1 //===- Twine.h - Fast Temporary String Concatenation ------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #ifndef LLVM_ADT_TWINE_H 11 #define LLVM_ADT_TWINE_H 12 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/StringRef.h" 15 #include "llvm/Support/ErrorHandling.h" 16 #include <cassert> 17 #include <cstdint> 18 #include <string> 19 20 namespace llvm { 21 22 class formatv_object_base; 23 class raw_ostream; 24 25 /// Twine - A lightweight data structure for efficiently representing the 26 /// concatenation of temporary values as strings. 27 /// 28 /// A Twine is a kind of rope, it represents a concatenated string using a 29 /// binary-tree, where the string is the preorder of the nodes. Since the 30 /// Twine can be efficiently rendered into a buffer when its result is used, 31 /// it avoids the cost of generating temporary values for intermediate string 32 /// results -- particularly in cases when the Twine result is never 33 /// required. By explicitly tracking the type of leaf nodes, we can also avoid 34 /// the creation of temporary strings for conversions operations (such as 35 /// appending an integer to a string). 36 /// 37 /// A Twine is not intended for use directly and should not be stored, its 38 /// implementation relies on the ability to store pointers to temporary stack 39 /// objects which may be deallocated at the end of a statement. Twines should 40 /// only be used accepted as const references in arguments, when an API wishes 41 /// to accept possibly-concatenated strings. 42 /// 43 /// Twines support a special 'null' value, which always concatenates to form 44 /// itself, and renders as an empty string. This can be returned from APIs to 45 /// effectively nullify any concatenations performed on the result. 46 /// 47 /// \b Implementation 48 /// 49 /// Given the nature of a Twine, it is not possible for the Twine's 50 /// concatenation method to construct interior nodes; the result must be 51 /// represented inside the returned value. For this reason a Twine object 52 /// actually holds two values, the left- and right-hand sides of a 53 /// concatenation. We also have nullary Twine objects, which are effectively 54 /// sentinel values that represent empty strings. 55 /// 56 /// Thus, a Twine can effectively have zero, one, or two children. The \see 57 /// isNullary(), \see isUnary(), and \see isBinary() predicates exist for 58 /// testing the number of children. 59 /// 60 /// We maintain a number of invariants on Twine objects (FIXME: Why): 61 /// - Nullary twines are always represented with their Kind on the left-hand 62 /// side, and the Empty kind on the right-hand side. 63 /// - Unary twines are always represented with the value on the left-hand 64 /// side, and the Empty kind on the right-hand side. 65 /// - If a Twine has another Twine as a child, that child should always be 66 /// binary (otherwise it could have been folded into the parent). 67 /// 68 /// These invariants are check by \see isValid(). 69 /// 70 /// \b Efficiency Considerations 71 /// 72 /// The Twine is designed to yield efficient and small code for common 73 /// situations. For this reason, the concat() method is inlined so that 74 /// concatenations of leaf nodes can be optimized into stores directly into a 75 /// single stack allocated object. 76 /// 77 /// In practice, not all compilers can be trusted to optimize concat() fully, 78 /// so we provide two additional methods (and accompanying operator+ 79 /// overloads) to guarantee that particularly important cases (cstring plus 80 /// StringRef) codegen as desired. 81 class Twine { 82 /// NodeKind - Represent the type of an argument. 83 enum NodeKind : unsigned char { 84 /// An empty string; the result of concatenating anything with it is also 85 /// empty. 86 NullKind, 87 88 /// The empty string. 89 EmptyKind, 90 91 /// A pointer to a Twine instance. 92 TwineKind, 93 94 /// A pointer to a C string instance. 95 CStringKind, 96 97 /// A pointer to an std::string instance. 98 StdStringKind, 99 100 /// A pointer to a StringRef instance. 101 StringRefKind, 102 103 /// A pointer to a SmallString instance. 104 SmallStringKind, 105 106 /// A pointer to a formatv_object_base instance. 107 FormatvObjectKind, 108 109 /// A char value, to render as a character. 110 CharKind, 111 112 /// An unsigned int value, to render as an unsigned decimal integer. 