1 //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Expr constant evaluator.
11 //
12 // Constant expression evaluation produces four main results:
13 //
14 //  * A success/failure flag indicating whether constant folding was successful.
15 //    This is the 'bool' return value used by most of the code in this file. A
16 //    'false' return value indicates that constant folding has failed, and any
17 //    appropriate diagnostic has already been produced.
18 //
19 //  * An evaluated result, valid only if constant folding has not failed.
20 //
21 //  * A flag indicating if evaluation encountered (unevaluated) side-effects.
22 //    These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
23 //    where it is possible to determine the evaluated result regardless.
24 //
25 //  * A set of notes indicating why the evaluation was not a constant expression
26 //    (under the C++11 / C++1y rules only, at the moment), or, if folding failed
27 //    too, why the expression could not be folded.
28 //
29 // If we are checking for a potential constant expression, failure to constant
30 // fold a potential constant sub-expression will be indicated by a 'false'
31 // return value (the expression could not be folded) and no diagnostic (the
32 // expression is not necessarily non-constant).
33 //
34 //===----------------------------------------------------------------------===//
35 
36 #include "clang/AST/APValue.h"
37 #include "clang/AST/ASTContext.h"
38 #include "clang/AST/ASTDiagnostic.h"
39 #include "clang/AST/ASTLambda.h"
40 #include "clang/AST/CharUnits.h"
41 #include "clang/AST/Expr.h"
42 #include "clang/AST/RecordLayout.h"
43 #include "clang/AST/StmtVisitor.h"
44 #include "clang/AST/TypeLoc.h"
45 #include "clang/Basic/Builtins.h"
46 #include "clang/Basic/TargetInfo.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <cstring>
49 #include <functional>
50 
51 #define DEBUG_TYPE "exprconstant"
52 
53 using namespace clang;
54 using llvm::APSInt;
55 using llvm::APFloat;
56 
57 static bool IsGlobalLValue(APValue::LValueBase B);
58 
59 namespace {
60   struct LValue;
61   struct CallStackFrame;
62   struct EvalInfo;
63 
getType(APValue::LValueBase B)64   static QualType getType(APValue::LValueBase B) {
65     if (!B) return QualType();
66     if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
67       // FIXME: It's unclear where we're supposed to take the type from, and
68       // this actually matters for arrays of unknown bound. Eg:
69       //
70       // extern int arr[]; void f() { extern int arr[3]; };
71       // constexpr int *p = &arr[1]; // valid?
72       //
73       // For now, we take the array bound from the most recent declaration.
74       for (auto *Redecl = cast<ValueDecl>(D->getMostRecentDecl()); Redecl;
75            Redecl = cast_or_null<ValueDecl>(Redecl->getPreviousDecl())) {
76         QualType T = Redecl->getType();
77         if (!T->isIncompleteArrayType())
78           return T;
79       }
80       return D->getType();
81     }
82 
83     const Expr *Base = B.get<const Expr*>();
84 
85     // For a materialized temporary, the type of the temporary we materialized
86     // may not be the type of the expression.
87     if (const MaterializeTemporaryExpr *MTE =
88             dyn_cast<MaterializeTemporaryExpr>(Base)) {
89       SmallVector<const Expr *, 2> CommaLHSs;
90       SmallVector<SubobjectAdjustment, 2> Adjustments;
91       const Expr *Temp = MTE->GetTemporaryExpr();
92       const Expr *Inner = Temp->skipRValueSubobjectAdjustments(CommaLHSs,
93                                                                Adjustments);
94       // Keep any cv-qualifiers from the reference if we generated a temporary
95       // for it directly. Otherwise use the type after adjustment.
96       if (!Adjustments.empty())
97         return Inner->getType();
98     }
99 
100     return Base->getType();
101   }
102 
103   /// Get an LValue path entry, which is known to not be an array index, as a
104   /// field or base class.
105   static
getAsBaseOrMember(APValue::LValuePathEntry E)106   APValue::BaseOrMemberType getAsBaseOrMember(APValue::LValuePathEntry E) {
107     APValue::BaseOrMemberType Value;
108     Value.setFromOpaqueValue(E.BaseOrMember);
109     return Value;
110   }
111 
112   /// Get an LValue path entry, which is known to not be an array index, as a
113   /// field declaration.
getAsField(APValue::LValuePathEntry E)114   static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
115     return dyn_cast<FieldDecl>(getAsBaseOrMember(E).getPointer());
116   }
117   /// Get an LValue path entry, which is known to not be an array index, as a
118   /// base class declaration.
getAsBaseClass(APValue::LValuePathEntry E)119   static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
120     return dyn_cast<CXXRecordDecl>(getAsBaseOrMember(E).getPointer());
121   }
122   /// Determine whether this LValue path entry for a base class names a virtual
123   /// base class.
isVirtualBaseClass(APValue::LValuePathEntry E)124   static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
125     return getAsBaseOrMember(E).getInt();
126   }
127 
128   /// Given a CallExpr, try to get the alloc_size attribute. May return null.
getAllocSizeAttr(const CallExpr * CE)129   static const AllocSizeAttr *getAllocSizeAttr(const CallExpr *CE) {
130     const FunctionDecl *Callee = CE->getDirectCallee();
131     return Callee ? Callee->getAttr<AllocSizeAttr>() : nullptr;
132   }
133 
134   /// Attempts to unwrap a CallExpr (with an alloc_size attribute) from an Expr.
135   /// This will look through a single cast.
136   ///
137   /// Returns null if we couldn't unwrap a function with alloc_size.
tryUnwrapAllocSizeCall(const Expr * E)138   static const CallExpr *tryUnwrapAllocSizeCall(const Expr *E) {
139     if (!E->getType()->isPointerType())
140       return nullptr;
141 
142     E = E->IgnoreParens();
143     // If we're doing a variable assignment from e.g. malloc(N), there will
144     // probably be a cast of some kind. In exotic cases, we might also see a
145     // top-level ExprWithCleanups. Ignore them either way.
146     if (const auto *EC = dyn_cast<ExprWithCleanups>(E))
147       E = EC->getSubExpr()->IgnoreParens();
148 
149     if (const auto *Cast = dyn_cast<CastExpr>(E))
150       E = Cast->getSubExpr()->IgnoreParens();
151 
152     if (const auto *CE = dyn_cast<CallExpr>(E))
153       return getAllocSizeAttr(CE) ? CE : nullptr;
154     return nullptr;
155   }
156 
157   /// Determines whether or not the given Base contains a call to a function
158   /// with the alloc_size attribute.
isBaseAnAllocSizeCall(APValue::LValueBase Base)159   static bool isBaseAnAllocSizeCall(APValue::LValueBase Base) {
160     const auto *E = Base.dyn_cast<const Expr *>();
161     return E && E->getType()->isPointerType() && tryUnwrapAllocSizeCall(E);
162   }
163 
164   /// The bound to claim that an array of unknown bound has.
165   /// The value in MostDerivedArraySize is undefined in this case. So, set it
166   /// to an arbitrary value that's likely to loudly break things if it's used.
167   static const uint64_t AssumedSizeForUnsizedArray =
168       std::numeric_limits<uint64_t>::max() / 2;
169 
170   /// Determines if an LValue with the given LValueBase will have an unsized
171   /// array in its designator.
172   /// Find the path length and type of the most-derived subobject in the given
173   /// path, and find the size of the containing array, if any.
174   static unsigned
findMostDerivedSubobject(ASTContext & Ctx,APValue::LValueBase Base,ArrayRef<APValue::LValuePathEntry> Path,uint64_t & ArraySize,QualType & Type,bool & IsArray,bool & FirstEntryIsUnsizedArray)175   findMostDerivedSubobject(ASTContext &Ctx, APValue::LValueBase Base,
176                            ArrayRef<APValue::LValuePathEntry> Path,
177                            uint64_t &ArraySize, QualType &Type, bool &IsArray,
178                            bool &FirstEntryIsUnsizedArray) {
179     // This only accepts LValueBases from APValues, and APValues don't support
180     // arrays that lack size info.
181     assert(!isBaseAnAllocSizeCall(Base) &&
182            "Unsized arrays shouldn't appear here");
183     unsigned MostDerivedLength = 0;
184     Type = getType(Base);
185 
186     for (unsigned I = 0, N = Path.size(); I != N; ++I) {
187       if (Type->isArrayType()) {
188         const ArrayType *AT = Ctx.getAsArrayType(Type);
189         Type = AT->getElementType();
190         MostDerivedLength = I + 1;
191         IsArray = true;
192 
193         if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
194           ArraySize = CAT->getSize().getZExtValue();
195         } else {
196           assert(I == 0 && "unexpected unsized array designator");
197           FirstEntryIsUnsizedArray = true;
198           ArraySize = AssumedSizeForUnsizedArray;
199         }
200       } else if (Type->isAnyComplexType()) {
201         const ComplexType *CT = Type->castAs<ComplexType>();
202         Type = CT->getElementType();
203         ArraySize = 2;
204         MostDerivedLength = I + 1;
205         IsArray = true;
206       } else if (const FieldDecl *FD = getAsField(Path[I])) {
207         Type = FD->getType();
208         ArraySize = 0;
209         MostDerivedLength = I + 1;
210         IsArray = false;
211       } else {
212         // Path[I] describes a base class.
213         ArraySize = 0;
214         IsArray = false;
215       }
216     }
217     return MostDerivedLength;
218   }
219 
220   // The order of this enum is important for diagnostics.
221   enum CheckSubobjectKind {
222     CSK_Base, CSK_Derived, CSK_Field, CSK_ArrayToPointer, CSK_ArrayIndex,
223     CSK_This, CSK_Real, CSK_Imag
224   };
225 
226   /// A path from a glvalue to a subobject of that glvalue.
227   struct SubobjectDesignator {
228     /// True if the subobject was named in a manner not supported by C++11. Such
229     /// lvalues can still be folded, but they are not core constant expressions
230     /// and we cannot perform lvalue-to-rvalue conversions on them.
231     unsigned Invalid : 1;
232 
233     /// Is this a pointer one past the end of an object?
234     unsigned IsOnePastTheEnd : 1;
235 
236     /// Indicator of whether the first entry is an unsized array.
237     unsigned FirstEntryIsAnUnsizedArray : 1;
238 
239     /// Indicator of whether the most-derived object is an array element.
240     unsigned MostDerivedIsArrayElement : 1;
241 
242     /// The length of the path to the most-derived object of which this is a
243     /// subobject.
244     unsigned MostDerivedPathLength : 28;
245 
246     /// The size of the array of which the most-derived object is an element.
247     /// This will always be 0 if the most-derived object is not an array
248     /// element. 0 is not an indicator of whether or not the most-derived object
249     /// is an array, however, because 0-length arrays are allowed.
250     ///
251     /// If the current array is an unsized array, the value of this is
252     /// undefined.
253     uint64_t MostDerivedArraySize;
254 
255     /// The type of the most derived object referred to by this address.
256     QualType MostDerivedType;
257 
258     typedef APValue::LValuePathEntry PathEntry;
259 
260     /// The entries on the path from the glvalue to the designated subobject.
261     SmallVector<PathEntry, 8> Entries;
262 
SubobjectDesignator__anon2dd07ee60111::SubobjectDesignator263     SubobjectDesignator() : Invalid(true) {}
264 
SubobjectDesignator__anon2dd07ee60111::SubobjectDesignator265     explicit SubobjectDesignator(QualType T)
266         : Invalid(false), IsOnePastTheEnd(false),
267           FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
268           MostDerivedPathLength(0), MostDerivedArraySize(0),
269           MostDerivedType(T) {}
270 
SubobjectDesignator__anon2dd07ee60111::SubobjectDesignator271     SubobjectDesignator(ASTContext &Ctx, const APValue &V)
272         : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
273           FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
274           MostDerivedPathLength(0), MostDerivedArraySize(0) {
275       assert(V.isLValue() && "Non-LValue used to make an LValue designator?");
276       if (!Invalid) {
277         IsOnePastTheEnd = V.isLValueOnePastTheEnd();
278         ArrayRef<PathEntry> VEntries = V.getLValuePath();
279         Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
280         if (V.getLValueBase()) {
281           bool IsArray = false;
282           bool FirstIsUnsizedArray = false;
283           MostDerivedPathLength = findMostDerivedSubobject(
284               Ctx, V.getLValueBase(), V.getLValuePath(), MostDerivedArraySize,
285               MostDerivedType, IsArray, FirstIsUnsizedArray);
286           MostDerivedIsArrayElement = IsArray;
287           FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
288         }
289       }
290     }
291 
setInvalid__anon2dd07ee60111::SubobjectDesignator292     void setInvalid() {
293       Invalid = true;
294       Entries.clear();
295     }
296 
297     /// Determine whether the most derived subobject is an array without a
298     /// known bound.
isMostDerivedAnUnsizedArray__anon2dd07ee60111::SubobjectDesignator299     bool isMostDerivedAnUnsizedArray() const {
300       assert(!Invalid && "Calling this makes no sense on invalid designators");
301       return Entries.size() == 1 && FirstEntryIsAnUnsizedArray;
302     }
303 
304     /// Determine what the most derived array's size is. Results in an assertion
305     /// failure if the most derived array lacks a size.
getMostDerivedArraySize__anon2dd07ee60111::SubobjectDesignator306     uint64_t getMostDerivedArraySize() const {
307       assert(!isMostDerivedAnUnsizedArray() && "Unsized array has no size");
308       return MostDerivedArraySize;
309     }
310 
311     /// Determine whether this is a one-past-the-end pointer.
isOnePastTheEnd__anon2dd07ee60111::SubobjectDesignator312     bool isOnePastTheEnd() const {
313       assert(!Invalid);
314       if (IsOnePastTheEnd)
315         return true;
316       if (!isMostDerivedAnUnsizedArray() && MostDerivedIsArrayElement &&
317           Entries[MostDerivedPathLength - 1].ArrayIndex == MostDerivedArraySize)
318         return true;
319       return false;
320     }
321 
322     /// Check that this refers to a valid subobject.
isValidSubobject__anon2dd07ee60111::SubobjectDesignator323     bool isValidSubobject() const {
324       if (Invalid)
325         return false;
326       return !isOnePastTheEnd();
327     }
328     /// Check that this refers to a valid subobject, and if not, produce a
329     /// relevant diagnostic and set the designator as invalid.
330     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
331 
332     /// Update this designator to refer to the first element within this array.
addArrayUnchecked__anon2dd07ee60111::SubobjectDesignator333     void addArrayUnchecked(const ConstantArrayType *CAT) {
334       PathEntry Entry;
335       Entry.ArrayIndex = 0;
336       Entries.push_back(Entry);
337 
338       // This is a most-derived object.
339       MostDerivedType = CAT->getElementType();
340       MostDerivedIsArrayElement = true;
341       MostDerivedArraySize = CAT->getSize().getZExtValue();
342       MostDerivedPathLength = Entries.size();
343     }
344     /// Update this designator to refer to the first element within the array of
345     /// elements of type T. This is an array of unknown size.
addUnsizedArrayUnchecked__anon2dd07ee60111::SubobjectDesignator346     void addUnsizedArrayUnchecked(QualType ElemTy) {
347       PathEntry Entry;
348       Entry.ArrayIndex = 0;
349       Entries.push_back(Entry);
350 
351       MostDerivedType = ElemTy;
352       MostDerivedIsArrayElement = true;
353       // The value in MostDerivedArraySize is undefined in this case. So, set it
354       // to an arbitrary value that's likely to loudly break things if it's
355       // used.
356       MostDerivedArraySize = AssumedSizeForUnsizedArray;
357       MostDerivedPathLength = Entries.size();
358     }
359     /// Update this designator to refer to the given base or member of this
360     /// object.
addDeclUnchecked__anon2dd07ee60111::SubobjectDesignator361     void addDeclUnchecked(const Decl *D, bool Virtual = false) {
362       PathEntry Entry;
363       APValue::BaseOrMemberType Value(D, Virtual);
364       Entry.BaseOrMember = Value.getOpaqueValue();
365       Entries.push_back(Entry);
366 
367       // If this isn't a base class, it's a new most-derived object.
368       if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
369         MostDerivedType = FD->getType();
370         MostDerivedIsArrayElement = false;
371         MostDerivedArraySize = 0;
372         MostDerivedPathLength = Entries.size();
373       }
374     }
375     /// Update this designator to refer to the given complex component.
addComplexUnchecked__anon2dd07ee60111::SubobjectDesignator376     void addComplexUnchecked(QualType EltTy, bool Imag) {
377       PathEntry Entry;
378       Entry.ArrayIndex = Imag;
379       Entries.push_back(Entry);
380 
381       // This is technically a most-derived object, though in practice this
382       // is unlikely to matter.
383       MostDerivedType = EltTy;
384       MostDerivedIsArrayElement = true;
385       MostDerivedArraySize = 2;
386       MostDerivedPathLength = Entries.size();
387     }
388     void diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, const Expr *E);
389     void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E,
390                                    const APSInt &N);
391     /// Add N to the address of this subobject.
adjustIndex__anon2dd07ee60111::SubobjectDesignator392     void adjustIndex(EvalInfo &Info, const Expr *E, APSInt N) {
393       if (Invalid || !N) return;
394       uint64_t TruncatedN = N.extOrTrunc(64).getZExtValue();
395       if (isMostDerivedAnUnsizedArray()) {
396         diagnoseUnsizedArrayPointerArithmetic(Info, E);
397         // Can't verify -- trust that the user is doing the right thing (or if
398         // not, trust that the caller will catch the bad behavior).
399         // FIXME: Should we reject if this overflows, at least?
400         Entries.back().ArrayIndex += TruncatedN;
401         return;
402       }
403 
404       // [expr.add]p4: For the purposes of these operators, a pointer to a
405       // nonarray object behaves the same as a pointer to the first element of
406       // an array of length one with the type of the object as its element type.
407       bool IsArray = MostDerivedPathLength == Entries.size() &&
408                      MostDerivedIsArrayElement;
409       uint64_t ArrayIndex =
410           IsArray ? Entries.back().ArrayIndex : (uint64_t)IsOnePastTheEnd;
411       uint64_t ArraySize =
412           IsArray ? getMostDerivedArraySize() : (uint64_t)1;
413 
414       if (N < -(int64_t)ArrayIndex || N > ArraySize - ArrayIndex) {
415         // Calculate the actual index in a wide enough type, so we can include
416         // it in the note.
417         N = N.extend(std::max<unsigned>(N.getBitWidth() + 1, 65));
418         (llvm::APInt&)N += ArrayIndex;
419         assert(N.ugt(ArraySize) && "bounds check failed for in-bounds index");
420         diagnosePointerArithmetic(Info, E, N);
421         setInvalid();
422         return;
423       }
424 
425       ArrayIndex += TruncatedN;
426       assert(ArrayIndex <= ArraySize &&
427              "bounds check succeeded for out-of-bounds index");
428 
429       if (IsArray)
430         Entries.back().ArrayIndex = ArrayIndex;
431       else
432         IsOnePastTheEnd = (ArrayIndex != 0);
433     }
434   };
435 
436   /// A stack frame in the constexpr call stack.
437   struct CallStackFrame {
438     EvalInfo &Info;
439 
440     /// Parent - The caller of this stack frame.
441     CallStackFrame *Caller;
442 
443     /// Callee - The function which was called.
444     const FunctionDecl *Callee;
445 
446     /// This - The binding for the this pointer in this call, if any.
447     const LValue *This;
448 
449     /// Arguments - Parameter bindings for this function call, indexed by
450     /// parameters' function scope indices.
451     APValue *Arguments;
452 
453     // Note that we intentionally use std::map here so that references to
454     // values are stable.
455     typedef std::pair<const void *, unsigned> MapKeyTy;
456     typedef std::map<MapKeyTy, APValue> MapTy;
457     /// Temporaries - Temporary lvalues materialized within this stack frame.
458     MapTy Temporaries;
459 
460     /// CallLoc - The location of the call expression for this call.
461     SourceLocation CallLoc;
462 
463     /// Index - The call index of this call.
464     unsigned Index;
465 
466     /// The stack of integers for tracking version numbers for temporaries.
467     SmallVector<unsigned, 2> TempVersionStack = {1};
468     unsigned CurTempVersion = TempVersionStack.back();
469 
getTempVersion__anon2dd07ee60111::CallStackFrame470     unsigned getTempVersion() const { return TempVersionStack.back(); }
471 
pushTempVersion__anon2dd07ee60111::CallStackFrame472     void pushTempVersion() {
473       TempVersionStack.push_back(++CurTempVersion);
474     }
475 
popTempVersion__anon2dd07ee60111::CallStackFrame476     void popTempVersion() {
477       TempVersionStack.pop_back();
478     }
479 
480     // FIXME: Adding this to every 'CallStackFrame' may have a nontrivial impact
481     // on the overall stack usage of deeply-recursing constexpr evaluataions.
482     // (We should cache this map rather than recomputing it repeatedly.)
483     // But let's try this and see how it goes; we can look into caching the map
484     // as a later change.
485 
486     /// LambdaCaptureFields - Mapping from captured variables/this to
487     /// corresponding data members in the closure class.
488     llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
489     FieldDecl *LambdaThisCaptureField;
490 
491     CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
492                    const FunctionDecl *Callee, const LValue *This,
493                    APValue *Arguments);
494     ~CallStackFrame();
495 
496     // Return the temporary for Key whose version number is Version.
getTemporary__anon2dd07ee60111::CallStackFrame497     APValue *getTemporary(const void *Key, unsigned Version) {
498       MapKeyTy KV(Key, Version);
499       auto LB = Temporaries.lower_bound(KV);
500       if (LB != Temporaries.end() && LB->first == KV)
501         return &LB->second;
502       // Pair (Key,Version) wasn't found in the map. Check that no elements
503       // in the map have 'Key' as their key.
504       assert((LB == Temporaries.end() || LB->first.first != Key) &&
505              (LB == Temporaries.begin() || std::prev(LB)->first.first != Key) &&
506              "Element with key 'Key' found in map");
507       return nullptr;
508     }
509 
510     // Return the current temporary for Key in the map.
getCurrentTemporary__anon2dd07ee60111::CallStackFrame511     APValue *getCurrentTemporary(const void *Key) {
512       auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX));
513       if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
514         return &std::prev(UB)->second;
515       return nullptr;
516     }
517 
518     // Return the version number of the current temporary for Key.
getCurrentTemporaryVersion__anon2dd07ee60111::CallStackFrame519     unsigned getCurrentTemporaryVersion(const void *Key) const {
520       auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX));
521       if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
522         return std::prev(UB)->first.second;
523       return 0;
524     }
525 
526     APValue &createTemporary(const void *Key, bool IsLifetimeExtended);
527   };
528 
529   /// Temporarily override 'this'.
530   class ThisOverrideRAII {
531   public:
ThisOverrideRAII(CallStackFrame & Frame,const LValue * NewThis,bool Enable)532     ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
533         : Frame(Frame), OldThis(Frame.This) {
534       if (Enable)
535         Frame.This = NewThis;
536     }
~ThisOverrideRAII()537     ~ThisOverrideRAII() {
538       Frame.This = OldThis;
539     }
540   private:
541     CallStackFrame &Frame;
542     const LValue *OldThis;
543   };
544 
545   /// A partial diagnostic which we might know in advance that we are not going
546   /// to emit.
547   class OptionalDiagnostic {
548     PartialDiagnostic *Diag;
549 
550   public:
OptionalDiagnostic(PartialDiagnostic * Diag=nullptr)551     explicit OptionalDiagnostic(PartialDiagnostic *Diag = nullptr)
552       : Diag(Diag) {}
553 
554     template<typename T>
operator <<(const T & v)555     OptionalDiagnostic &operator<<(const T &v) {
556       if (Diag)
557         *Diag << v;
558       return *this;
559     }
560 
operator <<(const APSInt & I)561     OptionalDiagnostic &operator<<(const APSInt &I) {
562       if (Diag) {
563         SmallVector<char, 32> Buffer;
564         I.toString(Buffer);
565         *Diag << StringRef(Buffer.data(), Buffer.size());
566       }
567       return *this;
568     }
569 
operator <<(const APFloat & F)570     OptionalDiagnostic &operator<<(const APFloat &F) {
571       if (Diag) {
572         // FIXME: Force the precision of the source value down so we don't
573         // print digits which are usually useless (we don't really care here if
574         // we truncate a digit by accident in edge cases).  Ideally,
575         // APFloat::toString would automatically print the shortest
576         // representation which rounds to the correct value, but it's a bit
577         // tricky to implement.
578         unsigned precision =
579             llvm::APFloat::semanticsPrecision(F.getSemantics());
580         precision = (precision * 59 + 195) / 196;
581         SmallVector<char, 32> Buffer;
582         F.toString(Buffer, precision);
583         *Diag << StringRef(Buffer.data(), Buffer.size());
584       }
585       return *this;
586     }
587   };
588 
589   /// A cleanup, and a flag indicating whether it is lifetime-extended.
590   class Cleanup {
591     llvm::PointerIntPair<APValue*, 1, bool> Value;
592 
593   public:
Cleanup(APValue * Val,bool IsLifetimeExtended)594     Cleanup(APValue *Val, bool IsLifetimeExtended)
595         : Value(Val, IsLifetimeExtended) {}
596 
isLifetimeExtended() const597     bool isLifetimeExtended() const { return Value.getInt(); }
endLifetime()598     void endLifetime() {
599       *Value.getPointer() = APValue();
600     }
601   };
602 
603   /// EvalInfo - This is a private struct used by the evaluator to capture
604   /// information about a subexpression as it is folded.  It retains information
605   /// about the AST context, but also maintains information about the folded
606   /// expression.
607   ///
608   /// If an expression could be evaluated, it is still possible it is not a C
609   /// "integer constant expression" or constant expression.  If not, this struct
610   /// captures information about how and why not.
611   ///
612   /// One bit of information passed *into* the request for constant folding
613   /// indicates whether the subexpression is "evaluated" or not according to C
614   /// rules.  For example, the RHS of (0 && foo()) is not evaluated.  We can
615   /// evaluate the expression regardless of what the RHS is, but C only allows
616   /// certain things in certain situations.
617   struct EvalInfo {
618     ASTContext &Ctx;
619 
620     /// EvalStatus - Contains information about the evaluation.
621     Expr::EvalStatus &EvalStatus;
622 
623     /// CurrentCall - The top of the constexpr call stack.
624     CallStackFrame *CurrentCall;
625 
626     /// CallStackDepth - The number of calls in the call stack right now.
627     unsigned CallStackDepth;
628 
629     /// NextCallIndex - The next call index to assign.
630     unsigned NextCallIndex;
631 
632     /// StepsLeft - The remaining number of evaluation steps we're permitted
633     /// to perform. This is essentially a limit for the number of statements
634     /// we will evaluate.
635     unsigned StepsLeft;
636 
637     /// BottomFrame - The frame in which evaluation started. This must be
638     /// initialized after CurrentCall and CallStackDepth.
639     CallStackFrame BottomFrame;
640 
641     /// A stack of values whose lifetimes end at the end of some surrounding
642     /// evaluation frame.
643     llvm::SmallVector<Cleanup, 16> CleanupStack;
644 
645     /// EvaluatingDecl - This is the declaration whose initializer is being
646     /// evaluated, if any.
647     APValue::LValueBase EvaluatingDecl;
648 
649     /// EvaluatingDeclValue - This is the value being constructed for the
650     /// declaration whose initializer is being evaluated, if any.
651     APValue *EvaluatingDeclValue;
652 
653     /// EvaluatingObject - Pair of the AST node that an lvalue represents and
654     /// the call index that that lvalue was allocated in.
655     typedef std::pair<APValue::LValueBase, std::pair<unsigned, unsigned>>
656         EvaluatingObject;
657 
658     /// EvaluatingConstructors - Set of objects that are currently being
659     /// constructed.
660     llvm::DenseSet<EvaluatingObject> EvaluatingConstructors;
661 
662     struct EvaluatingConstructorRAII {
663       EvalInfo &EI;
664       EvaluatingObject Object;
665       bool DidInsert;
EvaluatingConstructorRAII__anon2dd07ee60111::EvalInfo::EvaluatingConstructorRAII666       EvaluatingConstructorRAII(EvalInfo &EI, EvaluatingObject Object)
667           : EI(EI), Object(Object) {
668         DidInsert = EI.EvaluatingConstructors.insert(Object).second;
669       }
~EvaluatingConstructorRAII__anon2dd07ee60111::EvalInfo::EvaluatingConstructorRAII670       ~EvaluatingConstructorRAII() {
671         if (DidInsert) EI.EvaluatingConstructors.erase(Object);
672       }
673     };
674 
isEvaluatingConstructor__anon2dd07ee60111::EvalInfo675     bool isEvaluatingConstructor(APValue::LValueBase Decl, unsigned CallIndex,
676                                  unsigned Version) {
677       return EvaluatingConstructors.count(
678           EvaluatingObject(Decl, {CallIndex, Version}));
679     }
680 
681     /// The current array initialization index, if we're performing array
682     /// initialization.
683     uint64_t ArrayInitIndex = -1;
684 
685     /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
686     /// notes attached to it will also be stored, otherwise they will not be.
687     bool HasActiveDiagnostic;
688 
689     /// Have we emitted a diagnostic explaining why we couldn't constant
690     /// fold (not just why it's not strictly a constant expression)?
691     bool HasFoldFailureDiagnostic;
692 
693     /// Whether or not we're currently speculatively evaluating.
694     bool IsSpeculativelyEvaluating;
695 
696     enum EvaluationMode {
697       /// Evaluate as a constant expression. Stop if we find that the expression
698       /// is not a constant expression.
699       EM_ConstantExpression,
700 
701       /// Evaluate as a potential constant expression. Keep going if we hit a
702       /// construct that we can't evaluate yet (because we don't yet know the
703       /// value of something) but stop if we hit something that could never be
704       /// a constant expression.
705       EM_PotentialConstantExpression,
706 
707       /// Fold the expression to a constant. Stop if we hit a side-effect that
708       /// we can't model.
709       EM_ConstantFold,
710 
711       /// Evaluate the expression looking for integer overflow and similar
712       /// issues. Don't worry about side-effects, and try to visit all
713       /// subexpressions.
714       EM_EvaluateForOverflow,
715 
716       /// Evaluate in any way we know how. Don't worry about side-effects that
717       /// can't be modeled.
718       EM_IgnoreSideEffects,
719 
720       /// Evaluate as a constant expression. Stop if we find that the expression
721       /// is not a constant expression. Some expressions can be retried in the
722       /// optimizer if we don't constant fold them here, but in an unevaluated
723       /// context we try to fold them immediately since the optimizer never
724       /// gets a chance to look at it.
725       EM_ConstantExpressionUnevaluated,
726 
727       /// Evaluate as a potential constant expression. Keep going if we hit a
728       /// construct that we can't evaluate yet (because we don't yet know the
729       /// value of something) but stop if we hit something that could never be
730       /// a constant expression. Some expressions can be retried in the
731       /// optimizer if we don't constant fold them here, but in an unevaluated
732       /// context we try to fold them immediately since the optimizer never
733       /// gets a chance to look at it.
734       EM_PotentialConstantExpressionUnevaluated,
735 
736       /// Evaluate as a constant expression. In certain scenarios, if:
737       /// - we find a MemberExpr with a base that can't be evaluated, or
738       /// - we find a variable initialized with a call to a function that has
739       ///   the alloc_size attribute on it
740       /// then we may consider evaluation to have succeeded.
741       ///
742       /// In either case, the LValue returned shall have an invalid base; in the
743       /// former, the base will be the invalid MemberExpr, in the latter, the
744       /// base will be either the alloc_size CallExpr or a CastExpr wrapping
745       /// said CallExpr.
746       EM_OffsetFold,
747     } EvalMode;
748 
749     /// Are we checking whether the expression is a potential constant
750     /// expression?
checkingPotentialConstantExpression__anon2dd07ee60111::EvalInfo751     bool checkingPotentialConstantExpression() const {
752       return EvalMode == EM_PotentialConstantExpression ||
753              EvalMode == EM_PotentialConstantExpressionUnevaluated;
754     }
755 
756     /// Are we checking an expression for overflow?
757     // FIXME: We should check for any kind of undefined or suspicious behavior
758     // in such constructs, not just overflow.
checkingForOverflow__anon2dd07ee60111::EvalInfo759     bool checkingForOverflow() { return EvalMode == EM_EvaluateForOverflow; }
760 
EvalInfo__anon2dd07ee60111::EvalInfo761     EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode)
762       : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr),
763         CallStackDepth(0), NextCallIndex(1),
764         StepsLeft(getLangOpts().ConstexprStepLimit),
765         BottomFrame(*this, SourceLocation(), nullptr, nullptr, nullptr),
766         EvaluatingDecl((const ValueDecl *)nullptr),
767         EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false),
768         HasFoldFailureDiagnostic(false), IsSpeculativelyEvaluating(false),
769         EvalMode(Mode) {}
770 
setEvaluatingDecl__anon2dd07ee60111::EvalInfo771     void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value) {
772       EvaluatingDecl = Base;
773       EvaluatingDeclValue = &Value;
774       EvaluatingConstructors.insert({Base, {0, 0}});
775     }
776 
getLangOpts__anon2dd07ee60111::EvalInfo777     const LangOptions &getLangOpts() const { return Ctx.getLangOpts(); }
778 
CheckCallLimit__anon2dd07ee60111::EvalInfo779     bool CheckCallLimit(SourceLocation Loc) {
780       // Don't perform any constexpr calls (other than the call we're checking)
781       // when checking a potential constant expression.
782       if (checkingPotentialConstantExpression() && CallStackDepth > 1)
783         return false;
784       if (NextCallIndex == 0) {
785         // NextCallIndex has wrapped around.
786         FFDiag(Loc, diag::note_constexpr_call_limit_exceeded);
787         return false;
788       }
789       if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
790         return true;
791       FFDiag(Loc, diag::note_constexpr_depth_limit_exceeded)
792         << getLangOpts().ConstexprCallDepth;
793       return false;
794     }
795 
getCallFrame__anon2dd07ee60111::EvalInfo796     CallStackFrame *getCallFrame(unsigned CallIndex) {
797       assert(CallIndex && "no call index in getCallFrame");
798       // We will eventually hit BottomFrame, which has Index 1, so Frame can't
799       // be null in this loop.
800       CallStackFrame *Frame = CurrentCall;
801       while (Frame->Index > CallIndex)
802         Frame = Frame->Caller;
803       return (Frame->Index == CallIndex) ? Frame : nullptr;
804     }
805 
nextStep__anon2dd07ee60111::EvalInfo806     bool nextStep(const Stmt *S) {
807       if (!StepsLeft) {
808         FFDiag(S->getLocStart(), diag::note_constexpr_step_limit_exceeded);
809         return false;
810       }
811       --StepsLeft;
812       return true;
813     }
814 
815   private:
816     /// Add a diagnostic to the diagnostics list.
addDiag__anon2dd07ee60111::EvalInfo817     PartialDiagnostic &addDiag(SourceLocation Loc, diag::kind DiagId) {
818       PartialDiagnostic PD(DiagId, Ctx.getDiagAllocator());
819       EvalStatus.Diag->push_back(std::make_pair(Loc, PD));
820       return EvalStatus.Diag->back().second;
821     }
822 
823     /// Add notes containing a call stack to the current point of evaluation.
824     void addCallStack(unsigned Limit);
825 
826   private:
Diag__anon2dd07ee60111::EvalInfo827     OptionalDiagnostic Diag(SourceLocation Loc, diag::kind DiagId,
828                             unsigned ExtraNotes, bool IsCCEDiag) {
829 
830       if (EvalStatus.Diag) {
831         // If we have a prior diagnostic, it will be noting that the expression
832         // isn't a constant expression. This diagnostic is more important,
833         // unless we require this evaluation to produce a constant expression.
834         //
835         // FIXME: We might want to show both diagnostics to the user in
836         // EM_ConstantFold mode.
837         if (!EvalStatus.Diag->empty()) {
838           switch (EvalMode) {
839           case EM_ConstantFold:
840           case EM_IgnoreSideEffects:
841           case EM_EvaluateForOverflow:
842             if (!HasFoldFailureDiagnostic)
843               break;
844             // We've already failed to fold something. Keep that diagnostic.
845             LLVM_FALLTHROUGH;
846           case EM_ConstantExpression:
847           case EM_PotentialConstantExpression:
848           case EM_ConstantExpressionUnevaluated:
849           case EM_PotentialConstantExpressionUnevaluated:
850           case EM_OffsetFold:
851             HasActiveDiagnostic = false;
852             return OptionalDiagnostic();
853           }
854         }
855 
856         unsigned CallStackNotes = CallStackDepth - 1;
857         unsigned Limit = Ctx.getDiagnostics().getConstexprBacktraceLimit();
858         if (Limit)
859           CallStackNotes = std::min(CallStackNotes, Limit + 1);
860         if (checkingPotentialConstantExpression())
861           CallStackNotes = 0;
862 
863         HasActiveDiagnostic = true;
864         HasFoldFailureDiagnostic = !IsCCEDiag;
865         EvalStatus.Diag->clear();
866         EvalStatus.Diag->reserve(1 + ExtraNotes + CallStackNotes);
867         addDiag(Loc, DiagId);
868         if (!checkingPotentialConstantExpression())
869           addCallStack(Limit);
870         return OptionalDiagnostic(&(*EvalStatus.Diag)[0].second);
871       }
872       HasActiveDiagnostic = false;
873       return OptionalDiagnostic();
874     }
875   public:
876     // Diagnose that the evaluation could not be folded (FF => FoldFailure)
877     OptionalDiagnostic
FFDiag__anon2dd07ee60111::EvalInfo878     FFDiag(SourceLocation Loc,
879           diag::kind DiagId = diag::note_invalid_subexpr_in_const_expr,
880           unsigned ExtraNotes = 0) {
881       return Diag(Loc, DiagId, ExtraNotes, false);
882     }
883 
FFDiag__anon2dd07ee60111::EvalInfo884     OptionalDiagnostic FFDiag(const Expr *E, diag::kind DiagId
885                               = diag::note_invalid_subexpr_in_const_expr,
886                             unsigned ExtraNotes = 0) {
887       if (EvalStatus.Diag)
888         return Diag(E->getExprLoc(), DiagId, ExtraNotes, /*IsCCEDiag*/false);
889       HasActiveDiagnostic = false;
890       return OptionalDiagnostic();
891     }
892 
893     /// Diagnose that the evaluation does not produce a C++11 core constant
894     /// expression.
895     ///
896     /// FIXME: Stop evaluating if we're in EM_ConstantExpression or
897     /// EM_PotentialConstantExpression mode and we produce one of these.
CCEDiag__anon2dd07ee60111::EvalInfo898     OptionalDiagnostic CCEDiag(SourceLocation Loc, diag::kind DiagId
899                                  = diag::note_invalid_subexpr_in_const_expr,
900                                unsigned ExtraNotes = 0) {
901       // Don't override a previous diagnostic. Don't bother collecting
902       // diagnostics if we're evaluating for overflow.
903       if (!EvalStatus.Diag || !EvalStatus.Diag->empty()) {
904         HasActiveDiagnostic = false;
905         return OptionalDiagnostic();
906       }
907       return Diag(Loc, DiagId, ExtraNotes, true);
908     }
CCEDiag__anon2dd07ee60111::EvalInfo909     OptionalDiagnostic CCEDiag(const Expr *E, diag::kind DiagId
910                                  = diag::note_invalid_subexpr_in_const_expr,
911                                unsigned ExtraNotes = 0) {
912       return CCEDiag(E->getExprLoc(), DiagId, ExtraNotes);
913     }
914     /// Add a note to a prior diagnostic.
Note__anon2dd07ee60111::EvalInfo915     OptionalDiagnostic Note(SourceLocation Loc, diag::kind DiagId) {
916       if (!HasActiveDiagnostic)
917         return OptionalDiagnostic();
918       return OptionalDiagnostic(&addDiag(Loc, DiagId));
919     }
920 
921     /// Add a stack of notes to a prior diagnostic.
addNotes__anon2dd07ee60111::EvalInfo922     void addNotes(ArrayRef<PartialDiagnosticAt> Diags) {
923       if (HasActiveDiagnostic) {
924         EvalStatus.Diag->insert(EvalStatus.Diag->end(),
925                                 Diags.begin(), Diags.end());
926       }
927     }
928 
929     /// Should we continue evaluation after encountering a side-effect that we
930     /// couldn't model?
keepEvaluatingAfterSideEffect__anon2dd07ee60111::EvalInfo931     bool keepEvaluatingAfterSideEffect() {
932       switch (EvalMode) {
933       case EM_PotentialConstantExpression:
934       case EM_PotentialConstantExpressionUnevaluated:
935       case EM_EvaluateForOverflow:
936       case EM_IgnoreSideEffects:
937         return true;
938 
939       case EM_ConstantExpression:
940       case EM_ConstantExpressionUnevaluated:
941       case EM_ConstantFold:
942       case EM_OffsetFold:
943         return false;
944       }
945       llvm_unreachable("Missed EvalMode case");
946     }
947 
948     /// Note that we have had a side-effect, and determine whether we should
949     /// keep evaluating.
noteSideEffect__anon2dd07ee60111::EvalInfo950     bool noteSideEffect() {
951       EvalStatus.HasSideEffects = true;
952       return keepEvaluatingAfterSideEffect();
953     }
954 
955     /// Should we continue evaluation after encountering undefined behavior?
keepEvaluatingAfterUndefinedBehavior__anon2dd07ee60111::EvalInfo956     bool keepEvaluatingAfterUndefinedBehavior() {
957       switch (EvalMode) {
958       case EM_EvaluateForOverflow:
959       case EM_IgnoreSideEffects:
960       case EM_ConstantFold:
961       case EM_OffsetFold:
962         return true;
963 
964       case EM_PotentialConstantExpression:
965       case EM_PotentialConstantExpressionUnevaluated:
966       case EM_ConstantExpression:
967       case EM_ConstantExpressionUnevaluated:
968         return false;
969       }
970       llvm_unreachable("Missed EvalMode case");
971     }
972 
973     /// Note that we hit something that was technically undefined behavior, but
974     /// that we can evaluate past it (such as signed overflow or floating-point
975     /// division by zero.)
noteUndefinedBehavior__anon2dd07ee60111::EvalInfo976     bool noteUndefinedBehavior() {
977       EvalStatus.HasUndefinedBehavior = true;
978       return keepEvaluatingAfterUndefinedBehavior();
979     }
980 
981     /// Should we continue evaluation as much as possible after encountering a
982     /// construct which can't be reduced to a value?
keepEvaluatingAfterFailure__anon2dd07ee60111::EvalInfo983     bool keepEvaluatingAfterFailure() {
984       if (!StepsLeft)
985         return false;
986 
987       switch (EvalMode) {
988       case EM_PotentialConstantExpression:
989       case EM_PotentialConstantExpressionUnevaluated:
990       case EM_EvaluateForOverflow:
991         return true;
992 
993       case EM_ConstantExpression:
994       case EM_ConstantExpressionUnevaluated:
995       case EM_ConstantFold:
996       case EM_IgnoreSideEffects:
997       case EM_OffsetFold:
998         return false;
999       }
1000       llvm_unreachable("Missed EvalMode case");
1001     }
1002 
1003     /// Notes that we failed to evaluate an expression that other expressions
1004     /// directly depend on, and determine if we should keep evaluating. This
1005     /// should only be called if we actually intend to keep evaluating.
1006     ///
1007     /// Call noteSideEffect() instead if we may be able to ignore the value that
1008     /// we failed to evaluate, e.g. if we failed to evaluate Foo() in:
1009     ///
1010     /// (Foo(), 1)      // use noteSideEffect
1011     /// (Foo() || true) // use noteSideEffect
1012     /// Foo() + 1       // use noteFailure
noteFailure__anon2dd07ee60111::EvalInfo1013     LLVM_NODISCARD bool noteFailure() {
1014       // Failure when evaluating some expression often means there is some
1015       // subexpression whose evaluation was skipped. Therefore, (because we
1016       // don't track whether we skipped an expression when unwinding after an
1017       // evaluation failure) every evaluation failure that bubbles up from a
1018       // subexpression implies that a side-effect has potentially happened. We
1019       // skip setting the HasSideEffects flag to true until we decide to
1020       // continue evaluating after that point, which happens here.
