two values, the left- and right-hand sides of a
53   /// concatenation. We also have nullary Twine objects, which are effectively
54   /// sentinel values that represent empty strings.
55   ///
56   /// Thus, a Twine can effectively have zero, one, or two children. The \see
57   /// isNullary(), \see isUnary(), and \see isBinary() predicates exist for
58   /// testing the number of children.
59   ///
60   /// We maintain a number of invariants on Twine objects (FIXME: Why):
61   ///  - Nullary twines are always represented with their Kind on the left-hand
62   ///    side, and the Empty kind on the right-hand side.
63   ///  - Unary twines are always represented with the value on the left-hand
64   ///    side, and the Empty kind on the right-hand side.
65   ///  - If a Twine has another Twine as a child, that child should always be
66   ///    binary (otherwise it could have been folded into the parent).
67   ///
68   /// These invariants are check by \see isValid().
69   ///
70   /// \b Efficiency Considerations
71   ///
72   /// The Twine is designed to yield efficient and small code for common
73   /// situations. For this reason, the concat() method is inlined so that
74   /// concatenations of leaf nodes can be optimized into stores directly into a
75   /// single stack allocated object.
76   ///
77   /// In practice, not all compilers can be trusted to optimize concat() fully,
78   /// so we provide two additional methods (and accompanying operator+
79   /// overloads) to guarantee that particularly important cases (cstring plus
80   /// StringRef) codegen as desired.
81   class Twine {
82     /// NodeKind - Represent the type of an argument.
83     enum NodeKind : unsigned char {
84       /// An empty string; the result of concatenating anything with it is also
85       /// empty.
86       NullKind,
87 
88       /// The empty string.
89       EmptyKind,
90 
91       /// A pointer to a Twine instance.
92       TwineKind,
93 
94       /// A pointer to a C string instance.
95       CStringKind,
96 
97       /// A pointer to an std::string instance.
98       StdStringKind,
99 
100       /// A pointer to a StringRef instance.
101       StringRefKind,
102 
103       /// A pointer to a SmallString instance.
104       SmallStringKind,
105 
106       /// A pointer to a formatv_object_base instance.
107       FormatvObjectKind,
108 
109       /// A char value, to render as a character.
110       CharKind,
111 
112       /// An unsigned int value, to render as an unsigned decimal integer.
113       DecUIKind,
114 
115       /// An int value, to render as a signed decimal integer.
116       DecIKind,
117 
118       /// A pointer to an unsigned long value, to render as an unsigned decimal
119       /// integer.
120       DecULKind,
121 
122       /// A pointer to a long value, to render as a signed decimal integer.
123       DecLKind,
124 
125       /// A pointer to an unsigned long long value, to render as an unsigned
126       /// decimal integer.
127       DecULLKind,
128 
129       /// A pointer to a long long value, to render as a signed decimal integer.
130       DecLLKind,
131 
132       /// A pointer to a uint64_t value, to render as an unsigned hexadecimal
133       /// integer.
134       UHexKind
135     };
136 
137     union Child
138     {
139       const Twine *twine;
140       const char *cString;
141       const std::string *stdString;
142       const StringRef *stringRef;
143       const SmallVectorImpl<char> *smallString;
144       const formatv_object_base *formatvObject;
145       char character;
146       unsigned int decUI;
147       int decI;
148       const unsigned long *decUL;
149       const long *decL;
150       const unsigned long long *decULL;
151       const long long *decLL;
152       const uint64_t *uHex;
153     };
154 
155     /// LHS - The prefix in the concatenation, which may be uninitialized for
156     /// Null or Empty kinds.
157     Child LHS;
158 
159     /// RHS - The suffix in the concatenation, which may be uninitialized for
160     /// Null or Empty kinds.
161     Child RHS;
162 
163     /// LHSKind - The NodeKind of the left hand side, \see getLHSKind().
164     NodeKind LHSKind = EmptyKind;
165 
166     /// RHSKind - The NodeKind of the right hand side, \see getRHSKind().
167     NodeKind RHSKind = EmptyKind;
168 
169     /// Construct a nullary twine; the kind must be NullKind or EmptyKind.
170     explicit Twine(NodeKind Kind) : LHSKind(Kind) {
171       assert(isNullary() && "Invalid kind!");
172     }
173 
174     /// Construct a binary twine.