113 DecUIKind, 114 115 /// An int value, to render as a signed decimal integer. 116 DecIKind, 117 118 /// A pointer to an unsigned long value, to render as an unsigned decimal 119 /// integer. 120 DecULKind, 121 122 /// A pointer to a long value, to render as a signed decimal integer. 123 DecLKind, 124 125 /// A pointer to an unsigned long long value, to render as an unsigned 126 /// decimal integer. 127 DecULLKind, 128 129 /// A pointer to a long long value, to render as a signed decimal integer. 130 DecLLKind, 131 132 /// A pointer to a uint64_t value, to render as an unsigned hexadecimal 133 /// integer. 134 UHexKind 135 }; 136 137 union Child 138 { 139 const Twine *twine; 140 const char *cString; 141 const std::string *stdString; 142 const StringRef *stringRef; 143 const SmallVectorImpl<char> *smallString; 144 const formatv_object_base *formatvObject; 145 char character; 146 unsigned int decUI; 147 int decI; 148 const unsigned long *decUL; 149 const long *decL; 150 const unsigned long long *decULL; 151 const long long *decLL; 152 const uint64_t *uHex; 153 }; 154 155 /// LHS - The prefix in the concatenation, which may be uninitialized for 156 /// Null or Empty kinds. 157 Child LHS; 158 159 /// RHS - The suffix in the concatenation, which may be uninitialized for 160 /// Null or Empty kinds. 161 Child RHS; 162 163 /// LHSKind - The NodeKind of the left hand side, \see getLHSKind(). 164 NodeKind LHSKind = EmptyKind; 165 166 /// RHSKind - The NodeKind of the right hand side, \see getRHSKind(). 167 NodeKind RHSKind = EmptyKind; 168 169 /// Construct a nullary twine; the kind must be NullKind or EmptyKind. 170 explicit Twine(NodeKind Kind) : LHSKind(Kind) { 171 assert(isNullary() && "Invalid kind!"); 172 } 173 174 /// Construct a binary twine. 175 explicit Twine(const Twine &LHS, const Twine &RHS) 176 : LHSKind(TwineKind), RHSKind(TwineKind) { 177 this->LHS.twine = &LHS; 178 this->RHS.twine = &RHS; 179 assert(isValid() && "Invalid twine!"); 180 } 181 182 /// Construct a twine from explicit values. 183 explicit Twine(Child LHS, NodeKind LHSKind, Child RHS, NodeKind RHSKind) 184 : LHS(LHS), RHS(RHS), LHSKind(LHSKind), RHSKind(RHSKind) { 185 assert(isValid() && "Invalid twine!"); 186 } 187 188 /// Check for the null twine. 189 bool isNull() const { 190 return getLHSKind() == NullKind; 191 } 192 193 /// Check for the empty twine. 194 bool isEmpty() const { 195 return getLHSKind() == EmptyKind; 196 } 197 198 /// Check if this is a nullary twine (null or empty). 199 bool isNullary() const { 200 return isNull() || isEmpty(); 201 } 202 203 /// Check if this is a unary twine. 204 bool isUnary() const { 205 return getRHSKind() == EmptyKind && !isNullary(); 206 } 207 208 /// Check if this is a binary twine. 209 bool isBinary() const { 210 return getLHSKind() != NullKind && getRHSKind() != EmptyKind; 211 } 212 213 /// Check if this is a valid twine (satisfying the invariants on 214 /// order and number of arguments). 215 bool isValid() const { 216 // Nullary twines always have Empty on the RHS. 217 if (isNullary() && getRHSKind() != EmptyKind) 218 return false; 219 220 // Null should never appear on the RHS. 221 if (getRHSKind() == NullKind) 222 return false; 223 224 // The RHS cannot be non-empty if the LHS is empty. 225 if (getRHSKind() != EmptyKind && getLHSKind() == EmptyKind) 226 return false; 227 228 // A twine child should always be binary. 229 if (getLHSKind() == TwineKind && 230 !LHS.twine->isBinary()) 231 return false; 232 if (getRHSKind() == TwineKind && 233 !RHS.twine->isBinary()) 234 return false; 235 236 return true; 237 } 238 239 /// Get the NodeKind of the left-hand side. 240 NodeKind getLHSKind() const { return LHSKind; } 241 242 /// Get the NodeKind of the right-hand side. 243 NodeKind getRHSKind() const { return RHSKind; } 244 245 /// Print one child from a twine. 246 void printOneChild(raw_ostream &OS, Child Ptr, NodeKind Kind) const; 247 248 /// Print the representation of one child from a twine. 249 void printOneChildRepr(raw_ostream &OS, Child Ptr, 250 NodeKind Kind) const; 251 252 public: 253 /// @name Constructors 254 /// @{ 255 256 /// Construct from an empty string. 257 /*implicit*/ Twine() { 258 assert(isValid() && "Invalid twine!"); 259 } 260 261 Twine(const Twine &) = default; 262 263 /// Construct from a C string. 