1021       bool KeepGoing = keepEvaluatingAfterFailure();
1022       EvalStatus.HasSideEffects |= KeepGoing;
1023       return KeepGoing;
1024     }
1025 
1026     class ArrayInitLoopIndex {
1027       EvalInfo &Info;
1028       uint64_t OuterIndex;
1029 
1030     public:
ArrayInitLoopIndex(EvalInfo & Info)1031       ArrayInitLoopIndex(EvalInfo &Info)
1032           : Info(Info), OuterIndex(Info.ArrayInitIndex) {
1033         Info.ArrayInitIndex = 0;
1034       }
~ArrayInitLoopIndex()1035       ~ArrayInitLoopIndex() { Info.ArrayInitIndex = OuterIndex; }
1036 
operator uint64_t&()1037       operator uint64_t&() { return Info.ArrayInitIndex; }
1038     };
1039   };
1040 
1041   /// Object used to treat all foldable expressions as constant expressions.
1042   struct FoldConstant {
1043     EvalInfo &Info;
1044     bool Enabled;
1045     bool HadNoPriorDiags;
1046     EvalInfo::EvaluationMode OldMode;
1047 
FoldConstant__anon2dd07ee60111::FoldConstant1048     explicit FoldConstant(EvalInfo &Info, bool Enabled)
1049       : Info(Info),
1050         Enabled(Enabled),
1051         HadNoPriorDiags(Info.EvalStatus.Diag &&
1052                         Info.EvalStatus.Diag->empty() &&
1053                         !Info.EvalStatus.HasSideEffects),
1054         OldMode(Info.EvalMode) {
1055       if (Enabled &&
1056           (Info.EvalMode == EvalInfo::EM_ConstantExpression ||
1057            Info.EvalMode == EvalInfo::EM_ConstantExpressionUnevaluated))
1058         Info.EvalMode = EvalInfo::EM_ConstantFold;
1059     }
keepDiagnostics__anon2dd07ee60111::FoldConstant1060     void keepDiagnostics() { Enabled = false; }
~FoldConstant__anon2dd07ee60111::FoldConstant1061     ~FoldConstant() {
1062       if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() &&
1063           !Info.EvalStatus.HasSideEffects)
1064         Info.EvalStatus.Diag->clear();
1065       Info.EvalMode = OldMode;
1066     }
1067   };
1068 
1069   /// RAII object used to treat the current evaluation as the correct pointer
1070   /// offset fold for the current EvalMode
1071   struct FoldOffsetRAII {
1072     EvalInfo &Info;
1073     EvalInfo::EvaluationMode OldMode;
FoldOffsetRAII__anon2dd07ee60111::FoldOffsetRAII1074     explicit FoldOffsetRAII(EvalInfo &Info)
1075         : Info(Info), OldMode(Info.EvalMode) {
1076       if (!Info.checkingPotentialConstantExpression())
1077         Info.EvalMode = EvalInfo::EM_OffsetFold;
1078     }
1079 
~FoldOffsetRAII__anon2dd07ee60111::FoldOffsetRAII1080     ~FoldOffsetRAII() { Info.EvalMode = OldMode; }
1081   };
1082 
1083   /// RAII object used to optionally suppress diagnostics and side-effects from
1084   /// a speculative evaluation.
1085   class SpeculativeEvaluationRAII {
1086     EvalInfo *Info = nullptr;
1087     Expr::EvalStatus OldStatus;
1088     bool OldIsSpeculativelyEvaluating;
1089 
moveFromAndCancel(SpeculativeEvaluationRAII && Other)1090     void moveFromAndCancel(SpeculativeEvaluationRAII &&Other) {
1091       Info = Other.Info;
1092       OldStatus = Other.OldStatus;
1093       OldIsSpeculativelyEvaluating = Other.OldIsSpeculativelyEvaluating;
1094       Other.Info = nullptr;
1095     }
1096 
maybeRestoreState()1097     void maybeRestoreState() {
1098       if (!Info)
1099         return;
1100 
1101       Info->EvalStatus = OldStatus;
1102       Info->IsSpeculativelyEvaluating = OldIsSpeculativelyEvaluating;
1103     }
1104 
1105   public:
1106     SpeculativeEvaluationRAII() = default;
1107 
SpeculativeEvaluationRAII(EvalInfo & Info,SmallVectorImpl<PartialDiagnosticAt> * NewDiag=nullptr)1108     SpeculativeEvaluationRAII(
1109         EvalInfo &Info, SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr)
1110         : Info(&Info), OldStatus(Info.EvalStatus),
1111           OldIsSpeculativelyEvaluating(Info.IsSpeculativelyEvaluating) {
1112       Info.EvalStatus.Diag = NewDiag;
1113       Info.IsSpeculativelyEvaluating = true;
1114     }
1115 
1116     SpeculativeEvaluationRAII(const SpeculativeEvaluationRAII &Other) = delete;
SpeculativeEvaluationRAII(SpeculativeEvaluationRAII && Other)1117     SpeculativeEvaluationRAII(SpeculativeEvaluationRAII &&Other) {
1118       moveFromAndCancel(std::move(Other));
1119     }
1120 
operator =(SpeculativeEvaluationRAII && Other)1121     SpeculativeEvaluationRAII &operator=(SpeculativeEvaluationRAII &&Other) {
1122       maybeRestoreState();
1123       moveFromAndCancel(std::move(Other));
1124       return *this;
1125     }
1126 
~SpeculativeEvaluationRAII()1127     ~SpeculativeEvaluationRAII() { maybeRestoreState(); }
1128   };
1129 
1130   /// RAII object wrapping a full-expression or block scope, and handling
1131   /// the ending of the lifetime of temporaries created within it.
1132   template<bool IsFullExpression>
1133   class ScopeRAII {
1134     EvalInfo &Info;
1135     unsigned OldStackSize;
1136   public:
ScopeRAII(EvalInfo & Info)1137     ScopeRAII(EvalInfo &Info)
1138         : Info(Info), OldStackSize(Info.CleanupStack.size()) {
1139       // Push a new temporary version. This is needed to distinguish between
1140       // temporaries created in different iterations of a loop.
1141       Info.CurrentCall->pushTempVersion();
1142     }
~ScopeRAII()1143     ~ScopeRAII() {
1144       // Body moved to a static method to encourage the compiler to inline away
1145       // instances of this class.
1146       cleanup(Info, OldStackSize);
1147       Info.CurrentCall->popTempVersion();
1148     }
1149   private:
cleanup(EvalInfo & Info,unsigned OldStackSize)1150     static void cleanup(EvalInfo &Info, unsigned OldStackSize) {
1151       unsigned NewEnd = OldStackSize;
1152       for (unsigned I = OldStackSize, N = Info.CleanupStack.size();
1153            I != N; ++I) {
1154         if (IsFullExpression && Info.CleanupStack[I].isLifetimeExtended()) {
1155           // Full-expression cleanup of a lifetime-extended temporary: nothing
1156           // to do, just move this cleanup to the right place in the stack.
1157           std::swap(Info.CleanupStack[I], Info.CleanupStack[NewEnd]);
1158           ++NewEnd;
1159         } else {
1160           // End the lifetime of the object.
1161           Info.CleanupStack[I].endLifetime();
1162         }
1163       }
1164       Info.CleanupStack.erase(Info.CleanupStack.begin() + NewEnd,
1165                               Info.CleanupStack.end());
1166     }
1167   };
1168   typedef ScopeRAII<false> BlockScopeRAII;
1169   typedef ScopeRAII<true> FullExpressionRAII;
1170 }
1171 
checkSubobject(EvalInfo & Info,const Expr * E,CheckSubobjectKind CSK)1172 bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
1173                                          CheckSubobjectKind CSK) {
1174   if (Invalid)
1175     return false;
1176   if (isOnePastTheEnd()) {
1177     Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
1178       << CSK;
1179     setInvalid();
1180     return false;
1181   }
1182   // Note, we do not diagnose if isMostDerivedAnUnsizedArray(), because there
1183   // must actually be at least one array element; even a VLA cannot have a
1184   // bound of zero. And if our index is nonzero, we already had a CCEDiag.
1185   return true;
1186 }
1187 
diagnoseUnsizedArrayPointerArithmetic(EvalInfo & Info,const Expr * E)1188 void SubobjectDesignator::diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info,
1189                                                                 const Expr *E) {
1190   Info.CCEDiag(E, diag::note_constexpr_unsized_array_indexed);
1191   // Do not set the designator as invalid: we can represent this situation,
1192   // and correct handling of __builtin_object_size requires us to do so.
1193 }
1194 
diagnosePointerArithmetic(EvalInfo & Info,const Expr * E,const APSInt & N)1195 void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
1196                                                     const Expr *E,
1197                                                     const APSInt &N) {
1198   // If we're complaining, we must be able to statically determine the size of
1199   // the most derived array.
1200   if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement)
1201     Info.CCEDiag(E, diag::note_constexpr_array_index)
1202       << N << /*array*/ 0
1203       << static_cast<unsigned>(getMostDerivedArraySize());
1204   else
1205     Info.CCEDiag(E, diag::note_constexpr_array_index)
1206       << N << /*non-array*/ 1;
1207   setInvalid();
1208 }
1209 
CallStackFrame(EvalInfo & Info,SourceLocation CallLoc,const FunctionDecl * Callee,const LValue * This,APValue * Arguments)1210 CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
1211                                const FunctionDecl *Callee, const LValue *This,
1212                                APValue *Arguments)
1213     : Info(Info), Caller(Info.CurrentCall), Callee(Callee), This(This),
1214       Arguments(Arguments), CallLoc(CallLoc), Index(Info.NextCallIndex++) {
1215   Info.CurrentCall = this;
1216   ++Info.CallStackDepth;
1217 }
1218 
~CallStackFrame()1219 CallStackFrame::~CallStackFrame() {
1220   assert(Info.CurrentCall == this && "calls retired out of order");
1221   --Info.CallStackDepth;
1222   Info.CurrentCall = Caller;
1223 }
1224 
createTemporary(const void * Key,bool IsLifetimeExtended)1225 APValue &CallStackFrame::createTemporary(const void *Key,
1226                                          bool IsLifetimeExtended) {
1227   unsigned Version = Info.CurrentCall->getTempVersion();
1228   APValue &Result = Temporaries[MapKeyTy(Key, Version)];
1229   assert(Result.isUninit() && "temporary created multiple times");
1230   Info.CleanupStack.push_back(Cleanup(&Result, IsLifetimeExtended));
1231   return Result;
1232 }
1233 
1234 static void describeCall(CallStackFrame *Frame, raw_ostream &Out);
1235 
addCallStack(unsigned Limit)1236 void EvalInfo::addCallStack(unsigned Limit) {
1237   // Determine which calls to skip, if any.
1238   unsigned ActiveCalls = CallStackDepth - 1;
1239   unsigned SkipStart = ActiveCalls, SkipEnd = SkipStart;
1240   if (Limit && Limit < ActiveCalls) {
1241     SkipStart = Limit / 2 + Limit % 2;
1242     SkipEnd = ActiveCalls - Limit / 2;
1243   }
1244 
1245   // Walk the call stack and add the diagnostics.
1246   unsigned CallIdx = 0;
1247   for (CallStackFrame *Frame = CurrentCall; Frame != &BottomFrame;
1248        Frame = Frame->Caller, ++CallIdx) {
1249     // Skip this call?
1250     if (CallIdx >= SkipStart && CallIdx < SkipEnd) {
1251       if (CallIdx == SkipStart) {
1252         // Note that we're skipping calls.
1253         addDiag(Frame->CallLoc, diag::note_constexpr_calls_suppressed)
1254           << unsigned(ActiveCalls - Limit);
1255       }
1256       continue;
1257     }
1258 
1259     // Use a different note for an inheriting constructor, because from the
1260     // user's perspective it's not really a function at all.
1261     if (auto *CD = dyn_cast_or_null<CXXConstructorDecl>(Frame->Callee)) {
1262       if (CD->isInheritingConstructor()) {
1263         addDiag(Frame->CallLoc, diag::note_constexpr_inherited_ctor_call_here)
1264           << CD->getParent();
1265         continue;
1266       }
1267     }
1268 
1269     SmallVector<char, 128> Buffer;
1270     llvm::raw_svector_ostream Out(Buffer);
1271     describeCall(Frame, Out);
1272     addDiag(Frame->CallLoc, diag::note_constexpr_call_here) << Out.str();
1273   }
1274 }
1275 
1276 namespace {
1277   struct ComplexValue {
1278   private:
1279     bool IsInt;
1280 
1281   public:
1282     APSInt IntReal, IntImag;
1283     APFloat FloatReal, FloatImag;
1284 
ComplexValue__anon2dd07ee60211::ComplexValue1285     ComplexValue() : FloatReal(APFloat::Bogus()), FloatImag(APFloat::Bogus()) {}
1286 
makeComplexFloat__anon2dd07ee60211::ComplexValue1287     void makeComplexFloat() { IsInt = false; }
isComplexFloat__anon2dd07ee60211::ComplexValue1288     bool isComplexFloat() const { return !IsInt; }
getComplexFloatReal__anon2dd07ee60211::ComplexValue1289     APFloat &getComplexFloatReal() { return FloatReal; }
getComplexFloatImag__anon2dd07ee60211::ComplexValue1290     APFloat &getComplexFloatImag() { return FloatImag; }
1291 
makeComplexInt__anon2dd07ee60211::ComplexValue1292     void makeComplexInt() { IsInt = true; }
isComplexInt__anon2dd07ee60211::ComplexValue1293     bool isComplexInt() const { return IsInt; }
getComplexIntReal__anon2dd07ee60211::ComplexValue1294     APSInt &getComplexIntReal() { return IntReal; }
getComplexIntImag__anon2dd07ee60211::ComplexValue1295     APSInt &getComplexIntImag() { return IntImag; }
1296 
moveInto__anon2dd07ee60211::ComplexValue1297     void moveInto(APValue &v) const {
1298       if (isComplexFloat())
1299         v = APValue(FloatReal, FloatImag);
1300       else
1301         v = APValue(IntReal, IntImag);
1302     }
setFrom__anon2dd07ee60211::ComplexValue1303     void setFrom(const APValue &v) {
1304       assert(v.isComplexFloat() || v.isComplexInt());
1305       if (v.isComplexFloat()) {
1306         makeComplexFloat();
1307         FloatReal = v.getComplexFloatReal();
1308         FloatImag = v.getComplexFloatImag();
1309       } else {
1310         makeComplexInt();
1311         IntReal = v.getComplexIntReal();
1312         IntImag = v.getComplexIntImag();
1313       }
1314     }
1315   };
1316 
1317   struct LValue {
1318     APValue::LValueBase Base;
1319     CharUnits Offset;
1320     SubobjectDesignator Designator;
1321     bool IsNullPtr : 1;
1322     bool InvalidBase : 1;
1323 
getLValueBase__anon2dd07ee60211::LValue1324     const APValue::LValueBase getLValueBase() const { return Base; }
getLValueOffset__anon2dd07ee60211::LValue1325     CharUnits &getLValueOffset() { return Offset; }
getLValueOffset__anon2dd07ee60211::LValue1326     const CharUnits &getLValueOffset() const { return Offset; }
getLValueDesignator__anon2dd07ee60211::LValue1327     SubobjectDesignator &getLValueDesignator() { return Designator; }
getLValueDesignator__anon2dd07ee60211::LValue1328     const SubobjectDesignator &getLValueDesignator() const { return Designator;}
isNullPointer__anon2dd07ee60211::LValue1329     bool isNullPointer() const { return IsNullPtr;}
1330 
getLValueCallIndex__anon2dd07ee60211::LValue1331     unsigned getLValueCallIndex() const { return Base.getCallIndex(); }
getLValueVersion__anon2dd07ee60211::LValue1332     unsigned getLValueVersion() const { return Base.getVersion(); }
1333 
moveInto__anon2dd07ee60211::LValue1334     void moveInto(APValue &V) const {
1335       if (Designator.Invalid)
1336         V = APValue(Base, Offset, APValue::NoLValuePath(), IsNullPtr);
1337       else {
1338         assert(!InvalidBase && "APValues can't handle invalid LValue bases");
1339         V = APValue(Base, Offset, Designator.Entries,
1340                     Designator.IsOnePastTheEnd, IsNullPtr);
1341       }
1342     }
setFrom__anon2dd07ee60211::LValue1343     void setFrom(ASTContext &Ctx, const APValue &V) {
1344       assert(V.isLValue() && "Setting LValue from a non-LValue?");
1345       Base = V.getLValueBase();
1346       Offset = V.getLValueOffset();
1347       InvalidBase = false;
1348       Designator = SubobjectDesignator(Ctx, V);
1349       IsNullPtr = V.isNullPointer();
1350     }
1351 
set__anon2dd07ee60211::LValue1352     void set(APValue::LValueBase B, bool BInvalid = false) {
1353 #ifndef NDEBUG
1354       // We only allow a few types of invalid bases. Enforce that here.
1355       if (BInvalid) {
1356         const auto *E = B.get<const Expr *>();
1357         assert((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) &&
1358                "Unexpected type of invalid base");
1359       }
1360 #endif
1361 
1362       Base = B;
1363       Offset = CharUnits::fromQuantity(0);
1364       InvalidBase = BInvalid;
1365       Designator = SubobjectDesignator(getType(B));
1366       IsNullPtr = false;
1367     }
1368 
setNull__anon2dd07ee60211::LValue1369     void setNull(QualType PointerTy, uint64_t TargetVal) {
1370       Base = (Expr *)nullptr;
1371       Offset = CharUnits::fromQuantity(TargetVal);
1372       InvalidBase = false;
1373       Designator = SubobjectDesignator(PointerTy->getPointeeType());
1374       IsNullPtr = true;
1375     }
1376 
setInvalid__anon2dd07ee60211::LValue1377     void setInvalid(APValue::LValueBase B, unsigned I = 0) {
1378       set(B, true);
1379     }
1380 
1381     // Check that this LValue is not based on a null pointer. If it is, produce
1382     // a diagnostic and mark the designator as invalid.
checkNullPointer__anon2dd07ee60211::LValue1383     bool checkNullPointer(EvalInfo &Info, const Expr *E,
1384                           CheckSubobjectKind CSK) {
1385       if (Designator.Invalid)
1386         return false;
1387       if (IsNullPtr) {
1388         Info.CCEDiag(E, diag::note_constexpr_null_subobject)
1389           << CSK;
1390         Designator.setInvalid();
1391         return false;
1392       }
1393       return true;
1394     }
1395 
1396     // Check this LValue refers to an object. If not, set the designator to be
1397     // invalid and emit a diagnostic.
checkSubobject__anon2dd07ee60211::LValue1398     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
1399       return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) &&
1400              Designator.checkSubobject(Info, E, CSK);
1401     }
1402 
addDecl__anon2dd07ee60211::LValue1403     void addDecl(EvalInfo &Info, const Expr *E,
1404                  const Decl *D, bool Virtual = false) {
1405       if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
1406         Designator.addDeclUnchecked(D, Virtual);
1407     }
addUnsizedArray__anon2dd07ee60211::LValue1408     void addUnsizedArray(EvalInfo &Info, const Expr *E, QualType ElemTy) {
1409       if (!Designator.Entries.empty()) {
1410         Info.CCEDiag(E, diag::note_constexpr_unsupported_unsized_array);
1411         Designator.setInvalid();
1412         return;
1413       }
1414       if (checkSubobject(Info, E, CSK_ArrayToPointer)) {
1415         assert(getType(Base)->isPointerType() || getType(Base)->isArrayType());
1416         Designator.FirstEntryIsAnUnsizedArray = true;
1417         Designator.addUnsizedArrayUnchecked(ElemTy);
1418       }
1419     }
addArray__anon2dd07ee60211::LValue1420     void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
1421       if (checkSubobject(Info, E, CSK_ArrayToPointer))
1422         Designator.addArrayUnchecked(CAT);
1423     }
addComplex__anon2dd07ee60211::LValue1424     void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
1425       if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
1426         Designator.addComplexUnchecked(EltTy, Imag);
1427     }
clearIsNullPointer__anon2dd07ee60211::LValue1428     void clearIsNullPointer() {
1429       IsNullPtr = false;
1430     }
adjustOffsetAndIndex__anon2dd07ee60211::LValue1431     void adjustOffsetAndIndex(EvalInfo &Info, const Expr *E,
1432                               const APSInt &Index, CharUnits ElementSize) {
1433       // An index of 0 has no effect. (In C, adding 0 to a null pointer is UB,
1434       // but we're not required to diagnose it and it's valid in C++.)
1435       if (!Index)
1436         return;
1437 
1438       // Compute the new offset in the appropriate width, wrapping at 64 bits.
1439       // FIXME: When compiling for a 32-bit target, we should use 32-bit
1440       // offsets.
1441       uint64_t Offset64 = Offset.getQuantity();
1442       uint64_t ElemSize64 = ElementSize.getQuantity();
1443       uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
1444       Offset = CharUnits::fromQuantity(Offset64 + ElemSize64 * Index64);
1445 
1446       if (checkNullPointer(Info, E, CSK_ArrayIndex))
1447         Designator.adjustIndex(Info, E, Index);
1448       clearIsNullPointer();
1449     }
adjustOffset__anon2dd07ee60211::LValue1450     void adjustOffset(CharUnits N) {
1451       Offset += N;
1452       if (N.getQuantity())
1453         clearIsNullPointer();
1454     }
1455   };
1456 
1457   struct MemberPtr {
MemberPtr__anon2dd07ee60211::MemberPtr1458     MemberPtr() {}
MemberPtr__anon2dd07ee60211::MemberPtr1459     explicit MemberPtr(const ValueDecl *Decl) :
1460       DeclAndIsDerivedMember(Decl, false), Path() {}
1461 
1462     /// The member or (direct or indirect) field referred to by this member
1463     /// pointer, or 0 if this is a null member pointer.
getDecl__anon2dd07ee60211::MemberPtr1464     const ValueDecl *getDecl() const {
1465       return DeclAndIsDerivedMember.getPointer();
1466     }
1467     /// Is this actually a member of some type derived from the relevant class?
isDerivedMember__anon2dd07ee60211::MemberPtr1468     bool isDerivedMember() const {
1469       return DeclAndIsDerivedMember.getInt();
1470     }
1471     /// Get the class which the declaration actually lives in.
getContainingRecord__anon2dd07ee60211::MemberPtr1472     const CXXRecordDecl *getContainingRecord() const {
1473       return cast<CXXRecordDecl>(
1474           DeclAndIsDerivedMember.getPointer()->getDeclContext());
1475     }
1476 
moveInto__anon2dd07ee60211::MemberPtr1477     void moveInto(APValue &V) const {
1478       V = APValue(getDecl(), isDerivedMember(), Path);
1479     }
setFrom__anon2dd07ee60211::MemberPtr1480     void setFrom(const APValue &V) {
1481       assert(V.isMemberPointer());
1482       DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
1483       DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
1484       Path.clear();
1485       ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
1486       Path.insert(Path.end(), P.begin(), P.end());
1487     }
1488 
1489     /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
1490     /// whether the member is a member of some class derived from the class type
1491     /// of the member pointer.
1492     llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
1493     /// Path - The path of base/derived classes from the member declaration's
1494     /// class (exclusive) to the class type of the member pointer (inclusive).
1495     SmallVector<const CXXRecordDecl*, 4> Path;
1496 
1497     /// Perform a cast towards the class of the Decl (either up or down the
1498     /// hierarchy).
castBack__anon2dd07ee60211::MemberPtr1499     bool castBack(const CXXRecordDecl *Class) {
1500       assert(!Path.empty());
1501       const CXXRecordDecl *Expected;
1502       if (Path.size() >= 2)
1503         Expected = Path[Path.size() - 2];
1504       else
1505         Expected = getContainingRecord();
1506       if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
1507         // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
1508         // if B does not contain the original member and is not a base or
1509         // derived class of the class containing the original member, the result
1510         // of the cast is undefined.
1511         // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
1512         // (D::*). We consider that to be a language defect.
1513         return false;
1514       }
1515       Path.pop_back();
1516       return true;
1517     }
1518     /// Perform a base-to-derived member pointer cast.
castToDerived__anon2dd07ee60211::MemberPtr1519     bool castToDerived(const CXXRecordDecl *Derived) {
1520       if (!getDecl())
1521         return true;
1522       if (!isDerivedMember()) {
1523         Path.push_back(Derived);
1524         return true;
1525       }
1526       if (!castBack(Derived))
1527         return false;
1528       if (Path.empty())
1529         DeclAndIsDerivedMember.setInt(false);
1530       return true;
1531     }
1532     /// Perform a derived-to-base member pointer cast.
castToBase__anon2dd07ee60211::MemberPtr1533     bool castToBase(const CXXRecordDecl *Base) {
1534       if (!getDecl())
1535         return true;
1536       if (Path.empty())
1537         DeclAndIsDerivedMember.setInt(true);
1538       if (isDerivedMember()) {
1539         Path.push_back(Base);
1540         return true;
1541       }
1542       return castBack(Base);
1543     }
1544   };
1545 
1546   /// Compare two member pointers, which are assumed to be of the same type.
operator ==(const MemberPtr & LHS,const MemberPtr & RHS)1547   static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
1548     if (!LHS.getDecl() || !RHS.getDecl())
1549       return !LHS.getDecl() && !RHS.getDecl();
1550     if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
1551       return false;
1552     return LHS.Path == RHS.Path;
1553   }
1554 }
1555 
1556 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
1557 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
1558                             const LValue &This, const Expr *E,
1559                             bool AllowNonLiteralTypes = false);
1560 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
1561                            bool InvalidBaseOK = false);
1562 static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info,
1563                             bool InvalidBaseOK = false);
1564 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
1565                                   EvalInfo &Info);
1566 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
1567 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
1568 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
1569                                     EvalInfo &Info);
1570 static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
1571 static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
1572 static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
1573                            EvalInfo &Info);
1574 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result);
1575 
1576 //===----------------------------------------------------------------------===//
1577 // Misc utilities
1578 //===----------------------------------------------------------------------===//
1579 
1580 /// A helper function to create a temporary and set an LValue.
1581 template <class KeyTy>
createTemporary(const KeyTy * Key,bool IsLifetimeExtended,LValue & LV,CallStackFrame & Frame)1582 static APValue &createTemporary(const KeyTy *Key, bool IsLifetimeExtended,
1583                                 LValue &LV, CallStackFrame &Frame) {
1584   LV.set({Key, Frame.Info.CurrentCall->Index,
1585           Frame.Info.CurrentCall->getTempVersion()});
1586   return Frame.createTemporary(Key, IsLifetimeExtended);
1587 }
1588 
1589 /// Negate an APSInt in place, converting it to a signed form if necessary, and
1590 /// preserving its value (by extending by up to one bit as needed).
negateAsSigned(APSInt & Int)1591 static void negateAsSigned(APSInt &Int) {
1592   if (Int.isUnsigned() || Int.isMinSignedValue()) {
1593     Int = Int.extend(Int.getBitWidth() + 1);
1594     Int.setIsSigned(true);
1595   }
1596   Int = -Int;
1597 }
1598 
1599 /// Produce a string describing the given constexpr call.
describeCall(CallStackFrame * Frame,raw_ostream & Out)1600 static void describeCall(CallStackFrame *Frame, raw_ostream &Out) {
1601   unsigned ArgIndex = 0;
1602   bool IsMemberCall = isa<CXXMethodDecl>(Frame->Callee) &&
1603                       !isa<CXXConstructorDecl>(Frame->Callee) &&
1604                       cast<CXXMethodDecl>(Frame->Callee)->isInstance();
1605 
1606   if (!IsMemberCall)
1607     Out << *Frame->Callee << '(';
1608 
1609   if (Frame->This && IsMemberCall) {
1610     APValue Val;
1611     Frame->This->moveInto(Val);
1612     Val.printPretty(Out, Frame->Info.Ctx,
1613                     Frame->This->Designator.MostDerivedType);
1614     // FIXME: Add parens around Val if needed.
1615     Out << "->" << *Frame->Callee << '(';
1616     IsMemberCall = false;
1617   }
1618 
1619   for (FunctionDecl::param_const_iterator I = Frame->Callee->param_begin(),
1620        E = Frame->Callee->param_end(); I != E; ++I, ++ArgIndex) {
1621     if (ArgIndex > (unsigned)IsMemberCall)
1622       Out << ", ";
1623 
1624     const ParmVarDecl *Param = *I;
1625     const APValue &Arg = Frame->Arguments[ArgIndex];
1626     Arg.printPretty(Out, Frame->Info.Ctx, Param->getType());
1627 
1628     if (ArgIndex == 0 && IsMemberCall)
1629       Out << "->" << *Frame->Callee << '(';
1630   }
1631 
1632   Out << ')';
1633 }
1634 
1635 /// Evaluate an expression to see if it had side-effects, and discard its
1636 /// result.
1637 /// \return \c true if the caller should keep evaluating.
EvaluateIgnoredValue(EvalInfo & Info,const Expr * E)1638 static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
1639   APValue Scratch;
1640   if (!Evaluate(Scratch, Info, E))
1641     // We don't need the value, but we might have skipped a side effect here.
1642     return Info.noteSideEffect();
1643   return true;
1644 }
1645 
1646 /// Should this call expression be treated as a string literal?
IsStringLiteralCall(const CallExpr * E)1647 static bool IsStringLiteralCall(const CallExpr *E) {
1648   unsigned Builtin = E->getBuiltinCallee();
1649   return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
1650           Builtin == Builtin::BI__builtin___NSStringMakeConstantString);
1651 }
1652 
IsGlobalLValue(APValue::LValueBase B)1653 static bool IsGlobalLValue(APValue::LValueBase B) {
1654   // C++11 [expr.const]p3 An address constant expression is a prvalue core
1655   // constant expression of pointer type that evaluates to...
1656 
1657   // ... a null pointer value, or a prvalue core constant expression of type
1658   // std::nullptr_t.
1659   if (!B) return true;
1660 
1661   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
1662     // ... the address of an object with static storage duration,
1663     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1664       return VD->hasGlobalStorage();
1665     // ... the address of a function,
1666     return isa<FunctionDecl>(D);
1667   }
1668 
1669   const Expr *E = B.get<const Expr*>();
1670   switch (E->getStmtClass()) {
1671   default:
1672     return false;
1673   case Expr::CompoundLiteralExprClass: {
1674     const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
1675     return CLE->isFileScope() && CLE->isLValue();
1676   }
1677   case Expr::MaterializeTemporaryExprClass:
1678     // A materialized temporary might have been lifetime-extended to static
1679     // storage duration.
1680     return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static;
1681   // A string literal has static storage duration.
1682   case Expr::StringLiteralClass:
1683   case Expr::PredefinedExprClass:
1684   case Expr::ObjCStringLiteralClass:
1685   case Expr::ObjCEncodeExprClass:
1686   case Expr::CXXTypeidExprClass:
1687   case Expr::CXXUuidofExprClass:
1688     return true;
1689   case Expr::CallExprClass:
1690     return IsStringLiteralCall(cast<CallExpr>(E));
1691   // For GCC compatibility, &&label has static storage duration.
1692   case Expr::AddrLabelExprClass:
1693     return true;
1694   // A Block literal expression may be used as the initialization value for
1695   // Block variables at global or local static scope.
1696   case Expr::BlockExprClass:
1697     return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
1698   case Expr::ImplicitValueInitExprClass:
1699     // FIXME:
1700     // We can never form an lvalue with an implicit value initialization as its
1701     // base through expression evaluation, so these only appear in one case: the
1702     // implicit variable declaration we invent when checking whether a constexpr
1703     // constructor can produce a constant expression. We must assume that such
1704     // an expression might be a global lvalue.
1705     return true;
1706   }
1707 }
1708 
NoteLValueLocation(EvalInfo & Info,APValue::LValueBase Base)1709 static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
1710   assert(Base && "no location for a null lvalue");
1711   const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1712   if (VD)
1713     Info.Note(VD->getLocation(), diag::note_declared_at);
1714   else
1715     Info.Note(Base.get<const Expr*>()->getExprLoc(),
1716               diag::note_constexpr_temporary_here);
1717 }
1718 
1719 /// Check that this reference or pointer core constant expression is a valid
1720 /// value for an address or reference constant expression. Return true if we
1721 /// can fold this expression, whether or not it's a constant expression.
CheckLValueConstantExpression(EvalInfo & Info,SourceLocation Loc,QualType Type,const LValue & LVal,Expr::ConstExprUsage Usage)1722 static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
1723                                           QualType Type, const LValue &LVal,
1724                                           Expr::ConstExprUsage Usage) {
1725   bool IsReferenceType = Type->isReferenceType();
1726 
1727   APValue::LValueBase Base = LVal.getLValueBase();
1728   const SubobjectDesignator &Designator = LVal.getLValueDesignator();
1729 
1730   // Check that the object is a global. Note that the fake 'this' object we
1731   // manufacture when checking potential constant expressions is conservatively
1732   // assumed to be global here.
1733   if (!IsGlobalLValue(Base)) {
1734     if (Info.getLangOpts().CPlusPlus11) {
1735       const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1736       Info.FFDiag(Loc, diag::note_constexpr_non_global, 1)
1737         << IsReferenceType << !Designator.Entries.empty()
1738         << !!VD << VD;
1739       NoteLValueLocation(Info, Base);
1740     } else {
1741       Info.FFDiag(Loc);
1742     }
1743     // Don't allow references to temporaries to escape.
1744     return false;
1745   }
1746   assert((Info.checkingPotentialConstantExpression() ||
1747           LVal.getLValueCallIndex() == 0) &&
1748          "have call index for global lvalue");
1749 
1750   if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) {
1751     if (const VarDecl *Var = dyn_cast<const VarDecl>(VD)) {
1752       // Check if this is a thread-local variable.
1753       if (Var->getTLSKind())
1754         return false;
1755 
1756       // A dllimport variable never acts like a constant.
1757       if (Usage == Expr::EvaluateForCodeGen && Var->hasAttr<DLLImportAttr>())
1758         return false;
1759     }
1760     if (const auto *FD = dyn_cast<const FunctionDecl>(VD)) {
1761       // __declspec(dllimport) must be handled very carefully:
1762       // We must never initialize an expression with the thunk in C++.
1763       // Doing otherwise would allow the same id-expression to yield
1764       // different addresses for the same function in different translation
1765       // units.  However, this means that we must dynamically initialize the
1766       // expression with the contents of the import address table at runtime.
1767       //
1768       // The C language has no notion of ODR; furthermore, it has no notion of
1769       // dynamic initialization.  This means that we are permitted to
1770       // perform initialization with the address of the thunk.
1771       if (Info.getLangOpts().CPlusPlus && Usage == Expr::EvaluateForCodeGen &&
1772           FD->hasAttr<DLLImportAttr>())
1773         return false;
1774     }
1775   }
1776 
1777   // Allow address constant expressions to be past-the-end pointers. This is
1778   // an extension: the standard requires them to point to an object.
1779   if (!IsReferenceType)
1780     return true;
1781 
1782   // A reference constant expression must refer to an object.
1783   if (!Base) {
1784     // FIXME: diagnostic
1785     Info.CCEDiag(Loc);
1786     return true;
1787   }
1788 
1789   // Does this refer one past the end of some object?
1790   if (!Designator.Invalid && Designator.isOnePastTheEnd()) {
1791     const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1792     Info.FFDiag(Loc, diag::note_constexpr_past_end, 1)
1793       << !Designator.Entries.empty() << !!VD << VD;
1794     NoteLValueLocation(Info, Base);
1795   }
1796 
1797   return true;
1798 }
1799 
1800 /// Member pointers are constant expressions unless they point to a
1801 /// non-virtual dllimport member function.
CheckMemberPointerConstantExpression(EvalInfo & Info,SourceLocation Loc,QualType Type,const APValue & Value,Expr::ConstExprUsage Usage)1802 static bool CheckMemberPointerConstantExpression(EvalInfo &Info,
1803                                                  SourceLocation Loc,
1804                                                  QualType Type,
1805                                                  const APValue &Value,
1806                                                  Expr::ConstExprUsage Usage) {
1807   const ValueDecl *Member = Value.getMemberPointerDecl();
1808   const auto *FD = dyn_cast_or_null<CXXMethodDecl>(Member);
1809   if (!FD)
1810     return true;
1811   return Usage == Expr::EvaluateForMangling || FD->isVirtual() ||
1812          !FD->hasAttr<DLLImportAttr>();
1813 }
1814 
1815 /// Check that this core constant expression is of literal type, and if not,
1816 /// produce an appropriate diagnostic.
CheckLiteralType(EvalInfo & Info,const Expr * E,const LValue * This=nullptr)1817 static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
1818                              const LValue *This = nullptr) {
1819   if (!E->isRValue() || E->getType()->isLiteralType(Info.Ctx))
1820     return true;
1821 
1822   // C++1y: A constant initializer for an object o [...] may also invoke
1823   // constexpr constructors for o and its subobjects even if those objects
1824   // are of non-literal class types.
1825   //
1826   // C++11 missed this detail for aggregates, so classes like this:
1827   //   struct foo_t { union { int i; volatile int j; } u; };
1828   // are not (obviously) initializable like so:
1829   //   __attribute__((__require_constant_initialization__))
1830   //   static const foo_t x = {{0}};
1831   // because "i" is a subobject with non-literal initialization (due to the
1832   // volatile member of the union). See:
1833   //   http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1677
1834   // Therefore, we use the C++1y behavior.
1835   if (This && Info.EvaluatingDecl == This->getLValueBase())
1836     return true;
1837 
1838   // Prvalue constant expressions must be of literal types.
1839   if (Info.getLangOpts().CPlusPlus11)
1840     Info.FFDiag(E, diag::note_constexpr_nonliteral)
1841       << E->getType();
1842   else
1843     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
1844   return false;
1845 }
1846 
1847 /// Check that this core constant expression value is a valid value for a
1848 /// constant expression. If not, report an appropriate diagnostic. Does not
1849 /// check that the expression is of literal type.
1850 static bool
CheckConstantExpression(EvalInfo & Info,SourceLocation DiagLoc,QualType Type,const APValue & Value,Expr::ConstExprUsage Usage=Expr::EvaluateForCodeGen)1851 CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc, QualType Type,
1852                         const APValue &Value,
1853                         Expr::ConstExprUsage Usage = Expr::EvaluateForCodeGen) {
1854   if (Value.isUninit()) {
1855     Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized)
1856       << true << Type;
1857     return false;
1858   }
1859 
1860   // We allow _Atomic(T) to be initialized from anything that T can be
1861   // initialized from.
1862   if (const AtomicType *AT = Type->getAs<AtomicType>())
1863     Type = AT->getValueType();
1864 
1865   // Core issue 1454: For a literal constant expression of array or class type,
1866   // each subobject of its value shall have been initialized by a constant
1867   // expression.
1868   if (Value.isArray()) {
1869     QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
1870     for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
1871       if (!CheckConstantExpression(Info, DiagLoc, EltTy,
1872                                    Value.getArrayInitializedElt(I), Usage))
1873         return false;
1874     }
1875     if (!Value.hasArrayFiller())
1876       return true;
1877     return CheckConstantExpression(Info, DiagLoc, EltTy, Value.getArrayFiller(),
1878                                    Usage);
1879   }
1880   if (Value.isUnion() && Value.getUnionField()) {
1881     return CheckConstantExpression(Info, DiagLoc,
1882                                    Value.getUnionField()->getType(),
1883                                    Value.getUnionValue(), Usage);
1884   }
1885   if (Value.isStruct()) {
1886     RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
1887     if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
1888       unsigned BaseIndex = 0;
1889       for (const CXXBaseSpecifier &BS : CD->bases()) {
1890         if (!CheckConstantExpression(Info, DiagLoc, BS.getType(),
1891                                      Value.getStructBase(BaseIndex), Usage))
1892           return false;
1893         ++BaseIndex;
1894       }
1895     }
1896     for (const auto *I : RD->fields()) {
1897       if (I->isUnnamedBitfield())
1898         continue;
1899 
1900       if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
1901                                    Value.getStructField(I->getFieldIndex()),
1902                                    Usage))
1903         return false;
1904     }
1905   }
1906 
1907   if (Value.isLValue()) {
1908     LValue LVal;
1909     LVal.setFrom(Info.Ctx, Value);
1910     return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal, Usage);
1911   }
1912 
1913   if (Value.isMemberPointer())
1914     return CheckMemberPointerConstantExpression(Info, DiagLoc, Type, Value, Usage);
1915 
1916   // Everything else is fine.
1917   return true;
1918 }
1919 
GetLValueBaseDecl(const LValue & LVal)1920 static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
1921   return LVal.Base.dyn_cast<const ValueDecl*>();
1922 }
1923 
IsLiteralLValue(const LValue & Value)1924 static bool IsLiteralLValue(const LValue &Value) {
1925   if (Value.getLValueCallIndex())
1926     return false;
1927   const Expr *E = Value.Base.dyn_cast<const Expr*>();
1928   return E && !isa<MaterializeTemporaryExpr>(E);
1929 }
1930 
IsWeakLValue(const LValue & Value)1931 static bool IsWeakLValue(const LValue &Value) {
1932   const ValueDecl *Decl = GetLValueBaseDecl(Value);
1933   return Decl && Decl->isWeak();
1934 }
1935 
isZeroSized(const LValue & Value)1936 static bool isZeroSized(const LValue &Value) {
1937   const ValueDecl *Decl = GetLValueBaseDecl(Value);
1938   if (Decl && isa<VarDecl>(Decl)) {
1939     QualType Ty = Decl->getType();
1940     if (Ty->isArrayType())
1941       return Ty->isIncompleteType() ||
1942              Decl->getASTContext().getTypeSize(Ty) == 0;
1943   }
1944   return false;
1945 }
1946 
EvalPointerValueAsBool(const APValue & Value,bool & Result)1947 static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
1948   // A null base expression indicates a null pointer.  These are always
1949   // evaluatable, and they are false unless the offset is zero.
1950   if (!Value.getLValueBase()) {
1951     Result = !Value.getLValueOffset().isZero();
1952     return true;
1953   }
1954 
1955   // We have a non-null base.  These are generally known to be true, but if it's
1956   // a weak declaration it can be null at runtime.
1957   Result = true;
1958   const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
1959   return !Decl || !Decl->isWeak();
1960 }
1961 
HandleConversionToBool(const APValue & Val,bool & Result)1962 static bool HandleConversionToBool(const APValue &Val, bool &Result) {
1963   switch (Val.getKind()) {
1964   case APValue::Uninitialized:
1965     return false;
1966   case APValue::Int:
1967     Result = Val.getInt().getBoolValue();
1968     return true;
1969   case APValue::Float:
1970     Result = !Val.getFloat().isZero();
1971     return true;
1972   case APValue::ComplexInt:
1973     Result = Val.getComplexIntReal().getBoolValue() ||
1974              Val.getComplexIntImag().getBoolValue();
1975     return true;
1976   case APValue::ComplexFloat:
1977     Result = !Val.getComplexFloatReal().isZero() ||
1978              !Val.getComplexFloatImag().isZero();
1979     return true;
1980   case APValue::LValue:
1981     return EvalPointerValueAsBool(Val, Result);
1982   case APValue::MemberPointer:
1983     Result = Val.getMemberPointerDecl();
1984     return true;
1985   case APValue::Vector:
1986   case APValue::Array:
1987   case APValue::Struct:
1988   case APValue::Union:
1989   case APValue::AddrLabelDiff:
1990     return false;
1991   }
1992 
1993   llvm_unreachable("unknown APValue kind");
1994 }
1995 
EvaluateAsBooleanCondition(const Expr * E,bool & Result,EvalInfo & Info)1996 static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
1997                                        EvalInfo &Info) {
1998   assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition");
1999   APValue Val;
2000   if (!Evaluate(Val, Info, E))
2001     return false;
2002   return HandleConversionToBool(Val, Result);
2003 }
2004 
2005 template<typename T>
HandleOverflow(EvalInfo & Info,const Expr * E,const T & SrcValue,QualType DestType)2006 static bool HandleOverflow(EvalInfo &Info, const Expr *E,
2007                            const T &SrcValue, QualType DestType) {
2008   Info.CCEDiag(E, diag::note_constexpr_overflow)
2009     << SrcValue << DestType;
2010   return Info.noteUndefinedBehavior();
2011 }
2012 
HandleFloatToIntCast(EvalInfo & Info,const Expr * E,QualType SrcType,const APFloat & Value,QualType DestType,APSInt & Result)2013 static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
2014                                  QualType SrcType, const APFloat &Value,
2015                                  QualType DestType, APSInt &Result) {
2016   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
2017   // Determine whether we are converting to unsigned or signed.