175     explicit Twine(const Twine &LHS, const Twine &RHS)
176         : LHSKind(TwineKind), RHSKind(TwineKind) {
177       this->LHS.twine = &LHS;
178       this->RHS.twine = &RHS;
179       assert(isValid() && "Invalid twine!");
180     }
181 
182     /// Construct a twine from explicit values.
183     explicit Twine(Child LHS, NodeKind LHSKind, Child RHS, NodeKind RHSKind)
184         : LHS(LHS), RHS(RHS), LHSKind(LHSKind), RHSKind(RHSKind) {
185       assert(isValid() && "Invalid twine!");
186     }
187 
188     /// Check for the null twine.
189     bool isNull() const {
190       return getLHSKind() == NullKind;
191     }
192 
193     /// Check for the empty twine.
194     bool isEmpty() const {
195       return getLHSKind() == EmptyKind;
196     }
197 
198     /// Check if this is a nullary twine (null or empty).
199     bool isNullary() const {
200       return isNull() || isEmpty();
201     }
202 
203     /// Check if this is a unary twine.
204     bool isUnary() const {
205       return getRHSKind() == EmptyKind && !isNullary();
206     }
207 
208     /// Check if this is a binary twine.
209     bool isBinary() const {
210       return getLHSKind() != NullKind && getRHSKind() != EmptyKind;
211     }
212 
213     /// Check if this is a valid twine (satisfying the invariants on
214     /// order and number of arguments).
215     bool isValid() const {
216       // Nullary twines always have Empty on the RHS.
217       if (isNullary() && getRHSKind() != EmptyKind)
218         return false;
219 
220       // Null should never appear on the RHS.
221       if (getRHSKind() == NullKind)
222         return false;
223 
224       // The RHS cannot be non-empty if the LHS is empty.
225       if (getRHSKind() != EmptyKind && getLHSKind() == EmptyKind)
226         return false;
227 
228       // A twine child should always be binary.
229       if (getLHSKind() == TwineKind &&
230           !LHS.twine->isBinary())
231         return false;
232       if (getRHSKind() == TwineKind &&
233           !RHS.twine->isBinary())
234         return false;
235 
236       return true;
237     }
238 
239     /// Get the NodeKind of the left-hand side.
240     NodeKind getLHSKind() const { return LHSKind; }
241 
242     /// Get the NodeKind of the right-hand side.
243     NodeKind getRHSKind() const { return RHSKind; }
244 
245     /// Print one child from a twine.
246     void printOneChild(raw_ostream &OS, Child Ptr, NodeKind Kind) const;
247 
248     /// Print the representation of one child from a twine.
249     void printOneChildRepr(raw_ostream &OS, Child Ptr,
250                            NodeKind Kind) const;
251 
252   public:
253     /// @name Constructors
254     /// @{
255 
256     /// Construct from an empty string.
257     /*implicit*/ Twine() {
258       assert(isValid() && "Invalid twine!");
259     }
260 
261     Twine(const Twine &) = default;
262 
263     /// Construct from a C string.
264     ///
265     /// We take care here to optimize "" into the empty twine -- this will be
266     /// optimized out for string constants. This allows Twine arguments have
267     /// default "" values, without introducing unnecessary string constants.
268     /*implicit*/ Twine(const char *Str) {
269       if (Str[0] != '\0') {
270         LHS.cString = Str;
271         LHSKind = CStringKind;
272       } else
273         LHSKind = EmptyKind;
274 
275       assert(isValid() && "Invalid twine!");
276     }
277 
278     /// Construct from an std::string.
279     /*implicit*/ Twine(const std::string &Str) : LHSKind(StdStringKind) {
280       LHS.stdString = &Str;
281       assert(isValid() && "Invalid twine!");
282     }
283 
284     /// Construct from a StringRef.
285     /*implicit*/ Twine(const StringRef &Str) : LHSKind(StringRefKind) {
286       LHS.stringRef = &Str;
287       assert(isValid() && "Invalid twine!");
288     }
289 
290     /// Construct from a SmallString.
291     /*implicit*/ Twine(const SmallVectorImpl<char> &Str)
292         : LHSKind(SmallStringKind) {
293       LHS.smallString = &Str;
294       assert(isValid() && "Invalid twine!");
295     }
296 
297     /// Construct from a formatv_object_base.