264 /// 265 /// We take care here to optimize "" into the empty twine -- this will be 266 /// optimized out for string constants. This allows Twine arguments have 267 /// default "" values, without introducing unnecessary string constants. 268 /*implicit*/ Twine(const char *Str) { 269 if (Str[0] != '\0') { 270 LHS.cString = Str; 271 LHSKind = CStringKind; 272 } else 273 LHSKind = EmptyKind; 274 275 assert(isValid() && "Invalid twine!"); 276 } 277 278 /// Construct from an std::string. 279 /*implicit*/ Twine(const std::string &Str) : LHSKind(StdStringKind) { 280 LHS.stdString = &Str; 281 assert(isValid() && "Invalid twine!"); 282 } 283 284 /// Construct from a StringRef. 285 /*implicit*/ Twine(const StringRef &Str) : LHSKind(StringRefKind) { 286 LHS.stringRef = &Str; 287 assert(isValid() && "Invalid twine!"); 288 } 289 290 /// Construct from a SmallString. 291 /*implicit*/ Twine(const SmallVectorImpl<char> &Str) 292 : LHSKind(SmallStringKind) { 293 LHS.smallString = &Str; 294 assert(isValid() && "Invalid twine!"); 295 } 296 297 /// Construct from a formatv_object_base. 298 /*implicit*/ Twine(const formatv_object_base &Fmt) 299 : LHSKind(FormatvObjectKind) { 300 LHS.formatvObject = &Fmt; 301 assert(isValid() && "Invalid twine!"); 302 } 303 304 /// Construct from a char. 305 explicit Twine(char Val) : LHSKind(CharKind) { 306 LHS.character = Val; 307 } 308 309 /// Construct from a signed char. 310 explicit Twine(signed char Val) : LHSKind(CharKind) { 311 LHS.character = static_cast<char>(Val); 312 } 313 314 /// Construct from an unsigned char. 315 explicit Twine(unsigned char Val) : LHSKind(CharKind) { 316 LHS.character = static_cast<char>(Val); 317 } 318 319 /// Construct a twine to print \p Val as an unsigned decimal integer. 320 explicit Twine(unsigned Val) : LHSKind(DecUIKind) { 321 LHS.decUI = Val; 322 } 323 324 /// Construct a twine to print \p Val as a signed decimal integer. 325 explicit Twine(int Val) : LHSKind(DecIKind) { 326 LHS.decI = Val; 327 } 328 329 /// Construct a twine to print \p Val as an unsigned decimal integer. 330 explicit Twine(const unsigned long &Val) : LHSKind(DecULKind) { 331 LHS.decUL = &Val; 332 } 333 334 /// Construct a twine to print \p Val as a signed decimal integer. 335 explicit Twine(const long &Val) : LHSKind(DecLKind) { 336 LHS.decL = &Val; 337 } 338 339 /// Construct a twine to print \p Val as an unsigned decimal integer. 340 explicit Twine(const unsigned long long &Val) : LHSKind(DecULLKind) { 341 LHS.decULL = &Val; 342 } 343 344 /// Construct a twine to print \p Val as a signed decimal integer. 345 explicit Twine(const long long &Val) : LHSKind(DecLLKind) { 346 LHS.decLL = &Val; 347 } 348 349 // FIXME: Unfortunately, to make sure this is as efficient as possible we 350 // need extra binary constructors from particular types. We can't rely on 351 // the compiler to be smart enough to fold operator+()/concat() down to the 352 // right thing. Yet. 353 354 /// Construct as the concatenation of a C string and a StringRef. 355 /*implicit*/ Twine(const char *LHS, const StringRef &RHS) 356 : LHSKind(CStringKind), RHSKind(StringRefKind) { 357 this->LHS.cString = LHS; 358 this->RHS.stringRef = &RHS; 359 assert(isValid() && "Invalid twine!"); 360 } 361 362 /// Construct as the concatenation of a StringRef and a C string. 363 /*implicit*/ Twine(const StringRef &LHS, const char *RHS) 364 : LHSKind(StringRefKind), RHSKind(CStringKind) { 365 this->LHS.stringRef = &LHS; 366 this->RHS.cString = RHS; 367 assert(isValid() && "Invalid twine!"); 368 } 369 370 /// Since the intended use of twines is as temporary objects, assignments 371 /// when concatenating might cause undefined behavior or stack corruptions 372 Twine &operator=(const Twine &) = delete; 373 374 /// Create a 'null' string, which is an empty string that always 375 /// concatenates to form another empty string. 376 static Twine createNull() { 377 return Twine(NullKind); 378 } 379 380 /// @} 381 /// @name Numeric Conversions 382 /// @{ 383 384 // Construct a twine to print \p Val as an unsigned hexadecimal integer. 385 static Twine utohexstr(const uint64_t &Val) { 386 Child LHS, RHS; 387 LHS.uHex = &Val; 388 RHS.twine = nullptr; 389 return Twine(LHS, UHexKind, RHS, EmptyKind); 390 } 391 392 /// @} 393 /// @name Predicate Operations 394 /// @{ 395 396 /// Check if this twine is trivially empty; a false return value does not 397 /// necessarily mean the twine is empty. 