2018   bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
2019 
2020   Result = APSInt(DestWidth, !DestSigned);
2021   bool ignored;
2022   if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
2023       & APFloat::opInvalidOp)
2024     return HandleOverflow(Info, E, Value, DestType);
2025   return true;
2026 }
2027 
HandleFloatToFloatCast(EvalInfo & Info,const Expr * E,QualType SrcType,QualType DestType,APFloat & Result)2028 static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
2029                                    QualType SrcType, QualType DestType,
2030                                    APFloat &Result) {
2031   APFloat Value = Result;
2032   bool ignored;
2033   if (Result.convert(Info.Ctx.getFloatTypeSemantics(DestType),
2034                      APFloat::rmNearestTiesToEven, &ignored)
2035       & APFloat::opOverflow)
2036     return HandleOverflow(Info, E, Value, DestType);
2037   return true;
2038 }
2039 
HandleIntToIntCast(EvalInfo & Info,const Expr * E,QualType DestType,QualType SrcType,const APSInt & Value)2040 static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
2041                                  QualType DestType, QualType SrcType,
2042                                  const APSInt &Value) {
2043   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
2044   APSInt Result = Value;
2045   // Figure out if this is a truncate, extend or noop cast.
2046   // If the input is signed, do a sign extend, noop, or truncate.
2047   Result = Result.extOrTrunc(DestWidth);
2048   Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
2049   return Result;
2050 }
2051 
HandleIntToFloatCast(EvalInfo & Info,const Expr * E,QualType SrcType,const APSInt & Value,QualType DestType,APFloat & Result)2052 static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
2053                                  QualType SrcType, const APSInt &Value,
2054                                  QualType DestType, APFloat &Result) {
2055   Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
2056   if (Result.convertFromAPInt(Value, Value.isSigned(),
2057                               APFloat::rmNearestTiesToEven)
2058       & APFloat::opOverflow)
2059     return HandleOverflow(Info, E, Value, DestType);
2060   return true;
2061 }
2062 
truncateBitfieldValue(EvalInfo & Info,const Expr * E,APValue & Value,const FieldDecl * FD)2063 static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
2064                                   APValue &Value, const FieldDecl *FD) {
2065   assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield");
2066 
2067   if (!Value.isInt()) {
2068     // Trying to store a pointer-cast-to-integer into a bitfield.
2069     // FIXME: In this case, we should provide the diagnostic for casting
2070     // a pointer to an integer.
2071     assert(Value.isLValue() && "integral value neither int nor lvalue?");
2072     Info.FFDiag(E);
2073     return false;
2074   }
2075 
2076   APSInt &Int = Value.getInt();
2077   unsigned OldBitWidth = Int.getBitWidth();
2078   unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx);
2079   if (NewBitWidth < OldBitWidth)
2080     Int = Int.trunc(NewBitWidth).extend(OldBitWidth);
2081   return true;
2082 }
2083 
EvalAndBitcastToAPInt(EvalInfo & Info,const Expr * E,llvm::APInt & Res)2084 static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
2085                                   llvm::APInt &Res) {
2086   APValue SVal;
2087   if (!Evaluate(SVal, Info, E))
2088     return false;
2089   if (SVal.isInt()) {
2090     Res = SVal.getInt();
2091     return true;
2092   }
2093   if (SVal.isFloat()) {
2094     Res = SVal.getFloat().bitcastToAPInt();
2095     return true;
2096   }
2097   if (SVal.isVector()) {
2098     QualType VecTy = E->getType();
2099     unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
2100     QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
2101     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
2102     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
2103     Res = llvm::APInt::getNullValue(VecSize);
2104     for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
2105       APValue &Elt = SVal.getVectorElt(i);
2106       llvm::APInt EltAsInt;
2107       if (Elt.isInt()) {
2108         EltAsInt = Elt.getInt();
2109       } else if (Elt.isFloat()) {
2110         EltAsInt = Elt.getFloat().bitcastToAPInt();
2111       } else {
2112         // Don't try to handle vectors of anything other than int or float
2113         // (not sure if it's possible to hit this case).
2114         Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2115         return false;
2116       }
2117       unsigned BaseEltSize = EltAsInt.getBitWidth();
2118       if (BigEndian)
2119         Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
2120       else
2121         Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
2122     }
2123     return true;
2124   }
2125   // Give up if the input isn't an int, float, or vector.  For example, we
2126   // reject "(v4i16)(intptr_t)&a".
2127   Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2128   return false;
2129 }
2130 
2131 /// Perform the given integer operation, which is known to need at most BitWidth
2132 /// bits, and check for overflow in the original type (if that type was not an
2133 /// unsigned type).
2134 template<typename Operation>
CheckedIntArithmetic(EvalInfo & Info,const Expr * E,const APSInt & LHS,const APSInt & RHS,unsigned BitWidth,Operation Op,APSInt & Result)2135 static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
2136                                  const APSInt &LHS, const APSInt &RHS,
2137                                  unsigned BitWidth, Operation Op,
2138                                  APSInt &Result) {
2139   if (LHS.isUnsigned()) {
2140     Result = Op(LHS, RHS);
2141     return true;
2142   }
2143 
2144   APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
2145   Result = Value.trunc(LHS.getBitWidth());
2146   if (Result.extend(BitWidth) != Value) {
2147     if (Info.checkingForOverflow())
2148       Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
2149                                        diag::warn_integer_constant_overflow)
2150           << Result.toString(10) << E->getType();
2151     else
2152       return HandleOverflow(Info, E, Value, E->getType());
2153   }
2154   return true;
2155 }
2156 
2157 /// Perform the given binary integer operation.
handleIntIntBinOp(EvalInfo & Info,const Expr * E,const APSInt & LHS,BinaryOperatorKind Opcode,APSInt RHS,APSInt & Result)2158 static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS,
2159                               BinaryOperatorKind Opcode, APSInt RHS,
2160                               APSInt &Result) {
2161   switch (Opcode) {
2162   default:
2163     Info.FFDiag(E);
2164     return false;
2165   case BO_Mul:
2166     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
2167                                 std::multiplies<APSInt>(), Result);
2168   case BO_Add:
2169     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2170                                 std::plus<APSInt>(), Result);
2171   case BO_Sub:
2172     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
2173                                 std::minus<APSInt>(), Result);
2174   case BO_And: Result = LHS & RHS; return true;
2175   case BO_Xor: Result = LHS ^ RHS; return true;
2176   case BO_Or:  Result = LHS | RHS; return true;
2177   case BO_Div:
2178   case BO_Rem:
2179     if (RHS == 0) {
2180       Info.FFDiag(E, diag::note_expr_divide_by_zero);
2181       return false;
2182     }
2183     Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
2184     // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports
2185     // this operation and gives the two's complement result.
2186     if (RHS.isNegative() && RHS.isAllOnesValue() &&
2187         LHS.isSigned() && LHS.isMinSignedValue())
2188       return HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1),
2189                             E->getType());
2190     return true;
2191   case BO_Shl: {
2192     if (Info.getLangOpts().OpenCL)
2193       // OpenCL 6.3j: shift values are effectively % word size of LHS.
2194       RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
2195                     static_cast<uint64_t>(LHS.getBitWidth() - 1)),
2196                     RHS.isUnsigned());
2197     else if (RHS.isSigned() && RHS.isNegative()) {
2198       // During constant-folding, a negative shift is an opposite shift. Such
2199       // a shift is not a constant expression.
2200       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
2201       RHS = -RHS;
2202       goto shift_right;
2203     }
2204   shift_left:
2205     // C++11 [expr.shift]p1: Shift width must be less than the bit width of
2206     // the shifted type.
2207     unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
2208     if (SA != RHS) {
2209       Info.CCEDiag(E, diag::note_constexpr_large_shift)
2210         << RHS << E->getType() << LHS.getBitWidth();
2211     } else if (LHS.isSigned()) {
2212       // C++11 [expr.shift]p2: A signed left shift must have a non-negative
2213       // operand, and must not overflow the corresponding unsigned type.
2214       if (LHS.isNegative())
2215         Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
2216       else if (LHS.countLeadingZeros() < SA)
2217         Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
2218     }
2219     Result = LHS << SA;
2220     return true;
2221   }
2222   case BO_Shr: {
2223     if (Info.getLangOpts().OpenCL)
2224       // OpenCL 6.3j: shift values are effectively % word size of LHS.
2225       RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
2226                     static_cast<uint64_t>(LHS.getBitWidth() - 1)),
2227                     RHS.isUnsigned());
2228     else if (RHS.isSigned() && RHS.isNegative()) {
2229       // During constant-folding, a negative shift is an opposite shift. Such a
2230       // shift is not a constant expression.
2231       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
2232       RHS = -RHS;
2233       goto shift_left;
2234     }
2235   shift_right:
2236     // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
2237     // shifted type.
2238     unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
2239     if (SA != RHS)
2240       Info.CCEDiag(E, diag::note_constexpr_large_shift)
2241         << RHS << E->getType() << LHS.getBitWidth();
2242     Result = LHS >> SA;
2243     return true;
2244   }
2245 
2246   case BO_LT: Result = LHS < RHS; return true;
2247   case BO_GT: Result = LHS > RHS; return true;
2248   case BO_LE: Result = LHS <= RHS; return true;
2249   case BO_GE: Result = LHS >= RHS; return true;
2250   case BO_EQ: Result = LHS == RHS; return true;
2251   case BO_NE: Result = LHS != RHS; return true;
2252   case BO_Cmp:
2253     llvm_unreachable("BO_Cmp should be handled elsewhere");
2254   }
2255 }
2256 
2257 /// Perform the given binary floating-point operation, in-place, on LHS.
handleFloatFloatBinOp(EvalInfo & Info,const Expr * E,APFloat & LHS,BinaryOperatorKind Opcode,const APFloat & RHS)2258 static bool handleFloatFloatBinOp(EvalInfo &Info, const Expr *E,
2259                                   APFloat &LHS, BinaryOperatorKind Opcode,
2260                                   const APFloat &RHS) {
2261   switch (Opcode) {
2262   default:
2263     Info.FFDiag(E);
2264     return false;
2265   case BO_Mul:
2266     LHS.multiply(RHS, APFloat::rmNearestTiesToEven);
2267     break;
2268   case BO_Add:
2269     LHS.add(RHS, APFloat::rmNearestTiesToEven);
2270     break;
2271   case BO_Sub:
2272     LHS.subtract(RHS, APFloat::rmNearestTiesToEven);
2273     break;
2274   case BO_Div:
2275     LHS.divide(RHS, APFloat::rmNearestTiesToEven);
2276     break;
2277   }
2278 
2279   if (LHS.isInfinity() || LHS.isNaN()) {
2280     Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
2281     return Info.noteUndefinedBehavior();
2282   }
2283   return true;
2284 }
2285 
2286 /// Cast an lvalue referring to a base subobject to a derived class, by
2287 /// truncating the lvalue's path to the given length.
CastToDerivedClass(EvalInfo & Info,const Expr * E,LValue & Result,const RecordDecl * TruncatedType,unsigned TruncatedElements)2288 static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
2289                                const RecordDecl *TruncatedType,
2290                                unsigned TruncatedElements) {
2291   SubobjectDesignator &D = Result.Designator;
2292 
2293   // Check we actually point to a derived class object.
2294   if (TruncatedElements == D.Entries.size())
2295     return true;
2296   assert(TruncatedElements >= D.MostDerivedPathLength &&
2297          "not casting to a derived class");
2298   if (!Result.checkSubobject(Info, E, CSK_Derived))
2299     return false;
2300 
2301   // Truncate the path to the subobject, and remove any derived-to-base offsets.
2302   const RecordDecl *RD = TruncatedType;
2303   for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
2304     if (RD->isInvalidDecl()) return false;
2305     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
2306     const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
2307     if (isVirtualBaseClass(D.Entries[I]))
2308       Result.Offset -= Layout.getVBaseClassOffset(Base);
2309     else
2310       Result.Offset -= Layout.getBaseClassOffset(Base);
2311     RD = Base;
2312   }
2313   D.Entries.resize(TruncatedElements);
2314   return true;
2315 }
2316 
HandleLValueDirectBase(EvalInfo & Info,const Expr * E,LValue & Obj,const CXXRecordDecl * Derived,const CXXRecordDecl * Base,const ASTRecordLayout * RL=nullptr)2317 static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
2318                                    const CXXRecordDecl *Derived,
2319                                    const CXXRecordDecl *Base,
2320                                    const ASTRecordLayout *RL = nullptr) {
2321   if (!RL) {
2322     if (Derived->isInvalidDecl()) return false;
2323     RL = &Info.Ctx.getASTRecordLayout(Derived);
2324   }
2325 
2326   Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
2327   Obj.addDecl(Info, E, Base, /*Virtual*/ false);
2328   return true;
2329 }
2330 
HandleLValueBase(EvalInfo & Info,const Expr * E,LValue & Obj,const CXXRecordDecl * DerivedDecl,const CXXBaseSpecifier * Base)2331 static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
2332                              const CXXRecordDecl *DerivedDecl,
2333                              const CXXBaseSpecifier *Base) {
2334   const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
2335 
2336   if (!Base->isVirtual())
2337     return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
2338 
2339   SubobjectDesignator &D = Obj.Designator;
2340   if (D.Invalid)
2341     return false;
2342 
2343   // Extract most-derived object and corresponding type.
2344   DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
2345   if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
2346     return false;
2347 
2348   // Find the virtual base class.
2349   if (DerivedDecl->isInvalidDecl()) return false;
2350   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
2351   Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
2352   Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
2353   return true;
2354 }
2355 
HandleLValueBasePath(EvalInfo & Info,const CastExpr * E,QualType Type,LValue & Result)2356 static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
2357                                  QualType Type, LValue &Result) {
2358   for (CastExpr::path_const_iterator PathI = E->path_begin(),
2359                                      PathE = E->path_end();
2360        PathI != PathE; ++PathI) {
2361     if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
2362                           *PathI))
2363       return false;
2364     Type = (*PathI)->getType();
2365   }
2366   return true;
2367 }
2368 
2369 /// Update LVal to refer to the given field, which must be a member of the type
2370 /// currently described by LVal.
HandleLValueMember(EvalInfo & Info,const Expr * E,LValue & LVal,const FieldDecl * FD,const ASTRecordLayout * RL=nullptr)2371 static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
2372                                const FieldDecl *FD,
2373                                const ASTRecordLayout *RL = nullptr) {
2374   if (!RL) {
2375     if (FD->getParent()->isInvalidDecl()) return false;
2376     RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
2377   }
2378 
2379   unsigned I = FD->getFieldIndex();
2380   LVal.adjustOffset(Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I)));
2381   LVal.addDecl(Info, E, FD);
2382   return true;
2383 }
2384 
2385 /// Update LVal to refer to the given indirect field.
HandleLValueIndirectMember(EvalInfo & Info,const Expr * E,LValue & LVal,const IndirectFieldDecl * IFD)2386 static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
2387                                        LValue &LVal,
2388                                        const IndirectFieldDecl *IFD) {
2389   for (const auto *C : IFD->chain())
2390     if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C)))
2391       return false;
2392   return true;
2393 }
2394 
2395 /// Get the size of the given type in char units.
HandleSizeof(EvalInfo & Info,SourceLocation Loc,QualType Type,CharUnits & Size)2396 static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
2397                          QualType Type, CharUnits &Size) {
2398   // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
2399   // extension.
2400   if (Type->isVoidType() || Type->isFunctionType()) {
2401     Size = CharUnits::One();
2402     return true;
2403   }
2404 
2405   if (Type->isDependentType()) {
2406     Info.FFDiag(Loc);
2407     return false;
2408   }
2409 
2410   if (!Type->isConstantSizeType()) {
2411     // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
2412     // FIXME: Better diagnostic.
2413     Info.FFDiag(Loc);
2414     return false;
2415   }
2416 
2417   Size = Info.Ctx.getTypeSizeInChars(Type);
2418   return true;
2419 }
2420 
2421 /// Update a pointer value to model pointer arithmetic.
2422 /// \param Info - Information about the ongoing evaluation.
2423 /// \param E - The expression being evaluated, for diagnostic purposes.
2424 /// \param LVal - The pointer value to be updated.
2425 /// \param EltTy - The pointee type represented by LVal.
2426 /// \param Adjustment - The adjustment, in objects of type EltTy, to add.
HandleLValueArrayAdjustment(EvalInfo & Info,const Expr * E,LValue & LVal,QualType EltTy,APSInt Adjustment)2427 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
2428                                         LValue &LVal, QualType EltTy,
2429                                         APSInt Adjustment) {
2430   CharUnits SizeOfPointee;
2431   if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
2432     return false;
2433 
2434   LVal.adjustOffsetAndIndex(Info, E, Adjustment, SizeOfPointee);
2435   return true;
2436 }
2437 
HandleLValueArrayAdjustment(EvalInfo & Info,const Expr * E,LValue & LVal,QualType EltTy,int64_t Adjustment)2438 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
2439                                         LValue &LVal, QualType EltTy,
2440                                         int64_t Adjustment) {
2441   return HandleLValueArrayAdjustment(Info, E, LVal, EltTy,
2442                                      APSInt::get(Adjustment));
2443 }
2444 
2445 /// Update an lvalue to refer to a component of a complex number.
2446 /// \param Info - Information about the ongoing evaluation.
2447 /// \param LVal - The lvalue to be updated.
2448 /// \param EltTy - The complex number's component type.
2449 /// \param Imag - False for the real component, true for the imaginary.
HandleLValueComplexElement(EvalInfo & Info,const Expr * E,LValue & LVal,QualType EltTy,bool Imag)2450 static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
2451                                        LValue &LVal, QualType EltTy,
2452                                        bool Imag) {
2453   if (Imag) {
2454     CharUnits SizeOfComponent;
2455     if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
2456       return false;
2457     LVal.Offset += SizeOfComponent;
2458   }
2459   LVal.addComplex(Info, E, EltTy, Imag);
2460   return true;
2461 }
2462 
2463 static bool handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv,
2464                                            QualType Type, const LValue &LVal,
2465                                            APValue &RVal);
2466 
2467 /// Try to evaluate the initializer for a variable declaration.
2468 ///
2469 /// \param Info   Information about the ongoing evaluation.
2470 /// \param E      An expression to be used when printing diagnostics.
2471 /// \param VD     The variable whose initializer should be obtained.
2472 /// \param Frame  The frame in which the variable was created. Must be null
2473 ///               if this variable is not local to the evaluation.
2474 /// \param Result Filled in with a pointer to the value of the variable.
evaluateVarDeclInit(EvalInfo & Info,const Expr * E,const VarDecl * VD,CallStackFrame * Frame,APValue * & Result,const LValue * LVal)2475 static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
2476                                 const VarDecl *VD, CallStackFrame *Frame,
2477                                 APValue *&Result, const LValue *LVal) {
2478 
2479   // If this is a parameter to an active constexpr function call, perform
2480   // argument substitution.
2481   if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) {
2482     // Assume arguments of a potential constant expression are unknown
2483     // constant expressions.
2484     if (Info.checkingPotentialConstantExpression())
2485       return false;
2486     if (!Frame || !Frame->Arguments) {
2487       Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2488       return false;
2489     }
2490     Result = &Frame->Arguments[PVD->getFunctionScopeIndex()];
2491     return true;
2492   }
2493 
2494   // If this is a local variable, dig out its value.
2495   if (Frame) {
2496     Result = LVal ? Frame->getTemporary(VD, LVal->getLValueVersion())
2497                   : Frame->getCurrentTemporary(VD);
2498     if (!Result) {
2499       // Assume variables referenced within a lambda's call operator that were
2500       // not declared within the call operator are captures and during checking
2501       // of a potential constant expression, assume they are unknown constant
2502       // expressions.
2503       assert(isLambdaCallOperator(Frame->Callee) &&
2504              (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) &&
2505              "missing value for local variable");
2506       if (Info.checkingPotentialConstantExpression())
2507         return false;
2508       // FIXME: implement capture evaluation during constant expr evaluation.
2509       Info.FFDiag(E->getLocStart(),
2510            diag::note_unimplemented_constexpr_lambda_feature_ast)
2511           << "captures not currently allowed";
2512       return false;
2513     }
2514     return true;
2515   }
2516 
2517   // Dig out the initializer, and use the declaration which it's attached to.
2518   const Expr *Init = VD->getAnyInitializer(VD);
2519   if (!Init || Init->isValueDependent()) {
2520     // If we're checking a potential constant expression, the variable could be
2521     // initialized later.
2522     if (!Info.checkingPotentialConstantExpression())
2523       Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2524     return false;
2525   }
2526 
2527   // If we're currently evaluating the initializer of this declaration, use that
2528   // in-flight value.
2529   if (Info.EvaluatingDecl.dyn_cast<const ValueDecl*>() == VD) {
2530     Result = Info.EvaluatingDeclValue;
2531     return true;
2532   }
2533 
2534   // Never evaluate the initializer of a weak variable. We can't be sure that
2535   // this is the definition which will be used.
2536   if (VD->isWeak()) {
2537     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2538     return false;
2539   }
2540 
2541   // Check that we can fold the initializer. In C++, we will have already done
2542   // this in the cases where it matters for conformance.
2543   SmallVector<PartialDiagnosticAt, 8> Notes;
2544   if (!VD->evaluateValue(Notes)) {
2545     Info.FFDiag(E, diag::note_constexpr_var_init_non_constant,
2546               Notes.size() + 1) << VD;
2547     Info.Note(VD->getLocation(), diag::note_declared_at);
2548     Info.addNotes(Notes);
2549     return false;
2550   } else if (!VD->checkInitIsICE()) {
2551     Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant,
2552                  Notes.size() + 1) << VD;
2553     Info.Note(VD->getLocation(), diag::note_declared_at);
2554     Info.addNotes(Notes);
2555   }
2556 
2557   Result = VD->getEvaluatedValue();
2558   return true;
2559 }
2560 
IsConstNonVolatile(QualType T)2561 static bool IsConstNonVolatile(QualType T) {
2562   Qualifiers Quals = T.getQualifiers();
2563   return Quals.hasConst() && !Quals.hasVolatile();
2564 }
2565 
2566 /// Get the base index of the given base class within an APValue representing
2567 /// the given derived class.
getBaseIndex(const CXXRecordDecl * Derived,const CXXRecordDecl * Base)2568 static unsigned getBaseIndex(const CXXRecordDecl *Derived,
2569                              const CXXRecordDecl *Base) {
2570   Base = Base->getCanonicalDecl();
2571   unsigned Index = 0;
2572   for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
2573          E = Derived->bases_end(); I != E; ++I, ++Index) {
2574     if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
2575       return Index;
2576   }
2577 
2578   llvm_unreachable("base class missing from derived class's bases list");
2579 }
2580 
2581 /// Extract the value of a character from a string literal.
extractStringLiteralCharacter(EvalInfo & Info,const Expr * Lit,uint64_t Index)2582 static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
2583                                             uint64_t Index) {
2584   // FIXME: Support MakeStringConstant
2585   if (const auto *ObjCEnc = dyn_cast<ObjCEncodeExpr>(Lit)) {
2586     std::string Str;
2587     Info.Ctx.getObjCEncodingForType(ObjCEnc->getEncodedType(), Str);
2588     assert(Index <= Str.size() && "Index too large");
2589     return APSInt::getUnsigned(Str.c_str()[Index]);
2590   }
2591 
2592   if (auto PE = dyn_cast<PredefinedExpr>(Lit))
2593     Lit = PE->getFunctionName();
2594   const StringLiteral *S = cast<StringLiteral>(Lit);
2595   const ConstantArrayType *CAT =
2596       Info.Ctx.getAsConstantArrayType(S->getType());
2597   assert(CAT && "string literal isn't an array");
2598   QualType CharType = CAT->getElementType();
2599   assert(CharType->isIntegerType() && "unexpected character type");
2600 
2601   APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
2602                CharType->isUnsignedIntegerType());
2603   if (Index < S->getLength())
2604     Value = S->getCodeUnit(Index);
2605   return Value;
2606 }
2607 
2608 // Expand a string literal into an array of characters.
expandStringLiteral(EvalInfo & Info,const Expr * Lit,APValue & Result)2609 static void expandStringLiteral(EvalInfo &Info, const Expr *Lit,
2610                                 APValue &Result) {
2611   const StringLiteral *S = cast<StringLiteral>(Lit);
2612   const ConstantArrayType *CAT =
2613       Info.Ctx.getAsConstantArrayType(S->getType());
2614   assert(CAT && "string literal isn't an array");
2615   QualType CharType = CAT->getElementType();
2616   assert(CharType->isIntegerType() && "unexpected character type");
2617 
2618   unsigned Elts = CAT->getSize().getZExtValue();
2619   Result = APValue(APValue::UninitArray(),
2620                    std::min(S->getLength(), Elts), Elts);
2621   APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
2622                CharType->isUnsignedIntegerType());
2623   if (Result.hasArrayFiller())
2624     Result.getArrayFiller() = APValue(Value);
2625   for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
2626     Value = S->getCodeUnit(I);
2627     Result.getArrayInitializedElt(I) = APValue(Value);
2628   }
2629 }
2630 
2631 // Expand an array so that it has more than Index filled elements.
expandArray(APValue & Array,unsigned Index)2632 static void expandArray(APValue &Array, unsigned Index) {
2633   unsigned Size = Array.getArraySize();
2634   assert(Index < Size);
2635 
2636   // Always at least double the number of elements for which we store a value.
2637   unsigned OldElts = Array.getArrayInitializedElts();
2638   unsigned NewElts = std::max(Index+1, OldElts * 2);
2639   NewElts = std::min(Size, std::max(NewElts, 8u));
2640 
2641   // Copy the data across.
2642   APValue NewValue(APValue::UninitArray(), NewElts, Size);
2643   for (unsigned I = 0; I != OldElts; ++I)
2644     NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I));
2645   for (unsigned I = OldElts; I != NewElts; ++I)
2646     NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
2647   if (NewValue.hasArrayFiller())
2648     NewValue.getArrayFiller() = Array.getArrayFiller();
2649   Array.swap(NewValue);
2650 }
2651 
2652 /// Determine whether a type would actually be read by an lvalue-to-rvalue
2653 /// conversion. If it's of class type, we may assume that the copy operation
2654 /// is trivial. Note that this is never true for a union type with fields
2655 /// (because the copy always "reads" the active member) and always true for
2656 /// a non-class type.
isReadByLvalueToRvalueConversion(QualType T)2657 static bool isReadByLvalueToRvalueConversion(QualType T) {
2658   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2659   if (!RD || (RD->isUnion() && !RD->field_empty()))
2660     return true;
2661   if (RD->isEmpty())
2662     return false;
2663 
2664   for (auto *Field : RD->fields())
2665     if (isReadByLvalueToRvalueConversion(Field->getType()))
2666       return true;
2667 
2668   for (auto &BaseSpec : RD->bases())
2669     if (isReadByLvalueToRvalueConversion(BaseSpec.getType()))
2670       return true;
2671 
2672   return false;
2673 }
2674 
2675 /// Diagnose an attempt to read from any unreadable field within the specified
2676 /// type, which might be a class type.
diagnoseUnreadableFields(EvalInfo & Info,const Expr * E,QualType T)2677 static bool diagnoseUnreadableFields(EvalInfo &Info, const Expr *E,
2678                                      QualType T) {
2679   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2680   if (!RD)
2681     return false;
2682 
2683   if (!RD->hasMutableFields())
2684     return false;
2685 
2686   for (auto *Field : RD->fields()) {
2687     // If we're actually going to read this field in some way, then it can't
2688     // be mutable. If we're in a union, then assigning to a mutable field
2689     // (even an empty one) can change the active member, so that's not OK.
2690     // FIXME: Add core issue number for the union case.
2691     if (Field->isMutable() &&
2692         (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) {
2693       Info.FFDiag(E, diag::note_constexpr_ltor_mutable, 1) << Field;
2694       Info.Note(Field->getLocation(), diag::note_declared_at);
2695       return true;
2696     }
2697 
2698     if (diagnoseUnreadableFields(Info, E, Field->getType()))
2699       return true;
2700   }
2701 
2702   for (auto &BaseSpec : RD->bases())
2703     if (diagnoseUnreadableFields(Info, E, BaseSpec.getType()))
2704       return true;
2705 
2706   // All mutable fields were empty, and thus not actually read.
2707   return false;
2708 }
2709 
2710 /// Kinds of access we can perform on an object, for diagnostics.
2711 enum AccessKinds {
2712   AK_Read,
2713   AK_Assign,
2714   AK_Increment,
2715   AK_Decrement
2716 };
2717 
2718 namespace {
2719 /// A handle to a complete object (an object that is not a subobject of
2720 /// another object).
2721 struct CompleteObject {
2722   /// The value of the complete object.
2723   APValue *Value;
2724   /// The type of the complete object.
2725   QualType Type;
2726   bool LifetimeStartedInEvaluation;
2727 
CompleteObject__anon2dd07ee60311::CompleteObject2728   CompleteObject() : Value(nullptr) {}
CompleteObject__anon2dd07ee60311::CompleteObject2729   CompleteObject(APValue *Value, QualType Type,
2730                  bool LifetimeStartedInEvaluation)
2731       : Value(Value), Type(Type),
2732         LifetimeStartedInEvaluation(LifetimeStartedInEvaluation) {
2733     assert(Value && "missing value for complete object");
2734   }
2735 
operator bool__anon2dd07ee60311::CompleteObject2736   explicit operator bool() const { return Value; }
2737 };
2738 } // end anonymous namespace
2739 
2740 /// Find the designated sub-object of an rvalue.
2741 template<typename SubobjectHandler>
2742 typename SubobjectHandler::result_type
findSubobject(EvalInfo & Info,const Expr * E,const CompleteObject & Obj,const SubobjectDesignator & Sub,SubobjectHandler & handler)2743 findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
2744               const SubobjectDesignator &Sub, SubobjectHandler &handler) {
2745   if (Sub.Invalid)
2746     // A diagnostic will have already been produced.
2747     return handler.failed();
2748   if (Sub.isOnePastTheEnd() || Sub.isMostDerivedAnUnsizedArray()) {
2749     if (Info.getLangOpts().CPlusPlus11)
2750       Info.FFDiag(E, Sub.isOnePastTheEnd()
2751                          ? diag::note_constexpr_access_past_end
2752                          : diag::note_constexpr_access_unsized_array)
2753           << handler.AccessKind;
2754     else
2755       Info.FFDiag(E);
2756     return handler.failed();
2757   }
2758 
2759   APValue *O = Obj.Value;
2760   QualType ObjType = Obj.Type;
2761   const FieldDecl *LastField = nullptr;
2762   const bool MayReadMutableMembers =
2763       Obj.LifetimeStartedInEvaluation && Info.getLangOpts().CPlusPlus14;
2764 
2765   // Walk the designator's path to find the subobject.
2766   for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
2767     if (O->isUninit()) {
2768       if (!Info.checkingPotentialConstantExpression())
2769         Info.FFDiag(E, diag::note_constexpr_access_uninit) << handler.AccessKind;
2770       return handler.failed();
2771     }
2772 
2773     if (I == N) {
2774       // If we are reading an object of class type, there may still be more
2775       // things we need to check: if there are any mutable subobjects, we
2776       // cannot perform this read. (This only happens when performing a trivial
2777       // copy or assignment.)
2778       if (ObjType->isRecordType() && handler.AccessKind == AK_Read &&
2779           !MayReadMutableMembers && diagnoseUnreadableFields(Info, E, ObjType))
2780         return handler.failed();
2781 
2782       if (!handler.found(*O, ObjType))
2783         return false;
2784 
2785       // If we modified a bit-field, truncate it to the right width.
2786       if (handler.AccessKind != AK_Read &&
2787           LastField && LastField->isBitField() &&
2788           !truncateBitfieldValue(Info, E, *O, LastField))
2789         return false;
2790 
2791       return true;
2792     }
2793 
2794     LastField = nullptr;
2795     if (ObjType->isArrayType()) {
2796       // Next subobject is an array element.
2797       const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
2798       assert(CAT && "vla in literal type?");
2799       uint64_t Index = Sub.Entries[I].ArrayIndex;
2800       if (CAT->getSize().ule(Index)) {
2801         // Note, it should not be possible to form a pointer with a valid
2802         // designator which points more than one past the end of the array.
2803         if (Info.getLangOpts().CPlusPlus11)
2804           Info.FFDiag(E, diag::note_constexpr_access_past_end)
2805             << handler.AccessKind;
2806         else
2807           Info.FFDiag(E);
2808         return handler.failed();
2809       }
2810 
2811       ObjType = CAT->getElementType();
2812 
2813       // An array object is represented as either an Array APValue or as an
2814       // LValue which refers to a string literal.
2815       if (O->isLValue()) {
2816         assert(I == N - 1 && "extracting subobject of character?");
2817         assert(!O->hasLValuePath() || O->getLValuePath().empty());
2818         if (handler.AccessKind != AK_Read)
2819           expandStringLiteral(Info, O->getLValueBase().get<const Expr *>(),
2820                               *O);
2821         else
2822           return handler.foundString(*O, ObjType, Index);
2823       }
2824 
2825       if (O->getArrayInitializedElts() > Index)
2826         O = &O->getArrayInitializedElt(Index);
2827       else if (handler.AccessKind != AK_Read) {
2828         expandArray(*O, Index);
2829         O = &O->getArrayInitializedElt(Index);
2830       } else
2831         O = &O->getArrayFiller();
2832     } else if (ObjType->isAnyComplexType()) {
2833       // Next subobject is a complex number.
2834       uint64_t Index = Sub.Entries[I].ArrayIndex;
2835       if (Index > 1) {
2836         if (Info.getLangOpts().CPlusPlus11)
2837           Info.FFDiag(E, diag::note_constexpr_access_past_end)
2838             << handler.AccessKind;
2839         else
2840           Info.FFDiag(E);
2841         return handler.failed();
2842       }
2843 
2844       bool WasConstQualified = ObjType.isConstQualified();
2845       ObjType = ObjType->castAs<ComplexType>()->getElementType();
2846       if (WasConstQualified)
2847         ObjType.addConst();
2848 
2849       assert(I == N - 1 && "extracting subobject of scalar?");
2850       if (O->isComplexInt()) {
2851         return handler.found(Index ? O->getComplexIntImag()
2852                                    : O->getComplexIntReal(), ObjType);
2853       } else {
2854         assert(O->isComplexFloat());
2855         return handler.found(Index ? O->getComplexFloatImag()
2856                                    : O->getComplexFloatReal(), ObjType);
2857       }
2858     } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
2859       // In C++14 onwards, it is permitted to read a mutable member whose
2860       // lifetime began within the evaluation.
2861       // FIXME: Should we also allow this in C++11?
2862       if (Field->isMutable() && handler.AccessKind == AK_Read &&
2863           !MayReadMutableMembers) {
2864         Info.FFDiag(E, diag::note_constexpr_ltor_mutable, 1)
2865           << Field;
2866         Info.Note(Field->getLocation(), diag::note_declared_at);
2867         return handler.failed();
2868       }
2869 
2870       // Next subobject is a class, struct or union field.
2871       RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
2872       if (RD->isUnion()) {
2873         const FieldDecl *UnionField = O->getUnionField();
2874         if (!UnionField ||
2875             UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
2876           Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member)
2877             << handler.AccessKind << Field << !UnionField << UnionField;
2878           return handler.failed();
2879         }
2880         O = &O->getUnionValue();
2881       } else
2882         O = &O->getStructField(Field->getFieldIndex());
2883 
2884       bool WasConstQualified = ObjType.isConstQualified();
2885       ObjType = Field->getType();
2886       if (WasConstQualified && !Field->isMutable())
2887         ObjType.addConst();
2888 
2889       if (ObjType.isVolatileQualified()) {
2890         if (Info.getLangOpts().CPlusPlus) {
2891           // FIXME: Include a description of the path to the volatile subobject.
2892           Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1)
2893             << handler.AccessKind << 2 << Field;
2894           Info.Note(Field->getLocation(), diag::note_declared_at);
2895         } else {
2896           Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2897         }
2898         return handler.failed();
2899       }
2900 
2901       LastField = Field;
2902     } else {
2903       // Next subobject is a base class.
2904       const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
2905       const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
2906       O = &O->getStructBase(getBaseIndex(Derived, Base));
2907 
2908       bool WasConstQualified = ObjType.isConstQualified();
2909       ObjType = Info.Ctx.getRecordType(Base);
2910       if (WasConstQualified)
2911         ObjType.addConst();
2912     }
2913   }
2914 }
2915 
2916 namespace {
2917 struct ExtractSubobjectHandler {
2918   EvalInfo &Info;
2919   APValue &Result;
2920 
2921   static const AccessKinds AccessKind = AK_Read;
2922 
2923   typedef bool result_type;
failed__anon2dd07ee60411::ExtractSubobjectHandler2924   bool failed() { return false; }
found__anon2dd07ee60411::ExtractSubobjectHandler2925   bool found(APValue &Subobj, QualType SubobjType) {
2926     Result = Subobj;
2927     return true;
2928   }
found__anon2dd07ee60411::ExtractSubobjectHandler2929   bool found(APSInt &Value, QualType SubobjType) {
2930     Result = APValue(Value);
2931     return true;
2932   }
found__anon2dd07ee60411::ExtractSubobjectHandler2933   bool found(APFloat &Value, QualType SubobjType) {
2934     Result = APValue(Value);
2935     return true;
2936   }
foundString__anon2dd07ee60411::ExtractSubobjectHandler2937   bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2938     Result = APValue(extractStringLiteralCharacter(
2939         Info, Subobj.getLValueBase().get<const Expr *>(), Character));
2940     return true;
2941   }
2942 };
2943 } // end anonymous namespace
2944 
2945 const AccessKinds ExtractSubobjectHandler::AccessKind;
2946 
2947 /// Extract the designated sub-object of an rvalue.
extractSubobject(EvalInfo & Info,const Expr * E,const CompleteObject & Obj,const SubobjectDesignator & Sub,APValue & Result)2948 static bool extractSubobject(EvalInfo &Info, const Expr *E,
2949                              const CompleteObject &Obj,
2950                              const SubobjectDesignator &Sub,
2951                              APValue &Result) {
2952   ExtractSubobjectHandler Handler = { Info, Result };
2953   return findSubobject(Info, E, Obj, Sub, Handler);
2954 }
2955 
2956 namespace {
2957 struct ModifySubobjectHandler {
2958   EvalInfo &Info;
2959   APValue &NewVal;
2960   const Expr *E;
2961 
2962   typedef bool result_type;
2963   static const AccessKinds AccessKind = AK_Assign;
2964 
checkConst__anon2dd07ee60511::ModifySubobjectHandler2965   bool checkConst(QualType QT) {
2966     // Assigning to a const object has undefined behavior.
2967     if (QT.isConstQualified()) {
2968       Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
2969       return false;
2970     }
2971     return true;
2972   }
2973 
failed__anon2dd07ee60511::ModifySubobjectHandler2974   bool failed() { return false; }
found__anon2dd07ee60511::ModifySubobjectHandler2975   bool found(APValue &Subobj, QualType SubobjType) {
2976     if (!checkConst(SubobjType))
2977       return false;
2978     // We've been given ownership of NewVal, so just swap it in.
2979     Subobj.swap(NewVal);
2980     return true;
2981   }
found__anon2dd07ee60511::ModifySubobjectHandler2982   bool found(APSInt &Value, QualType SubobjType) {
2983     if (!checkConst(SubobjType))
2984       return false;
2985     if (!NewVal.isInt()) {
2986       // Maybe trying to write a cast pointer value into a complex?
2987       Info.FFDiag(E);
2988       return false;
2989     }
2990     Value = NewVal.getInt();
2991     return true;
2992   }
found__anon2dd07ee60511::ModifySubobjectHandler2993   bool found(APFloat &Value, QualType SubobjType) {
2994     if (!checkConst(SubobjType))
2995       return false;
2996     Value = NewVal.getFloat();
2997     return true;
2998   }
foundString__anon2dd07ee60511::ModifySubobjectHandler2999   bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
3000     llvm_unreachable("shouldn't encounter string elements with ExpandArrays");
3001   }
3002 };
3003 } // end anonymous namespace
3004 
3005 const AccessKinds ModifySubobjectHandler::AccessKind;
3006 
3007 /// Update the designated sub-object of an rvalue to the given value.
modifySubobject(EvalInfo & Info,const Expr * E,const CompleteObject & Obj,const SubobjectDesignator & Sub,APValue & NewVal)3008 static bool modifySubobject(EvalInfo &Info, const Expr *E,
3009                             const CompleteObject &Obj,
3010                             const SubobjectDesignator &Sub,
3011                             APValue &NewVal) {
3012   ModifySubobjectHandler Handler = { Info, NewVal, E };
3013   return findSubobject(Info, E, Obj, Sub, Handler);
3014 }
3015 
3016 /// Find the position where two subobject designators diverge, or equivalently
3017 /// the length of the common initial subsequence.
FindDesignatorMismatch(QualType ObjType,const SubobjectDesignator & A,const SubobjectDesignator & B,bool & WasArrayIndex)3018 static unsigned FindDesignatorMismatch(QualType ObjType,
3019                                        const SubobjectDesignator &A,
3020                                        const SubobjectDesignator &B,
3021                                        bool &WasArrayIndex) {
3022   unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
3023   for (/**/; I != N; ++I) {
3024     if (!ObjType.isNull() &&
3025         (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
3026       // Next subobject is an array element.
3027       if (A.Entries[I].ArrayIndex != B.Entries[I].ArrayIndex) {
3028         WasArrayIndex = true;
3029         return I;
3030       }
3031       if (ObjType->isAnyComplexType())
3032         ObjType = ObjType->castAs<ComplexType>()->getElementType();
3033       else
3034         ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
3035     } else {
3036       if (A.Entries[I].BaseOrMember != B.Entries[I].BaseOrMember) {
3037         WasArrayIndex = false;
3038         return I;
3039       }
3040       if (const FieldDecl *FD = getAsField(A.Entries[I]))
3041         // Next subobject is a field.
3042         ObjType = FD->getType();
3043       else
3044         // Next subobject is a base class.
3045         ObjType = QualType();
3046     }
3047   }
3048   WasArrayIndex = false;
3049   return I;
3050 }
3051 
3052 /// Determine whether the given subobject designators refer to elements of the
3053 /// same array object.
AreElementsOfSameArray(QualType ObjType,const SubobjectDesignator & A,const SubobjectDesignator & B)3054 static bool AreElementsOfSameArray(QualType ObjType,
3055                                    const SubobjectDesignator &A,
3056                                    const SubobjectDesignator &B) {
3057   if (A.Entries.size() != B.Entries.size())
3058     return false;
3059 
3060   bool IsArray = A.MostDerivedIsArrayElement;
3061   if (IsArray && A.MostDerivedPathLength != A.Entries.size())
3062     // A is a subobject of the array element.
3063     return false;
3064 
3065   // If A (and B) designates an array element, the last entry will be the array
3066   // index. That doesn't have to match. Otherwise, we're in the 'implicit array
3067   // of length 1' case, and the entire path must match.
3068   bool WasArrayIndex;
3069   unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
3070   return CommonLength >= A.Entries.size() - IsArray;
3071 }
3072 
3073 /// Find the complete object to which an LValue refers.
findCompleteObject(EvalInfo & Info,const Expr * E,AccessKinds AK,const LValue & LVal,QualType LValType)3074 static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E,
3075                                          AccessKinds AK, const LValue &LVal,
3076                                          QualType LValType) {
3077   if (!LVal.Base) {
3078     Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
3079     return CompleteObject();
3080   }
3081 
3082   CallStackFrame *Frame = nullptr;
3083   if (LVal.getLValueCallIndex()) {
3084     Frame = Info.getCallFrame(LVal.getLValueCallIndex());
3085     if (!Frame) {
3086       Info.FFDiag(E, diag::note_constexpr_lifetime_ended, 1)
3087         << AK << LVal.Base.is<const ValueDecl*>();
3088       NoteLValueLocation(Info, LVal.Base);
3089       return CompleteObject();
3090     }
3091   }
3092 
3093   // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
3094   // is not a constant expression (even if the object is non-volatile). We also
3095   // apply this rule to C++98, in order to conform to the expected 'volatile'
3096   // semantics.
3097   if (LValType.isVolatileQualified()) {
3098     if (Info.getLangOpts().CPlusPlus)
3099       Info.FFDiag(E, diag::note_constexpr_access_volatile_type)
3100         << AK << LValType;
3101     else
3102       Info.FFDiag(E);
3103     return CompleteObject();
3104   }
3105 
3106   // Compute value storage location and type of base object.
3107   APValue *BaseVal = nullptr;
3108   QualType BaseType = getType(LVal.Base);
3109   bool LifetimeStartedInEvaluation = Frame;
3110 
3111   if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl*>()) {
3112     // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
3113     // In C++11, constexpr, non-volatile variables initialized with constant
3114     // expressions are constant expressions too. Inside constexpr functions,
3115     // parameters are constant expressions even if they're non-const.
3116     // In C++1y, objects local to a constant expression (those with a Frame) are
3117     // both readable and writable inside constant expressions.