298     /*implicit*/ Twine(const formatv_object_base &Fmt)
299         : LHSKind(FormatvObjectKind) {
300       LHS.formatvObject = &Fmt;
301       assert(isValid() && "Invalid twine!");
302     }
303 
304     /// Construct from a char.
305     explicit Twine(char Val) : LHSKind(CharKind) {
306       LHS.character = Val;
307     }
308 
309     /// Construct from a signed char.
310     explicit Twine(signed char Val) : LHSKind(CharKind) {
311       LHS.character = static_cast<char>(Val);
312     }
313 
314     /// Construct from an unsigned char.
315     explicit Twine(unsigned char Val) : LHSKind(CharKind) {
316       LHS.character = static_cast<char>(Val);
317     }
318 
319     /// Construct a twine to print \p Val as an unsigned decimal integer.
320     explicit Twine(unsigned Val) : LHSKind(DecUIKind) {
321       LHS.decUI = Val;
322     }
323 
324     /// Construct a twine to print \p Val as a signed decimal integer.
325     explicit Twine(int Val) : LHSKind(DecIKind) {
326       LHS.decI = Val;
327     }
328 
329     /// Construct a twine to print \p Val as an unsigned decimal integer.
330     explicit Twine(const unsigned long &Val) : LHSKind(DecULKind) {
331       LHS.decUL = &Val;
332     }
333 
334     /// Construct a twine to print \p Val as a signed decimal integer.
335     explicit Twine(const long &Val) : LHSKind(DecLKind) {
336       LHS.decL = &Val;
337     }
338 
339     /// Construct a twine to print \p Val as an unsigned decimal integer.
340     explicit Twine(const unsigned long long &Val) : LHSKind(DecULLKind) {
341       LHS.decULL = &Val;
342     }
343 
344     /// Construct a twine to print \p Val as a signed decimal integer.
345     explicit Twine(const long long &Val) : LHSKind(DecLLKind) {
346       LHS.decLL = &Val;
347     }
348 
349     // FIXME: Unfortunately, to make sure this is as efficient as possible we
350     // need extra binary constructors from particular types. We can't rely on
351     // the compiler to be smart enough to fold operator+()/concat() down to the
352     // right thing. Yet.
353 
354     /// Construct as the concatenation of a C string and a StringRef.
355     /*implicit*/ Twine(const char *LHS, const StringRef &RHS)
356         : LHSKind(CStringKind), RHSKind(StringRefKind) {
357       this->LHS.cString = LHS;
358       this->RHS.stringRef = &RHS;
359       assert(isValid() && "Invalid twine!");
360     }
361 
362     /// Construct as the concatenation of a StringRef and a C string.
363     /*implicit*/ Twine(const StringRef &LHS, const char *RHS)
364         : LHSKind(StringRefKind), RHSKind(CStringKind) {
365       this->LHS.stringRef = &LHS;
366       this->RHS.cString = RHS;
367       assert(isValid() && "Invalid twine!");
368     }
369 
370     /// Since the intended use of twines is as temporary objects, assignments
371     /// when concatenating might cause undefined behavior or stack corruptions
372     Twine &operator=(const Twine &) = delete;
373 
374     /// Create a 'null' string, which is an empty string that always
375     /// concatenates to form another empty string.
376     static Twine createNull() {
377       return Twine(NullKind);
378     }
379 
380     /// @}
381     /// @name Numeric Conversions
382     /// @{
383 
384     // Construct a twine to print \p Val as an unsigned hexadecimal integer.
385     static Twine utohexstr(const uint64_t &Val) {
386       Child LHS, RHS;
387       LHS.uHex = &Val;
388       RHS.twine = nullptr;
389       return Twine(LHS, UHexKind, RHS, EmptyKind);
390     }
391 
392     /// @}
393     /// @name Predicate Operations
394     /// @{
395 
396     /// Check if this twine is trivially empty; a false return value does not
397     /// necessarily mean the twine is empty.
398     bool isTriviallyEmpty() const {
399       return isNullary();
400     }
401 
402     /// Return true if this twine can be dynamically accessed as a single
403     /// StringRef value with getSingleStringRef().
404     bool isSingleStringRef() const {
405       if (getRHSKind() != EmptyKind) return false;
406 
407       switch (getLHSKind()) {
408       case EmptyKind:
409       case CStringKind:
410       case StdStringKind:
411       case StringRefKind:
412       case SmallStringKind:
413         return true;
414       default:
415         return false;
416       }
417     }
418 
419     /// @}
420     /// @name String Operations
421     /// @{
422 
423     Twine concat(const Twine &Suffix) const;
424 
425     /// @}
426     /// @name Output & Conversion.