398 bool isTriviallyEmpty() const { 399 return isNullary(); 400 } 401 402 /// Return true if this twine can be dynamically accessed as a single 403 /// StringRef value with getSingleStringRef(). 404 bool isSingleStringRef() const { 405 if (getRHSKind() != EmptyKind) return false; 406 407 switch (getLHSKind()) { 408 case EmptyKind: 409 case CStringKind: 410 case StdStringKind: 411 case StringRefKind: 412 case SmallStringKind: 413 return true; 414 default: 415 return false; 416 } 417 } 418 419 /// @} 420 /// @name String Operations 421 /// @{ 422 423 Twine concat(const Twine &Suffix) const; 424 425 /// @} 426 /// @name Output & Conversion. 427 /// @{ 428 429 /// Return the twine contents as a std::string. 430 std::string str() const; 431 432 /// Append the concatenated string into the given SmallString or SmallVector. 433 void toVector(SmallVectorImpl<char> &Out) const; 434 435 /// This returns the twine as a single StringRef. This method is only valid 436 /// if isSingleStringRef() is true. 437 StringRef getSingleStringRef() const { 438 assert(isSingleStringRef() &&"This cannot be had as a single stringref!"); 439 switch (getLHSKind()) { 440 default: llvm_unreachable("Out of sync with isSingleStringRef"); 441 case EmptyKind: return StringRef(); 442 case CStringKind: return StringRef(LHS.cString); 443 case StdStringKind: return StringRef(*LHS.stdString); 444 case StringRefKind: return *LHS.stringRef; 445 case SmallStringKind: 446 return StringRef(LHS.smallString->data(), LHS.smallString->size()); 447 } 448 } 449 450 /// This returns the twine as a single StringRef if it can be 451 /// represented as such. Otherwise the twine is written into the given 452 /// SmallVector and a StringRef to the SmallVector's data is returned. 453 StringRef toStringRef(SmallVectorImpl<char> &Out) const { 454 if (isSingleStringRef()) 455 return getSingleStringRef(); 456 toVector(Out); 457 return StringRef(Out.data(), Out.size()); 458 } 459 460 /// This returns the twine as a single null terminated StringRef if it 461 /// can be represented as such. Otherwise the twine is written into the 462 /// given SmallVector and a StringRef to the SmallVector's data is returned. 463 /// 464 /// The returned StringRef's size does not include the null terminator. 465 StringRef toNullTerminatedStringRef(SmallVectorImpl<char> &Out) const; 466 467 /// Write the concatenated string represented by this twine to the 468 /// stream \p OS. 469 void print(raw_ostream &OS) const; 470 471 /// Dump the concatenated string represented by this twine to stderr. 472 void dump() const; 473 474 /// Write the representation of this twine to the stream \p OS. 475 void printRepr(raw_ostream &OS) const; 476 477 /// Dump the representation of this twine to stderr. 478 void dumpRepr() const; 479 480 /// @} 481 }; 482 483 /// @name Twine Inline Implementations 484 /// @{ 485 486 inline Twine Twine::concat(const Twine &Suffix) const { 487 // Concatenation with null is null. 488 if (isNull() || Suffix.isNull()) 489 return Twine(NullKind); 490 491 // Concatenation with empty yields the other side. 492 if (isEmpty()) 493 return Suffix; 494 if (Suffix.isEmpty()) 495 return *this; 496 497 // Otherwise we need to create a new node, taking care to fold in unary 498 // twines. 499 Child NewLHS, NewRHS; 500 NewLHS.twine = this; 501 NewRHS.twine = &Suffix; 502 NodeKind NewLHSKind = TwineKind, NewRHSKind = TwineKind; 503 if (isUnary()) { 504 NewLHS = LHS; 505 NewLHSKind = getLHSKind(); 506 } 507 if (Suffix.isUnary()) { 508 NewRHS = Suffix.LHS; 509 NewRHSKind = Suffix.getLHSKind(); 510 } 511 512 return Twine(NewLHS, NewLHSKind, NewRHS, NewRHSKind); 513 } 514 515 inline Twine operator+(const Twine &LHS, const Twine &RHS) { 516 return LHS.concat(RHS); 517 } 518 519 /// Additional overload to guarantee simplified codegen; this is equivalent to 520 /// concat(). 521 522 inline Twine operator+(const char *LHS, const StringRef &RHS) { 523 return Twine(LHS, RHS); 524 } 525 526 /// Additional overload to guarantee simplified codegen; this is equivalent to 527 /// concat(). 528 529 inline Twine operator+(const StringRef &LHS, const char *RHS) { 530 return Twine(LHS, RHS); 531 } 532 533 inline raw_ostream &operator<<(raw_ostream &OS, const Twine &RHS) { 534 RHS.print(OS); 535 return OS; 536 } 537 538 /// @} 539 540 } // end namespace llvm 541 542 #endif // LLVM_ADT_TWINE_H 543