3118     // In C, such things can also be folded, although they are not ICEs.
3119     const VarDecl *VD = dyn_cast<VarDecl>(D);
3120     if (VD) {
3121       if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
3122         VD = VDef;
3123     }
3124     if (!VD || VD->isInvalidDecl()) {
3125       Info.FFDiag(E);
3126       return CompleteObject();
3127     }
3128 
3129     // Accesses of volatile-qualified objects are not allowed.
3130     if (BaseType.isVolatileQualified()) {
3131       if (Info.getLangOpts().CPlusPlus) {
3132         Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1)
3133           << AK << 1 << VD;
3134         Info.Note(VD->getLocation(), diag::note_declared_at);
3135       } else {
3136         Info.FFDiag(E);
3137       }
3138       return CompleteObject();
3139     }
3140 
3141     // Unless we're looking at a local variable or argument in a constexpr call,
3142     // the variable we're reading must be const.
3143     if (!Frame) {
3144       if (Info.getLangOpts().CPlusPlus14 &&
3145           VD == Info.EvaluatingDecl.dyn_cast<const ValueDecl *>()) {
3146         // OK, we can read and modify an object if we're in the process of
3147         // evaluating its initializer, because its lifetime began in this
3148         // evaluation.
3149       } else if (AK != AK_Read) {
3150         // All the remaining cases only permit reading.
3151         Info.FFDiag(E, diag::note_constexpr_modify_global);
3152         return CompleteObject();
3153       } else if (VD->isConstexpr()) {
3154         // OK, we can read this variable.
3155       } else if (BaseType->isIntegralOrEnumerationType()) {
3156         // In OpenCL if a variable is in constant address space it is a const value.
3157         if (!(BaseType.isConstQualified() ||
3158               (Info.getLangOpts().OpenCL &&
3159                BaseType.getAddressSpace() == LangAS::opencl_constant))) {
3160           if (Info.getLangOpts().CPlusPlus) {
3161             Info.FFDiag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
3162             Info.Note(VD->getLocation(), diag::note_declared_at);
3163           } else {
3164             Info.FFDiag(E);
3165           }
3166           return CompleteObject();
3167         }
3168       } else if (BaseType->isFloatingType() && BaseType.isConstQualified()) {
3169         // We support folding of const floating-point types, in order to make
3170         // static const data members of such types (supported as an extension)
3171         // more useful.
3172         if (Info.getLangOpts().CPlusPlus11) {
3173           Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
3174           Info.Note(VD->getLocation(), diag::note_declared_at);
3175         } else {
3176           Info.CCEDiag(E);
3177         }
3178       } else if (BaseType.isConstQualified() && VD->hasDefinition(Info.Ctx)) {
3179         Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr) << VD;
3180         // Keep evaluating to see what we can do.
3181       } else {
3182         // FIXME: Allow folding of values of any literal type in all languages.
3183         if (Info.checkingPotentialConstantExpression() &&
3184             VD->getType().isConstQualified() && !VD->hasDefinition(Info.Ctx)) {
3185           // The definition of this variable could be constexpr. We can't
3186           // access it right now, but may be able to in future.
3187         } else if (Info.getLangOpts().CPlusPlus11) {
3188           Info.FFDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
3189           Info.Note(VD->getLocation(), diag::note_declared_at);
3190         } else {
3191           Info.FFDiag(E);
3192         }
3193         return CompleteObject();
3194       }
3195     }
3196 
3197     if (!evaluateVarDeclInit(Info, E, VD, Frame, BaseVal, &LVal))
3198       return CompleteObject();
3199   } else {
3200     const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
3201 
3202     if (!Frame) {
3203       if (const MaterializeTemporaryExpr *MTE =
3204               dyn_cast<MaterializeTemporaryExpr>(Base)) {
3205         assert(MTE->getStorageDuration() == SD_Static &&
3206                "should have a frame for a non-global materialized temporary");
3207 
3208         // Per C++1y [expr.const]p2:
3209         //  an lvalue-to-rvalue conversion [is not allowed unless it applies to]
3210         //   - a [...] glvalue of integral or enumeration type that refers to
3211         //     a non-volatile const object [...]
3212         //   [...]
3213         //   - a [...] glvalue of literal type that refers to a non-volatile
3214         //     object whose lifetime began within the evaluation of e.
3215         //
3216         // C++11 misses the 'began within the evaluation of e' check and
3217         // instead allows all temporaries, including things like:
3218         //   int &&r = 1;
3219         //   int x = ++r;
3220         //   constexpr int k = r;
3221         // Therefore we use the C++14 rules in C++11 too.
3222         const ValueDecl *VD = Info.EvaluatingDecl.dyn_cast<const ValueDecl*>();
3223         const ValueDecl *ED = MTE->getExtendingDecl();
3224         if (!(BaseType.isConstQualified() &&
3225               BaseType->isIntegralOrEnumerationType()) &&
3226             !(VD && VD->getCanonicalDecl() == ED->getCanonicalDecl())) {
3227           Info.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
3228           Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
3229           return CompleteObject();
3230         }
3231 
3232         BaseVal = Info.Ctx.getMaterializedTemporaryValue(MTE, false);
3233         assert(BaseVal && "got reference to unevaluated temporary");
3234         LifetimeStartedInEvaluation = true;
3235       } else {
3236         Info.FFDiag(E);
3237         return CompleteObject();
3238       }
3239     } else {
3240       BaseVal = Frame->getTemporary(Base, LVal.Base.getVersion());
3241       assert(BaseVal && "missing value for temporary");
3242     }
3243 
3244     // Volatile temporary objects cannot be accessed in constant expressions.
3245     if (BaseType.isVolatileQualified()) {
3246       if (Info.getLangOpts().CPlusPlus) {
3247         Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1)
3248           << AK << 0;
3249         Info.Note(Base->getExprLoc(), diag::note_constexpr_temporary_here);
3250       } else {
3251         Info.FFDiag(E);
3252       }
3253       return CompleteObject();
3254     }
3255   }
3256 
3257   // During the construction of an object, it is not yet 'const'.
3258   // FIXME: This doesn't do quite the right thing for const subobjects of the
3259   // object under construction.
3260   if (Info.isEvaluatingConstructor(LVal.getLValueBase(),
3261                                    LVal.getLValueCallIndex(),
3262                                    LVal.getLValueVersion())) {
3263     BaseType = Info.Ctx.getCanonicalType(BaseType);
3264     BaseType.removeLocalConst();
3265     LifetimeStartedInEvaluation = true;
3266   }
3267 
3268   // In C++14, we can't safely access any mutable state when we might be
3269   // evaluating after an unmodeled side effect.
3270   //
3271   // FIXME: Not all local state is mutable. Allow local constant subobjects
3272   // to be read here (but take care with 'mutable' fields).
3273   if ((Frame && Info.getLangOpts().CPlusPlus14 &&
3274        Info.EvalStatus.HasSideEffects) ||
3275       (AK != AK_Read && Info.IsSpeculativelyEvaluating))
3276     return CompleteObject();
3277 
3278   return CompleteObject(BaseVal, BaseType, LifetimeStartedInEvaluation);
3279 }
3280 
3281 /// Perform an lvalue-to-rvalue conversion on the given glvalue. This
3282 /// can also be used for 'lvalue-to-lvalue' conversions for looking up the
3283 /// glvalue referred to by an entity of reference type.
3284 ///
3285 /// \param Info - Information about the ongoing evaluation.
3286 /// \param Conv - The expression for which we are performing the conversion.
3287 ///               Used for diagnostics.
3288 /// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
3289 ///               case of a non-class type).
3290 /// \param LVal - The glvalue on which we are attempting to perform this action.
3291 /// \param RVal - The produced value will be placed here.
handleLValueToRValueConversion(EvalInfo & Info,const Expr * Conv,QualType Type,const LValue & LVal,APValue & RVal)3292 static bool handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv,
3293                                            QualType Type,
3294                                            const LValue &LVal, APValue &RVal) {
3295   if (LVal.Designator.Invalid)
3296     return false;
3297 
3298   // Check for special cases where there is no existing APValue to look at.
3299   const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
3300   if (Base && !LVal.getLValueCallIndex() && !Type.isVolatileQualified()) {
3301     if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
3302       // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
3303       // initializer until now for such expressions. Such an expression can't be
3304       // an ICE in C, so this only matters for fold.
3305       if (Type.isVolatileQualified()) {
3306         Info.FFDiag(Conv);
3307         return false;
3308       }
3309       APValue Lit;
3310       if (!Evaluate(Lit, Info, CLE->getInitializer()))
3311         return false;
3312       CompleteObject LitObj(&Lit, Base->getType(), false);
3313       return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal);
3314     } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) {
3315       // We represent a string literal array as an lvalue pointing at the
3316       // corresponding expression, rather than building an array of chars.
3317       // FIXME: Support ObjCEncodeExpr, MakeStringConstant
3318       APValue Str(Base, CharUnits::Zero(), APValue::NoLValuePath(), 0);
3319       CompleteObject StrObj(&Str, Base->getType(), false);
3320       return extractSubobject(Info, Conv, StrObj, LVal.Designator, RVal);
3321     }
3322   }
3323 
3324   CompleteObject Obj = findCompleteObject(Info, Conv, AK_Read, LVal, Type);
3325   return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal);
3326 }
3327 
3328 /// Perform an assignment of Val to LVal. Takes ownership of Val.
handleAssignment(EvalInfo & Info,const Expr * E,const LValue & LVal,QualType LValType,APValue & Val)3329 static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
3330                              QualType LValType, APValue &Val) {
3331   if (LVal.Designator.Invalid)
3332     return false;
3333 
3334   if (!Info.getLangOpts().CPlusPlus14) {
3335     Info.FFDiag(E);
3336     return false;
3337   }
3338 
3339   CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
3340   return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
3341 }
3342 
3343 namespace {
3344 struct CompoundAssignSubobjectHandler {
3345   EvalInfo &Info;
3346   const Expr *E;
3347   QualType PromotedLHSType;
3348   BinaryOperatorKind Opcode;
3349   const APValue &RHS;
3350 
3351   static const AccessKinds AccessKind = AK_Assign;
3352 
3353   typedef bool result_type;
3354 
checkConst__anon2dd07ee60611::CompoundAssignSubobjectHandler3355   bool checkConst(QualType QT) {
3356     // Assigning to a const object has undefined behavior.
3357     if (QT.isConstQualified()) {
3358       Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
3359       return false;
3360     }
3361     return true;
3362   }
3363 
failed__anon2dd07ee60611::CompoundAssignSubobjectHandler3364   bool failed() { return false; }
found__anon2dd07ee60611::CompoundAssignSubobjectHandler3365   bool found(APValue &Subobj, QualType SubobjType) {
3366     switch (Subobj.getKind()) {
3367     case APValue::Int:
3368       return found(Subobj.getInt(), SubobjType);
3369     case APValue::Float:
3370       return found(Subobj.getFloat(), SubobjType);
3371     case APValue::ComplexInt:
3372     case APValue::ComplexFloat:
3373       // FIXME: Implement complex compound assignment.
3374       Info.FFDiag(E);
3375       return false;
3376     case APValue::LValue:
3377       return foundPointer(Subobj, SubobjType);
3378     default:
3379       // FIXME: can this happen?
3380       Info.FFDiag(E);
3381       return false;
3382     }
3383   }
found__anon2dd07ee60611::CompoundAssignSubobjectHandler3384   bool found(APSInt &Value, QualType SubobjType) {
3385     if (!checkConst(SubobjType))
3386       return false;
3387 
3388     if (!SubobjType->isIntegerType() || !RHS.isInt()) {
3389       // We don't support compound assignment on integer-cast-to-pointer
3390       // values.
3391       Info.FFDiag(E);
3392       return false;
3393     }
3394 
3395     APSInt LHS = HandleIntToIntCast(Info, E, PromotedLHSType,
3396                                     SubobjType, Value);
3397     if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
3398       return false;
3399     Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
3400     return true;
3401   }
found__anon2dd07ee60611::CompoundAssignSubobjectHandler3402   bool found(APFloat &Value, QualType SubobjType) {
3403     return checkConst(SubobjType) &&
3404            HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
3405                                   Value) &&
3406            handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
3407            HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
3408   }
foundPointer__anon2dd07ee60611::CompoundAssignSubobjectHandler3409   bool foundPointer(APValue &Subobj, QualType SubobjType) {
3410     if (!checkConst(SubobjType))
3411       return false;
3412 
3413     QualType PointeeType;
3414     if (const PointerType *PT = SubobjType->getAs<PointerType>())
3415       PointeeType = PT->getPointeeType();
3416 
3417     if (PointeeType.isNull() || !RHS.isInt() ||
3418         (Opcode != BO_Add && Opcode != BO_Sub)) {
3419       Info.FFDiag(E);
3420       return false;
3421     }
3422 
3423     APSInt Offset = RHS.getInt();
3424     if (Opcode == BO_Sub)
3425       negateAsSigned(Offset);
3426 
3427     LValue LVal;
3428     LVal.setFrom(Info.Ctx, Subobj);
3429     if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
3430       return false;
3431     LVal.moveInto(Subobj);
3432     return true;
3433   }
foundString__anon2dd07ee60611::CompoundAssignSubobjectHandler3434   bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
3435     llvm_unreachable("shouldn't encounter string elements here");
3436   }
3437 };
3438 } // end anonymous namespace
3439 
3440 const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
3441 
3442 /// Perform a compound assignment of LVal <op>= RVal.
handleCompoundAssignment(EvalInfo & Info,const Expr * E,const LValue & LVal,QualType LValType,QualType PromotedLValType,BinaryOperatorKind Opcode,const APValue & RVal)3443 static bool handleCompoundAssignment(
3444     EvalInfo &Info, const Expr *E,
3445     const LValue &LVal, QualType LValType, QualType PromotedLValType,
3446     BinaryOperatorKind Opcode, const APValue &RVal) {
3447   if (LVal.Designator.Invalid)
3448     return false;
3449 
3450   if (!Info.getLangOpts().CPlusPlus14) {
3451     Info.FFDiag(E);
3452     return false;
3453   }
3454 
3455   CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
3456   CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
3457                                              RVal };
3458   return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
3459 }
3460 
3461 namespace {
3462 struct IncDecSubobjectHandler {
3463   EvalInfo &Info;
3464   const UnaryOperator *E;
3465   AccessKinds AccessKind;
3466   APValue *Old;
3467 
3468   typedef bool result_type;
3469 
checkConst__anon2dd07ee60711::IncDecSubobjectHandler3470   bool checkConst(QualType QT) {
3471     // Assigning to a const object has undefined behavior.
3472     if (QT.isConstQualified()) {
3473       Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
3474       return false;
3475     }
3476     return true;
3477   }
3478 
failed__anon2dd07ee60711::IncDecSubobjectHandler3479   bool failed() { return false; }
found__anon2dd07ee60711::IncDecSubobjectHandler3480   bool found(APValue &Subobj, QualType SubobjType) {
3481     // Stash the old value. Also clear Old, so we don't clobber it later
3482     // if we're post-incrementing a complex.
3483     if (Old) {
3484       *Old = Subobj;
3485       Old = nullptr;
3486     }
3487 
3488     switch (Subobj.getKind()) {
3489     case APValue::Int:
3490       return found(Subobj.getInt(), SubobjType);
3491     case APValue::Float:
3492       return found(Subobj.getFloat(), SubobjType);
3493     case APValue::ComplexInt:
3494       return found(Subobj.getComplexIntReal(),
3495                    SubobjType->castAs<ComplexType>()->getElementType()
3496                      .withCVRQualifiers(SubobjType.getCVRQualifiers()));
3497     case APValue::ComplexFloat:
3498       return found(Subobj.getComplexFloatReal(),
3499                    SubobjType->castAs<ComplexType>()->getElementType()
3500                      .withCVRQualifiers(SubobjType.getCVRQualifiers()));
3501     case APValue::LValue:
3502       return foundPointer(Subobj, SubobjType);
3503     default:
3504       // FIXME: can this happen?
3505       Info.FFDiag(E);
3506       return false;
3507     }
3508   }
found__anon2dd07ee60711::IncDecSubobjectHandler3509   bool found(APSInt &Value, QualType SubobjType) {
3510     if (!checkConst(SubobjType))
3511       return false;
3512 
3513     if (!SubobjType->isIntegerType()) {
3514       // We don't support increment / decrement on integer-cast-to-pointer
3515       // values.
3516       Info.FFDiag(E);
3517       return false;
3518     }
3519 
3520     if (Old) *Old = APValue(Value);
3521 
3522     // bool arithmetic promotes to int, and the conversion back to bool
3523     // doesn't reduce mod 2^n, so special-case it.
3524     if (SubobjType->isBooleanType()) {
3525       if (AccessKind == AK_Increment)
3526         Value = 1;
3527       else
3528         Value = !Value;
3529       return true;
3530     }
3531 
3532     bool WasNegative = Value.isNegative();
3533     if (AccessKind == AK_Increment) {
3534       ++Value;
3535 
3536       if (!WasNegative && Value.isNegative() && E->canOverflow()) {
3537         APSInt ActualValue(Value, /*IsUnsigned*/true);
3538         return HandleOverflow(Info, E, ActualValue, SubobjType);
3539       }
3540     } else {
3541       --Value;
3542 
3543       if (WasNegative && !Value.isNegative() && E->canOverflow()) {
3544         unsigned BitWidth = Value.getBitWidth();
3545         APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false);
3546         ActualValue.setBit(BitWidth);
3547         return HandleOverflow(Info, E, ActualValue, SubobjType);
3548       }
3549     }
3550     return true;
3551   }
found__anon2dd07ee60711::IncDecSubobjectHandler3552   bool found(APFloat &Value, QualType SubobjType) {
3553     if (!checkConst(SubobjType))
3554       return false;
3555 
3556     if (Old) *Old = APValue(Value);
3557 
3558     APFloat One(Value.getSemantics(), 1);
3559     if (AccessKind == AK_Increment)
3560       Value.add(One, APFloat::rmNearestTiesToEven);
3561     else
3562       Value.subtract(One, APFloat::rmNearestTiesToEven);
3563     return true;
3564   }
foundPointer__anon2dd07ee60711::IncDecSubobjectHandler3565   bool foundPointer(APValue &Subobj, QualType SubobjType) {
3566     if (!checkConst(SubobjType))
3567       return false;
3568 
3569     QualType PointeeType;
3570     if (const PointerType *PT = SubobjType->getAs<PointerType>())
3571       PointeeType = PT->getPointeeType();
3572     else {
3573       Info.FFDiag(E);
3574       return false;
3575     }
3576 
3577     LValue LVal;
3578     LVal.setFrom(Info.Ctx, Subobj);
3579     if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
3580                                      AccessKind == AK_Increment ? 1 : -1))
3581       return false;
3582     LVal.moveInto(Subobj);
3583     return true;
3584   }
foundString__anon2dd07ee60711::IncDecSubobjectHandler3585   bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
3586     llvm_unreachable("shouldn't encounter string elements here");
3587   }
3588 };
3589 } // end anonymous namespace
3590 
3591 /// Perform an increment or decrement on LVal.
handleIncDec(EvalInfo & Info,const Expr * E,const LValue & LVal,QualType LValType,bool IsIncrement,APValue * Old)3592 static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
3593                          QualType LValType, bool IsIncrement, APValue *Old) {
3594   if (LVal.Designator.Invalid)
3595     return false;
3596 
3597   if (!Info.getLangOpts().CPlusPlus14) {
3598     Info.FFDiag(E);
3599     return false;
3600   }
3601 
3602   AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
3603   CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
3604   IncDecSubobjectHandler Handler = {Info, cast<UnaryOperator>(E), AK, Old};
3605   return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
3606 }
3607 
3608 /// Build an lvalue for the object argument of a member function call.
EvaluateObjectArgument(EvalInfo & Info,const Expr * Object,LValue & This)3609 static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
3610                                    LValue &This) {
3611   if (Object->getType()->isPointerType())
3612     return EvaluatePointer(Object, This, Info);
3613 
3614   if (Object->isGLValue())
3615     return EvaluateLValue(Object, This, Info);
3616 
3617   if (Object->getType()->isLiteralType(Info.Ctx))
3618     return EvaluateTemporary(Object, This, Info);
3619 
3620   Info.FFDiag(Object, diag::note_constexpr_nonliteral) << Object->getType();
3621   return false;
3622 }
3623 
3624 /// HandleMemberPointerAccess - Evaluate a member access operation and build an
3625 /// lvalue referring to the result.
3626 ///
3627 /// \param Info - Information about the ongoing evaluation.
3628 /// \param LV - An lvalue referring to the base of the member pointer.
3629 /// \param RHS - The member pointer expression.
3630 /// \param IncludeMember - Specifies whether the member itself is included in
3631 ///        the resulting LValue subobject designator. This is not possible when
3632 ///        creating a bound member function.
3633 /// \return The field or method declaration to which the member pointer refers,
3634 ///         or 0 if evaluation fails.
HandleMemberPointerAccess(EvalInfo & Info,QualType LVType,LValue & LV,const Expr * RHS,bool IncludeMember=true)3635 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
3636                                                   QualType LVType,
3637                                                   LValue &LV,
3638                                                   const Expr *RHS,
3639                                                   bool IncludeMember = true) {
3640   MemberPtr MemPtr;
3641   if (!EvaluateMemberPointer(RHS, MemPtr, Info))
3642     return nullptr;
3643 
3644   // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
3645   // member value, the behavior is undefined.
3646   if (!MemPtr.getDecl()) {
3647     // FIXME: Specific diagnostic.
3648     Info.FFDiag(RHS);
3649     return nullptr;
3650   }
3651 
3652   if (MemPtr.isDerivedMember()) {
3653     // This is a member of some derived class. Truncate LV appropriately.
3654     // The end of the derived-to-base path for the base object must match the
3655     // derived-to-base path for the member pointer.
3656     if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
3657         LV.Designator.Entries.size()) {
3658       Info.FFDiag(RHS);
3659       return nullptr;
3660     }
3661     unsigned PathLengthToMember =
3662         LV.Designator.Entries.size() - MemPtr.Path.size();
3663     for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
3664       const CXXRecordDecl *LVDecl = getAsBaseClass(
3665           LV.Designator.Entries[PathLengthToMember + I]);
3666       const CXXRecordDecl *MPDecl = MemPtr.Path[I];
3667       if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
3668         Info.FFDiag(RHS);
3669         return nullptr;
3670       }
3671     }
3672 
3673     // Truncate the lvalue to the appropriate derived class.
3674     if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
3675                             PathLengthToMember))
3676       return nullptr;
3677   } else if (!MemPtr.Path.empty()) {
3678     // Extend the LValue path with the member pointer's path.
3679     LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
3680                                   MemPtr.Path.size() + IncludeMember);
3681 
3682     // Walk down to the appropriate base class.
3683     if (const PointerType *PT = LVType->getAs<PointerType>())
3684       LVType = PT->getPointeeType();
3685     const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
3686     assert(RD && "member pointer access on non-class-type expression");
3687     // The first class in the path is that of the lvalue.
3688     for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
3689       const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
3690       if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base))
3691         return nullptr;
3692       RD = Base;
3693     }
3694     // Finally cast to the class containing the member.
3695     if (!HandleLValueDirectBase(Info, RHS, LV, RD,
3696                                 MemPtr.getContainingRecord()))
3697       return nullptr;
3698   }
3699 
3700   // Add the member. Note that we cannot build bound member functions here.
3701   if (IncludeMember) {
3702     if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
3703       if (!HandleLValueMember(Info, RHS, LV, FD))
3704         return nullptr;
3705     } else if (const IndirectFieldDecl *IFD =
3706                  dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
3707       if (!HandleLValueIndirectMember(Info, RHS, LV, IFD))
3708         return nullptr;
3709     } else {
3710       llvm_unreachable("can't construct reference to bound member function");
3711     }
3712   }
3713 
3714   return MemPtr.getDecl();
3715 }
3716 
HandleMemberPointerAccess(EvalInfo & Info,const BinaryOperator * BO,LValue & LV,bool IncludeMember=true)3717 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
3718                                                   const BinaryOperator *BO,
3719                                                   LValue &LV,
3720                                                   bool IncludeMember = true) {
3721   assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
3722 
3723   if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) {
3724     if (Info.noteFailure()) {
3725       MemberPtr MemPtr;
3726       EvaluateMemberPointer(BO->getRHS(), MemPtr, Info);
3727     }
3728     return nullptr;
3729   }
3730 
3731   return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV,
3732                                    BO->getRHS(), IncludeMember);
3733 }
3734 
3735 /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
3736 /// the provided lvalue, which currently refers to the base object.
HandleBaseToDerivedCast(EvalInfo & Info,const CastExpr * E,LValue & Result)3737 static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
3738                                     LValue &Result) {
3739   SubobjectDesignator &D = Result.Designator;
3740   if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
3741     return false;
3742 
3743   QualType TargetQT = E->getType();
3744   if (const PointerType *PT = TargetQT->getAs<PointerType>())
3745     TargetQT = PT->getPointeeType();
3746 
3747   // Check this cast lands within the final derived-to-base subobject path.
3748   if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
3749     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
3750       << D.MostDerivedType << TargetQT;
3751     return false;
3752   }
3753 
3754   // Check the type of the final cast. We don't need to check the path,
3755   // since a cast can only be formed if the path is unique.
3756   unsigned NewEntriesSize = D.Entries.size() - E->path_size();
3757   const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
3758   const CXXRecordDecl *FinalType;
3759   if (NewEntriesSize == D.MostDerivedPathLength)
3760     FinalType = D.MostDerivedType->getAsCXXRecordDecl();
3761   else
3762     FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
3763   if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
3764     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
3765       << D.MostDerivedType << TargetQT;
3766     return false;
3767   }
3768 
3769   // Truncate the lvalue to the appropriate derived class.
3770   return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
3771 }
3772 
3773 namespace {
3774 enum EvalStmtResult {
3775   /// Evaluation failed.
3776   ESR_Failed,
3777   /// Hit a 'return' statement.
3778   ESR_Returned,
3779   /// Evaluation succeeded.
3780   ESR_Succeeded,
3781   /// Hit a 'continue' statement.
3782   ESR_Continue,
3783   /// Hit a 'break' statement.
3784   ESR_Break,
3785   /// Still scanning for 'case' or 'default' statement.
3786   ESR_CaseNotFound
3787 };
3788 }
3789 
EvaluateVarDecl(EvalInfo & Info,const VarDecl * VD)3790 static bool EvaluateVarDecl(EvalInfo &Info, const VarDecl *VD) {
3791   // We don't need to evaluate the initializer for a static local.
3792   if (!VD->hasLocalStorage())
3793     return true;
3794 
3795   LValue Result;
3796   APValue &Val = createTemporary(VD, true, Result, *Info.CurrentCall);
3797 
3798   const Expr *InitE = VD->getInit();
3799   if (!InitE) {
3800     Info.FFDiag(VD->getLocStart(), diag::note_constexpr_uninitialized)
3801       << false << VD->getType();
3802     Val = APValue();
3803     return false;
3804   }
3805 
3806   if (InitE->isValueDependent())
3807     return false;
3808 
3809   if (!EvaluateInPlace(Val, Info, Result, InitE)) {
3810     // Wipe out any partially-computed value, to allow tracking that this
3811     // evaluation failed.
3812     Val = APValue();
3813     return false;
3814   }
3815 
3816   return true;
3817 }
3818 
EvaluateDecl(EvalInfo & Info,const Decl * D)3819 static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
3820   bool OK = true;
3821 
3822   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
3823     OK &= EvaluateVarDecl(Info, VD);
3824 
3825   if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(D))
3826     for (auto *BD : DD->bindings())
3827       if (auto *VD = BD->getHoldingVar())
3828         OK &= EvaluateDecl(Info, VD);
3829 
3830   return OK;
3831 }
3832 
3833 
3834 /// Evaluate a condition (either a variable declaration or an expression).
EvaluateCond(EvalInfo & Info,const VarDecl * CondDecl,const Expr * Cond,bool & Result)3835 static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
3836                          const Expr *Cond, bool &Result) {
3837   FullExpressionRAII Scope(Info);
3838   if (CondDecl && !EvaluateDecl(Info, CondDecl))
3839     return false;
3840   return EvaluateAsBooleanCondition(Cond, Result, Info);
3841 }
3842 
3843 namespace {
3844 /// A location where the result (returned value) of evaluating a
3845 /// statement should be stored.
3846 struct StmtResult {
3847   /// The APValue that should be filled in with the returned value.
3848   APValue &Value;
3849   /// The location containing the result, if any (used to support RVO).
3850   const LValue *Slot;
3851 };
3852 
3853 struct TempVersionRAII {
3854   CallStackFrame &Frame;
3855 
TempVersionRAII__anon2dd07ee60911::TempVersionRAII3856   TempVersionRAII(CallStackFrame &Frame) : Frame(Frame) {
3857     Frame.pushTempVersion();
3858   }
3859 
~TempVersionRAII__anon2dd07ee60911::TempVersionRAII3860   ~TempVersionRAII() {
3861     Frame.popTempVersion();
3862   }
3863 };
3864 
3865 }
3866 
3867 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
3868                                    const Stmt *S,
3869                                    const SwitchCase *SC = nullptr);
3870 
3871 /// Evaluate the body of a loop, and translate the result as appropriate.
EvaluateLoopBody(StmtResult & Result,EvalInfo & Info,const Stmt * Body,const SwitchCase * Case=nullptr)3872 static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info,
3873                                        const Stmt *Body,
3874                                        const SwitchCase *Case = nullptr) {
3875   BlockScopeRAII Scope(Info);
3876   switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case)) {
3877   case ESR_Break:
3878     return ESR_Succeeded;
3879   case ESR_Succeeded:
3880   case ESR_Continue:
3881     return ESR_Continue;
3882   case ESR_Failed:
3883   case ESR_Returned:
3884   case ESR_CaseNotFound:
3885     return ESR;
3886   }
3887   llvm_unreachable("Invalid EvalStmtResult!");
3888 }
3889 
3890 /// Evaluate a switch statement.
EvaluateSwitch(StmtResult & Result,EvalInfo & Info,const SwitchStmt * SS)3891 static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info,
3892                                      const SwitchStmt *SS) {
3893   BlockScopeRAII Scope(Info);
3894 
3895   // Evaluate the switch condition.
3896   APSInt Value;
3897   {
3898     FullExpressionRAII Scope(Info);
3899     if (const Stmt *Init = SS->getInit()) {
3900       EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
3901       if (ESR != ESR_Succeeded)
3902         return ESR;
3903     }
3904     if (SS->getConditionVariable() &&
3905         !EvaluateDecl(Info, SS->getConditionVariable()))
3906       return ESR_Failed;
3907     if (!EvaluateInteger(SS->getCond(), Value, Info))
3908       return ESR_Failed;
3909   }
3910 
3911   // Find the switch case corresponding to the value of the condition.
3912   // FIXME: Cache this lookup.
3913   const SwitchCase *Found = nullptr;
3914   for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
3915        SC = SC->getNextSwitchCase()) {
3916     if (isa<DefaultStmt>(SC)) {
3917       Found = SC;
3918       continue;
3919     }
3920 
3921     const CaseStmt *CS = cast<CaseStmt>(SC);
3922     APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx);
3923     APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx)
3924                               : LHS;
3925     if (LHS <= Value && Value <= RHS) {
3926       Found = SC;
3927       break;
3928     }
3929   }
3930 
3931   if (!Found)
3932     return ESR_Succeeded;
3933 
3934   // Search the switch body for the switch case and evaluate it from there.
3935   switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found)) {
3936   case ESR_Break:
3937     return ESR_Succeeded;
3938   case ESR_Succeeded:
3939   case ESR_Continue:
3940   case ESR_Failed:
3941   case ESR_Returned:
3942     return ESR;
3943   case ESR_CaseNotFound:
3944     // This can only happen if the switch case is nested within a statement
3945     // expression. We have no intention of supporting that.
3946     Info.FFDiag(Found->getLocStart(), diag::note_constexpr_stmt_expr_unsupported);
3947     return ESR_Failed;
3948   }
3949   llvm_unreachable("Invalid EvalStmtResult!");
3950 }
3951 
3952 // Evaluate a statement.
EvaluateStmt(StmtResult & Result,EvalInfo & Info,const Stmt * S,const SwitchCase * Case)3953 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
3954                                    const Stmt *S, const SwitchCase *Case) {
3955   if (!Info.nextStep(S))
3956     return ESR_Failed;
3957 
3958   // If we're hunting down a 'case' or 'default' label, recurse through
3959   // substatements until we hit the label.
3960   if (Case) {
3961     // FIXME: We don't start the lifetime of objects whose initialization we
3962     // jump over. However, such objects must be of class type with a trivial
3963     // default constructor that initialize all subobjects, so must be empty,
3964     // so this almost never matters.
3965     switch (S->getStmtClass()) {
3966     case Stmt::CompoundStmtClass:
3967       // FIXME: Precompute which substatement of a compound statement we
3968       // would jump to, and go straight there rather than performing a
3969       // linear scan each time.
3970     case Stmt::LabelStmtClass:
3971     case Stmt::AttributedStmtClass:
3972     case Stmt::DoStmtClass:
3973       break;
3974 
3975     case Stmt::CaseStmtClass:
3976     case Stmt::DefaultStmtClass:
3977       if (Case == S)
3978         Case = nullptr;
3979       break;
3980 
3981     case Stmt::IfStmtClass: {
3982       // FIXME: Precompute which side of an 'if' we would jump to, and go
3983       // straight there rather than scanning both sides.
3984       const IfStmt *IS = cast<IfStmt>(S);
3985 
3986       // Wrap the evaluation in a block scope, in case it's a DeclStmt
3987       // preceded by our switch label.
3988       BlockScopeRAII Scope(Info);
3989 
3990       EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case);
3991       if (ESR != ESR_CaseNotFound || !IS->getElse())
3992         return ESR;
3993       return EvaluateStmt(Result, Info, IS->getElse(), Case);
3994     }
3995 
3996     case Stmt::WhileStmtClass: {
3997       EvalStmtResult ESR =
3998           EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case);
3999       if (ESR != ESR_Continue)
4000         return ESR;
4001       break;
4002     }
4003 
4004     case Stmt::ForStmtClass: {
4005       const ForStmt *FS = cast<ForStmt>(S);
4006       EvalStmtResult ESR =
4007           EvaluateLoopBody(Result, Info, FS->getBody(), Case);
4008       if (ESR != ESR_Continue)
4009         return ESR;
4010       if (FS->getInc()) {
4011         FullExpressionRAII IncScope(Info);
4012         if (!EvaluateIgnoredValue(Info, FS->getInc()))
4013           return ESR_Failed;
4014       }
4015       break;
4016     }
4017 
4018     case Stmt::DeclStmtClass:
4019       // FIXME: If the variable has initialization that can't be jumped over,
4020       // bail out of any immediately-surrounding compound-statement too.
4021     default:
4022       return ESR_CaseNotFound;
4023     }
4024   }
4025 
4026   switch (S->getStmtClass()) {
4027   default:
4028     if (const Expr *E = dyn_cast<Expr>(S)) {
4029       // Don't bother evaluating beyond an expression-statement which couldn't
4030       // be evaluated.
4031       FullExpressionRAII Scope(Info);
4032       if (!EvaluateIgnoredValue(Info, E))
4033         return ESR_Failed;
4034       return ESR_Succeeded;
4035     }
4036 
4037     Info.FFDiag(S->getLocStart());
4038     return ESR_Failed;
4039 
4040   case Stmt::NullStmtClass:
4041     return ESR_Succeeded;
4042 
4043   case Stmt::DeclStmtClass: {
4044     const DeclStmt *DS = cast<DeclStmt>(S);
4045     for (const auto *DclIt : DS->decls()) {
4046       // Each declaration initialization is its own full-expression.
4047       // FIXME: This isn't quite right; if we're performing aggregate
4048       // initialization, each braced subexpression is its own full-expression.
4049       FullExpressionRAII Scope(Info);
4050       if (!EvaluateDecl(Info, DclIt) && !Info.noteFailure())
4051         return ESR_Failed;
4052     }
4053     return ESR_Succeeded;
4054   }
4055 
4056   case Stmt::ReturnStmtClass: {
4057     const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
4058     FullExpressionRAII Scope(Info);
4059     if (RetExpr &&
4060         !(Result.Slot
4061               ? EvaluateInPlace(Result.Value, Info, *Result.Slot, RetExpr)
4062               : Evaluate(Result.Value, Info, RetExpr)))
4063       return ESR_Failed;
4064     return ESR_Returned;
4065   }
4066 
4067   case Stmt::CompoundStmtClass: {
4068     BlockScopeRAII Scope(Info);
4069 
4070     const CompoundStmt *CS = cast<CompoundStmt>(S);
4071     for (const auto *BI : CS->body()) {
4072       EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case);
4073       if (ESR == ESR_Succeeded)
4074         Case = nullptr;
4075       else if (ESR != ESR_CaseNotFound)
4076         return ESR;
4077     }
4078     return Case ? ESR_CaseNotFound : ESR_Succeeded;
4079   }
4080 
4081   case Stmt::IfStmtClass: {
4082     const IfStmt *IS = cast<IfStmt>(S);
4083 
4084     // Evaluate the condition, as either a var decl or as an expression.
4085     BlockScopeRAII Scope(Info);
4086     if (const Stmt *Init = IS->getInit()) {
4087       EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
4088       if (ESR != ESR_Succeeded)
4089         return ESR;
4090     }
4091     bool Cond;
4092     if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(), Cond))
4093       return ESR_Failed;
4094 
4095     if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
4096       EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt);
4097       if (ESR != ESR_Succeeded)
4098         return ESR;
4099     }
4100     return ESR_Succeeded;
4101   }
4102 
4103   case Stmt::WhileStmtClass: {
4104     const WhileStmt *WS = cast<WhileStmt>(S);
4105     while (true) {
4106       BlockScopeRAII Scope(Info);
4107       bool Continue;
4108       if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(),
4109                         Continue))
4110         return ESR_Failed;
4111       if (!Continue)
4112         break;
4113 
4114       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody());
4115       if (ESR != ESR_Continue)
4116         return ESR;
4117     }
4118     return ESR_Succeeded;
4119   }
4120 
4121   case Stmt::DoStmtClass: {
4122     const DoStmt *DS = cast<DoStmt>(S);
4123     bool Continue;
4124     do {
4125       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case);
4126       if (ESR != ESR_Continue)
4127         return ESR;
4128       Case = nullptr;
4129 
4130       FullExpressionRAII CondScope(Info);
4131       if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info))
4132         return ESR_Failed;
4133     } while (Continue);
4134     return ESR_Succeeded;
4135   }
4136 
4137   case Stmt::ForStmtClass: {
4138     const ForStmt *FS = cast<ForStmt>(S);
4139     BlockScopeRAII Scope(Info);
4140     if (FS->getInit()) {
4141       EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
4142       if (ESR != ESR_Succeeded)
4143         return ESR;
4144     }
4145     while (true) {
4146       BlockScopeRAII Scope(Info);
4147       bool Continue = true;
4148       if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(),
4149                                          FS->getCond(), Continue))
4150         return ESR_Failed;
4151       if (!Continue)
4152         break;
4153 
4154       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody());
4155       if (ESR != ESR_Continue)
4156         return ESR;
4157 
4158       if (FS->getInc()) {
4159         FullExpressionRAII IncScope(Info);
4160         if (!EvaluateIgnoredValue(Info, FS->getInc()))
4161           return ESR_Failed;
4162       }
4163     }
4164     return ESR_Succeeded;
4165   }
4166 
4167   case Stmt::CXXForRangeStmtClass: {
4168     const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S);
4169     BlockScopeRAII Scope(Info);
4170 
4171     // Initialize the __range variable.
4172     EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt());
4173     if (ESR != ESR_Succeeded)
4174       return ESR;
4175 
4176     // Create the __begin and __end iterators.
4177     ESR = EvaluateStmt(Result, Info, FS->getBeginStmt());
4178     if (ESR != ESR_Succeeded)
4179       return ESR;
4180     ESR = EvaluateStmt(Result, Info, FS->getEndStmt());
4181     if (ESR != ESR_Succeeded)
4182       return ESR;
4183 
4184     while (true) {
4185       // Condition: __begin != __end.
4186       {
4187         bool Continue = true;
4188         FullExpressionRAII CondExpr(Info);
4189         if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info))
4190           return ESR_Failed;
4191         if (!Continue)
4192           break;
4193       }
4194 
4195       // User's variable declaration, initialized by *__begin.
4196       BlockScopeRAII InnerScope(Info);
4197       ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt());
4198       if (ESR != ESR_Succeeded)
4199         return ESR;
4200 
4201       // Loop body.
4202       ESR = EvaluateLoopBody(Result, Info, FS->getBody());
4203       if (ESR != ESR_Continue)
4204         return ESR;
4205 
4206       // Increment: ++__begin
4207       if (!EvaluateIgnoredValue(Info, FS->getInc()))
4208         return ESR_Failed;
4209     }
4210 
4211     return ESR_Succeeded;
4212   }
4213 
4214   case Stmt::SwitchStmtClass:
4215     return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S));
4216 
4217   case Stmt::ContinueStmtClass:
4218     return ESR_Continue;
4219 
4220   case Stmt::BreakStmtClass:
4221     return ESR_Break;
4222 
4223   case Stmt::LabelStmtClass:
4224     return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case);
4225 
4226   case Stmt::AttributedStmtClass:
4227     // As a general principle, C++11 attributes can be ignored without
4228     // any semantic impact.
4229     return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(),
4230                         Case);
4231 
4232   case Stmt::CaseStmtClass:
4233   case Stmt::DefaultStmtClass:
4234     return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case);
4235   }
4236 }
4237 
4238 /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
4239 /// default constructor. If so, we'll fold it whether or not it's marked as
4240 /// constexpr. If it is marked as constexpr, we will never implicitly define it,
4241 /// so we need special handling.
CheckTrivialDefaultConstructor(EvalInfo & Info,SourceLocation Loc,const CXXConstructorDecl * CD,bool IsValueInitialization)4242 static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
4243                                            const CXXConstructorDecl *CD,
4244                                            bool IsValueInitialization) {
4245   if (!CD->isTrivial() || !CD->isDefaultConstructor())
4246     return false;
4247 
4248   // Value-initialization does not call a trivial default constructor, so such a
4249   // call is a core constant expression whether or not the constructor is
4250   // constexpr.
4251   if (!CD->isConstexpr() && !IsValueInitialization) {
4252     if (Info.getLangOpts().CPlusPlus11) {
4253       // FIXME: If DiagDecl is an implicitly-declared special member function,
4254       // we should be much more explicit about why it's not constexpr.
4255       Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
4256         << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
4257       Info.Note(CD->getLocation(), diag::note_declared_at);
4258     } else {
4259       Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
4260     }
4261   }
4262   return true;
4263 }
4264 
4265 /// CheckConstexprFunction - Check that a function can be called in a constant
4266 /// expression.
CheckConstexprFunction(EvalInfo & Info,SourceLocation CallLoc,const FunctionDecl * Declaration,const FunctionDecl * Definition,const Stmt * Body)4267 static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
4268                                    const FunctionDecl *Declaration,
4269                                    const FunctionDecl *Definition,
4270                                    const Stmt *Body) {
4271   // Potential constant expressions can contain calls to declared, but not yet
4272   // defined, constexpr functions.
4273   if (Info.checkingPotentialConstantExpression() && !Definition &&
4274       Declaration->isConstexpr())
4275     return false;
4276 
4277   // Bail out with no diagnostic if the function declaration itself is invalid.
4278   // We will have produced a relevant diagnostic while parsing it.
4279   if (Declaration->isInvalidDecl())
4280     return false;
4281 
4282   // Can we evaluate this function call?
4283   if (Definition && Definition->isConstexpr() &&
4284       !Definition->isInvalidDecl() && Body)
4285     return true;
4286 
4287   if (Info.getLangOpts().CPlusPlus11) {
4288     const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
4289 
4290     // If this function is not constexpr because it is an inherited
4291     // non-constexpr constructor, diagnose that directly.
4292     auto *CD = dyn_cast<CXXConstructorDecl>(DiagDecl);
4293     if (CD && CD->isInheritingConstructor()) {
4294       auto *Inherited = CD->getInheritedConstructor().getConstructor();
4295       if (!Inherited->isConstexpr())
4296         DiagDecl = CD = Inherited;
4297     }
4298 
4299     // FIXME: If DiagDecl is an implicitly-declared special member function
4300     // or an inheriting constructor, we should be much more explicit about why
4301     // it's not constexpr.