427     /// @{
428 
429     /// Return the twine contents as a std::string.
430     std::string str() const;
431 
432     /// Append the concatenated string into the given SmallString or SmallVector.
433     void toVector(SmallVectorImpl<char> &Out) const;
434 
435     /// This returns the twine as a single StringRef.  This method is only valid
436     /// if isSingleStringRef() is true.
437     StringRef getSingleStringRef() const {
438       assert(isSingleStringRef() &&"This cannot be had as a single stringref!");
439       switch (getLHSKind()) {
440       default: llvm_unreachable("Out of sync with isSingleStringRef");
441       case EmptyKind:      return StringRef();
442       case CStringKind:    return StringRef(LHS.cString);
443       case StdStringKind:  return StringRef(*LHS.stdString);
444       case StringRefKind:  return *LHS.stringRef;
445       case SmallStringKind:
446         return StringRef(LHS.smallString->data(), LHS.smallString->size());
447       }
448     }
449 
450     /// This returns the twine as a single StringRef if it can be
451     /// represented as such. Otherwise the twine is written into the given
452     /// SmallVector and a StringRef to the SmallVector's data is returned.
453     StringRef toStringRef(SmallVectorImpl<char> &Out) const {
454       if (isSingleStringRef())
455         return getSingleStringRef();
456       toVector(Out);
457       return StringRef(Out.data(), Out.size());
458     }
459 
460     /// This returns the twine as a single null terminated StringRef if it
461     /// can be represented as such. Otherwise the twine is written into the
462     /// given SmallVector and a StringRef to the SmallVector's data is returned.
463     ///
464     /// The returned StringRef's size does not include the null terminator.
465     StringRef toNullTerminatedStringRef(SmallVectorImpl<char> &Out) const;
466 
467     /// Write the concatenated string represented by this twine to the
468     /// stream \p OS.
469     void print(raw_ostream &OS) const;
470 
471     /// Dump the concatenated string represented by this twine to stderr.
472     void dump() const;
473 
474     /// Write the representation of this twine to the stream \p OS.
475     void printRepr(raw_ostream &OS) const;
476 
477     /// Dump the representation of this twine to stderr.
478     void dumpRepr() const;
479 
480     /// @}
481   };
482 
483   /// @name Twine Inline Implementations
484   /// @{
485 
486   inline Twine Twine::concat(const Twine &Suffix) const {
487     // Concatenation with null is null.
488     if (isNull() || Suffix.isNull())
489       return Twine(NullKind);
490 
491     // Concatenation with empty yields the other side.
492     if (isEmpty())
493       return Suffix;
494     if (Suffix.isEmpty())
495       return *this;
496 
497     // Otherwise we need to create a new node, taking care to fold in unary
498     // twines.
499     Child NewLHS, NewRHS;
500     NewLHS.twine = this;
501     NewRHS.twine = &Suffix;
502     NodeKind NewLHSKind = TwineKind, NewRHSKind = TwineKind;
503     if (isUnary()) {
504       NewLHS = LHS;
505       NewLHSKind = getLHSKind();
506     }
507     if (Suffix.isUnary()) {
508       NewRHS = Suffix.LHS;
509       NewRHSKind = Suffix.getLHSKind();
510     }
511 
512     return Twine(NewLHS, NewLHSKind, NewRHS, NewRHSKind);
513   }
514 
515   inline Twine operator+(const Twine &LHS, const Twine &RHS) {
516     return LHS.concat(RHS);
517   }
518 
519   /// Additional overload to guarantee simplified codegen; this is equivalent to
520   /// concat().
521 
522   inline Twine operator+(const char *LHS, const StringRef &RHS) {
523     return Twine(LHS, RHS);
524   }
525 
526   /// Additional overload to guarantee simplified codegen; this is equivalent to
527   /// concat().
528 
529   inline Twine operator+(const StringRef &LHS, const char *RHS) {
530     return Twine(LHS, RHS);
531   }
532 
533   inline raw_ostream &operator<<(raw_ostream &OS, const Twine &RHS) {
534     RHS.print(OS);
535     return OS;
536   }
537 
538   /// @}
539 
540 } // end namespace llvm
541 
542 #endif // LLVM_ADT_TWINE_H
543