4302     if (CD && CD->isInheritingConstructor())
4303       Info.FFDiag(CallLoc, diag::note_constexpr_invalid_inhctor, 1)
4304         << CD->getInheritedConstructor().getConstructor()->getParent();
4305     else
4306       Info.FFDiag(CallLoc, diag::note_constexpr_invalid_function, 1)
4307         << DiagDecl->isConstexpr() << (bool)CD << DiagDecl;
4308     Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
4309   } else {
4310     Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
4311   }
4312   return false;
4313 }
4314 
4315 /// Determine if a class has any fields that might need to be copied by a
4316 /// trivial copy or move operation.
hasFields(const CXXRecordDecl * RD)4317 static bool hasFields(const CXXRecordDecl *RD) {
4318   if (!RD || RD->isEmpty())
4319     return false;
4320   for (auto *FD : RD->fields()) {
4321     if (FD->isUnnamedBitfield())
4322       continue;
4323     return true;
4324   }
4325   for (auto &Base : RD->bases())
4326     if (hasFields(Base.getType()->getAsCXXRecordDecl()))
4327       return true;
4328   return false;
4329 }
4330 
4331 namespace {
4332 typedef SmallVector<APValue, 8> ArgVector;
4333 }
4334 
4335 /// EvaluateArgs - Evaluate the arguments to a function call.
EvaluateArgs(ArrayRef<const Expr * > Args,ArgVector & ArgValues,EvalInfo & Info)4336 static bool EvaluateArgs(ArrayRef<const Expr*> Args, ArgVector &ArgValues,
4337                          EvalInfo &Info) {
4338   bool Success = true;
4339   for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
4340        I != E; ++I) {
4341     if (!Evaluate(ArgValues[I - Args.begin()], Info, *I)) {
4342       // If we're checking for a potential constant expression, evaluate all
4343       // initializers even if some of them fail.
4344       if (!Info.noteFailure())
4345         return false;
4346       Success = false;
4347     }
4348   }
4349   return Success;
4350 }
4351 
4352 /// Evaluate a function call.
HandleFunctionCall(SourceLocation CallLoc,const FunctionDecl * Callee,const LValue * This,ArrayRef<const Expr * > Args,const Stmt * Body,EvalInfo & Info,APValue & Result,const LValue * ResultSlot)4353 static bool HandleFunctionCall(SourceLocation CallLoc,
4354                                const FunctionDecl *Callee, const LValue *This,
4355                                ArrayRef<const Expr*> Args, const Stmt *Body,
4356                                EvalInfo &Info, APValue &Result,
4357                                const LValue *ResultSlot) {
4358   ArgVector ArgValues(Args.size());
4359   if (!EvaluateArgs(Args, ArgValues, Info))
4360     return false;
4361 
4362   if (!Info.CheckCallLimit(CallLoc))
4363     return false;
4364 
4365   CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues.data());
4366 
4367   // For a trivial copy or move assignment, perform an APValue copy. This is
4368   // essential for unions, where the operations performed by the assignment
4369   // operator cannot be represented as statements.
4370   //
4371   // Skip this for non-union classes with no fields; in that case, the defaulted
4372   // copy/move does not actually read the object.
4373   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee);
4374   if (MD && MD->isDefaulted() &&
4375       (MD->getParent()->isUnion() ||
4376        (MD->isTrivial() && hasFields(MD->getParent())))) {
4377     assert(This &&
4378            (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
4379     LValue RHS;
4380     RHS.setFrom(Info.Ctx, ArgValues[0]);
4381     APValue RHSValue;
4382     if (!handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
4383                                         RHS, RHSValue))
4384       return false;
4385     if (!handleAssignment(Info, Args[0], *This, MD->getThisType(Info.Ctx),
4386                           RHSValue))
4387       return false;
4388     This->moveInto(Result);
4389     return true;
4390   } else if (MD && isLambdaCallOperator(MD)) {
4391     // We're in a lambda; determine the lambda capture field maps unless we're
4392     // just constexpr checking a lambda's call operator. constexpr checking is
4393     // done before the captures have been added to the closure object (unless
4394     // we're inferring constexpr-ness), so we don't have access to them in this
4395     // case. But since we don't need the captures to constexpr check, we can
4396     // just ignore them.
4397     if (!Info.checkingPotentialConstantExpression())
4398       MD->getParent()->getCaptureFields(Frame.LambdaCaptureFields,
4399                                         Frame.LambdaThisCaptureField);
4400   }
4401 
4402   StmtResult Ret = {Result, ResultSlot};
4403   EvalStmtResult ESR = EvaluateStmt(Ret, Info, Body);
4404   if (ESR == ESR_Succeeded) {
4405     if (Callee->getReturnType()->isVoidType())
4406       return true;
4407     Info.FFDiag(Callee->getLocEnd(), diag::note_constexpr_no_return);
4408   }
4409   return ESR == ESR_Returned;
4410 }
4411 
4412 /// Evaluate a constructor call.
HandleConstructorCall(const Expr * E,const LValue & This,APValue * ArgValues,const CXXConstructorDecl * Definition,EvalInfo & Info,APValue & Result)4413 static bool HandleConstructorCall(const Expr *E, const LValue &This,
4414                                   APValue *ArgValues,
4415                                   const CXXConstructorDecl *Definition,
4416                                   EvalInfo &Info, APValue &Result) {
4417   SourceLocation CallLoc = E->getExprLoc();
4418   if (!Info.CheckCallLimit(CallLoc))
4419     return false;
4420 
4421   const CXXRecordDecl *RD = Definition->getParent();
4422   if (RD->getNumVBases()) {
4423     Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
4424     return false;
4425   }
4426 
4427   EvalInfo::EvaluatingConstructorRAII EvalObj(
4428       Info, {This.getLValueBase(),
4429              {This.getLValueCallIndex(), This.getLValueVersion()}});
4430   CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues);
4431 
4432   // FIXME: Creating an APValue just to hold a nonexistent return value is
4433   // wasteful.
4434   APValue RetVal;
4435   StmtResult Ret = {RetVal, nullptr};
4436 
4437   // If it's a delegating constructor, delegate.
4438   if (Definition->isDelegatingConstructor()) {
4439     CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
4440     {
4441       FullExpressionRAII InitScope(Info);
4442       if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()))
4443         return false;
4444     }
4445     return EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed;
4446   }
4447 
4448   // For a trivial copy or move constructor, perform an APValue copy. This is
4449   // essential for unions (or classes with anonymous union members), where the
4450   // operations performed by the constructor cannot be represented by
4451   // ctor-initializers.
4452   //
4453   // Skip this for empty non-union classes; we should not perform an
4454   // lvalue-to-rvalue conversion on them because their copy constructor does not
4455   // actually read them.
4456   if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() &&
4457       (Definition->getParent()->isUnion() ||
4458        (Definition->isTrivial() && hasFields(Definition->getParent())))) {
4459     LValue RHS;
4460     RHS.setFrom(Info.Ctx, ArgValues[0]);
4461     return handleLValueToRValueConversion(
4462         Info, E, Definition->getParamDecl(0)->getType().getNonReferenceType(),
4463         RHS, Result);
4464   }
4465 
4466   // Reserve space for the struct members.
4467   if (!RD->isUnion() && Result.isUninit())
4468     Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
4469                      std::distance(RD->field_begin(), RD->field_end()));
4470 
4471   if (RD->isInvalidDecl()) return false;
4472   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
4473 
4474   // A scope for temporaries lifetime-extended by reference members.
4475   BlockScopeRAII LifetimeExtendedScope(Info);
4476 
4477   bool Success = true;
4478   unsigned BasesSeen = 0;
4479 #ifndef NDEBUG
4480   CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
4481 #endif
4482   for (const auto *I : Definition->inits()) {
4483     LValue Subobject = This;
4484     LValue SubobjectParent = This;
4485     APValue *Value = &Result;
4486 
4487     // Determine the subobject to initialize.
4488     FieldDecl *FD = nullptr;
4489     if (I->isBaseInitializer()) {
4490       QualType BaseType(I->getBaseClass(), 0);
4491 #ifndef NDEBUG
4492       // Non-virtual base classes are initialized in the order in the class
4493       // definition. We have already checked for virtual base classes.
4494       assert(!BaseIt->isVirtual() && "virtual base for literal type");
4495       assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
4496              "base class initializers not in expected order");
4497       ++BaseIt;
4498 #endif
4499       if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD,
4500                                   BaseType->getAsCXXRecordDecl(), &Layout))
4501         return false;
4502       Value = &Result.getStructBase(BasesSeen++);
4503     } else if ((FD = I->getMember())) {
4504       if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout))
4505         return false;
4506       if (RD->isUnion()) {
4507         Result = APValue(FD);
4508         Value = &Result.getUnionValue();
4509       } else {
4510         Value = &Result.getStructField(FD->getFieldIndex());
4511       }
4512     } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) {
4513       // Walk the indirect field decl's chain to find the object to initialize,
4514       // and make sure we've initialized every step along it.
4515       auto IndirectFieldChain = IFD->chain();
4516       for (auto *C : IndirectFieldChain) {
4517         FD = cast<FieldDecl>(C);
4518         CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
4519         // Switch the union field if it differs. This happens if we had
4520         // preceding zero-initialization, and we're now initializing a union
4521         // subobject other than the first.
4522         // FIXME: In this case, the values of the other subobjects are
4523         // specified, since zero-initialization sets all padding bits to zero.
4524         if (Value->isUninit() ||
4525             (Value->isUnion() && Value->getUnionField() != FD)) {
4526           if (CD->isUnion())
4527             *Value = APValue(FD);
4528           else
4529             *Value = APValue(APValue::UninitStruct(), CD->getNumBases(),
4530                              std::distance(CD->field_begin(), CD->field_end()));
4531         }
4532         // Store Subobject as its parent before updating it for the last element
4533         // in the chain.
4534         if (C == IndirectFieldChain.back())
4535           SubobjectParent = Subobject;
4536         if (!HandleLValueMember(Info, I->getInit(), Subobject, FD))
4537           return false;
4538         if (CD->isUnion())
4539           Value = &Value->getUnionValue();
4540         else
4541           Value = &Value->getStructField(FD->getFieldIndex());
4542       }
4543     } else {
4544       llvm_unreachable("unknown base initializer kind");
4545     }
4546 
4547     // Need to override This for implicit field initializers as in this case
4548     // This refers to innermost anonymous struct/union containing initializer,
4549     // not to currently constructed class.
4550     const Expr *Init = I->getInit();
4551     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &SubobjectParent,
4552                                   isa<CXXDefaultInitExpr>(Init));
4553     FullExpressionRAII InitScope(Info);
4554     if (!EvaluateInPlace(*Value, Info, Subobject, Init) ||
4555         (FD && FD->isBitField() &&
4556          !truncateBitfieldValue(Info, Init, *Value, FD))) {
4557       // If we're checking for a potential constant expression, evaluate all
4558       // initializers even if some of them fail.
4559       if (!Info.noteFailure())
4560         return false;
4561       Success = false;
4562     }
4563   }
4564 
4565   return Success &&
4566          EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed;
4567 }
4568 
HandleConstructorCall(const Expr * E,const LValue & This,ArrayRef<const Expr * > Args,const CXXConstructorDecl * Definition,EvalInfo & Info,APValue & Result)4569 static bool HandleConstructorCall(const Expr *E, const LValue &This,
4570                                   ArrayRef<const Expr*> Args,
4571                                   const CXXConstructorDecl *Definition,
4572                                   EvalInfo &Info, APValue &Result) {
4573   ArgVector ArgValues(Args.size());
4574   if (!EvaluateArgs(Args, ArgValues, Info))
4575     return false;
4576 
4577   return HandleConstructorCall(E, This, ArgValues.data(), Definition,
4578                                Info, Result);
4579 }
4580 
4581 //===----------------------------------------------------------------------===//
4582 // Generic Evaluation
4583 //===----------------------------------------------------------------------===//
4584 namespace {
4585 
4586 template <class Derived>
4587 class ExprEvaluatorBase
4588   : public ConstStmtVisitor<Derived, bool> {
4589 private:
getDerived()4590   Derived &getDerived() { return static_cast<Derived&>(*this); }
DerivedSuccess(const APValue & V,const Expr * E)4591   bool DerivedSuccess(const APValue &V, const Expr *E) {
4592     return getDerived().Success(V, E);
4593   }
DerivedZeroInitialization(const Expr * E)4594   bool DerivedZeroInitialization(const Expr *E) {
4595     return getDerived().ZeroInitialization(E);
4596   }
4597 
4598   // Check whether a conditional operator with a non-constant condition is a
4599   // potential constant expression. If neither arm is a potential constant
4600   // expression, then the conditional operator is not either.
4601   template<typename ConditionalOperator>
CheckPotentialConstantConditional(const ConditionalOperator * E)4602   void CheckPotentialConstantConditional(const ConditionalOperator *E) {
4603     assert(Info.checkingPotentialConstantExpression());
4604 
4605     // Speculatively evaluate both arms.
4606     SmallVector<PartialDiagnosticAt, 8> Diag;
4607     {
4608       SpeculativeEvaluationRAII Speculate(Info, &Diag);
4609       StmtVisitorTy::Visit(E->getFalseExpr());
4610       if (Diag.empty())
4611         return;
4612     }
4613 
4614     {
4615       SpeculativeEvaluationRAII Speculate(Info, &Diag);
4616       Diag.clear();
4617       StmtVisitorTy::Visit(E->getTrueExpr());
4618       if (Diag.empty())
4619         return;
4620     }
4621 
4622     Error(E, diag::note_constexpr_conditional_never_const);
4623   }
4624 
4625 
4626   template<typename ConditionalOperator>
HandleConditionalOperator(const ConditionalOperator * E)4627   bool HandleConditionalOperator(const ConditionalOperator *E) {
4628     bool BoolResult;
4629     if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
4630       if (Info.checkingPotentialConstantExpression() && Info.noteFailure()) {
4631         CheckPotentialConstantConditional(E);
4632         return false;
4633       }
4634       if (Info.noteFailure()) {
4635         StmtVisitorTy::Visit(E->getTrueExpr());
4636         StmtVisitorTy::Visit(E->getFalseExpr());
4637       }
4638       return false;
4639     }
4640 
4641     Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
4642     return StmtVisitorTy::Visit(EvalExpr);
4643   }
4644 
4645 protected:
4646   EvalInfo &Info;
4647   typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy;
4648   typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
4649 
CCEDiag(const Expr * E,diag::kind D)4650   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
4651     return Info.CCEDiag(E, D);
4652   }
4653 
ZeroInitialization(const Expr * E)4654   bool ZeroInitialization(const Expr *E) { return Error(E); }
4655 
4656 public:
ExprEvaluatorBase(EvalInfo & Info)4657   ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
4658 
getEvalInfo()4659   EvalInfo &getEvalInfo() { return Info; }
4660 
4661   /// Report an evaluation error. This should only be called when an error is
4662   /// first discovered. When propagating an error, just return false.
Error(const Expr * E,diag::kind D)4663   bool Error(const Expr *E, diag::kind D) {
4664     Info.FFDiag(E, D);
4665     return false;
4666   }
Error(const Expr * E)4667   bool Error(const Expr *E) {
4668     return Error(E, diag::note_invalid_subexpr_in_const_expr);
4669   }
4670 
VisitStmt(const Stmt *)4671   bool VisitStmt(const Stmt *) {
4672     llvm_unreachable("Expression evaluator should not be called on stmts");
4673   }
VisitExpr(const Expr * E)4674   bool VisitExpr(const Expr *E) {
4675     return Error(E);
4676   }
4677 
VisitParenExpr(const ParenExpr * E)4678   bool VisitParenExpr(const ParenExpr *E)
4679     { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitUnaryExtension(const UnaryOperator * E)4680   bool VisitUnaryExtension(const UnaryOperator *E)
4681     { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitUnaryPlus(const UnaryOperator * E)4682   bool VisitUnaryPlus(const UnaryOperator *E)
4683     { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitChooseExpr(const ChooseExpr * E)4684   bool VisitChooseExpr(const ChooseExpr *E)
4685     { return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
VisitGenericSelectionExpr(const GenericSelectionExpr * E)4686   bool VisitGenericSelectionExpr(const GenericSelectionExpr *E)
4687     { return StmtVisitorTy::Visit(E->getResultExpr()); }
VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr * E)4688   bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
4689     { return StmtVisitorTy::Visit(E->getReplacement()); }
VisitCXXDefaultArgExpr(const CXXDefaultArgExpr * E)4690   bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
4691     TempVersionRAII RAII(*Info.CurrentCall);
4692     return StmtVisitorTy::Visit(E->getExpr());
4693   }
VisitCXXDefaultInitExpr(const CXXDefaultInitExpr * E)4694   bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
4695     TempVersionRAII RAII(*Info.CurrentCall);
4696     // The initializer may not have been parsed yet, or might be erroneous.
4697     if (!E->getExpr())
4698       return Error(E);
4699     return StmtVisitorTy::Visit(E->getExpr());
4700   }
4701   // We cannot create any objects for which cleanups are required, so there is
4702   // nothing to do here; all cleanups must come from unevaluated subexpressions.
VisitExprWithCleanups(const ExprWithCleanups * E)4703   bool VisitExprWithCleanups(const ExprWithCleanups *E)
4704     { return StmtVisitorTy::Visit(E->getSubExpr()); }
4705 
VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr * E)4706   bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
4707     CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
4708     return static_cast<Derived*>(this)->VisitCastExpr(E);
4709   }
VisitCXXDynamicCastExpr(const CXXDynamicCastExpr * E)4710   bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
4711     CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
4712     return static_cast<Derived*>(this)->VisitCastExpr(E);
4713   }
4714 
VisitBinaryOperator(const BinaryOperator * E)4715   bool VisitBinaryOperator(const BinaryOperator *E) {
4716     switch (E->getOpcode()) {
4717     default:
4718       return Error(E);
4719 
4720     case BO_Comma:
4721       VisitIgnoredValue(E->getLHS());
4722       return StmtVisitorTy::Visit(E->getRHS());
4723 
4724     case BO_PtrMemD:
4725     case BO_PtrMemI: {
4726       LValue Obj;
4727       if (!HandleMemberPointerAccess(Info, E, Obj))
4728         return false;
4729       APValue Result;
4730       if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
4731         return false;
4732       return DerivedSuccess(Result, E);
4733     }
4734     }
4735   }
4736 
VisitBinaryConditionalOperator(const BinaryConditionalOperator * E)4737   bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
4738     // Evaluate and cache the common expression. We treat it as a temporary,
4739     // even though it's not quite the same thing.
4740     if (!Evaluate(Info.CurrentCall->createTemporary(E->getOpaqueValue(), false),
4741                   Info, E->getCommon()))
4742       return false;
4743 
4744     return HandleConditionalOperator(E);
4745   }
4746 
VisitConditionalOperator(const ConditionalOperator * E)4747   bool VisitConditionalOperator(const ConditionalOperator *E) {
4748     bool IsBcpCall = false;
4749     // If the condition (ignoring parens) is a __builtin_constant_p call,
4750     // the result is a constant expression if it can be folded without
4751     // side-effects. This is an important GNU extension. See GCC PR38377
4752     // for discussion.
4753     if (const CallExpr *CallCE =
4754           dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
4755       if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
4756         IsBcpCall = true;
4757 
4758     // Always assume __builtin_constant_p(...) ? ... : ... is a potential
4759     // constant expression; we can't check whether it's potentially foldable.
4760     if (Info.checkingPotentialConstantExpression() && IsBcpCall)
4761       return false;
4762 
4763     FoldConstant Fold(Info, IsBcpCall);
4764     if (!HandleConditionalOperator(E)) {
4765       Fold.keepDiagnostics();
4766       return false;
4767     }
4768 
4769     return true;
4770   }
4771 
VisitOpaqueValueExpr(const OpaqueValueExpr * E)4772   bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
4773     if (APValue *Value = Info.CurrentCall->getCurrentTemporary(E))
4774       return DerivedSuccess(*Value, E);
4775 
4776     const Expr *Source = E->getSourceExpr();
4777     if (!Source)
4778       return Error(E);
4779     if (Source == E) { // sanity checking.
4780       assert(0 && "OpaqueValueExpr recursively refers to itself");
4781       return Error(E);
4782     }
4783     return StmtVisitorTy::Visit(Source);
4784   }
4785 
VisitCallExpr(const CallExpr * E)4786   bool VisitCallExpr(const CallExpr *E) {
4787     APValue Result;
4788     if (!handleCallExpr(E, Result, nullptr))
4789       return false;
4790     return DerivedSuccess(Result, E);
4791   }
4792 
handleCallExpr(const CallExpr * E,APValue & Result,const LValue * ResultSlot)4793   bool handleCallExpr(const CallExpr *E, APValue &Result,
4794                      const LValue *ResultSlot) {
4795     const Expr *Callee = E->getCallee()->IgnoreParens();
4796     QualType CalleeType = Callee->getType();
4797 
4798     const FunctionDecl *FD = nullptr;
4799     LValue *This = nullptr, ThisVal;
4800     auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
4801     bool HasQualifier = false;
4802 
4803     // Extract function decl and 'this' pointer from the callee.
4804     if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
4805       const ValueDecl *Member = nullptr;
4806       if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
4807         // Explicit bound member calls, such as x.f() or p->g();
4808         if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
4809           return false;
4810         Member = ME->getMemberDecl();
4811         This = &ThisVal;
4812         HasQualifier = ME->hasQualifier();
4813       } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
4814         // Indirect bound member calls ('.*' or '->*').
4815         Member = HandleMemberPointerAccess(Info, BE, ThisVal, false);
4816         if (!Member) return false;
4817         This = &ThisVal;
4818       } else
4819         return Error(Callee);
4820 
4821       FD = dyn_cast<FunctionDecl>(Member);
4822       if (!FD)
4823         return Error(Callee);
4824     } else if (CalleeType->isFunctionPointerType()) {
4825       LValue Call;
4826       if (!EvaluatePointer(Callee, Call, Info))
4827         return false;
4828 
4829       if (!Call.getLValueOffset().isZero())
4830         return Error(Callee);
4831       FD = dyn_cast_or_null<FunctionDecl>(
4832                              Call.getLValueBase().dyn_cast<const ValueDecl*>());
4833       if (!FD)
4834         return Error(Callee);
4835       // Don't call function pointers which have been cast to some other type.
4836       // Per DR (no number yet), the caller and callee can differ in noexcept.
4837       if (!Info.Ctx.hasSameFunctionTypeIgnoringExceptionSpec(
4838         CalleeType->getPointeeType(), FD->getType())) {
4839         return Error(E);
4840       }
4841 
4842       // Overloaded operator calls to member functions are represented as normal
4843       // calls with '*this' as the first argument.
4844       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
4845       if (MD && !MD->isStatic()) {
4846         // FIXME: When selecting an implicit conversion for an overloaded
4847         // operator delete, we sometimes try to evaluate calls to conversion
4848         // operators without a 'this' parameter!
4849         if (Args.empty())
4850           return Error(E);
4851 
4852         if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
4853           return false;
4854         This = &ThisVal;
4855         Args = Args.slice(1);
4856       } else if (MD && MD->isLambdaStaticInvoker()) {
4857         // Map the static invoker for the lambda back to the call operator.
4858         // Conveniently, we don't have to slice out the 'this' argument (as is
4859         // being done for the non-static case), since a static member function
4860         // doesn't have an implicit argument passed in.
4861         const CXXRecordDecl *ClosureClass = MD->getParent();
4862         assert(
4863             ClosureClass->captures_begin() == ClosureClass->captures_end() &&
4864             "Number of captures must be zero for conversion to function-ptr");
4865 
4866         const CXXMethodDecl *LambdaCallOp =
4867             ClosureClass->getLambdaCallOperator();
4868 
4869         // Set 'FD', the function that will be called below, to the call
4870         // operator.  If the closure object represents a generic lambda, find
4871         // the corresponding specialization of the call operator.
4872 
4873         if (ClosureClass->isGenericLambda()) {
4874           assert(MD->isFunctionTemplateSpecialization() &&
4875                  "A generic lambda's static-invoker function must be a "
4876                  "template specialization");
4877           const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
4878           FunctionTemplateDecl *CallOpTemplate =
4879               LambdaCallOp->getDescribedFunctionTemplate();
4880           void *InsertPos = nullptr;
4881           FunctionDecl *CorrespondingCallOpSpecialization =
4882               CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
4883           assert(CorrespondingCallOpSpecialization &&
4884                  "We must always have a function call operator specialization "
4885                  "that corresponds to our static invoker specialization");
4886           FD = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
4887         } else
4888           FD = LambdaCallOp;
4889       }
4890 
4891 
4892     } else
4893       return Error(E);
4894 
4895     if (This && !This->checkSubobject(Info, E, CSK_This))
4896       return false;
4897 
4898     // DR1358 allows virtual constexpr functions in some cases. Don't allow
4899     // calls to such functions in constant expressions.
4900     if (This && !HasQualifier &&
4901         isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isVirtual())
4902       return Error(E, diag::note_constexpr_virtual_call);
4903 
4904     const FunctionDecl *Definition = nullptr;
4905     Stmt *Body = FD->getBody(Definition);
4906 
4907     if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body) ||
4908         !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Body, Info,
4909                             Result, ResultSlot))
4910       return false;
4911 
4912     return true;
4913   }
4914 
VisitCompoundLiteralExpr(const CompoundLiteralExpr * E)4915   bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
4916     return StmtVisitorTy::Visit(E->getInitializer());
4917   }
VisitInitListExpr(const InitListExpr * E)4918   bool VisitInitListExpr(const InitListExpr *E) {
4919     if (E->getNumInits() == 0)
4920       return DerivedZeroInitialization(E);
4921     if (E->getNumInits() == 1)
4922       return StmtVisitorTy::Visit(E->getInit(0));
4923     return Error(E);
4924   }
VisitImplicitValueInitExpr(const ImplicitValueInitExpr * E)4925   bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
4926     return DerivedZeroInitialization(E);
4927   }
VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr * E)4928   bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
4929     return DerivedZeroInitialization(E);
4930   }
VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr * E)4931   bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
4932     return DerivedZeroInitialization(E);
4933   }
4934 
4935   /// A member expression where the object is a prvalue is itself a prvalue.
VisitMemberExpr(const MemberExpr * E)4936   bool VisitMemberExpr(const MemberExpr *E) {
4937     assert(!E->isArrow() && "missing call to bound member function?");
4938 
4939     APValue Val;
4940     if (!Evaluate(Val, Info, E->getBase()))
4941       return false;
4942 
4943     QualType BaseTy = E->getBase()->getType();
4944 
4945     const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
4946     if (!FD) return Error(E);
4947     assert(!FD->getType()->isReferenceType() && "prvalue reference?");
4948     assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
4949            FD->getParent()->getCanonicalDecl() && "record / field mismatch");
4950 
4951     CompleteObject Obj(&Val, BaseTy, true);
4952     SubobjectDesignator Designator(BaseTy);
4953     Designator.addDeclUnchecked(FD);
4954 
4955     APValue Result;
4956     return extractSubobject(Info, E, Obj, Designator, Result) &&
4957            DerivedSuccess(Result, E);
4958   }
4959 
VisitCastExpr(const CastExpr * E)4960   bool VisitCastExpr(const CastExpr *E) {
4961     switch (E->getCastKind()) {
4962     default:
4963       break;
4964 
4965     case CK_AtomicToNonAtomic: {
4966       APValue AtomicVal;
4967       // This does not need to be done in place even for class/array types:
4968       // atomic-to-non-atomic conversion implies copying the object
4969       // representation.
4970       if (!Evaluate(AtomicVal, Info, E->getSubExpr()))
4971         return false;
4972       return DerivedSuccess(AtomicVal, E);
4973     }
4974 
4975     case CK_NoOp:
4976     case CK_UserDefinedConversion:
4977       return StmtVisitorTy::Visit(E->getSubExpr());
4978 
4979     case CK_LValueToRValue: {
4980       LValue LVal;
4981       if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
4982         return false;
4983       APValue RVal;
4984       // Note, we use the subexpression's type in order to retain cv-qualifiers.
4985       if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
4986                                           LVal, RVal))
4987         return false;
4988       return DerivedSuccess(RVal, E);
4989     }
4990     }
4991 
4992     return Error(E);
4993   }
4994 
VisitUnaryPostInc(const UnaryOperator * UO)4995   bool VisitUnaryPostInc(const UnaryOperator *UO) {
4996     return VisitUnaryPostIncDec(UO);
4997   }
VisitUnaryPostDec(const UnaryOperator * UO)4998   bool VisitUnaryPostDec(const UnaryOperator *UO) {
4999     return VisitUnaryPostIncDec(UO);
5000   }
VisitUnaryPostIncDec(const UnaryOperator * UO)5001   bool VisitUnaryPostIncDec(const UnaryOperator *UO) {
5002     if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
5003       return Error(UO);
5004 
5005     LValue LVal;
5006     if (!EvaluateLValue(UO->getSubExpr(), LVal, Info))
5007       return false;
5008     APValue RVal;
5009     if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
5010                       UO->isIncrementOp(), &RVal))
5011       return false;
5012     return DerivedSuccess(RVal, UO);
5013   }
5014 
VisitStmtExpr(const StmtExpr * E)5015   bool VisitStmtExpr(const StmtExpr *E) {
5016     // We will have checked the full-expressions inside the statement expression
5017     // when they were completed, and don't need to check them again now.
5018     if (Info.checkingForOverflow())
5019       return Error(E);
5020 
5021     BlockScopeRAII Scope(Info);
5022     const CompoundStmt *CS = E->getSubStmt();
5023     if (CS->body_empty())
5024       return true;
5025 
5026     for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
5027                                            BE = CS->body_end();
5028          /**/; ++BI) {
5029       if (BI + 1 == BE) {
5030         const Expr *FinalExpr = dyn_cast<Expr>(*BI);
5031         if (!FinalExpr) {
5032           Info.FFDiag((*BI)->getLocStart(),
5033                     diag::note_constexpr_stmt_expr_unsupported);
5034           return false;
5035         }
5036         return this->Visit(FinalExpr);
5037       }
5038 
5039       APValue ReturnValue;
5040       StmtResult Result = { ReturnValue, nullptr };
5041       EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI);
5042       if (ESR != ESR_Succeeded) {
5043         // FIXME: If the statement-expression terminated due to 'return',
5044         // 'break', or 'continue', it would be nice to propagate that to
5045         // the outer statement evaluation rather than bailing out.
5046         if (ESR != ESR_Failed)
5047           Info.FFDiag((*BI)->getLocStart(),
5048                     diag::note_constexpr_stmt_expr_unsupported);
5049         return false;
5050       }
5051     }
5052 
5053     llvm_unreachable("Return from function from the loop above.");
5054   }
5055 
5056   /// Visit a value which is evaluated, but whose value is ignored.
VisitIgnoredValue(const Expr * E)5057   void VisitIgnoredValue(const Expr *E) {
5058     EvaluateIgnoredValue(Info, E);
5059   }
5060 
5061   /// Potentially visit a MemberExpr's base expression.
VisitIgnoredBaseExpression(const Expr * E)5062   void VisitIgnoredBaseExpression(const Expr *E) {
5063     // While MSVC doesn't evaluate the base expression, it does diagnose the
5064     // presence of side-effecting behavior.
5065     if (Info.getLangOpts().MSVCCompat && !E->HasSideEffects(Info.Ctx))
5066       return;
5067     VisitIgnoredValue(E);
5068   }
5069 };
5070 
5071 } // namespace
5072 
5073 //===----------------------------------------------------------------------===//
5074 // Common base class for lvalue and temporary evaluation.
5075 //===----------------------------------------------------------------------===//
5076 namespace {
5077 template<class Derived>
5078 class LValueExprEvaluatorBase
5079   : public ExprEvaluatorBase<Derived> {
5080 protected:
5081   LValue &Result;
5082   bool InvalidBaseOK;
5083   typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
5084   typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy;
5085 
Success(APValue::LValueBase B)5086   bool Success(APValue::LValueBase B) {
5087     Result.set(B);
5088     return true;
5089   }
5090 
evaluatePointer(const Expr * E,LValue & Result)5091   bool evaluatePointer(const Expr *E, LValue &Result) {
5092     return EvaluatePointer(E, Result, this->Info, InvalidBaseOK);
5093   }
5094 
5095 public:
LValueExprEvaluatorBase(EvalInfo & Info,LValue & Result,bool InvalidBaseOK)5096   LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result, bool InvalidBaseOK)
5097       : ExprEvaluatorBaseTy(Info), Result(Result),
5098         InvalidBaseOK(InvalidBaseOK) {}
5099 
Success(const APValue & V,const Expr * E)5100   bool Success(const APValue &V, const Expr *E) {
5101     Result.setFrom(this->Info.Ctx, V);
5102     return true;
5103   }
5104 
VisitMemberExpr(const MemberExpr * E)5105   bool VisitMemberExpr(const MemberExpr *E) {
5106     // Handle non-static data members.
5107     QualType BaseTy;
5108     bool EvalOK;
5109     if (E->isArrow()) {
5110       EvalOK = evaluatePointer(E->getBase(), Result);
5111       BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
5112     } else if (E->getBase()->isRValue()) {
5113       assert(E->getBase()->getType()->isRecordType());
5114       EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info);
5115       BaseTy = E->getBase()->getType();
5116     } else {
5117       EvalOK = this->Visit(E->getBase());
5118       BaseTy = E->getBase()->getType();
5119     }
5120     if (!EvalOK) {
5121       if (!InvalidBaseOK)
5122         return false;
5123       Result.setInvalid(E);
5124       return true;
5125     }
5126 
5127     const ValueDecl *MD = E->getMemberDecl();
5128     if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
5129       assert(BaseTy->getAs<RecordType>()->getDecl()->getCanonicalDecl() ==
5130              FD->getParent()->getCanonicalDecl() && "record / field mismatch");
5131       (void)BaseTy;
5132       if (!HandleLValueMember(this->Info, E, Result, FD))
5133         return false;
5134     } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
5135       if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
5136         return false;
5137     } else
5138       return this->Error(E);
5139 
5140     if (MD->getType()->isReferenceType()) {
5141       APValue RefValue;
5142       if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
5143                                           RefValue))
5144         return false;
5145       return Success(RefValue, E);
5146     }
5147     return true;
5148   }
5149 
VisitBinaryOperator(const BinaryOperator * E)5150   bool VisitBinaryOperator(const BinaryOperator *E) {
5151     switch (E->getOpcode()) {
5152     default:
5153       return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
5154 
5155     case BO_PtrMemD:
5156     case BO_PtrMemI:
5157       return HandleMemberPointerAccess(this->Info, E, Result);
5158     }
5159   }
5160 
VisitCastExpr(const CastExpr * E)5161   bool VisitCastExpr(const CastExpr *E) {
5162     switch (E->getCastKind()) {
5163     default:
5164       return ExprEvaluatorBaseTy::VisitCastExpr(E);
5165 
5166     case CK_DerivedToBase:
5167     case CK_UncheckedDerivedToBase:
5168       if (!this->Visit(E->getSubExpr()))
5169         return false;
5170 
5171       // Now figure out the necessary offset to add to the base LV to get from
5172       // the derived class to the base class.
5173       return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
5174                                   Result);
5175     }
5176   }
5177 };
5178 }
5179 
5180 //===----------------------------------------------------------------------===//
5181 // LValue Evaluation
5182 //
5183 // This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
5184 // function designators (in C), decl references to void objects (in C), and
5185 // temporaries (if building with -Wno-address-of-temporary).
5186 //
5187 // LValue evaluation produces values comprising a base expression of one of the
5188 // following types:
5189 // - Declarations
5190 //  * VarDecl
5191 //  * FunctionDecl
5192 // - Literals
5193 //  * CompoundLiteralExpr in C (and in global scope in C++)
5194 //  * StringLiteral
5195 //  * CXXTypeidExpr
5196 //  * PredefinedExpr
5197 //  * ObjCStringLiteralExpr
5198 //  * ObjCEncodeExpr
5199 //  * AddrLabelExpr
5200 //  * BlockExpr
5201 //  * CallExpr for a MakeStringConstant builtin
5202 // - Locals and temporaries
5203 //  * MaterializeTemporaryExpr
5204 //  * Any Expr, with a CallIndex indicating the function in which the temporary
5205 //    was evaluated, for cases where the MaterializeTemporaryExpr is missing
5206 //    from the AST (FIXME).
5207 //  * A MaterializeTemporaryExpr that has static storage duration, with no
5208 //    CallIndex, for a lifetime-extended temporary.
5209 // plus an offset in bytes.
5210 //===----------------------------------------------------------------------===//
5211 namespace {
5212 class LValueExprEvaluator
5213   : public LValueExprEvaluatorBase<LValueExprEvaluator> {
5214 public:
LValueExprEvaluator(EvalInfo & Info,LValue & Result,bool InvalidBaseOK)5215   LValueExprEvaluator(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) :
5216     LValueExprEvaluatorBaseTy(Info, Result, InvalidBaseOK) {}
5217 
5218   bool VisitVarDecl(const Expr *E, const VarDecl *VD);
5219   bool VisitUnaryPreIncDec(const UnaryOperator *UO);
5220 
5221   bool VisitDeclRefExpr(const DeclRefExpr *E);
VisitPredefinedExpr(const PredefinedExpr * E)5222   bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
5223   bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
5224   bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
5225   bool VisitMemberExpr(const MemberExpr *E);
VisitStringLiteral(const StringLiteral * E)5226   bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
VisitObjCEncodeExpr(const ObjCEncodeExpr * E)5227   bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
5228   bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
5229   bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
5230   bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
5231   bool VisitUnaryDeref(const UnaryOperator *E);
5232   bool VisitUnaryReal(const UnaryOperator *E);
5233   bool VisitUnaryImag(const UnaryOperator *E);
VisitUnaryPreInc(const UnaryOperator * UO)5234   bool VisitUnaryPreInc(const UnaryOperator *UO) {
5235     return VisitUnaryPreIncDec(UO);
5236   }
VisitUnaryPreDec(const UnaryOperator * UO)5237   bool VisitUnaryPreDec(const UnaryOperator *UO) {
5238     return VisitUnaryPreIncDec(UO);
5239   }
5240   bool VisitBinAssign(const BinaryOperator *BO);
5241   bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
5242 
VisitCastExpr(const CastExpr * E)5243   bool VisitCastExpr(const CastExpr *E) {
5244     switch (E->getCastKind()) {
5245     default:
5246       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
5247 
5248     case CK_LValueBitCast:
5249       this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
5250       if (!Visit(E->getSubExpr()))
5251         return false;
5252       Result.Designator.setInvalid();
5253       return true;
5254 
5255     case CK_BaseToDerived:
5256       if (!Visit(E->getSubExpr()))
5257         return false;
5258       return HandleBaseToDerivedCast(Info, E, Result);
5259     }
5260   }
5261 };
5262 } // end anonymous namespace
5263 
5264 /// Evaluate an expression as an lvalue. This can be legitimately called on
5265 /// expressions which are not glvalues, in three cases:
5266 ///  * function designators in C, and
5267 ///  * "extern void" objects
5268 ///  * @selector() expressions in Objective-C
EvaluateLValue(const Expr * E,LValue & Result,EvalInfo & Info,bool InvalidBaseOK)5269 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
5270                            bool InvalidBaseOK) {
5271   assert(E->isGLValue() || E->getType()->isFunctionType() ||
5272          E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E));
5273   return LValueExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
5274 }
5275 
VisitDeclRefExpr(const DeclRefExpr * E)5276 bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
5277   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl()))
5278     return Success(FD);
5279   if (const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
5280     return VisitVarDecl(E, VD);
5281   if (const BindingDecl *BD = dyn_cast<BindingDecl>(E->getDecl()))
5282     return Visit(BD->getBinding());
5283   return Error(E);
5284 }
5285 
5286 
VisitVarDecl(const Expr * E,const VarDecl * VD)5287 bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
5288 
5289   // If we are within a lambda's call operator, check whether the 'VD' referred
5290   // to within 'E' actually represents a lambda-capture that maps to a
5291   // data-member/field within the closure object, and if so, evaluate to the
5292   // field or what the field refers to.
5293   if (Info.CurrentCall && isLambdaCallOperator(Info.CurrentCall->Callee) &&
5294       isa<DeclRefExpr>(E) &&
5295       cast<DeclRefExpr>(E)->refersToEnclosingVariableOrCapture()) {
5296     // We don't always have a complete capture-map when checking or inferring if
5297     // the function call operator meets the requirements of a constexpr function
5298     // - but we don't need to evaluate the captures to determine constexprness
5299     // (dcl.constexpr C++17).
5300     if (Info.checkingPotentialConstantExpression())
5301       return false;
5302 
5303     if (auto *FD = Info.CurrentCall->LambdaCaptureFields.lookup(VD)) {
5304       // Start with 'Result' referring to the complete closure object...
5305       Result = *Info.CurrentCall->This;
5306       // ... then update it to refer to the field of the closure object
5307       // that represents the capture.
5308       if (!HandleLValueMember(Info, E, Result, FD))
5309         return false;
5310       // And if the field is of reference type, update 'Result' to refer to what
5311       // the field refers to.
5312       if (FD->getType()->isReferenceType()) {
5313         APValue RVal;
5314         if (!handleLValueToRValueConversion(Info, E, FD->getType(), Result,
5315                                             RVal))
5316           return false;
5317         Result.setFrom(Info.Ctx, RVal);
5318       }
5319       return true;
5320     }
5321   }
5322   CallStackFrame *Frame = nullptr;
5323   if (VD->hasLocalStorage() && Info.CurrentCall->Index > 1) {
5324     // Only if a local variable was declared in the function currently being
5325     // evaluated, do we expect to be able to find its value in the current
5326     // frame. (Otherwise it was likely declared in an enclosing context and
5327     // could either have a valid evaluatable value (for e.g. a constexpr
5328     // variable) or be ill-formed (and trigger an appropriate evaluation
5329     // diagnostic)).
5330     if (Info.CurrentCall->Callee &&
5331         Info.CurrentCall->Callee->Equals(VD->getDeclContext())) {
5332       Frame = Info.CurrentCall;
5333     }
5334   }
5335 
5336   if (!VD->getType()->isReferenceType()) {
5337     if (Frame) {
5338       Result.set({VD, Frame->Index,
5339                   Info.CurrentCall->getCurrentTemporaryVersion(VD)});
5340       return true;
5341     }
5342     return Success(VD);
5343   }
5344 
5345   APValue *V;
5346   if (!evaluateVarDeclInit(Info, E, VD, Frame, V, nullptr))
5347     return false;
5348   if (V->isUninit()) {
5349     if (!Info.checkingPotentialConstantExpression())
5350       Info.FFDiag(E, diag::note_constexpr_use_uninit_reference);
5351     return false;
5352   }
5353   return Success(*V, E);
5354 }
5355 
VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr * E)5356 bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
5357     const MaterializeTemporaryExpr *E) {
5358   // Walk through the expression to find the materialized temporary itself.
5359   SmallVector<const Expr *, 2> CommaLHSs;
5360   SmallVector<SubobjectAdjustment, 2> Adjustments;
5361   const Expr *Inner = E->GetTemporaryExpr()->
5362       skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
5363 
5364   // If we passed any comma operators, evaluate their LHSs.
5365   for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
5366     if (!EvaluateIgnoredValue(Info, CommaLHSs[I]))
5367       return false;
5368 
5369   // A materialized temporary with static storage duration can appear within the
5370   // result of a constant expression evaluation, so we need to preserve its
5371   // value for use outside this evaluation.
5372   APValue *Value;
5373   if (E->getStorageDuration() == SD_Static) {
5374     Value = Info.Ctx.getMaterializedTemporaryValue(E, true);
5375     *Value = APValue();
5376     Result.set(E);
5377   } else {
5378     Value = &createTemporary(E, E->getStorageDuration() == SD_Automatic, Result,
5379                              *Info.CurrentCall);
5380   }
5381 
5382   QualType Type = Inner->getType();
5383 
5384   // Materialize the temporary itself.
5385   if (!EvaluateInPlace(*Value, Info, Result, Inner) ||
5386       (E->getStorageDuration() == SD_Static &&
5387        !CheckConstantExpression(Info, E->getExprLoc(), Type, *Value))) {
5388     *Value = APValue();
5389     return false;
5390   }
5391 
5392   // Adjust our lvalue to refer to the desired subobject.
5393   for (unsigned I = Adjustments.size(); I != 0; /**/) {
5394     --I;
5395     switch (Adjustments[I].Kind) {
5396     case SubobjectAdjustment::DerivedToBaseAdjustment:
5397       if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath,
5398                                 Type, Result))
5399         return false;
5400       Type = Adjustments[I].DerivedToBase.BasePath->getType();
5401       break;
5402 
5403     case SubobjectAdjustment::FieldAdjustment:
5404       if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
5405         return false;
5406       Type = Adjustments[I].Field->getType();
5407       break;
5408 
5409     case SubobjectAdjustment::MemberPointerAdjustment:
5410       if (!HandleMemberPointerAccess(this->Info, Type, Result,
5411                                      Adjustments[I].Ptr.RHS))
5412         return false;
5413       Type = Adjustments[I].Ptr.MPT->getPointeeType();
5414       break;
5415     }
5416   }
5417 
5418   return true;
5419 }
5420 
5421 bool
VisitCompoundLiteralExpr(const CompoundLiteralExpr * E)5422 LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
5423   assert((!Info.getLangOpts().CPlusPlus || E->isFileScope()) &&
5424          "lvalue compound literal in c++?");
5425   // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
5426   // only see this when folding in C, so there's no standard to follow here.
5427   return Success(E);
5428 }
5429 
VisitCXXTypeidExpr(const CXXTypeidExpr * E)5430 bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
5431   if (!E->isPotentiallyEvaluated())
5432     return Success(E);
5433 
5434   Info.FFDiag(E, diag::note_constexpr_typeid_polymorphic)
5435     << E->getExprOperand()->getType()
5436     << E->getExprOperand()->getSourceRange();
5437   return false;
5438 }
5439 
VisitCXXUuidofExpr(const CXXUuidofExpr * E)5440 bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
5441   return Success(E);
5442 }
5443 
VisitMemberExpr(const MemberExpr * E)5444 bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
5445   // Handle static data members.
5446   if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
5447     VisitIgnoredBaseExpression(E->getBase());
5448     return VisitVarDecl(E, VD);
5449   }
5450 
5451   // Handle static member functions.
5452   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
5453     if (MD->isStatic()) {
5454       VisitIgnoredBaseExpression(E->getBase());
5455       return Success(MD);
5456     }
5457   }
5458 
5459   // Handle non-static data members.
5460   return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
5461 }
5462 
VisitArraySubscriptExpr(const ArraySubscriptExpr * E)5463 bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
5464   // FIXME: Deal with vectors as array subscript bases.
5465   if (E->getBase()->getType()->isVectorType())
5466     return Error(E);
5467 
5468   bool Success = true;
5469   if (!evaluatePointer(E->getBase(), Result)) {
5470     if (!Info.noteFailure())
5471       return false;
5472     Success = false;
5473   }
5474 
5475   APSInt Index;
5476   if (!EvaluateInteger(E->getIdx(), Index, Info))
5477     return false;
5478 
5479   return Success &&
5480          HandleLValueArrayAdjustment(Info, E, Result, E->getType(), Index);
5481 }
5482 
VisitUnaryDeref(const UnaryOperator * E)5483 bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
5484   return evaluatePointer(E->getSubExpr(), Result);
5485 }
5486 
VisitUnaryReal(const UnaryOperator * E)5487 bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
5488   if (!Visit(E->getSubExpr()))
5489     return false;
5490   // __real is a no-op on scalar lvalues.
5491   if (E->getSubExpr()->getType()->isAnyComplexType())
5492     HandleLValueComplexElement(Info, E, Result, E->getType(), false);
5493   return true;
5494 }
5495 
VisitUnaryImag(const UnaryOperator * E)5496 bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
5497   assert(E->getSubExpr()->getType()->isAnyComplexType() &&
5498          "lvalue __imag__ on scalar?");
5499   if (!Visit(E->getSubExpr()))
5500     return false;
5501   HandleLValueComplexElement(Info, E, Result, E->getType(), true);
5502   return true;
5503 }
5504 
VisitUnaryPreIncDec(const UnaryOperator * UO)5505 bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
5506   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
5507     return Error(UO);
5508 
5509   if (!this->Visit(UO->getSubExpr()))
5510     return false;
5511 
5512   return handleIncDec(
5513       this->Info, UO, Result, UO->getSubExpr()->getType(),
5514       UO->isIncrementOp(), nullptr);
5515 }
5516 
VisitCompoundAssignOperator(const CompoundAssignOperator * CAO)5517 bool LValueExprEvaluator::VisitCompoundAssignOperator(
5518     const CompoundAssignOperator *CAO) {
5519   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
5520     return Error(CAO);
5521 
5522   APValue RHS;
5523 
5524   // The overall lvalue result is the result of evaluating the LHS.
5525   if (!this->Visit(CAO->getLHS())) {
5526     if (Info.noteFailure())
5527       Evaluate(RHS, this->Info, CAO->getRHS());
5528     return false;
5529   }
5530 
5531   if (!Evaluate(RHS, this->Info, CAO->getRHS()))
5532     return false;
5533 
5534   return handleCompoundAssignment(
5535       this->Info, CAO,
5536       Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
5537       CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS);
5538 }
5539 
VisitBinAssign(const BinaryOperator * E)5540 bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
5541   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
5542     return Error(E);
5543 
5544   APValue NewVal;
5545 
5546   if (!this->Visit(E->getLHS())) {
5547     if (Info.noteFailure())
5548       Evaluate(NewVal, this->Info, E->getRHS());
5549     return false;
5550   }
5551 
5552   if (!Evaluate(NewVal, this->Info, E->getRHS()))
5553     return false;
5554 
5555   return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
5556                           NewVal);
5557 }
5558 
5559 //===----------------------------------------------------------------------===//
5560 // Pointer Evaluation
5561 //===----------------------------------------------------------------------===//
5562 
5563 /// Attempts to compute the number of bytes available at the pointer
5564 /// returned by a function with the alloc_size attribute. Returns true if we
5565 /// were successful. Places an unsigned number into `Result`.
5566 ///
5567 /// This expects the given CallExpr to be a call to a function with an
5568 /// alloc_size attribute.
getBytesReturnedByAllocSizeCall(const ASTContext & Ctx,const CallExpr * Call,llvm::APInt & Result)5569 static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
5570                                             const CallExpr *Call,
5571                                             llvm::APInt &Result) {
5572   const AllocSizeAttr *AllocSize = getAllocSizeAttr(Call);
5573 
5574   assert(AllocSize && AllocSize->getElemSizeParam().isValid());
5575   unsigned SizeArgNo = AllocSize->getElemSizeParam().getASTIndex();
5576   unsigned BitsInSizeT = Ctx.getTypeSize(Ctx.getSizeType());
5577   if (Call->getNumArgs() <= SizeArgNo)
5578     return false;
5579 
5580   auto EvaluateAsSizeT = [&](const Expr *E, APSInt &Into) {
5581     if (!E->EvaluateAsInt(Into, Ctx, Expr::SE_AllowSideEffects))
5582       return false;
5583     if (Into.isNegative() || !Into.isIntN(BitsInSizeT))
5584       return false;
5585     Into = Into.zextOrSelf(BitsInSizeT);
5586     return true;
5587   };
5588 
5589   APSInt SizeOfElem;
5590   if (!EvaluateAsSizeT(Call->getArg(SizeArgNo), SizeOfElem))
5591     return false;
5592 
5593   if (!AllocSize->getNumElemsParam().isValid()) {
5594     Result = std::move(SizeOfElem);
5595     return true;
5596   }
5597 
5598   APSInt NumberOfElems;
5599   unsigned NumArgNo = AllocSize->getNumElemsParam().getASTIndex();
5600   if (!EvaluateAsSizeT(Call->getArg(NumArgNo), NumberOfElems))
5601     return false;
5602 
5603   bool Overflow;
5604   llvm::APInt BytesAvailable = SizeOfElem.umul_ov(NumberOfElems, Overflow);
5605   if (Overflow)
5606     return false;
5607 
5608   Result = std::move(BytesAvailable);
5609   return true;
5610 }
5611 
5612 /// Convenience function. LVal's base must be a call to an alloc_size
5613 /// function.
getBytesReturnedByAllocSizeCall(const ASTContext & Ctx,const LValue & LVal,llvm::APInt & Result)5614 static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
5615                                             const LValue &LVal,
5616                                             llvm::APInt &Result) {
5617   assert(isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
5618          "Can't get the size of a non alloc_size function");
5619   const auto *Base = LVal.getLValueBase().get<const Expr *>();
5620   const CallExpr *CE = tryUnwrapAllocSizeCall(Base);
5621   return getBytesReturnedByAllocSizeCall(Ctx, CE, Result);
5622 }
5623 
5624 /// Attempts to evaluate the given LValueBase as the result of a call to
5625 /// a function with the alloc_size attribute. If it was possible to do so, this
5626 /// function will return true, make Result's Base point to said function call,
5627 /// and mark Result's Base as invalid.
evaluateLValueAsAllocSize(EvalInfo & Info,APValue::LValueBase Base,LValue & Result)5628 static bool evaluateLValueAsAllocSize(EvalInfo &Info, APValue::LValueBase Base,
5629                                       LValue &Result) {
5630   if (Base.isNull())
5631     return false;
5632 
5633   // Because we do no form of static analysis, we only support const variables.
5634   //
5635   // Additionally, we can't support parameters, nor can we support static
5636   // variables (in the latter case, use-before-assign isn't UB; in the former,
5637   // we have no clue what they'll be assigned to).
5638   const auto *VD =
5639       dyn_cast_or_null<VarDecl>(Base.dyn_cast<const ValueDecl *>());
5640   if (!VD || !VD->isLocalVarDecl() || !VD->getType().isConstQualified())
5641     return false;
5642 
5643   const Expr *Init = VD->getAnyInitializer();
5644   if (!Init)
5645     return false;
5646 
5647   const Expr *E = Init->IgnoreParens();
5648   if (!tryUnwrapAllocSizeCall(E))
5649     return false;
5650 
5651   // Store E instead of E unwrapped so that the type of the LValue's base is
5652   // what the user wanted.
5653   Result.setInvalid(E);
5654 
5655   QualType Pointee = E->getType()->castAs<PointerType>()->getPointeeType();
5656   Result.addUnsizedArray(Info, E, Pointee);
5657   return true;
5658 }
5659 
5660 namespace {
5661 class PointerExprEvaluator
5662   : public ExprEvaluatorBase<PointerExprEvaluator> {
5663   LValue &Result;
5664   bool InvalidBaseOK;
5665 
Success(const Expr * E)5666   bool Success(const Expr *E) {
5667     Result.set(E);
5668     return true;
5669   }
5670 
evaluateLValue(const Expr * E,LValue & Result)5671   bool evaluateLValue(const Expr *E, LValue &Result) {
5672     return EvaluateLValue(E, Result, Info, InvalidBaseOK);
5673   }
5674 
evaluatePointer(const Expr * E,LValue & Result)5675   bool evaluatePointer(const Expr *E, LValue &Result) {
5676     return EvaluatePointer(E, Result, Info, InvalidBaseOK);
5677   }
5678 
5679   bool visitNonBuiltinCallExpr(const CallExpr *E);
5680 public:
5681 
PointerExprEvaluator(EvalInfo & info,LValue & Result,bool InvalidBaseOK)5682   PointerExprEvaluator(EvalInfo &info, LValue &Result, bool InvalidBaseOK)
5683       : ExprEvaluatorBaseTy(info), Result(Result),
5684         InvalidBaseOK(InvalidBaseOK) {}
5685 
Success(const APValue & V,const Expr * E)5686   bool Success(const APValue &V, const Expr *E) {
5687     Result.setFrom(Info.Ctx, V);
5688     return true;
5689   }
ZeroInitialization(const Expr * E)5690   bool ZeroInitialization(const Expr *E) {
5691     auto TargetVal = Info.Ctx.getTargetNullPointerValue(E->getType());
5692     Result.setNull(E->getType(), TargetVal);
5693     return true;
5694   }
5695 
5696   bool VisitBinaryOperator(const BinaryOperator *E);
5697   bool VisitCastExpr(const CastExpr* E);
5698   bool VisitUnaryAddrOf(const UnaryOperator *E);
VisitObjCStringLiteral(const ObjCStringLiteral * E)5699   bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
5700       { return Success(E); }
VisitObjCBoxedExpr(const ObjCBoxedExpr * E)5701   bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
5702     if (Info.noteFailure())
5703       EvaluateIgnoredValue(Info, E->getSubExpr());
5704     return Error(E);
5705   }
VisitAddrLabelExpr(const AddrLabelExpr * E)5706   bool VisitAddrLabelExpr(const AddrLabelExpr *E)
5707       { return Success(E); }
5708   bool VisitCallExpr(const CallExpr *E);
5709   bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
VisitBlockExpr(const BlockExpr * E)5710   bool VisitBlockExpr(const BlockExpr *E) {
5711     if (!E->getBlockDecl()->hasCaptures())
5712       return Success(E);
5713     return Error(E);
5714   }
VisitCXXThisExpr(const CXXThisExpr * E)5715   bool VisitCXXThisExpr(const CXXThisExpr *E) {
5716     // Can't look at 'this' when checking a potential constant expression.
5717     if (Info.checkingPotentialConstantExpression())
5718       return false;
5719     if (!Info.CurrentCall->This) {
5720       if (Info.getLangOpts().CPlusPlus11)
5721         Info.FFDiag(E, diag::note_constexpr_this) << E->isImplicit();
5722       else
5723         Info.FFDiag(E);
5724       return false;
5725     }
5726     Result = *Info.CurrentCall->This;
5727     // If we are inside a lambda's call operator, the 'this' expression refers
5728     // to the enclosing '*this' object (either by value or reference) which is
5729     // either copied into the closure object's field that represents the '*this'
5730     // or refers to '*this'.
5731     if (isLambdaCallOperator(Info.CurrentCall->Callee)) {
5732       // Update 'Result' to refer to the data member/field of the closure object
5733       // that represents the '*this' capture.
5734       if (!HandleLValueMember(Info, E, Result,
5735                              Info.CurrentCall->LambdaThisCaptureField))
5736         return false;
5737       // If we captured '*this' by reference, replace the field with its referent.
5738       if (Info.CurrentCall->LambdaThisCaptureField->getType()
5739               ->isPointerType()) {
5740         APValue RVal;
5741         if (!handleLValueToRValueConversion(Info, E, E->getType(), Result,
5742                                             RVal))
5743           return false;
5744 
5745         Result.setFrom(Info.Ctx, RVal);
5746       }
5747     }
5748     return true;
5749   }
5750 
5751   // FIXME: Missing: @protocol, @selector
5752 };
5753 } // end anonymous namespace
5754 
EvaluatePointer(const Expr * E,LValue & Result,EvalInfo & Info,bool InvalidBaseOK)5755 static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info,
5756                             bool InvalidBaseOK) {
5757   assert(E->isRValue() && E->getType()->hasPointerRepresentation());
5758   return PointerExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
5759 }
5760 
VisitBinaryOperator(const BinaryOperator * E)5761 bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
5762   if (E->getOpcode() != BO_Add &&
5763       E->getOpcode() != BO_Sub)
5764     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
5765 
5766   const Expr *PExp = E->getLHS();
5767   const Expr *IExp = E->getRHS();
5768   if (IExp->getType()->isPointerType())
5769     std::swap(PExp, IExp);
5770 
5771   bool EvalPtrOK = evaluatePointer(PExp, Result);
5772   if (!EvalPtrOK && !Info.noteFailure())
5773     return false;
5774 
5775   llvm::APSInt Offset;
5776   if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
5777     return false;
5778 
5779   if (E->getOpcode() == BO_Sub)
5780     negateAsSigned(Offset);
5781 
5782   QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
5783   return HandleLValueArrayAdjustment(Info, E, Result, Pointee, Offset);
5784 }
5785 
VisitUnaryAddrOf(const UnaryOperator * E)5786 bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
5787   return evaluateLValue(E->getSubExpr(), Result);
5788 }
5789 
VisitCastExpr(const CastExpr * E)5790 bool PointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
5791   const Expr *SubExpr = E->getSubExpr();
5792 
5793   switch (E->getCastKind()) {
5794   default:
5795     break;
5796 
5797   case CK_BitCast:
5798   case CK_CPointerToObjCPointerCast:
5799   case CK_BlockPointerToObjCPointerCast:
5800   case CK_AnyPointerToBlockPointerCast:
5801   case CK_AddressSpaceConversion:
5802     if (!Visit(SubExpr))
5803       return false;
5804     // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
5805     // permitted in constant expressions in C++11. Bitcasts from cv void* are
5806     // also static_casts, but we disallow them as a resolution to DR1312.
5807     if (!E->getType()->isVoidPointerType()) {
5808       // If we changed anything other than cvr-qualifiers, we can't use this
5809       // value for constant folding. FIXME: Qualification conversions should
5810       // always be CK_NoOp, but we get this wrong in C.
5811       if (!Info.Ctx.hasCvrSimilarType(E->getType(), E->getSubExpr()->getType()))
5812         Result.Designator.setInvalid();
5813       if (SubExpr->getType()->isVoidPointerType())
5814         CCEDiag(E, diag::note_constexpr_invalid_cast)
5815           << 3 << SubExpr->getType();
5816       else
5817         CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
5818     }
5819     if (E->getCastKind() == CK_AddressSpaceConversion && Result.IsNullPtr)
5820       ZeroInitialization(E);
5821     return true;
5822 
5823   case CK_DerivedToBase:
5824   case CK_UncheckedDerivedToBase:
5825     if (!evaluatePointer(E->getSubExpr(), Result))
5826       return false;
5827     if (!Result.Base && Result.Offset.isZero())
5828       return true;
5829 
5830     // Now figure out the necessary offset to add to the base LV to get from
5831     // the derived class to the base class.
5832     return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()->
5833                                   castAs<PointerType>()->getPointeeType(),
5834                                 Result);
5835 
5836   case CK_BaseToDerived:
5837     if (!Visit(E->getSubExpr()))
5838       return false;
5839     if (!Result.Base && Result.Offset.isZero())
5840       return true;
5841     return HandleBaseToDerivedCast(Info, E, Result);
5842 
5843   case CK_NullToPointer:
5844     VisitIgnoredValue(E->getSubExpr());
5845     return ZeroInitialization(E);
5846 
5847   case CK_IntegralToPointer: {
5848     CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
5849 
5850     APValue Value;
5851     if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
5852       break;
5853 
5854     if (Value.isInt()) {
5855       unsigned Size = Info.Ctx.getTypeSize(E->getType());
5856       uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
5857       Result.Base = (Expr*)nullptr;
5858       Result.InvalidBase = false;
5859       Result.Offset = CharUnits::fromQuantity(N);
5860       Result.Designator.setInvalid();
5861       Result.IsNullPtr = false;
5862       return true;
5863     } else {
5864       // Cast is of an lvalue, no need to change value.
5865       Result.setFrom(Info.Ctx, Value);
5866       return true;
5867     }
5868   }
5869 
5870   case CK_ArrayToPointerDecay: {
5871     if (SubExpr->isGLValue()) {
5872       if (!evaluateLValue(SubExpr, Result))
5873         return false;
5874     } else {
5875       APValue &Value = createTemporary(SubExpr, false, Result,
5876                                        *Info.CurrentCall);
5877       if (!EvaluateInPlace(Value, Info, Result, SubExpr))
5878         return false;
5879     }
5880     // The result is a pointer to the first element of the array.
5881     auto *AT = Info.Ctx.getAsArrayType(SubExpr->getType());
5882     if (auto *CAT = dyn_cast<ConstantArrayType>(AT))
5883       Result.addArray(Info, E, CAT);
5884     else
5885       Result.addUnsizedArray(Info, E, AT->getElementType());
5886     return true;
5887   }
5888 
5889   case CK_FunctionToPointerDecay:
5890     return evaluateLValue(SubExpr, Result);
5891 
5892   case CK_LValueToRValue: {
5893     LValue LVal;
5894     if (!evaluateLValue(E->getSubExpr(), LVal))
5895       return false;
5896 
5897     APValue RVal;
5898     // Note, we use the subexpression's type in order to retain cv-qualifiers.
5899     if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
5900                                         LVal, RVal))
5901       return InvalidBaseOK &&
5902              evaluateLValueAsAllocSize(Info, LVal.Base, Result);
5903     return Success(RVal, E);
5904   }
5905   }
5906 
5907   return ExprEvaluatorBaseTy::VisitCastExpr(E);
5908 }
5909 
GetAlignOfType(EvalInfo & Info,QualType T)5910 static CharUnits GetAlignOfType(EvalInfo &Info, QualType T) {
5911   // C++ [expr.alignof]p3:
5912   //     When alignof is applied to a reference type, the result is the
5913   //     alignment of the referenced type.
5914   if (const ReferenceType *Ref = T->getAs<ReferenceType>())
5915     T = Ref->getPointeeType();
5916 
5917   // __alignof is defined to return the preferred alignment.
5918   if (T.getQualifiers().hasUnaligned())
5919     return CharUnits::One();
5920   return Info.Ctx.toCharUnitsFromBits(
5921     Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
5922 }
5923 
GetAlignOfExpr(EvalInfo & Info,const Expr * E)5924 static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E) {
5925   E = E->IgnoreParens();
5926 
5927   // The kinds of expressions that we have special-case logic here for
5928   // should be kept up to date with the special checks for those
5929   // expressions in Sema.
5930 
5931   // alignof decl is always accepted, even if it doesn't make sense: we default
5932   // to 1 in those cases.
5933   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
5934     return Info.Ctx.getDeclAlign(DRE->getDecl(),
5935                                  /*RefAsPointee*/true);
5936 
5937   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
5938     return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
5939                                  /*RefAsPointee*/true);
5940 
5941   return GetAlignOfType(Info, E->getType());
5942 }
5943 
5944 // To be clear: this happily visits unsupported builtins. Better name welcomed.
visitNonBuiltinCallExpr(const CallExpr * E)5945 bool PointerExprEvaluator::visitNonBuiltinCallExpr(const CallExpr *E) {
5946   if (ExprEvaluatorBaseTy::VisitCallExpr(E))
5947     return true;
5948 
5949   if (!(InvalidBaseOK && getAllocSizeAttr(E)))
5950     return false;
5951 
5952   Result.setInvalid(E);
5953   QualType PointeeTy = E->getType()->castAs<PointerType>()->getPointeeType();
5954   Result.addUnsizedArray(Info, E, PointeeTy);
5955   return true;
5956 }
5957 
VisitCallExpr(const CallExpr * E)5958 bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
5959   if (IsStringLiteralCall(E))
5960     return Success(E);
5961 
5962   if (unsigned BuiltinOp = E->getBuiltinCallee())
5963     return VisitBuiltinCallExpr(E, BuiltinOp);
5964 
5965   return visitNonBuiltinCallExpr(E);
5966 }
5967 
VisitBuiltinCallExpr(const CallExpr * E,unsigned BuiltinOp)5968 bool PointerExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
5969                                                 unsigned BuiltinOp) {
5970   switch (BuiltinOp) {
5971   case Builtin::BI__builtin_addressof:
5972     return evaluateLValue(E->getArg(0), Result);
5973   case Builtin::BI__builtin_assume_aligned: {
5974     // We need to be very careful here because: if the pointer does not have the
5975     // asserted alignment, then the behavior is undefined, and undefined
5976     // behavior is non-constant.
5977     if (!evaluatePointer(E->getArg(0), Result))
5978       return false;
5979 
5980     LValue OffsetResult(Result);
5981     APSInt Alignment;
5982     if (!EvaluateInteger(E->getArg(1), Alignment, Info))
5983       return false;
5984     CharUnits Align = CharUnits::fromQuantity(Alignment.getZExtValue());
5985 
5986     if (E->getNumArgs() > 2) {
5987       APSInt Offset;
5988       if (!EvaluateInteger(E->getArg(2), Offset, Info))
5989         return false;
5990 
5991       int64_t AdditionalOffset = -Offset.getZExtValue();
5992       OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset);
5993     }
5994 
5995     // If there is a base object, then it must have the correct alignment.
5996     if (OffsetResult.Base) {
5997       CharUnits BaseAlignment;
5998       if (const ValueDecl *VD =
5999           OffsetResult.Base.dyn_cast<const ValueDecl*>()) {
6000         BaseAlignment = Info.Ctx.getDeclAlign(VD);
6001       } else {
6002         BaseAlignment =
6003           GetAlignOfExpr(Info, OffsetResult.Base.get<const Expr*>());
6004       }
6005 
6006       if (BaseAlignment < Align) {
6007         Result.Designator.setInvalid();
6008         // FIXME: Add support to Diagnostic for long / long long.
6009         CCEDiag(E->getArg(0),
6010                 diag::note_constexpr_baa_insufficient_alignment) << 0
6011           << (unsigned)BaseAlignment.getQuantity()
6012           << (unsigned)Align.getQuantity();
6013         return false;
6014       }
6015     }
6016 
6017     // The offset must also have the correct alignment.
6018     if (OffsetResult.Offset.alignTo(Align) != OffsetResult.Offset) {
6019       Result.Designator.setInvalid();
6020 
6021       (OffsetResult.Base
6022            ? CCEDiag(E->getArg(0),
6023                      diag::note_constexpr_baa_insufficient_alignment) << 1
6024            : CCEDiag(E->getArg(0),
6025                      diag::note_constexpr_baa_value_insufficient_alignment))
6026         << (int)OffsetResult.Offset.getQuantity()
6027         << (unsigned)Align.getQuantity();
6028       return false;
6029     }
6030 
6031     return true;
6032   }
6033 
6034   case Builtin::BIstrchr:
6035   case Builtin::BIwcschr:
6036   case Builtin::BImemchr:
6037   case Builtin::BIwmemchr:
6038     if (Info.getLangOpts().CPlusPlus11)
6039       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
6040         << /*isConstexpr*/0 << /*isConstructor*/0
6041         << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
6042     else
6043       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
6044     LLVM_FALLTHROUGH;
6045   case Builtin::BI__builtin_strchr:
6046   case Builtin::BI__builtin_wcschr:
6047   case Builtin::BI__builtin_memchr:
6048   case Builtin::BI__builtin_char_memchr:
6049   case Builtin::BI__builtin_wmemchr: {
6050     if (!Visit(E->getArg(0)))
6051       return false;
6052     APSInt Desired;
6053     if (!EvaluateInteger(E->getArg(1), Desired, Info))
6054       return false;
6055     uint64_t MaxLength = uint64_t(-1);
6056     if (BuiltinOp != Builtin::BIstrchr &&
6057         BuiltinOp != Builtin::BIwcschr &&
6058         BuiltinOp != Builtin::BI__builtin_strchr &&
6059         BuiltinOp != Builtin::BI__builtin_wcschr) {
6060       APSInt N;
6061       if (!EvaluateInteger(E->getArg(2), N, Info))
6062         return false;
6063       MaxLength = N.getExtValue();
6064     }
6065 
6066     QualType CharTy = E->getArg(0)->getType()->getPointeeType();
6067 
6068     // Figure out what value we're actually looking for (after converting to
6069     // the corresponding unsigned type if necessary).
6070     uint64_t DesiredVal;
6071     bool StopAtNull = false;
6072     switch (BuiltinOp) {
6073     case Builtin::BIstrchr:
6074     case Builtin::BI__builtin_strchr:
6075       // strchr compares directly to the passed integer, and therefore
6076       // always fails if given an int that is not a char.
6077       if (!APSInt::isSameValue(HandleIntToIntCast(Info, E, CharTy,
6078                                                   E->getArg(1)->getType(),
6079                                                   Desired),
6080                                Desired))
6081         return ZeroInitialization(E);
6082       StopAtNull = true;
6083       LLVM_FALLTHROUGH;
6084     case Builtin::BImemchr:
6085     case Builtin::BI__builtin_memchr:
6086     case Builtin::BI__builtin_char_memchr:
6087       // memchr compares by converting both sides to unsigned char. That's also
6088       // correct for strchr if we get this far (to cope with plain char being
6089       // unsigned in the strchr case).
6090       DesiredVal = Desired.trunc(Info.Ctx.getCharWidth()).getZExtValue();
6091       break;
6092 
6093     case Builtin::BIwcschr:
6094     case Builtin::BI__builtin_wcschr:
6095       StopAtNull = true;
6096       LLVM_FALLTHROUGH;
6097     case Builtin::BIwmemchr:
6098     case Builtin::BI__builtin_wmemchr:
6099       // wcschr and wmemchr are given a wchar_t to look for. Just use it.
6100       DesiredVal = Desired.getZExtValue();
6101       break;
6102     }
6103 
6104     for (; MaxLength; --MaxLength) {
6105       APValue Char;
6106       if (!handleLValueToRValueConversion(Info, E, CharTy, Result, Char) ||
6107           !Char.isInt())
6108         return false;
6109       if (Char.getInt().getZExtValue() == DesiredVal)
6110         return true;
6111       if (StopAtNull && !Char.getInt())
6112         break;
6113       if (!HandleLValueArrayAdjustment(Info, E, Result, CharTy, 1))
6114         return false;
6115     }
6116     // Not found: return nullptr.
6117     return ZeroInitialization(E);
6118   }
6119 
6120   default:
6121     return visitNonBuiltinCallExpr(E);
6122   }
6123 }
6124 
6125 //===----------------------------------------------------------------------===//
6126 // Member Pointer Evaluation
6127 //===----------------------------------------------------------------------===//
6128 
6129 namespace {
6130 class MemberPointerExprEvaluator
6131   : public ExprEvaluatorBase<MemberPointerExprEvaluator> {
6132   MemberPtr &Result;
6133 
Success(const ValueDecl * D)6134   bool Success(const ValueDecl *D) {
6135     Result = MemberPtr(D);
6136     return true;
6137   }
6138 public:
6139 
MemberPointerExprEvaluator(EvalInfo & Info,MemberPtr & Result)6140   MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
6141     : ExprEvaluatorBaseTy(Info), Result(Result) {}
6142 
Success(const APValue & V,const Expr * E)6143   bool Success(const APValue &V, const Expr *E) {
6144     Result.setFrom(V);
6145     return true;
6146   }
ZeroInitialization(const Expr * E)6147   bool ZeroInitialization(const Expr *E) {
6148     return Success((const ValueDecl*)nullptr);
6149   }
6150 
6151   bool VisitCastExpr(const CastExpr *E);
6152   bool VisitUnaryAddrOf(const UnaryOperator *E);
6153 };
6154 } // end anonymous namespace
6155 
EvaluateMemberPointer(const Expr * E,MemberPtr & Result,EvalInfo & Info)6156 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
6157                                   EvalInfo &Info) {
6158   assert(E->isRValue() && E->getType()->isMemberPointerType());
6159   return MemberPointerExprEvaluator(Info, Result).Visit(E);
6160 }
6161 
VisitCastExpr(const CastExpr * E)6162 bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
6163   switch (E->getCastKind()) {
6164   default:
6165     return ExprEvaluatorBaseTy::VisitCastExpr(E);
6166 
6167   case CK_NullToMemberPointer:
6168     VisitIgnoredValue(E->getSubExpr());
6169     return ZeroInitialization(E);
6170 
6171   case CK_BaseToDerivedMemberPointer: {
6172     if (!Visit(E->getSubExpr()))
6173       return false;
6174     if (E->path_empty())
6175       return true;
6176     // Base-to-derived member pointer casts store the path in derived-to-base
6177     // order, so iterate backwards. The CXXBaseSpecifier also provides us with
6178     // the wrong end of the derived->base arc, so stagger the path by one class.
6179     typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
6180     for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
6181          PathI != PathE; ++PathI) {
6182       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
6183       const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
6184       if (!Result.castToDerived(Derived))
6185         return Error(E);
6186     }
6187     const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
6188     if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
6189       return Error(E);
6190     return true;
6191   }
6192 
6193   case CK_DerivedToBaseMemberPointer:
6194     if (!Visit(E->getSubExpr()))
6195       return false;
6196     for (CastExpr::path_const_iterator PathI = E->path_begin(),
6197          PathE = E->path_end(); PathI != PathE; ++PathI) {
6198       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
6199       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
6200       if (!Result.castToBase(Base))
6201         return Error(E);
6202     }
6203     return true;
6204   }
6205 }
6206 
VisitUnaryAddrOf(const UnaryOperator * E)6207 bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
6208   // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
6209   // member can be formed.
6210   return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
6211 }
6212 
6213 //===----------------------------------------------------------------------===//
6214 // Record Evaluation
6215 //===----------------------------------------------------------------------===//
6216 
6217 namespace {
6218   class RecordExprEvaluator
6219   : public ExprEvaluatorBase<RecordExprEvaluator> {
6220     const LValue &This;
6221     APValue &Result;
6222   public:
6223 
RecordExprEvaluator(EvalInfo & info,const LValue & This,APValue & Result)6224     RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
6225       : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
6226 
Success(const APValue & V,const Expr * E)6227     bool Success(const APValue &V, const Expr *E) {
6228       Result = V;
6229       return true;
6230     }
ZeroInitialization(const Expr * E)6231     bool ZeroInitialization(const Expr *E) {
6232       return ZeroInitialization(E, E->getType());
6233     }
6234     bool ZeroInitialization(const Expr *E, QualType T);
6235 
VisitCallExpr(const CallExpr * E)6236     bool VisitCallExpr(const CallExpr *E) {
6237       return handleCallExpr(E, Result, &This);
6238     }
6239     bool VisitCastExpr(const CastExpr *E);
6240     bool VisitInitListExpr(const InitListExpr *E);
VisitCXXConstructExpr(const CXXConstructExpr * E)6241     bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
6242       return VisitCXXConstructExpr(E, E->getType());
6243     }
6244     bool VisitLambdaExpr(const LambdaExpr *E);
6245     bool VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
6246     bool VisitCXXConstructExpr(const CXXConstructExpr *E, QualType T);
6247     bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
6248 
6249     bool VisitBinCmp(const BinaryOperator *E);
6250   };
6251 }
6252 
6253 /// Perform zero-initialization on an object of non-union class type.
6254 /// C++11 [dcl.init]p5:
6255 ///  To zero-initialize an object or reference of type T means:
6256 ///    [...]
6257 ///    -- if T is a (possibly cv-qualified) non-union class type,
6258 ///       each non-static data member and each base-class subobject is
6259 ///       zero-initialized
HandleClassZeroInitialization(EvalInfo & Info,const Expr * E,const RecordDecl * RD,const LValue & This,APValue & Result)6260 static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
6261                                           const RecordDecl *RD,
6262                                           const LValue &This, APValue &Result) {
6263   assert(!RD->isUnion() && "Expected non-union class type");
6264   const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
6265   Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
6266                    std::distance(RD->field_begin(), RD->field_end()));
6267 
6268   if (RD->isInvalidDecl()) return false;
6269   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6270 
6271   if (CD) {
6272     unsigned Index = 0;
6273     for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
6274            End = CD->bases_end(); I != End; ++I, ++Index) {
6275       const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
6276       LValue Subobject = This;
6277       if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
6278         return false;
6279       if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
6280                                          Result.getStructBase(Index)))
6281         return false;
6282     }
6283   }
6284 
6285   for (const auto *I : RD->fields()) {
6286     // -- if T is a reference type, no initialization is performed.
6287     if (I->getType()->isReferenceType())
6288       continue;
6289 
6290     LValue Subobject = This;
6291     if (!HandleLValueMember(Info, E, Subobject, I, &Layout))
6292       return false;
6293 
6294     ImplicitValueInitExpr VIE(I->getType());
6295     if (!EvaluateInPlace(
6296           Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
6297       return false;
6298   }
6299 
6300   return true;
6301 }
6302 
ZeroInitialization(const Expr * E,QualType T)6303 bool RecordExprEvaluator::ZeroInitialization(const Expr *E, QualType T) {
6304   const RecordDecl *RD = T->castAs<RecordType>()->getDecl();
6305   if (RD->isInvalidDecl()) return false;
6306   if (RD->isUnion()) {
6307     // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
6308     // object's first non-static named data member is zero-initialized
6309     RecordDecl::field_iterator I = RD->field_begin();
6310     if (I == RD->field_end()) {
6311       Result = APValue((const FieldDecl*)nullptr);
6312       return true;
6313     }
6314 
6315     LValue Subobject = This;
6316     if (!HandleLValueMember(Info, E, Subobject, *I))
6317       return false;
6318     Result = APValue(*I);
6319     ImplicitValueInitExpr VIE(I->getType());
6320     return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
6321   }
6322 
6323   if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
6324     Info.FFDiag(E, diag::note_constexpr_virtual_base) << RD;
6325     return false;
6326   }
6327 
6328   return HandleClassZeroInitialization(Info, E, RD, This, Result);
6329 }
6330 
VisitCastExpr(const CastExpr * E)6331 bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
6332   switch (E->getCastKind()) {
6333   default:
6334     return ExprEvaluatorBaseTy::VisitCastExpr(E);
6335 
6336   case CK_ConstructorConversion:
6337     return Visit(E->getSubExpr());
6338 
6339   case CK_DerivedToBase:
6340   case CK_UncheckedDerivedToBase: {
6341     APValue DerivedObject;
6342     if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
6343       return false;
6344     if (!DerivedObject.isStruct())
6345       return Error(E->getSubExpr());
6346 
6347     // Derived-to-base rvalue conversion: just slice off the derived part.
6348     APValue *Value = &DerivedObject;
6349     const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
6350     for (CastExpr::path_const_iterator PathI = E->path_begin(),
6351          PathE = E->path_end(); PathI != PathE; ++PathI) {
6352       assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
6353       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
6354       Value = &Value->getStructBase(getBaseIndex(RD, Base));
6355       RD = Base;
6356     }
6357     Result = *Value;
6358     return true;
6359   }
6360   }
6361 }
6362 
VisitInitListExpr(const InitListExpr * E)6363 bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
6364   if (E->isTransparent())
6365     return Visit(E->getInit(0));
6366 
6367   const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
6368   if (RD->isInvalidDecl()) return false;
6369   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
6370 
6371   if (RD->isUnion()) {
6372     const FieldDecl *Field = E->getInitializedFieldInUnion();
6373     Result = APValue(Field);
6374     if (!Field)
6375       return true;
6376 
6377     // If the initializer list for a union does not contain any elements, the
6378     // first element of the union is value-initialized.
6379     // FIXME: The element should be initialized from an initializer list.
6380     //        Is this difference ever observable for initializer lists which
6381     //        we don't build?
6382     ImplicitValueInitExpr VIE(Field->getType());
6383     const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
6384 
6385     LValue Subobject = This;
6386     if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
6387       return false;
6388 
6389     // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
6390     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
6391                                   isa<CXXDefaultInitExpr>(InitExpr));
6392 
6393     return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr);
6394   }
6395 
6396   auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
6397   if (Result.isUninit())
6398     Result = APValue(APValue::UninitStruct(), CXXRD ? CXXRD->getNumBases() : 0,
6399                      std::distance(RD->field_begin(), RD->field_end()));
6400   unsigned ElementNo = 0;
6401   bool Success = true;
6402 
6403   // Initialize base classes.
6404   if (CXXRD) {
6405     for (const auto &Base : CXXRD->bases()) {
6406       assert(ElementNo < E->getNumInits() && "missing init for base class");
6407       const Expr *Init = E->getInit(ElementNo);
6408 
6409       LValue Subobject = This;
6410       if (!HandleLValueBase(Info, Init, Subobject, CXXRD, &Base))
6411         return false;
6412 
6413       APValue &FieldVal = Result.getStructBase(ElementNo);
6414       if (!EvaluateInPlace(FieldVal, Info, Subobject, Init)) {
6415         if (!Info.noteFailure())
6416           return false;
6417         Success = false;
6418       }
6419       ++ElementNo;
6420     }
6421   }
6422 
6423   // Initialize members.
6424   for (const auto *Field : RD->fields()) {
6425     // Anonymous bit-fields are not considered members of the class for
6426     // purposes of aggregate initialization.
6427     if (Field->isUnnamedBitfield())
6428       continue;
6429 
6430     LValue Subobject = This;
6431 
6432     bool HaveInit = ElementNo < E->getNumInits();
6433 
6434     // FIXME: Diagnostics here should point to the end of the initializer
6435     // list, not the start.
6436     if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
6437                             Subobject, Field, &Layout))
6438       return false;
6439 
6440     // Perform an implicit value-initialization for members beyond the end of
6441     // the initializer list.
6442     ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
6443     const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE;
6444 
6445     // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
6446     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
6447                                   isa<CXXDefaultInitExpr>(Init));
6448 
6449     APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
6450     if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) ||
6451         (Field->isBitField() && !truncateBitfieldValue(Info, Init,
6452                                                        FieldVal, Field))) {
6453       if (!Info.noteFailure())
6454         return false;
6455       Success = false;
6456     }
6457   }
6458 
6459   return Success;
6460 }
6461 
VisitCXXConstructExpr(const CXXConstructExpr * E,QualType T)6462 bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
6463                                                 QualType T) {
6464   // Note that E's type is not necessarily the type of our class here; we might
6465   // be initializing an array element instead.
6466   const CXXConstructorDecl *FD = E->getConstructor();
6467   if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
6468 
6469   bool ZeroInit = E->requiresZeroInitialization();
6470   if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
6471     // If we've already performed zero-initialization, we're already done.
6472     if (!Result.isUninit())
6473       return true;
6474 
6475     // We can get here in two different ways:
6476     //  1) We're performing value-initialization, and should zero-initialize
6477     //     the object, or
6478     //  2) We're performing default-initialization of an object with a trivial
6479     //     constexpr default constructor, in which case we should start the
6480     //     lifetimes of all the base subobjects (there can be no data member
6481     //     subobjects in this case) per [basic.life]p1.
6482     // Either way, ZeroInitialization is appropriate.
6483     return ZeroInitialization(E, T);
6484   }
6485 
6486   const FunctionDecl *Definition = nullptr;
6487   auto Body = FD->getBody(Definition);
6488 
6489   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
6490     return false;
6491 
6492   // Avoid materializing a temporary for an elidable copy/move constructor.
6493   if (E->isElidable() && !ZeroInit)
6494     if (const MaterializeTemporaryExpr *ME
6495           = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0)))
6496       return Visit(ME->GetTemporaryExpr());
6497 
6498   if (ZeroInit && !ZeroInitialization(E, T))
6499     return false;
6500 
6501   auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
6502   return HandleConstructorCall(E, This, Args,
6503                                cast<CXXConstructorDecl>(Definition), Info,
6504                                Result);
6505 }
6506 
VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr * E)6507 bool RecordExprEvaluator::VisitCXXInheritedCtorInitExpr(
6508     const CXXInheritedCtorInitExpr *E) {
6509   if (!Info.CurrentCall) {
6510     assert(Info.checkingPotentialConstantExpression());
6511     return false;
6512   }
6513 
6514   const CXXConstructorDecl *FD = E->getConstructor();
6515   if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl())
6516     return false;
6517 
6518   const FunctionDecl *Definition = nullptr;
6519   auto Body = FD->getBody(Definition);
6520 
6521   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
6522     return false;
6523 
6524   return HandleConstructorCall(E, This, Info.CurrentCall->Arguments,
6525                                cast<CXXConstructorDecl>(Definition), Info,
6526                                Result);
6527 }
6528 
VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr * E)6529 bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
6530     const CXXStdInitializerListExpr *E) {
6531   const ConstantArrayType *ArrayType =
6532       Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
6533 
6534   LValue Array;
6535   if (!EvaluateLValue(E->getSubExpr(), Array, Info))
6536     return false;
6537 
6538   // Get a pointer to the first element of the array.
6539   Array.addArray(Info, E, ArrayType);
6540 
6541   // FIXME: Perform the checks on the field types in SemaInit.
6542   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
6543   RecordDecl::field_iterator Field = Record->field_begin();
6544   if (Field == Record->field_end())
6545     return Error(E);
6546 
6547   // Start pointer.
6548   if (!Field->getType()->isPointerType() ||
6549       !Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
6550                             ArrayType->getElementType()))
6551     return Error(E);
6552 
6553   // FIXME: What if the initializer_list type has base classes, etc?
6554   Result = APValue(APValue::UninitStruct(), 0, 2);
6555   Array.moveInto(Result.getStructField(0));
6556 
6557   if (++Field == Record->field_end())
6558     return Error(E);
6559 
6560   if (Field->getType()->isPointerType() &&
6561       Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
6562                            ArrayType->getElementType())) {
6563     // End pointer.
6564     if (!HandleLValueArrayAdjustment(Info, E, Array,
6565                                      ArrayType->getElementType(),
6566                                      ArrayType->getSize().getZExtValue()))
6567       return false;
6568     Array.moveInto(Result.getStructField(1));
6569   } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType()))
6570     // Length.
6571     Result.getStructField(1) = APValue(APSInt(ArrayType->getSize()));
6572   else
6573     return Error(E);
6574 
6575   if (++Field != Record->field_end())
6576     return Error(E);
6577 
6578   return true;
6579 }
6580 
VisitLambdaExpr(const LambdaExpr * E)6581 bool RecordExprEvaluator::VisitLambdaExpr(const LambdaExpr *E) {
6582   const CXXRecordDecl *ClosureClass = E->getLambdaClass();
6583   if (ClosureClass->isInvalidDecl()) return false;
6584 
6585   if (Info.checkingPotentialConstantExpression()) return true;
6586 
6587   const size_t NumFields =
6588       std::distance(ClosureClass->field_begin(), ClosureClass->field_end());
6589 
6590   assert(NumFields == (size_t)std::distance(E->capture_init_begin(),
6591                                             E->capture_init_end()) &&
6592          "The number of lambda capture initializers should equal the number of "
6593          "fields within the closure type");
6594 
6595   Result = APValue(APValue::UninitStruct(), /*NumBases*/0, NumFields);
6596   // Iterate through all the lambda's closure object's fields and initialize
6597   // them.
6598   auto *CaptureInitIt = E->capture_init_begin();
6599   const LambdaCapture *CaptureIt = ClosureClass->captures_begin();
6600   bool Success = true;
6601   for (const auto *Field : ClosureClass->fields()) {
6602     assert(CaptureInitIt != E->capture_init_end());
6603     // Get the initializer for this field
6604     Expr *const CurFieldInit = *CaptureInitIt++;
6605 
6606     // If there is no initializer, either this is a VLA or an error has
6607     // occurred.
6608     if (!CurFieldInit)
6609       return Error(E);
6610 
6611     APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
6612     if (!EvaluateInPlace(FieldVal, Info, This, CurFieldInit)) {
6613       if (!Info.keepEvaluatingAfterFailure())
6614         return false;
6615       Success = false;
6616     }
6617     ++CaptureIt;
6618   }
6619   return Success;
6620 }
6621 
EvaluateRecord(const Expr * E,const LValue & This,APValue & Result,EvalInfo & Info)6622 static bool EvaluateRecord(const Expr *E, const LValue &This,
6623                            APValue &Result, EvalInfo &Info) {
6624   assert(E->isRValue() && E->getType()->isRecordType() &&
6625          "can't evaluate expression as a record rvalue");
6626   return RecordExprEvaluator(Info, This, Result).Visit(E);
6627 }
6628 
6629 //===----------------------------------------------------------------------===//
6630 // Temporary Evaluation
6631 //
6632 // Temporaries are represented in the AST as rvalues, but generally behave like
6633 // lvalues. The full-object of which the temporary is a subobject is implicitly
6634 // materialized so that a reference can bind to it.
6635 //===----------------------------------------------------------------------===//
6636 namespace {
6637 class TemporaryExprEvaluator
6638   : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
6639 public:
TemporaryExprEvaluator(EvalInfo & Info,LValue & Result)6640   TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
6641     LValueExprEvaluatorBaseTy(Info, Result, false) {}
6642 
6643   /// Visit an expression which constructs the value of this temporary.
VisitConstructExpr(const Expr * E)6644   bool VisitConstructExpr(const Expr *E) {
6645     APValue &Value = createTemporary(E, false, Result, *Info.CurrentCall);
6646     return EvaluateInPlace(Value, Info, Result, E);
6647   }
6648 
VisitCastExpr(const CastExpr * E)6649   bool VisitCastExpr(const CastExpr *E) {
6650     switch (E->getCastKind()) {
6651     default:
6652       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
6653 
6654     case CK_ConstructorConversion:
6655       return VisitConstructExpr(E->getSubExpr());
6656     }
6657   }
VisitInitListExpr(const InitListExpr * E)6658   bool VisitInitListExpr(const InitListExpr *E) {
6659     return VisitConstructExpr(E);
6660   }
VisitCXXConstructExpr(const CXXConstructExpr * E)6661   bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
6662     return VisitConstructExpr(E);
6663   }
VisitCallExpr(const CallExpr * E)6664   bool VisitCallExpr(const CallExpr *E) {
6665     return VisitConstructExpr(E);
6666   }
VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr * E)6667   bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) {
6668     return VisitConstructExpr(E);
6669   }
VisitLambdaExpr(const LambdaExpr * E)6670   bool VisitLambdaExpr(const LambdaExpr *E) {
6671     return VisitConstructExpr(E);
6672   }
6673 };
6674 } // end anonymous namespace
6675 
6676 /// Evaluate an expression of record type as a temporary.
EvaluateTemporary(const Expr * E,LValue & Result,EvalInfo & Info)6677 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
6678   assert(E->isRValue() && E->getType()->isRecordType());
6679   return TemporaryExprEvaluator(Info, Result).Visit(E);
6680 }
6681 
6682 //===----------------------------------------------------------------------===//
6683 // Vector Evaluation
6684 //===----------------------------------------------------------------------===//
6685 
6686 namespace {
6687   class VectorExprEvaluator
6688   : public ExprEvaluatorBase<VectorExprEvaluator> {
6689     APValue &Result;
6690   public:
6691 
VectorExprEvaluator(EvalInfo & info,APValue & Result)6692     VectorExprEvaluator(EvalInfo &info, APValue &Result)
6693       : ExprEvaluatorBaseTy(info), Result(Result) {}
6694 
Success(ArrayRef<APValue> V,const Expr * E)6695     bool Success(ArrayRef<APValue> V, const Expr *E) {
6696       assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
6697       // FIXME: remove this APValue copy.
6698       Result = APValue(V.data(), V.size());
6699       return true;
6700     }
Success(const APValue & V,const Expr * E)6701     bool Success(const APValue &V, const Expr *E) {
6702       assert(V.isVector());
6703       Result = V;
6704       return true;
6705     }
6706     bool ZeroInitialization(const Expr *E);
6707 
VisitUnaryReal(const UnaryOperator * E)6708     bool VisitUnaryReal(const UnaryOperator *E)
6709       { return Visit(E->getSubExpr()); }
6710     bool VisitCastExpr(const CastExpr* E);
6711     bool VisitInitListExpr(const InitListExpr *E);
6712     bool VisitUnaryImag(const UnaryOperator *E);
6713     // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div,
6714     //                 binary comparisons, binary and/or/xor,
6715     //                 shufflevector, ExtVectorElementExpr
6716   };
6717 } // end anonymous namespace
6718 
EvaluateVector(const Expr * E,APValue & Result,EvalInfo & Info)6719 static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
6720   assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue");
6721   return VectorExprEvaluator(Info, Result).Visit(E);
6722 }
6723 
VisitCastExpr(const CastExpr * E)6724 bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) {
6725   const VectorType *VTy = E->getType()->castAs<VectorType>();
6726   unsigned NElts = VTy->getNumElements();
6727 
6728   const Expr *SE = E->getSubExpr();
6729   QualType SETy = SE->getType();
6730 
6731   switch (E->getCastKind()) {
6732   case CK_VectorSplat: {
6733     APValue Val = APValue();
6734     if (SETy->isIntegerType()) {
6735       APSInt IntResult;
6736       if (!EvaluateInteger(SE, IntResult, Info))
6737         return false;
6738       Val = APValue(std::move(IntResult));
6739     } else if (SETy->isRealFloatingType()) {
6740       APFloat FloatResult(0.0);
6741       if (!EvaluateFloat(SE, FloatResult, Info))
6742         return false;
6743       Val = APValue(std::move(FloatResult));
6744     } else {
6745       return Error(E);
6746     }
6747 
6748     // Splat and create vector APValue.
6749     SmallVector<APValue, 4> Elts(NElts, Val);
6750     return Success(Elts, E);
6751   }
6752   case CK_BitCast: {
6753     // Evaluate the operand into an APInt we can extract from.
6754     llvm::APInt SValInt;
6755     if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
6756       return false;
6757     // Extract the elements
6758     QualType EltTy = VTy->getElementType();
6759     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
6760     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
6761     SmallVector<APValue, 4> Elts;
6762     if (EltTy->isRealFloatingType()) {
6763       const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
6764       unsigned FloatEltSize = EltSize;
6765       if (&Sem == &APFloat::x87DoubleExtended())
6766         FloatEltSize = 80;
6767       for (unsigned i = 0; i < NElts; i++) {
6768         llvm::APInt Elt;
6769         if (BigEndian)
6770           Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
6771         else
6772           Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
6773         Elts.push_back(APValue(APFloat(Sem, Elt)));
6774       }
6775     } else if (EltTy->isIntegerType()) {
6776       for (unsigned i = 0; i < NElts; i++) {
6777         llvm::APInt Elt;
6778         if (BigEndian)
6779           Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
6780         else
6781           Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
6782         Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType())));
6783       }
6784     } else {
6785       return Error(E);
6786     }
6787     return Success(Elts, E);
6788   }
6789   default:
6790     return ExprEvaluatorBaseTy::VisitCastExpr(E);
6791   }
6792 }
6793 
6794 bool
VisitInitListExpr(const InitListExpr * E)6795 VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
6796   const VectorType *VT = E->getType()->castAs<VectorType>();
6797   unsigned NumInits = E->getNumInits();
6798   unsigned NumElements = VT->getNumElements();
6799 
6800   QualType EltTy = VT->getElementType();
6801   SmallVector<APValue, 4> Elements;
6802 
6803   // The number of initializers can be less than the number of
6804   // vector elements. For OpenCL, this can be due to nested vector
6805   // initialization. For GCC compatibility, missing trailing elements
6806   // should be initialized with zeroes.
6807   unsigned CountInits = 0, CountElts = 0;
6808   while (CountElts < NumElements) {
6809     // Handle nested vector initialization.
6810     if (CountInits < NumInits
6811         && E->getInit(CountInits)->getType()->isVectorType()) {
6812       APValue v;
6813       if (!EvaluateVector(E->getInit(CountInits), v, Info))
6814         return Error(E);
6815       unsigned vlen = v.getVectorLength();
6816       for (unsigned j = 0; j < vlen; j++)
6817         Elements.push_back(v.getVectorElt(j));
6818       CountElts += vlen;
6819     } else if (EltTy->isIntegerType()) {
6820       llvm::APSInt sInt(32);
6821       if (CountInits < NumInits) {
6822         if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
6823           return false;
6824       } else // trailing integer zero.
6825         sInt = Info.Ctx.MakeIntValue(0, EltTy);
6826       Elements.push_back(APValue(sInt));
6827       CountElts++;
6828     } else {
6829       llvm::APFloat f(0.0);
6830       if (CountInits < NumInits) {
6831         if (!EvaluateFloat(E->getInit(CountInits), f, Info))
6832           return false;
6833       } else // trailing float zero.
6834         f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
6835       Elements.push_back(APValue(f));
6836       CountElts++;
6837     }
6838     CountInits++;
6839   }
6840   return Success(Elements, E);
6841 }
6842 
6843 bool
ZeroInitialization(const Expr * E)6844 VectorExprEvaluator::ZeroInitialization(const Expr *E) {
6845   const VectorType *VT = E->getType()->getAs<VectorType>();
6846   QualType EltTy = VT->getElementType();
6847   APValue ZeroElement;
6848   if (EltTy->isIntegerType())
6849     ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
6850   else
6851     ZeroElement =
6852         APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
6853 
6854   SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
6855   return Success(Elements, E);
6856 }
6857 
VisitUnaryImag(const UnaryOperator * E)6858 bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
6859   VisitIgnoredValue(E->getSubExpr());
6860   return ZeroInitialization(E);
6861 }
6862 
6863 //===----------------------------------------------------------------------===//
6864 // Array Evaluation
6865 //===----------------------------------------------------------------------===//
6866 
6867 namespace {
6868   class ArrayExprEvaluator
6869   : public ExprEvaluatorBase<ArrayExprEvaluator> {
6870     const LValue &This;
6871     APValue &Result;
6872   public:
6873 
ArrayExprEvaluator(EvalInfo & Info,const LValue & This,APValue & Result)6874     ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
6875       : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
6876 
Success(const APValue & V,const Expr * E)6877     bool Success(const APValue &V, const Expr *E) {
6878       assert((V.isArray() || V.isLValue()) &&
6879              "expected array or string literal");
6880       Result = V;
6881       return true;
6882     }
6883 
ZeroInitialization(const Expr * E)6884     bool ZeroInitialization(const Expr *E) {
6885       const ConstantArrayType *CAT =
6886           Info.Ctx.getAsConstantArrayType(E->getType());
6887       if (!CAT)
6888         return Error(E);
6889 
6890       Result = APValue(APValue::UninitArray(), 0,
6891                        CAT->getSize().getZExtValue());
6892       if (!Result.hasArrayFiller()) return true;
6893 
6894       // Zero-initialize all elements.
6895       LValue Subobject = This;
6896       Subobject.addArray(Info, E, CAT);
6897       ImplicitValueInitExpr VIE(CAT->getElementType());
6898       return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
6899     }
6900 
VisitCallExpr(const CallExpr * E)6901     bool VisitCallExpr(const CallExpr *E) {
6902       return handleCallExpr(E, Result, &This);
6903     }
6904     bool VisitInitListExpr(const InitListExpr *E);
6905     bool VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E);
6906     bool VisitCXXConstructExpr(const CXXConstructExpr *E);
6907     bool VisitCXXConstructExpr(const CXXConstructExpr *E,
6908                                const LValue &Subobject,
6909                                APValue *Value, QualType Type);
6910   };
6911 } // end anonymous namespace
6912 
EvaluateArray(const Expr * E,const LValue & This,APValue & Result,EvalInfo & Info)6913 static bool EvaluateArray(const Expr *E, const LValue &This,
6914                           APValue &Result, EvalInfo &Info) {
6915   assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue");
6916   return ArrayExprEvaluator(Info, This, Result).Visit(E);
6917 }
6918 
6919 // Return true iff the given array filler may depend on the element index.
MaybeElementDependentArrayFiller(const Expr * FillerExpr)6920 static bool MaybeElementDependentArrayFiller(const Expr *FillerExpr) {
6921   // For now, just whitelist non-class value-initialization and initialization
6922   // lists comprised of them.
6923   if (isa<ImplicitValueInitExpr>(FillerExpr))
6924     return false;
6925   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(FillerExpr)) {
6926     for (unsigned I = 0, E = ILE->getNumInits(); I != E; ++I) {
6927       if (MaybeElementDependentArrayFiller(ILE->getInit(I)))
6928         return true;
6929     }
6930     return false;
6931   }
6932   return true;
6933 }
6934 
VisitInitListExpr(const InitListExpr * E)6935 bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
6936   const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(E->getType());
6937   if (!CAT)
6938     return Error(E);
6939 
6940   // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
6941   // an appropriately-typed string literal enclosed in braces.
6942   if (E->isStringLiteralInit()) {
6943     LValue LV;
6944     if (!EvaluateLValue(E->getInit(0), LV, Info))
6945       return false;
6946     APValue Val;
6947     LV.moveInto(Val);
6948     return Success(Val, E);
6949   }
6950 
6951   bool Success = true;
6952 
6953   assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
6954          "zero-initialized array shouldn't have any initialized elts");
6955   APValue Filler;
6956   if (Result.isArray() && Result.hasArrayFiller())
6957     Filler = Result.getArrayFiller();
6958 
6959   unsigned NumEltsToInit = E->getNumInits();
6960   unsigned NumElts = CAT->getSize().getZExtValue();
6961   const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : nullptr;
6962 
6963   // If the initializer might depend on the array index, run it for each
6964   // array element.
6965   if (NumEltsToInit != NumElts && MaybeElementDependentArrayFiller(FillerExpr))
6966     NumEltsToInit = NumElts;
6967 
6968   LLVM_DEBUG(llvm::dbgs() << "The number of elements to initialize: "
6969                           << NumEltsToInit << ".\n");
6970 
6971   Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
6972 
6973   // If the array was previously zero-initialized, preserve the
6974   // zero-initialized values.
6975   if (!Filler.isUninit()) {
6976     for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
6977       Result.getArrayInitializedElt(I) = Filler;
6978     if (Result.hasArrayFiller())
6979       Result.getArrayFiller() = Filler;
6980   }
6981 
6982   LValue Subobject = This;
6983   Subobject.addArray(Info, E, CAT);
6984   for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
6985     const Expr *Init =
6986         Index < E->getNumInits() ? E->getInit(Index) : FillerExpr;
6987     if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
6988                          Info, Subobject, Init) ||
6989         !HandleLValueArrayAdjustment(Info, Init, Subobject,
6990                                      CAT->getElementType(), 1)) {
6991       if (!Info.noteFailure())
6992         return false;
6993       Success = false;
6994     }
6995   }
6996 
6997   if (!Result.hasArrayFiller())
6998     return Success;
6999 
7000   // If we get here, we have a trivial filler, which we can just evaluate
7001   // once and splat over the rest of the array elements.
7002   assert(FillerExpr && "no array filler for incomplete init list");
7003   return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject,
7004                          FillerExpr) && Success;
7005 }
7006 
VisitArrayInitLoopExpr(const ArrayInitLoopExpr * E)7007 bool ArrayExprEvaluator::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
7008   if (E->getCommonExpr() &&
7009       !Evaluate(Info.CurrentCall->createTemporary(E->getCommonExpr(), false),
7010                 Info, E->getCommonExpr()->getSourceExpr()))
7011     return false;
7012 
7013   auto *CAT = cast<ConstantArrayType>(E->getType()->castAsArrayTypeUnsafe());
7014 
7015   uint64_t Elements = CAT->getSize().getZExtValue();
7016   Result = APValue(APValue::UninitArray(), Elements, Elements);
7017 
7018   LValue Subobject = This;
7019   Subobject.addArray(Info, E, CAT);
7020 
7021   bool Success = true;
7022   for (EvalInfo::ArrayInitLoopIndex Index(Info); Index != Elements; ++Index) {
7023     if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
7024                          Info, Subobject, E->getSubExpr()) ||
7025         !HandleLValueArrayAdjustment(Info, E, Subobject,
7026                                      CAT->getElementType(), 1)) {
7027       if (!Info.noteFailure())
7028         return false;
7029       Success = false;
7030     }
7031   }
7032 
7033   return Success;
7034 }
7035 
VisitCXXConstructExpr(const CXXConstructExpr * E)7036 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
7037   return VisitCXXConstructExpr(E, This, &Result, E->getType());
7038 }
7039 
VisitCXXConstructExpr(const CXXConstructExpr * E,const LValue & Subobject,APValue * Value,QualType Type)7040 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
7041                                                const LValue &Subobject,
7042                                                APValue *Value,
7043                                                QualType Type) {
7044   bool HadZeroInit = !Value->isUninit();
7045 
7046   if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) {
7047     unsigned N = CAT->getSize().getZExtValue();
7048 
7049     // Preserve the array filler if we had prior zero-initialization.
7050     APValue Filler =
7051       HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
7052                                              : APValue();
7053 
7054     *Value = APValue(APValue::UninitArray(), N, N);
7055 
7056     if (HadZeroInit)
7057       for (unsigned I = 0; I != N; ++I)
7058         Value->getArrayInitializedElt(I) = Filler;
7059 
7060     // Initialize the elements.
7061     LValue ArrayElt = Subobject;
7062     ArrayElt.addArray(Info, E, CAT);
7063     for (unsigned I = 0; I != N; ++I)
7064       if (!VisitCXXConstructExpr(E, ArrayElt, &Value->getArrayInitializedElt(I),
7065                                  CAT->getElementType()) ||
7066           !HandleLValueArrayAdjustment(Info, E, ArrayElt,
7067                                        CAT->getElementType(), 1))
7068         return false;
7069 
7070     return true;
7071   }
7072 
7073   if (!Type->isRecordType())
7074     return Error(E);
7075 
7076   return RecordExprEvaluator(Info, Subobject, *Value)
7077              .VisitCXXConstructExpr(E, Type);
7078 }
7079 
7080 //===----------------------------------------------------------------------===//
7081 // Integer Evaluation
7082 //
7083 // As a GNU extension, we support casting pointers to sufficiently-wide integer
7084 // types and back in constant folding. Integer values are thus represented
7085 // either as an integer-valued APValue, or as an lvalue-valued APValue.
7086 //===----------------------------------------------------------------------===//
7087 
7088 namespace {
7089 class IntExprEvaluator
7090         : public ExprEvaluatorBase<IntExprEvaluator> {
7091   APValue &Result;
7092 public:
IntExprEvaluator(EvalInfo & info,APValue & result)7093   IntExprEvaluator(EvalInfo &info, APValue &result)
7094       : ExprEvaluatorBaseTy(info), Result(result) {}
7095 
Success(const llvm::APSInt & SI,const Expr * E,APValue & Result)7096   bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
7097     assert(E->getType()->isIntegralOrEnumerationType() &&
7098            "Invalid evaluation result.");
7099     assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
7100            "Invalid evaluation result.");
7101     assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
7102            "Invalid evaluation result.");
7103     Result = APValue(SI);
7104     return true;
7105   }
Success(const llvm::APSInt & SI,const Expr * E)7106   bool Success(const llvm::APSInt &SI, const Expr *E) {
7107     return Success(SI, E, Result);
7108   }
7109 
Success(const llvm::APInt & I,const Expr * E,APValue & Result)7110   bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
7111     assert(E->getType()->isIntegralOrEnumerationType() &&
7112            "Invalid evaluation result.");
7113     assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
7114            "Invalid evaluation result.");
7115     Result = APValue(APSInt(I));
7116     Result.getInt().setIsUnsigned(
7117                             E->getType()->isUnsignedIntegerOrEnumerationType());
7118     return true;
7119   }
Success(const llvm::APInt & I,const Expr * E)7120   bool Success(const llvm::APInt &I, const Expr *E) {
7121     return Success(I, E, Result);
7122   }
7123 
Success(uint64_t Value,const Expr * E,APValue & Result)7124   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
7125     assert(E->getType()->isIntegralOrEnumerationType() &&
7126            "Invalid evaluation result.");
7127     Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
7128     return true;
7129   }
Success(uint64_t Value,const Expr * E)7130   bool Success(uint64_t Value, const Expr *E) {
7131     return Success(Value, E, Result);
7132   }
7133 
Success(CharUnits Size,const Expr * E)7134   bool Success(CharUnits Size, const Expr *E) {
7135     return Success(Size.getQuantity(), E);
7136   }
7137 
Success(const APValue & V,const Expr * E)7138   bool Success(const APValue &V, const Expr *E) {
7139     if (V.isLValue() || V.isAddrLabelDiff()) {
7140       Result = V;
7141       return true;
7142     }
7143     return Success(V.getInt(), E);
7144   }
7145 
ZeroInitialization(const Expr * E)7146   bool ZeroInitialization(const Expr *E) { return Success(0, E); }
7147 
7148   //===--------------------------------------------------------------------===//
7149   //                            Visitor Methods
7150   //===--------------------------------------------------------------------===//
7151 
VisitIntegerLiteral(const IntegerLiteral * E)7152   bool VisitIntegerLiteral(const IntegerLiteral *E) {
7153     return Success(E->getValue(), E);
7154   }
VisitCharacterLiteral(const CharacterLiteral * E)7155   bool VisitCharacterLiteral(const CharacterLiteral *E) {
7156     return Success(E->getValue(), E);
7157   }
7158 
7159   bool CheckReferencedDecl(const Expr *E, const Decl *D);
VisitDeclRefExpr(const DeclRefExpr * E)7160   bool VisitDeclRefExpr(const DeclRefExpr *E) {
7161     if (CheckReferencedDecl(E, E->getDecl()))
7162       return true;
7163 
7164     return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
7165   }
VisitMemberExpr(const MemberExpr * E)7166   bool VisitMemberExpr(const MemberExpr *E) {
7167     if (CheckReferencedDecl(E, E->getMemberDecl())) {
7168       VisitIgnoredBaseExpression(E->getBase());
7169       return true;
7170     }
7171 
7172     return ExprEvaluatorBaseTy::VisitMemberExpr(E);
7173   }
7174 
7175   bool VisitCallExpr(const CallExpr *E);
7176   bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
7177   bool VisitBinaryOperator(const BinaryOperator *E);
7178   bool VisitOffsetOfExpr(const OffsetOfExpr *E);
7179   bool VisitUnaryOperator(const UnaryOperator *E);
7180 
7181   bool VisitCastExpr(const CastExpr* E);
7182   bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
7183 
VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr * E)7184   bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
7185     return Success(E->getValue(), E);
7186   }
7187 
VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr * E)7188   bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
7189     return Success(E->getValue(), E);
7190   }
7191 
VisitArrayInitIndexExpr(const ArrayInitIndexExpr * E)7192   bool VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
7193     if (Info.ArrayInitIndex == uint64_t(-1)) {
7194       // We were asked to evaluate this subexpression independent of the
7195       // enclosing ArrayInitLoopExpr. We can't do that.
7196       Info.FFDiag(E);
7197       return false;
7198     }
7199     return Success(Info.ArrayInitIndex, E);
7200   }
7201 
7202   // Note, GNU defines __null as an integer, not a pointer.
VisitGNUNullExpr(const GNUNullExpr * E)7203   bool VisitGNUNullExpr(const GNUNullExpr *E) {
7204     return ZeroInitialization(E);
7205   }
7206 
VisitTypeTraitExpr(const TypeTraitExpr * E)7207   bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
7208     return Success(E->getValue(), E);
7209   }
7210 
VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr * E)7211   bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
7212     return Success(E->getValue(), E);
7213   }
7214 
VisitExpressionTraitExpr(const ExpressionTraitExpr * E)7215   bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
7216     return Success(E->getValue(), E);
7217   }
7218 
7219   bool VisitUnaryReal(const UnaryOperator *E);
7220   bool VisitUnaryImag(const UnaryOperator *E);
7221 
7222   bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
7223   bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
7224 
7225   // FIXME: Missing: array subscript of vector, member of vector
7226 };
7227 
7228 class FixedPointExprEvaluator
7229     : public ExprEvaluatorBase<FixedPointExprEvaluator> {
7230   APValue &Result;
7231 
7232  public:
FixedPointExprEvaluator(EvalInfo & info,APValue & result)7233   FixedPointExprEvaluator(EvalInfo &info, APValue &result)
7234       : ExprEvaluatorBaseTy(info), Result(result) {}
7235 
Success(const llvm::APSInt & SI,const Expr * E,APValue & Result)7236   bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
7237     assert(E->getType()->isFixedPointType() && "Invalid evaluation result.");
7238     assert(SI.isSigned() == E->getType()->isSignedFixedPointType() &&
7239            "Invalid evaluation result.");
7240     assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
7241            "Invalid evaluation result.");
7242     Result = APValue(SI);
7243     return true;
7244   }
Success(const llvm::APSInt & SI,const Expr * E)7245   bool Success(const llvm::APSInt &SI, const Expr *E) {
7246     return Success(SI, E, Result);
7247   }
7248 
Success(const llvm::APInt & I,const Expr * E,APValue & Result)7249   bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
7250     assert(E->getType()->isFixedPointType() && "Invalid evaluation result.");
7251     assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
7252            "Invalid evaluation result.");
7253     Result = APValue(APSInt(I));
7254     Result.getInt().setIsUnsigned(E->getType()->isUnsignedFixedPointType());
7255     return true;
7256   }
Success(const llvm::APInt & I,const Expr * E)7257   bool Success(const llvm::APInt &I, const Expr *E) {
7258     return Success(I, E, Result);
7259   }
7260 
Success(uint64_t Value,const Expr * E,APValue & Result)7261   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
7262     assert(E->getType()->isFixedPointType() && "Invalid evaluation result.");
7263     Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
7264     return true;
7265   }
Success(uint64_t Value,const Expr * E)7266   bool Success(uint64_t Value, const Expr *E) {
7267     return Success(Value, E, Result);
7268   }
7269 
Success(CharUnits Size,const Expr * E)7270   bool Success(CharUnits Size, const Expr *E) {
7271     return Success(Size.getQuantity(), E);
7272   }
7273 
Success(const APValue & V,const Expr * E)7274   bool Success(const APValue &V, const Expr *E) {
7275     if (V.isLValue() || V.isAddrLabelDiff()) {
7276       Result = V;
7277       return true;
7278     }
7279     return Success(V.getInt(), E);
7280   }
7281 
ZeroInitialization(const Expr * E)7282   bool ZeroInitialization(const Expr *E) { return Success(0, E); }
7283 
7284   //===--------------------------------------------------------------------===//
7285   //                            Visitor Methods
7286   //===--------------------------------------------------------------------===//
7287 
VisitFixedPointLiteral(const FixedPointLiteral * E)7288   bool VisitFixedPointLiteral(const FixedPointLiteral *E) {
7289     return Success(E->getValue(), E);
7290   }
7291 
7292   bool VisitUnaryOperator(const UnaryOperator *E);
7293 };
7294 } // end anonymous namespace
7295 
7296 /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
7297 /// produce either the integer value or a pointer.
7298 ///
7299 /// GCC has a heinous extension which folds casts between pointer types and
7300 /// pointer-sized integral types. We support this by allowing the evaluation of
7301 /// an integer rvalue to produce a pointer (represented as an lvalue) instead.
7302 /// Some simple arithmetic on such values is supported (they are treated much
7303 /// like char*).
EvaluateIntegerOrLValue(const Expr * E,APValue & Result,EvalInfo & Info)7304 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
7305                                     EvalInfo &Info) {
7306   assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType());
7307   return IntExprEvaluator(Info, Result).Visit(E);
7308 }
7309 
EvaluateInteger(const Expr * E,APSInt & Result,EvalInfo & Info)7310 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
7311   APValue Val;
7312   if (!EvaluateIntegerOrLValue(E, Val, Info))
7313     return false;
7314   if (!Val.isInt()) {
7315     // FIXME: It would be better to produce the diagnostic for casting
7316     //        a pointer to an integer.
7317     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
7318     return false;
7319   }
7320   Result = Val.getInt();
7321   return true;
7322 }
7323 
7324 /// Check whether the given declaration can be directly converted to an integral
7325 /// rvalue. If not, no diagnostic is produced; there are other things we can
7326 /// try.
CheckReferencedDecl(const Expr * E,const Decl * D)7327 bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
7328   // Enums are integer constant exprs.
7329   if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
7330     // Check for signedness/width mismatches between E type and ECD value.
7331     bool SameSign = (ECD->getInitVal().isSigned()
7332                      == E->getType()->isSignedIntegerOrEnumerationType());
7333     bool SameWidth = (ECD->getInitVal().getBitWidth()
7334                       == Info.Ctx.getIntWidth(E->getType()));
7335     if (SameSign && SameWidth)
7336       return Success(ECD->getInitVal(), E);
7337     else {
7338       // Get rid of mismatch (otherwise Success assertions will fail)
7339       // by computing a new value matching the type of E.
7340       llvm::APSInt Val = ECD->getInitVal();
7341       if (!SameSign)
7342         Val.setIsSigned(!ECD->getInitVal().isSigned());
7343       if (!SameWidth)
7344         Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
7345       return Success(Val, E);
7346     }
7347   }
7348   return false;
7349 }
7350 
7351 /// Values returned by __builtin_classify_type, chosen to match the values
7352 /// produced by GCC's builtin.
7353 enum class GCCTypeClass {
7354   None = -1,
7355   Void = 0,
7356   Integer = 1,
7357   // GCC reserves 2 for character types, but instead classifies them as
7358   // integers.
7359   Enum = 3,
7360   Bool = 4,
7361   Pointer = 5,
7362   // GCC reserves 6 for references, but appears to never use it (because
7363   // expressions never have reference type, presumably).
7364   PointerToDataMember = 7,
7365   RealFloat = 8,
7366   Complex = 9,
7367   // GCC reserves 10 for functions, but does not use it since GCC version 6 due
7368   // to decay to pointer. (Prior to version 6 it was only used in C++ mode).
7369   // GCC claims to reserve 11 for pointers to member functions, but *actually*
7370   // uses 12 for that purpose, same as for a class or struct. Maybe it
7371   // internally implements a pointer to member as a struct?  Who knows.
7372   PointerToMemberFunction = 12, // Not a bug, see above.
7373   ClassOrStruct = 12,
7374   Union = 13,
7375   // GCC reserves 14 for arrays, but does not use it since GCC version 6 due to
7376   // decay to pointer. (Prior to version 6 it was only used in C++ mode).
7377   // GCC reserves 15 for strings, but actually uses 5 (pointer) for string
7378   // literals.
7379 };
7380 
7381 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
7382 /// as GCC.
7383 static GCCTypeClass
EvaluateBuiltinClassifyType(QualType T,const LangOptions & LangOpts)7384 EvaluateBuiltinClassifyType(QualType T, const LangOptions &LangOpts) {
7385   assert(!T->isDependentType() && "unexpected dependent type");
7386 
7387   QualType CanTy = T.getCanonicalType();
7388   const BuiltinType *BT = dyn_cast<BuiltinType>(CanTy);
7389 
7390   switch (CanTy->getTypeClass()) {
7391 #define TYPE(ID, BASE)
7392 #define DEPENDENT_TYPE(ID, BASE) case Type::ID:
7393 #define NON_CANONICAL_TYPE(ID, BASE) case Type::ID:
7394 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(ID, BASE) case Type::ID:
7395 #include "clang/AST/TypeNodes.def"
7396   case Type::Auto:
7397   case Type::DeducedTemplateSpecialization:
7398       llvm_unreachable("unexpected non-canonical or dependent type");
7399 
7400   case Type::Builtin:
7401     switch (BT->getKind()) {
7402 #define BUILTIN_TYPE(ID, SINGLETON_ID)
7403 #define SIGNED_TYPE(ID, SINGLETON_ID) \
7404     case BuiltinType::ID: return GCCTypeClass::Integer;
7405 #define FLOATING_TYPE(ID, SINGLETON_ID) \
7406     case BuiltinType::ID: return GCCTypeClass::RealFloat;
7407 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID) \
7408     case BuiltinType::ID: break;
7409 #include "clang/AST/BuiltinTypes.def"
7410     case BuiltinType::Void:
7411       return GCCTypeClass::Void;
7412 
7413     case BuiltinType::Bool:
7414       return GCCTypeClass::Bool;
7415 
7416     case BuiltinType::Char_U:
7417     case BuiltinType::UChar:
7418     case BuiltinType::WChar_U:
7419     case BuiltinType::Char8:
7420     case BuiltinType::Char16:
7421     case BuiltinType::Char32:
7422     case BuiltinType::UShort:
7423     case BuiltinType::UInt:
7424     case BuiltinType::ULong:
7425     case BuiltinType::ULongLong:
7426     case BuiltinType::UInt128:
7427       return GCCTypeClass::Integer;
7428 
7429     case BuiltinType::UShortAccum:
7430     case BuiltinType::UAccum:
7431     case BuiltinType::ULongAccum:
7432     case BuiltinType::UShortFract:
7433     case BuiltinType::UFract:
7434     case BuiltinType::ULongFract:
7435     case BuiltinType::SatUShortAccum:
7436     case BuiltinType::SatUAccum:
7437     case BuiltinType::SatULongAccum:
7438     case BuiltinType::SatUShortFract:
7439     case BuiltinType::SatUFract:
7440     case BuiltinType::SatULongFract:
7441       return GCCTypeClass::None;
7442 
7443     case BuiltinType::NullPtr:
7444 
7445     case BuiltinType::ObjCId:
7446     case BuiltinType::ObjCClass:
7447     case BuiltinType::ObjCSel:
7448 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
7449     case BuiltinType::Id:
7450 #include "clang/Basic/OpenCLImageTypes.def"
7451     case BuiltinType::OCLSampler:
7452     case BuiltinType::OCLEvent:
7453     case BuiltinType::OCLClkEvent:
7454     case BuiltinType::OCLQueue:
7455     case BuiltinType::OCLReserveID:
7456       return GCCTypeClass::None;
7457 
7458     case BuiltinType::Dependent:
7459       llvm_unreachable("unexpected dependent type");
7460     };
7461     llvm_unreachable("unexpected placeholder type");
7462 
7463   case Type::Enum:
7464     return LangOpts.CPlusPlus ? GCCTypeClass::Enum : GCCTypeClass::Integer;
7465 
7466   case Type::Pointer:
7467   case Type::ConstantArray:
7468   case Type::VariableArray:
7469   case Type::IncompleteArray:
7470   case Type::FunctionNoProto:
7471   case Type::FunctionProto:
7472     return GCCTypeClass::Pointer;
7473 
7474   case Type::MemberPointer:
7475     return CanTy->isMemberDataPointerType()
7476                ? GCCTypeClass::PointerToDataMember
7477                : GCCTypeClass::PointerToMemberFunction;
7478 
7479   case Type::Complex:
7480     return GCCTypeClass::Complex;
7481 
7482   case Type::Record:
7483     return CanTy->isUnionType() ? GCCTypeClass::Union
7484                                 : GCCTypeClass::ClassOrStruct;
7485 
7486   case Type::Atomic:
7487     // GCC classifies _Atomic T the same as T.
7488     return EvaluateBuiltinClassifyType(
7489         CanTy->castAs<AtomicType>()->getValueType(), LangOpts);
7490 
7491   case Type::BlockPointer:
7492   case Type::Vector:
7493   case Type::ExtVector:
7494   case Type::ObjCObject:
7495   case Type::ObjCInterface:
7496   case Type::ObjCObjectPointer:
7497   case Type::Pipe:
7498     // GCC classifies vectors as None. We follow its lead and classify all
7499     // other types that don't fit into the regular classification the same way.
7500     return GCCTypeClass::None;
7501 
7502   case Type::LValueReference:
7503   case Type::RValueReference:
7504     llvm_unreachable("invalid type for expression");
7505   }
7506 
7507   llvm_unreachable("unexpected type class");
7508 }
7509 
7510 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
7511 /// as GCC.
7512 static GCCTypeClass
EvaluateBuiltinClassifyType(const CallExpr * E,const LangOptions & LangOpts)7513 EvaluateBuiltinClassifyType(const CallExpr *E, const LangOptions &LangOpts) {
7514   // If no argument was supplied, default to None. This isn't
7515   // ideal, however it is what gcc does.
7516   if (E->getNumArgs() == 0)
7517     return GCCTypeClass::None;
7518 
7519   // FIXME: Bizarrely, GCC treats a call with more than one argument as not
7520   // being an ICE, but still folds it to a constant using the type of the first
7521   // argument.
7522   return EvaluateBuiltinClassifyType(E->getArg(0)->getType(), LangOpts);
7523 }
7524 
7525 /// EvaluateBuiltinConstantPForLValue - Determine the result of
7526 /// __builtin_constant_p when applied to the given lvalue.
7527 ///
7528 /// An lvalue is only "constant" if it is a pointer or reference to the first
7529 /// character of a string literal.
7530 template<typename LValue>
EvaluateBuiltinConstantPForLValue(const LValue & LV)7531 static bool EvaluateBuiltinConstantPForLValue(const LValue &LV) {
7532   const Expr *E = LV.getLValueBase().template dyn_cast<const Expr*>();
7533   return E && isa<StringLiteral>(E) && LV.getLValueOffset().isZero();
7534 }
7535 
7536 /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
7537 /// GCC as we can manage.
EvaluateBuiltinConstantP(ASTContext & Ctx,const Expr * Arg)7538 static bool EvaluateBuiltinConstantP(ASTContext &Ctx, const Expr *Arg) {
7539   QualType ArgType = Arg->getType();
7540 
7541   // __builtin_constant_p always has one operand. The rules which gcc follows
7542   // are not precisely documented, but are as follows:
7543   //
7544   //  - If the operand is of integral, floating, complex or enumeration type,
7545   //    and can be folded to a known value of that type, it returns 1.
7546   //  - If the operand and can be folded to a pointer to the first character
7547   //    of a string literal (or such a pointer cast to an integral type), it
7548   //    returns 1.
7549   //
7550   // Otherwise, it returns 0.
7551   //
7552   // FIXME: GCC also intends to return 1 for literals of aggregate types, but
7553   // its support for this does not currently work.
7554   if (ArgType->isIntegralOrEnumerationType()) {
7555     Expr::EvalResult Result;
7556     if (!Arg->EvaluateAsRValue(Result, Ctx) || Result.HasSideEffects)
7557       return false;
7558 
7559     APValue &V = Result.Val;
7560     if (V.getKind() == APValue::Int)
7561       return true;
7562     if (V.getKind() == APValue::LValue)
7563       return EvaluateBuiltinConstantPForLValue(V);
7564   } else if (ArgType->isFloatingType() || ArgType->isAnyComplexType()) {
7565     return Arg->isEvaluatable(Ctx);
7566   } else if (ArgType->isPointerType() || Arg->isGLValue()) {
7567     LValue LV;
7568     Expr::EvalStatus Status;
7569     EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
7570     if ((Arg->isGLValue() ? EvaluateLValue(Arg, LV, Info)
7571                           : EvaluatePointer(Arg, LV, Info)) &&
7572         !Status.HasSideEffects)
7573       return EvaluateBuiltinConstantPForLValue(LV);
7574   }
7575 
7576   // Anything else isn't considered to be sufficiently constant.
7577   return false;
7578 }
7579 
7580 /// Retrieves the "underlying object type" of the given expression,
7581 /// as used by __builtin_object_size.
getObjectType(APValue::LValueBase B)7582 static QualType getObjectType(APValue::LValueBase B) {
7583   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
7584     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
7585       return VD->getType();
7586   } else if (const Expr *E = B.get<const Expr*>()) {
7587     if (isa<CompoundLiteralExpr>(E))
7588       return E->getType();
7589   }
7590 
7591   return QualType();
7592 }
7593 
7594 /// A more selective version of E->IgnoreParenCasts for
7595 /// tryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only
7596 /// to change the type of E.
7597 /// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo`
7598 ///
7599 /// Always returns an RValue with a pointer representation.
ignorePointerCastsAndParens(const Expr * E)7600 static const Expr *ignorePointerCastsAndParens(const Expr *E) {
7601   assert(E->isRValue() && E->getType()->hasPointerRepresentation());
7602 
7603   auto *NoParens = E->IgnoreParens();
7604   auto *Cast = dyn_cast<CastExpr>(NoParens);
7605   if (Cast == nullptr)
7606     return NoParens;
7607 
7608   // We only conservatively allow a few kinds of casts, because this code is
7609   // inherently a simple solution that seeks to support the common case.
7610   auto CastKind = Cast->getCastKind();
7611   if (CastKind != CK_NoOp && CastKind != CK_BitCast &&
7612       CastKind != CK_AddressSpaceConversion)
7613     return NoParens;
7614 
7615   auto *SubExpr = Cast->getSubExpr();
7616   if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isRValue())
7617     return NoParens;
7618   return ignorePointerCastsAndParens(SubExpr);
7619 }
7620 
7621 /// Checks to see if the given LValue's Designator is at the end of the LValue's
7622 /// record layout. e.g.
7623 ///   struct { struct { int a, b; } fst, snd; } obj;
7624 ///   obj.fst   // no
7625 ///   obj.snd   // yes
7626 ///   obj.fst.a // no
7627 ///   obj.fst.b // no
7628 ///   obj.snd.a // no
7629 ///   obj.snd.b // yes
7630 ///
7631 /// Please note: this function is specialized for how __builtin_object_size
7632 /// views "objects".
7633 ///
7634 /// If this encounters an invalid RecordDecl or otherwise cannot determine the
7635 /// correct result, it will always return true.
isDesignatorAtObjectEnd(const ASTContext & Ctx,const LValue & LVal)7636 static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) {
7637   assert(!LVal.Designator.Invalid);
7638 
7639   auto IsLastOrInvalidFieldDecl = [&Ctx](const FieldDecl *FD, bool &Invalid) {
7640     const RecordDecl *Parent = FD->getParent();
7641     Invalid = Parent->isInvalidDecl();
7642     if (Invalid || Parent->isUnion())
7643       return true;
7644     const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(Parent);
7645     return FD->getFieldIndex() + 1 == Layout.getFieldCount();
7646   };
7647 
7648   auto &Base = LVal.getLValueBase();
7649   if (auto *ME = dyn_cast_or_null<MemberExpr>(Base.dyn_cast<const Expr *>())) {
7650     if (auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
7651       bool Invalid;
7652       if (!IsLastOrInvalidFieldDecl(FD, Invalid))
7653         return Invalid;
7654     } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(ME->getMemberDecl())) {
7655       for (auto *FD : IFD->chain()) {
7656         bool Invalid;
7657         if (!IsLastOrInvalidFieldDecl(cast<FieldDecl>(FD), Invalid))
7658           return Invalid;
7659       }
7660     }
7661   }
7662 
7663   unsigned I = 0;
7664   QualType BaseType = getType(Base);
7665   if (LVal.Designator.FirstEntryIsAnUnsizedArray) {
7666     // If we don't know the array bound, conservatively assume we're looking at
7667     // the final array element.
7668     ++I;
7669     if (BaseType->isIncompleteArrayType())
7670       BaseType = Ctx.getAsArrayType(BaseType)->getElementType();
7671     else
7672       BaseType = BaseType->castAs<PointerType>()->getPointeeType();
7673   }
7674 
7675   for (unsigned E = LVal.Designator.Entries.size(); I != E; ++I) {
7676     const auto &Entry = LVal.Designator.Entries[I];
7677     if (BaseType->isArrayType()) {
7678       // Because __builtin_object_size treats arrays as objects, we can ignore
7679       // the index iff this is the last array in the Designator.
7680       if (I + 1 == E)
7681         return true;
7682       const auto *CAT = cast<ConstantArrayType>(Ctx.getAsArrayType(BaseType));
7683       uint64_t Index = Entry.ArrayIndex;
7684       if (Index + 1 != CAT->getSize())
7685         return false;
7686       BaseType = CAT->getElementType();
7687     } else if (BaseType->isAnyComplexType()) {
7688       const auto *CT = BaseType->castAs<ComplexType>();
7689       uint64_t Index = Entry.ArrayIndex;
7690       if (Index != 1)
7691         return false;
7692       BaseType = CT->getElementType();
7693     } else if (auto *FD = getAsField(Entry)) {
7694       bool Invalid;
7695       if (!IsLastOrInvalidFieldDecl(FD, Invalid))
7696         return Invalid;
7697       BaseType = FD->getType();
7698     } else {
7699       assert(getAsBaseClass(Entry) && "Expecting cast to a base class");
7700       return false;
7701     }
7702   }
7703   return true;
7704 }
7705 
7706 /// Tests to see if the LValue has a user-specified designator (that isn't
7707 /// necessarily valid). Note that this always returns 'true' if the LValue has
7708 /// an unsized array as its first designator entry, because there's currently no
7709 /// way to tell if the user typed *foo or foo[0].
refersToCompleteObject(const LValue & LVal)7710 static bool refersToCompleteObject(const LValue &LVal) {
7711   if (LVal.Designator.Invalid)
7712     return false;
7713 
7714   if (!LVal.Designator.Entries.empty())
7715     return LVal.Designator.isMostDerivedAnUnsizedArray();
7716 
7717   if (!LVal.InvalidBase)
7718     return true;
7719 
7720   // If `E` is a MemberExpr, then the first part of the designator is hiding in
7721   // the LValueBase.
7722   const auto *E = LVal.Base.dyn_cast<const Expr *>();
7723   return !E || !isa<MemberExpr>(E);
7724 }
7725 
7726 /// Attempts to detect a user writing into a piece of memory that's impossible
7727 /// to figure out the size of by just using types.
isUserWritingOffTheEnd(const ASTContext & Ctx,const LValue & LVal)7728 static bool isUserWritingOffTheEnd(const ASTContext &Ctx, const LValue &LVal) {
7729   const SubobjectDesignator &Designator = LVal.Designator;
7730   // Notes:
7731   // - Users can only write off of the end when we have an invalid base. Invalid
7732   //   bases imply we don't know where the memory came from.
7733   // - We used to be a bit more aggressive here; we'd only be conservative if
7734   //   the array at the end was flexible, or if it had 0 or 1 elements. This
7735   //   broke some common standard library extensions (PR30346), but was
7736   //   otherwise seemingly fine. It may be useful to reintroduce this behavior
7737   //   with some sort of whitelist. OTOH, it seems that GCC is always
7738   //   conservative with the last element in structs (if it's an array), so our
7739   //   current behavior is more compatible than a whitelisting approach would
7740   //   be.
7741   return LVal.InvalidBase &&
7742          Designator.Entries.size() == Designator.MostDerivedPathLength &&
7743          Designator.MostDerivedIsArrayElement &&
7744          isDesignatorAtObjectEnd(Ctx, LVal);
7745 }
7746 
7747 /// Converts the given APInt to CharUnits, assuming the APInt is unsigned.
7748 /// Fails if the conversion would cause loss of precision.
convertUnsignedAPIntToCharUnits(const llvm::APInt & Int,CharUnits & Result)7749 static bool convertUnsignedAPIntToCharUnits(const llvm::APInt &Int,
7750                                             CharUnits &Result) {
7751   auto CharUnitsMax = std::numeric_limits<CharUnits::QuantityType>::max();
7752   if (Int.ugt(CharUnitsMax))
7753     return false;
7754   Result = CharUnits::fromQuantity(Int.getZExtValue());
7755   return true;
7756 }
7757 
7758 /// Helper for tryEvaluateBuiltinObjectSize -- Given an LValue, this will
7759 /// determine how many bytes exist from the beginning of the object to either
7760 /// the end of the current subobject, or the end of the object itself, depending
7761 /// on what the LValue looks like + the value of Type.
7762 ///
7763 /// If this returns false, the value of Result is undefined.
determineEndOffset(EvalInfo & Info,SourceLocation ExprLoc,unsigned Type,const LValue & LVal,CharUnits & EndOffset)7764 static bool determineEndOffset(EvalInfo &Info, SourceLocation ExprLoc,
7765                                unsigned Type, const LValue &LVal,
7766                                CharUnits &EndOffset) {
7767   bool DetermineForCompleteObject = refersToCompleteObject(LVal);
7768 
7769   auto CheckedHandleSizeof = [&](QualType Ty, CharUnits &Result) {
7770     if (Ty.isNull() || Ty->isIncompleteType() || Ty->isFunctionType())
7771       return false;
7772     return HandleSizeof(Info, ExprLoc, Ty, Result);
7773   };
7774 
7775   // We want to evaluate the size of the entire object. This is a valid fallback
7776   // for when Type=1 and the designator is invalid, because we're asked for an
7777   // upper-bound.
7778   if (!(Type & 1) || LVal.Designator.Invalid || DetermineForCompleteObject) {
7779     // Type=3 wants a lower bound, so we can't fall back to this.
7780     if (Type == 3 && !DetermineForCompleteObject)
7781       return false;
7782 
7783     llvm::APInt APEndOffset;
7784     if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
7785         getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
7786       return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
7787 
7788     if (LVal.InvalidBase)
7789       return false;
7790 
7791     QualType BaseTy = getObjectType(LVal.getLValueBase());
7792     return CheckedHandleSizeof(BaseTy, EndOffset);
7793   }
7794 
7795   // We want to evaluate the size of a subobject.
7796   const SubobjectDesignator &Designator = LVal.Designator;
7797 
7798   // The following is a moderately common idiom in C:
7799   //
7800   // struct Foo { int a; char c[1]; };
7801   // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar));
7802   // strcpy(&F->c[0], Bar);
7803   //
7804   // In order to not break too much legacy code, we need to support it.
7805   if (isUserWritingOffTheEnd(Info.Ctx, LVal)) {
7806     // If we can resolve this to an alloc_size call, we can hand that back,
7807     // because we know for certain how many bytes there are to write to.
7808     llvm::APInt APEndOffset;
7809     if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
7810         getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
7811       return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
7812 
7813     // If we cannot determine the size of the initial allocation, then we can't
7814     // given an accurate upper-bound. However, we are still able to give
7815     // conservative lower-bounds for Type=3.
7816     if (Type == 1)
7817       return false;
7818   }
7819 
7820   CharUnits BytesPerElem;
7821   if (!CheckedHandleSizeof(Designator.MostDerivedType, BytesPerElem))
7822     return false;
7823 
7824   // According to the GCC documentation, we want the size of the subobject
7825   // denoted by the pointer. But that's not quite right -- what we actually
7826   // want is the size of the immediately-enclosing array, if there is one.
7827   int64_t ElemsRemaining;
7828   if (Designator.MostDerivedIsArrayElement &&
7829       Designator.Entries.size() == Designator.MostDerivedPathLength) {
7830     uint64_t ArraySize = Designator.getMostDerivedArraySize();
7831     uint64_t ArrayIndex = Designator.Entries.back().ArrayIndex;
7832     ElemsRemaining = ArraySize <= ArrayIndex ? 0 : ArraySize - ArrayIndex;
7833   } else {
7834     ElemsRemaining = Designator.isOnePastTheEnd() ? 0 : 1;
7835   }
7836 
7837   EndOffset = LVal.getLValueOffset() + BytesPerElem * ElemsRemaining;
7838   return true;
7839 }
7840 
7841 /// Tries to evaluate the __builtin_object_size for @p E. If successful,
7842 /// returns true and stores the result in @p Size.
7843 ///
7844 /// If @p WasError is non-null, this will report whether the failure to evaluate
7845 /// is to be treated as an Error in IntExprEvaluator.
tryEvaluateBuiltinObjectSize(const Expr * E,unsigned Type,EvalInfo & Info,uint64_t & Size)7846 static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type,
7847                                          EvalInfo &Info, uint64_t &Size) {
7848   // Determine the denoted object.
7849   LValue LVal;
7850   {
7851     // The operand of __builtin_object_size is never evaluated for side-effects.
7852     // If there are any, but we can determine the pointed-to object anyway, then
7853     // ignore the side-effects.
7854     SpeculativeEvaluationRAII SpeculativeEval(Info);
7855     FoldOffsetRAII Fold(Info);
7856 
7857     if (E->isGLValue()) {
7858       // It's possible for us to be given GLValues if we're called via
7859       // Expr::tryEvaluateObjectSize.
7860       APValue RVal;
7861       if (!EvaluateAsRValue(Info, E, RVal))
7862         return false;
7863       LVal.setFrom(Info.Ctx, RVal);
7864     } else if (!EvaluatePointer(ignorePointerCastsAndParens(E), LVal, Info,
7865                                 /*InvalidBaseOK=*/true))
7866       return false;
7867   }
7868 
7869   // If we point to before the start of the object, there are no accessible
7870   // bytes.
7871   if (LVal.getLValueOffset().isNegative()) {
7872     Size = 0;
7873     return true;
7874   }
7875 
7876   CharUnits EndOffset;
7877   if (!determineEndOffset(Info, E->getExprLoc(), Type, LVal, EndOffset))
7878     return false;
7879 
7880   // If we've fallen outside of the end offset, just pretend there's nothing to
7881   // write to/read from.
7882   if (EndOffset <= LVal.getLValueOffset())
7883     Size = 0;
7884   else
7885     Size = (EndOffset - LVal.getLValueOffset()).getQuantity();
7886   return true;
7887 }
7888 
VisitCallExpr(const CallExpr * E)7889 bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
7890   if (unsigned BuiltinOp = E->getBuiltinCallee())
7891     return VisitBuiltinCallExpr(E, BuiltinOp);
7892 
7893   return ExprEvaluatorBaseTy::VisitCallExpr(E);
7894 }
7895 
VisitBuiltinCallExpr(const CallExpr * E,unsigned BuiltinOp)7896 bool IntExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
7897                                             unsigned BuiltinOp) {
7898   switch (unsigned BuiltinOp = E->getBuiltinCallee()) {
7899   default:
7900     return ExprEvaluatorBaseTy::VisitCallExpr(E);
7901 
7902   case Builtin::BI__builtin_object_size: {
7903     // The type was checked when we built the expression.
7904     unsigned Type =
7905         E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
7906     assert(Type <= 3 && "unexpected type");
7907 
7908     uint64_t Size;
7909     if (tryEvaluateBuiltinObjectSize(E->getArg(0), Type, Info, Size))
7910       return Success(Size, E);
7911 
7912     if (E->getArg(0)->HasSideEffects(Info.Ctx))
7913       return Success((Type & 2) ? 0 : -1, E);
7914 
7915     // Expression had no side effects, but we couldn't statically determine the
7916     // size of the referenced object.
7917     switch (Info.EvalMode) {
7918     case EvalInfo::EM_ConstantExpression:
7919     case EvalInfo::EM_PotentialConstantExpression:
7920     case EvalInfo::EM_ConstantFold:
7921     case EvalInfo::EM_EvaluateForOverflow:
7922     case EvalInfo::EM_IgnoreSideEffects:
7923     case EvalInfo::EM_OffsetFold:
7924       // Leave it to IR generation.
7925       return Error(E);
7926     case EvalInfo::EM_ConstantExpressionUnevaluated:
7927     case EvalInfo::EM_PotentialConstantExpressionUnevaluated:
7928       // Reduce it to a constant now.
7929       return Success((Type & 2) ? 0 : -1, E);
7930     }
7931 
7932     llvm_unreachable("unexpected EvalMode");
7933   }
7934 
7935   case Builtin::BI__builtin_bswap16:
7936   case Builtin::BI__builtin_bswap32:
7937   case Builtin::BI__builtin_bswap64: {
7938     APSInt Val;
7939     if (!EvaluateInteger(E->getArg(0), Val, Info))
7940       return false;
7941 
7942     return Success(Val.byteSwap(), E);
7943   }
7944 
7945   case Builtin::BI__builtin_classify_type:
7946     return Success((int)EvaluateBuiltinClassifyType(E, Info.getLangOpts()), E);
7947 
7948   // FIXME: BI__builtin_clrsb
7949   // FIXME: BI__builtin_clrsbl
7950   // FIXME: BI__builtin_clrsbll
7951 
7952   case Builtin::BI__builtin_clz:
7953   case Builtin::BI__builtin_clzl:
7954   case Builtin::BI__builtin_clzll:
7955   case Builtin::BI__builtin_clzs: {
7956     APSInt Val;
7957     if (!EvaluateInteger(E->getArg(0), Val, Info))
7958       return false;
7959     if (!Val)
7960       return Error(E);
7961 
7962     return Success(Val.countLeadingZeros(), E);
7963   }
7964 
7965   case Builtin::BI__builtin_constant_p:
7966     return Success(EvaluateBuiltinConstantP(Info.Ctx, E->getArg(0)), E);
7967 
7968   case Builtin::BI__builtin_ctz:
7969   case Builtin::BI__builtin_ctzl:
7970   case Builtin::BI__builtin_ctzll:
7971   case Builtin::BI__builtin_ctzs: {
7972     APSInt Val;
7973     if (!EvaluateInteger(E->getArg(0), Val, Info))
7974       return false;
7975     if (!Val)
7976       return Error(E);
7977 
7978     return Success(Val.countTrailingZeros(), E);
7979   }
7980 
7981   case Builtin::BI__builtin_eh_return_data_regno: {
7982     int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
7983     Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
7984     return Success(Operand, E);
7985   }
7986 
7987   case Builtin::BI__builtin_expect:
7988     return Visit(E->getArg(0));
7989 
7990   case Builtin::BI__builtin_ffs:
7991   case Builtin::BI__builtin_ffsl:
7992   case Builtin::BI__builtin_ffsll: {
7993     APSInt Val;
7994     if (!EvaluateInteger(E->getArg(0), Val, Info))
7995       return false;
7996 
7997     unsigned N = Val.countTrailingZeros();
7998     return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
7999   }
8000 
8001   case Builtin::BI__builtin_fpclassify: {
8002     APFloat Val(0.0);
8003     if (!EvaluateFloat(E->getArg(5), Val, Info))
8004       return false;
8005     unsigned Arg;
8006     switch (Val.getCategory()) {
8007     case APFloat::fcNaN: Arg = 0; break;
8008     case APFloat::fcInfinity: Arg = 1; break;
8009     case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
8010     case APFloat::fcZero: Arg = 4; break;
8011     }
8012     return Visit(E->getArg(Arg));
8013   }
8014 
8015   case Builtin::BI__builtin_isinf_sign: {
8016     APFloat Val(0.0);
8017     return EvaluateFloat(E->getArg(0), Val, Info) &&
8018            Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
8019   }
8020 
8021   case Builtin::BI__builtin_isinf: {
8022     APFloat Val(0.0);
8023     return EvaluateFloat(E->getArg(0), Val, Info) &&
8024            Success(Val.isInfinity() ? 1 : 0, E);
8025   }
8026 
8027   case Builtin::BI__builtin_isfinite: {
8028     APFloat Val(0.0);
8029     return EvaluateFloat(E->getArg(0), Val, Info) &&
8030            Success(Val.isFinite() ? 1 : 0, E);
8031   }
8032 
8033   case Builtin::BI__builtin_isnan: {
8034     APFloat Val(0.0);
8035     return EvaluateFloat(E->getArg(0), Val, Info) &&
8036            Success(Val.isNaN() ? 1 : 0, E);
8037   }
8038 
8039   case Builtin::BI__builtin_isnormal: {
8040     APFloat Val(0.0);
8041     return EvaluateFloat(E->getArg(0), Val, Info) &&
8042            Success(Val.isNormal() ? 1 : 0, E);
8043   }
8044 
8045   case Builtin::BI__builtin_parity:
8046   case Builtin::BI__builtin_parityl:
8047   case Builtin::BI__builtin_parityll: {
8048     APSInt Val;
8049     if (!EvaluateInteger(E->getArg(0), Val, Info))
8050       return false;
8051 
8052     return Success(Val.countPopulation() % 2, E);
8053   }
8054 
8055   case Builtin::BI__builtin_popcount:
8056   case Builtin::BI__builtin_popcountl:
8057   case Builtin::BI__builtin_popcountll: {
8058     APSInt Val;
8059     if (!EvaluateInteger(E->getArg(0), Val, Info))
8060       return false;
8061 
8062     return Success(Val.countPopulation(), E);
8063   }
8064 
8065   case Builtin::BIstrlen:
8066   case Builtin::BIwcslen:
8067     // A call to strlen is not a constant expression.
8068     if (Info.getLangOpts().CPlusPlus11)
8069       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
8070         << /*isConstexpr*/0 << /*isConstructor*/0
8071         << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
8072     else
8073       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
8074     LLVM_FALLTHROUGH;
8075   case Builtin::BI__builtin_strlen:
8076   case Builtin::BI__builtin_wcslen: {
8077     // As an extension, we support __builtin_strlen() as a constant expression,
8078     // and support folding strlen() to a constant.
8079     LValue String;
8080     if (!EvaluatePointer(E->getArg(0), String, Info))
8081       return false;
8082 
8083     QualType CharTy = E->getArg(0)->getType()->getPointeeType();
8084 
8085     // Fast path: if it's a string literal, search the string value.
8086     if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>(
8087             String.getLValueBase().dyn_cast<const Expr *>())) {
8088       // The string literal may have embedded null characters. Find the first
8089       // one and truncate there.
8090       StringRef Str = S->getBytes();
8091       int64_t Off = String.Offset.getQuantity();
8092       if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() &&
8093           S->getCharByteWidth() == 1 &&
8094           // FIXME: Add fast-path for wchar_t too.
8095           Info.Ctx.hasSameUnqualifiedType(CharTy, Info.Ctx.CharTy)) {
8096         Str = Str.substr(Off);
8097 
8098         StringRef::size_type Pos = Str.find(0);
8099         if (Pos != StringRef::npos)
8100           Str = Str.substr(0, Pos);
8101 
8102         return Success(Str.size(), E);
8103       }
8104 
8105       // Fall through to slow path to issue appropriate diagnostic.
8106     }
8107 
8108     // Slow path: scan the bytes of the string looking for the terminating 0.
8109     for (uint64_t Strlen = 0; /**/; ++Strlen) {
8110       APValue Char;
8111       if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) ||
8112           !Char.isInt())
8113         return false;
8114       if (!Char.getInt())
8115         return Success(Strlen, E);
8116       if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1))
8117         return false;
8118     }
8119   }
8120 
8121   case Builtin::BIstrcmp:
8122   case Builtin::BIwcscmp:
8123   case Builtin::BIstrncmp:
8124   case Builtin::BIwcsncmp:
8125   case Builtin::BImemcmp:
8126   case Builtin::BIwmemcmp:
8127     // A call to strlen is not a constant expression.
8128     if (Info.getLangOpts().CPlusPlus11)
8129       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
8130         << /*isConstexpr*/0 << /*isConstructor*/0
8131         << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
8132     else
8133       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
8134     LLVM_FALLTHROUGH;
8135   case Builtin::BI__builtin_strcmp:
8136   case Builtin::BI__builtin_wcscmp:
8137   case Builtin::BI__builtin_strncmp:
8138   case Builtin::BI__builtin_wcsncmp:
8139   case Builtin::BI__builtin_memcmp:
8140   case Builtin::BI__builtin_wmemcmp: {
8141     LValue String1, String2;
8142     if (!EvaluatePointer(E->getArg(0), String1, Info) ||
8143         !EvaluatePointer(E->getArg(1), String2, Info))
8144       return false;
8145 
8146     QualType CharTy = E->getArg(0)->getType()->getPointeeType();
8147 
8148     uint64_t MaxLength = uint64_t(-1);
8149     if (BuiltinOp != Builtin::BIstrcmp &&
8150         BuiltinOp != Builtin::BIwcscmp &&
8151         BuiltinOp != Builtin::BI__builtin_strcmp &&
8152         BuiltinOp != Builtin::BI__builtin_wcscmp) {
8153       APSInt N;
8154       if (!EvaluateInteger(E->getArg(2), N, Info))
8155         return false;
8156       MaxLength = N.getExtValue();
8157     }
8158     bool StopAtNull = (BuiltinOp != Builtin::BImemcmp &&
8159                        BuiltinOp != Builtin::BIwmemcmp &&
8160                        BuiltinOp != Builtin::BI__builtin_memcmp &&
8161                        BuiltinOp != Builtin::BI__builtin_wmemcmp);
8162     bool IsWide = BuiltinOp == Builtin::BIwcscmp ||
8163                   BuiltinOp == Builtin::BIwcsncmp ||
8164                   BuiltinOp == Builtin::BIwmemcmp ||
8165                   BuiltinOp == Builtin::BI__builtin_wcscmp ||
8166                   BuiltinOp == Builtin::BI__builtin_wcsncmp ||
8167                   BuiltinOp == Builtin::BI__builtin_wmemcmp;
8168     for (; MaxLength; --MaxLength) {
8169       APValue Char1, Char2;
8170       if (!handleLValueToRValueConversion(Info, E, CharTy, String1, Char1) ||
8171           !handleLValueToRValueConversion(Info, E, CharTy, String2, Char2) ||
8172           !Char1.isInt() || !Char2.isInt())
8173         return false;
8174       if (Char1.getInt() != Char2.getInt()) {
8175         if (IsWide) // wmemcmp compares with wchar_t signedness.
8176           return Success(Char1.getInt() < Char2.getInt() ? -1 : 1, E);
8177         // memcmp always compares unsigned chars.
8178         return Success(Char1.getInt().ult(Char2.getInt()) ? -1 : 1, E);
8179       }
8180       if (StopAtNull && !Char1.getInt())
8181         return Success(0, E);
8182       assert(!(StopAtNull && !Char2.getInt()));
8183       if (!HandleLValueArrayAdjustment(Info, E, String1, CharTy, 1) ||
8184           !HandleLValueArrayAdjustment(Info, E, String2, CharTy, 1))
8185         return false;
8186     }
8187     // We hit the strncmp / memcmp limit.
8188     return Success(0, E);
8189   }
8190 
8191   case Builtin::BI__atomic_always_lock_free:
8192   case Builtin::BI__atomic_is_lock_free:
8193   case Builtin::BI__c11_atomic_is_lock_free: {
8194     APSInt SizeVal;
8195     if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
8196       return false;
8197 
8198     // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
8199     // of two less than the maximum inline atomic width, we know it is
8200     // lock-free.  If the size isn't a power of two, or greater than the
8201     // maximum alignment where we promote atomics, we know it is not lock-free
8202     // (at least not in the sense of atomic_is_lock_free).  Otherwise,
8203     // the answer can only be determined at runtime; for example, 16-byte
8204     // atomics have lock-free implementations on some, but not all,
8205     // x86-64 processors.
8206 
8207     // Check power-of-two.
8208     CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
8209     if (Size.isPowerOfTwo()) {
8210       // Check against inlining width.
8211       unsigned InlineWidthBits =
8212           Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
8213       if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
8214         if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
8215             Size == CharUnits::One() ||
8216             E->getArg(1)->isNullPointerConstant(Info.Ctx,
8217                                                 Expr::NPC_NeverValueDependent))
8218           // OK, we will inline appropriately-aligned operations of this size,
8219           // and _Atomic(T) is appropriately-aligned.
8220           return Success(1, E);
8221 
8222         QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
8223           castAs<PointerType>()->getPointeeType();
8224         if (!PointeeType->isIncompleteType() &&
8225             Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
8226           // OK, we will inline operations on this object.
8227           return Success(1, E);
8228         }
8229       }
8230     }
8231 
8232     return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
8233         Success(0, E) : Error(E);
8234   }
8235   case Builtin::BIomp_is_initial_device:
8236     // We can decide statically which value the runtime would return if called.
8237     return Success(Info.getLangOpts().OpenMPIsDevice ? 0 : 1, E);
8238   case Builtin::BI__builtin_add_overflow:
8239   case Builtin::BI__builtin_sub_overflow:
8240   case Builtin::BI__builtin_mul_overflow:
8241   case Builtin::BI__builtin_sadd_overflow:
8242   case Builtin::BI__builtin_uadd_overflow:
8243   case Builtin::BI__builtin_uaddl_overflow:
8244   case Builtin::BI__builtin_uaddll_overflow:
8245   case Builtin::BI__builtin_usub_overflow:
8246   case Builtin::BI__builtin_usubl_overflow:
8247   case Builtin::BI__builtin_usubll_overflow:
8248   case Builtin::BI__builtin_umul_overflow:
8249   case Builtin::BI__builtin_umull_overflow:
8250   case Builtin::BI__builtin_umulll_overflow:
8251   case Builtin::BI__builtin_saddl_overflow:
8252   case Builtin::BI__builtin_saddll_overflow:
8253   case Builtin::BI__builtin_ssub_overflow:
8254   case Builtin::BI__builtin_ssubl_overflow:
8255   case Builtin::BI__builtin_ssubll_overflow:
8256   case Builtin::BI__builtin_smul_overflow:
8257   case Builtin::BI__builtin_smull_overflow:
8258   case Builtin::BI__builtin_smulll_overflow: {
8259     LValue ResultLValue;
8260     APSInt LHS, RHS;
8261 
8262     QualType ResultType = E->getArg(2)->getType()->getPointeeType();
8263     if (!EvaluateInteger(E->getArg(0), LHS, Info) ||
8264         !EvaluateInteger(E->getArg(1), RHS, Info) ||
8265         !EvaluatePointer(E->getArg(2), ResultLValue, Info))
8266       return false;
8267 
8268     APSInt Result;
8269     bool DidOverflow = false;
8270 
8271     // If the types don't have to match, enlarge all 3 to the largest of them.
8272     if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
8273         BuiltinOp == Builtin::BI__builtin_sub_overflow ||
8274         BuiltinOp == Builtin::BI__builtin_mul_overflow) {
8275       bool IsSigned = LHS.isSigned() || RHS.isSigned() ||
8276                       ResultType->isSignedIntegerOrEnumerationType();
8277       bool AllSigned = LHS.isSigned() && RHS.isSigned() &&
8278                       ResultType->isSignedIntegerOrEnumerationType();
8279       uint64_t LHSSize = LHS.getBitWidth();
8280       uint64_t RHSSize = RHS.getBitWidth();
8281       uint64_t ResultSize = Info.Ctx.getTypeSize(ResultType);
8282       uint64_t MaxBits = std::max(std::max(LHSSize, RHSSize), ResultSize);
8283 
8284       // Add an additional bit if the signedness isn't uniformly agreed to. We
8285       // could do this ONLY if there is a signed and an unsigned that both have
8286       // MaxBits, but the code to check that is pretty nasty.  The issue will be
8287       // caught in the shrink-to-result later anyway.
8288       if (IsSigned && !AllSigned)
8289         ++MaxBits;
8290 
8291       LHS = APSInt(IsSigned ? LHS.sextOrSelf(MaxBits) : LHS.zextOrSelf(MaxBits),
8292                    !IsSigned);
8293       RHS = APSInt(IsSigned ? RHS.sextOrSelf(MaxBits) : RHS.zextOrSelf(MaxBits),
8294                    !IsSigned);
8295       Result = APSInt(MaxBits, !IsSigned);
8296     }
8297 
8298     // Find largest int.
8299     switch (BuiltinOp) {
8300     default:
8301       llvm_unreachable("Invalid value for BuiltinOp");
8302     case Builtin::BI__builtin_add_overflow:
8303     case Builtin::BI__builtin_sadd_overflow:
8304     case Builtin::BI__builtin_saddl_overflow:
8305     case Builtin::BI__builtin_saddll_overflow:
8306     case Builtin::BI__builtin_uadd_overflow:
8307     case Builtin::BI__builtin_uaddl_overflow:
8308     case Builtin::BI__builtin_uaddll_overflow:
8309       Result = LHS.isSigned() ? LHS.sadd_ov(RHS, DidOverflow)
8310                               : LHS.uadd_ov(RHS, DidOverflow);
8311       break;
8312     case Builtin::BI__builtin_sub_overflow:
8313     case Builtin::BI__builtin_ssub_overflow:
8314     case Builtin::BI__builtin_ssubl_overflow:
8315     case Builtin::BI__builtin_ssubll_overflow:
8316     case Builtin::BI__builtin_usub_overflow:
8317     case Builtin::BI__builtin_usubl_overflow:
8318     case Builtin::BI__builtin_usubll_overflow:
8319       Result = LHS.isSigned() ? LHS.ssub_ov(RHS, DidOverflow)
8320                               : LHS.usub_ov(RHS, DidOverflow);
8321       break;
8322     case Builtin::BI__builtin_mul_overflow:
8323     case Builtin::BI__builtin_smul_overflow:
8324     case Builtin::BI__builtin_smull_overflow:
8325     case Builtin::BI__builtin_smulll_overflow:
8326     case Builtin::BI__builtin_umul_overflow:
8327     case Builtin::BI__builtin_umull_overflow:
8328     case Builtin::BI__builtin_umulll_overflow:
8329       Result = LHS.isSigned() ? LHS.smul_ov(RHS, DidOverflow)
8330                               : LHS.umul_ov(RHS, DidOverflow);
8331       break;
8332     }
8333 
8334     // In the case where multiple sizes are allowed, truncate and see if
8335     // the values are the same.
8336     if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
8337         BuiltinOp == Builtin::BI__builtin_sub_overflow ||
8338         BuiltinOp == Builtin::BI__builtin_mul_overflow) {
8339       // APSInt doesn't have a TruncOrSelf, so we use extOrTrunc instead,
8340       // since it will give us the behavior of a TruncOrSelf in the case where
8341       // its parameter <= its size.  We previously set Result to be at least the
8342       // type-size of the result, so getTypeSize(ResultType) <= Result.BitWidth
8343       // will work exactly like TruncOrSelf.
8344       APSInt Temp = Result.extOrTrunc(Info.Ctx.getTypeSize(ResultType));
8345       Temp.setIsSigned(ResultType->isSignedIntegerOrEnumerationType());
8346 
8347       if (!APSInt::isSameValue(Temp, Result))
8348         DidOverflow = true;
8349       Result = Temp;
8350     }
8351 
8352     APValue APV{Result};
8353     if (!handleAssignment(Info, E, ResultLValue, ResultType, APV))
8354       return false;
8355     return Success(DidOverflow, E);
8356   }
8357   }
8358 }
8359 
HasSameBase(const LValue & A,const LValue & B)8360 static bool HasSameBase(const LValue &A, const LValue &B) {
8361   if (!A.getLValueBase())
8362     return !B.getLValueBase();
8363   if (!B.getLValueBase())
8364     return false;
8365 
8366   if (A.getLValueBase().getOpaqueValue() !=
8367       B.getLValueBase().getOpaqueValue()) {
8368     const Decl *ADecl = GetLValueBaseDecl(A);
8369     if (!ADecl)
8370       return false;
8371     const Decl *BDecl = GetLValueBaseDecl(B);
8372     if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl())
8373       return false;
8374   }
8375 
8376   return IsGlobalLValue(A.getLValueBase()) ||
8377          (A.getLValueCallIndex() == B.getLValueCallIndex() &&
8378           A.getLValueVersion() == B.getLValueVersion());
8379 }
8380 
8381 /// Determine whether this is a pointer past the end of the complete
8382 /// object referred to by the lvalue.
isOnePastTheEndOfCompleteObject(const ASTContext & Ctx,const LValue & LV)8383 static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx,
8384                                             const LValue &LV) {
8385   // A null pointer can be viewed as being "past the end" but we don't
8386   // choose to look at it that way here.
8387   if (!LV.getLValueBase())
8388     return false;
8389 
8390   // If the designator is valid and refers to a subobject, we're not pointing
8391   // past the end.
8392   if (!LV.getLValueDesignator().Invalid &&
8393       !LV.getLValueDesignator().isOnePastTheEnd())
8394     return false;
8395 
8396   // A pointer to an incomplete type might be past-the-end if the type's size is
8397   // zero.  We cannot tell because the type is incomplete.
8398   QualType Ty = getType(LV.getLValueBase());
8399   if (Ty->isIncompleteType())
8400     return true;
8401 
8402   // We're a past-the-end pointer if we point to the byte after the object,
8403   // no matter what our type or path is.
8404   auto Size = Ctx.getTypeSizeInChars(Ty);
8405   return LV.getLValueOffset() == Size;
8406 }
8407 
8408 namespace {
8409 
8410 /// Data recursive integer evaluator of certain binary operators.
8411 ///
8412 /// We use a data recursive algorithm for binary operators so that we are able
8413 /// to handle extreme cases of chained binary operators without causing stack
8414 /// overflow.
8415 class DataRecursiveIntBinOpEvaluator {
8416   struct EvalResult {
8417     APValue Val;
8418     bool Failed;
8419 
EvalResult__anon2dd07ee61811::DataRecursiveIntBinOpEvaluator::EvalResult8420     EvalResult() : Failed(false) { }
8421 
swap__anon2dd07ee61811::DataRecursiveIntBinOpEvaluator::EvalResult8422     void swap(EvalResult &RHS) {
8423       Val.swap(RHS.Val);
8424       Failed = RHS.Failed;
8425       RHS.Failed = false;
8426     }
8427   };
8428 
8429   struct Job {
8430     const Expr *E;
8431     EvalResult LHSResult; // meaningful only for binary operator expression.
8432     enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
8433 
8434     Job() = default;
8435     Job(Job &&) = default;
8436 
startSpeculativeEval__anon2dd07ee61811::DataRecursiveIntBinOpEvaluator::Job8437     void startSpeculativeEval(EvalInfo &Info) {
8438       SpecEvalRAII = SpeculativeEvaluationRAII(Info);
8439     }
8440 
8441   private:
8442     SpeculativeEvaluationRAII SpecEvalRAII;
8443   };
8444 
8445   SmallVector<Job, 16> Queue;
8446 
8447   IntExprEvaluator &IntEval;
8448   EvalInfo &Info;
8449   APValue &FinalResult;
8450 
8451 public:
DataRecursiveIntBinOpEvaluator(IntExprEvaluator & IntEval,APValue & Result)8452   DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
8453     : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
8454 
8455   /// True if \param E is a binary operator that we are going to handle
8456   /// data recursively.
8457   /// We handle binary operators that are comma, logical, or that have operands
8458   /// with integral or enumeration type.
shouldEnqueue(const BinaryOperator * E)8459   static bool shouldEnqueue(const BinaryOperator *E) {
8460     return E->getOpcode() == BO_Comma || E->isLogicalOp() ||
8461            (E->isRValue() && E->getType()->isIntegralOrEnumerationType() &&
8462             E->getLHS()->getType()->isIntegralOrEnumerationType() &&
8463             E->getRHS()->getType()->isIntegralOrEnumerationType());
8464   }
8465 
Traverse(const BinaryOperator * E)8466   bool Traverse(const BinaryOperator *E) {
8467     enqueue(E);
8468     EvalResult PrevResult;
8469     while (!Queue.empty())
8470       process(PrevResult);
8471 
8472     if (PrevResult.Failed) return false;
8473 
8474     FinalResult.swap(PrevResult.Val);
8475     return true;
8476   }
8477 
8478 private:
Success(uint64_t Value,const Expr * E,APValue & Result)8479   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
8480     return IntEval.Success(Value, E, Result);
8481   }
Success(const APSInt & Value,const Expr * E,APValue & Result)8482   bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
8483     return IntEval.Success(Value, E, Result);
8484   }
Error(const Expr * E)8485   bool Error(const Expr *E) {
8486     return IntEval.Error(E);
8487   }
Error(const Expr * E,diag::kind D)8488   bool Error(const Expr *E, diag::kind D) {
8489     return IntEval.Error(E, D);
8490   }
8491 
CCEDiag(const Expr * E,diag::kind D)8492   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
8493     return Info.CCEDiag(E, D);
8494   }
8495 
8496   // Returns true if visiting the RHS is necessary, false otherwise.
8497   bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
8498                          bool &SuppressRHSDiags);
8499 
8500   bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
8501                   const BinaryOperator *E, APValue &Result);
8502 
EvaluateExpr(const Expr * E,EvalResult & Result)8503   void EvaluateExpr(const Expr *E, EvalResult &Result) {
8504     Result.Failed = !Evaluate(Result.Val, Info, E);
8505     if (Result.Failed)
8506       Result.Val = APValue();
8507   }
8508 
8509   void process(EvalResult &Result);
8510 
enqueue(const Expr * E)8511   void enqueue(const Expr *E) {
8512     E = E->IgnoreParens();
8513     Queue.resize(Queue.size()+1);
8514     Queue.back().E = E;
8515     Queue.back().Kind = Job::AnyExprKind;
8516   }
8517 };
8518 
8519 }
8520 
8521 bool DataRecursiveIntBinOpEvaluator::
VisitBinOpLHSOnly(EvalResult & LHSResult,const BinaryOperator * E,bool & SuppressRHSDiags)8522        VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
8523                          bool &SuppressRHSDiags) {
8524   if (E->getOpcode() == BO_Comma) {
8525     // Ignore LHS but note if we could not evaluate it.
8526     if (LHSResult.Failed)
8527       return Info.noteSideEffect();
8528     return true;
8529   }
8530 
8531   if (E->isLogicalOp()) {
8532     bool LHSAsBool;
8533     if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) {
8534       // We were able to evaluate the LHS, see if we can get away with not
8535       // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
8536       if (LHSAsBool == (E->getOpcode() == BO_LOr)) {
8537         Success(LHSAsBool, E, LHSResult.Val);
8538         return false; // Ignore RHS
8539       }
8540     } else {
8541       LHSResult.Failed = true;
8542 
8543       // Since we weren't able to evaluate the left hand side, it
8544       // might have had side effects.
8545       if (!Info.noteSideEffect())
8546         return false;
8547 
8548       // We can't evaluate the LHS; however, sometimes the result
8549       // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
8550       // Don't ignore RHS and suppress diagnostics from this arm.
8551       SuppressRHSDiags = true;
8552     }
8553 
8554     return true;
8555   }
8556 
8557   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
8558          E->getRHS()->getType()->isIntegralOrEnumerationType());
8559 
8560   if (LHSResult.Failed && !Info.noteFailure())
8561     return false; // Ignore RHS;
8562 
8563   return true;
8564 }
8565 
addOrSubLValueAsInteger(APValue & LVal,const APSInt & Index,bool IsSub)8566 static void addOrSubLValueAsInteger(APValue &LVal, const APSInt &Index,
8567                                     bool IsSub) {
8568   // Compute the new offset in the appropriate width, wrapping at 64 bits.
8569   // FIXME: When compiling for a 32-bit target, we should use 32-bit
8570   // offsets.
8571   assert(!LVal.hasLValuePath() && "have designator for integer lvalue");
8572   CharUnits &Offset = LVal.getLValueOffset();
8573   uint64_t Offset64 = Offset.getQuantity();
8574   uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
8575   Offset = CharUnits::fromQuantity(IsSub ? Offset64 - Index64
8576                                          : Offset64 + Index64);
8577 }
8578 
8579 bool DataRecursiveIntBinOpEvaluator::
VisitBinOp(const EvalResult & LHSResult,const EvalResult & RHSResult,const BinaryOperator * E,APValue & Result)8580        VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
8581                   const BinaryOperator *E, APValue &Result) {
8582   if (E->getOpcode() == BO_Comma) {
8583     if (RHSResult.Failed)
8584       return false;
8585     Result = RHSResult.Val;
8586     return true;
8587   }
8588 
8589   if (E->isLogicalOp()) {
8590     bool lhsResult, rhsResult;
8591     bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
8592     bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
8593 
8594     if (LHSIsOK) {
8595       if (RHSIsOK) {
8596         if (E->getOpcode() == BO_LOr)
8597           return Success(lhsResult || rhsResult, E, Result);
8598         else
8599           return Success(lhsResult && rhsResult, E, Result);
8600       }
8601     } else {
8602       if (RHSIsOK) {
8603         // We can't evaluate the LHS; however, sometimes the result
8604         // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
8605         if (rhsResult == (E->getOpcode() == BO_LOr))
8606           return Success(rhsResult, E, Result);
8607       }
8608     }
8609 
8610     return false;
8611   }
8612 
8613   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
8614          E->getRHS()->getType()->isIntegralOrEnumerationType());
8615 
8616   if (LHSResult.Failed || RHSResult.Failed)
8617     return false;
8618 
8619   const APValue &LHSVal = LHSResult.Val;
8620   const APValue &RHSVal = RHSResult.Val;
8621 
8622   // Handle cases like (unsigned long)&a + 4.
8623   if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
8624     Result = LHSVal;
8625     addOrSubLValueAsInteger(Result, RHSVal.getInt(), E->getOpcode() == BO_Sub);
8626     return true;
8627   }
8628 
8629   // Handle cases like 4 + (unsigned long)&a
8630   if (E->getOpcode() == BO_Add &&
8631       RHSVal.isLValue() && LHSVal.isInt()) {
8632     Result = RHSVal;
8633     addOrSubLValueAsInteger(Result, LHSVal.getInt(), /*IsSub*/false);
8634     return true;
8635   }
8636 
8637   if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
8638     // Handle (intptr_t)&&A - (intptr_t)&&B.
8639     if (!LHSVal.getLValueOffset().isZero() ||
8640         !RHSVal.getLValueOffset().isZero())
8641       return false;
8642     const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
8643     const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
8644     if (!LHSExpr || !RHSExpr)
8645       return false;
8646     const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
8647     const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
8648     if (!LHSAddrExpr || !RHSAddrExpr)
8649       return false;
8650     // Make sure both labels come from the same function.
8651     if (LHSAddrExpr->getLabel()->getDeclContext() !=
8652         RHSAddrExpr->getLabel()->getDeclContext())
8653       return false;
8654     Result = APValue(LHSAddrExpr, RHSAddrExpr);
8655     return true;
8656   }
8657 
8658   // All the remaining cases expect both operands to be an integer
8659   if (!LHSVal.isInt() || !RHSVal.isInt())
8660     return Error(E);
8661 
8662   // Set up the width and signedness manually, in case it can't be deduced
8663   // from the operation we're performing.
8664   // FIXME: Don't do this in the cases where we can deduce it.
8665   APSInt Value(Info.Ctx.getIntWidth(E->getType()),
8666                E->getType()->isUnsignedIntegerOrEnumerationType());
8667   if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(),
8668                          RHSVal.getInt(), Value))
8669     return false;
8670   return Success(Value, E, Result);
8671 }
8672 
process(EvalResult & Result)8673 void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
8674   Job &job = Queue.back();
8675 
8676   switch (job.Kind) {
8677     case Job::AnyExprKind: {
8678       if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
8679         if (shouldEnqueue(Bop)) {
8680           job.Kind = Job::BinOpKind;
8681           enqueue(Bop->getLHS());
8682           return;
8683         }
8684       }
8685 
8686       EvaluateExpr(job.E, Result);
8687       Queue.pop_back();
8688       return;
8689     }
8690 
8691     case Job::BinOpKind: {
8692       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
8693       bool SuppressRHSDiags = false;
8694       if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
8695         Queue.pop_back();
8696         return;
8697       }
8698       if (SuppressRHSDiags)
8699         job.startSpeculativeEval(Info);
8700       job.LHSResult.swap(Result);
8701       job.Kind = Job::BinOpVisitedLHSKind;
8702       enqueue(Bop->getRHS());
8703       return;
8704     }
8705 
8706     case Job::BinOpVisitedLHSKind: {
8707       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
8708       EvalResult RHS;
8709       RHS.swap(Result);
8710       Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
8711       Queue.pop_back();
8712       return;
8713     }
8714   }
8715 
8716   llvm_unreachable("Invalid Job::Kind!");
8717 }
8718 
8719 namespace {
8720 /// Used when we determine that we should fail, but can keep evaluating prior to
8721 /// noting that we had a failure.
8722 class DelayedNoteFailureRAII {
8723   EvalInfo &Info;
8724   bool NoteFailure;
8725 
8726 public:
DelayedNoteFailureRAII(EvalInfo & Info,bool NoteFailure=true)8727   DelayedNoteFailureRAII(EvalInfo &Info, bool NoteFailure = true)
8728       : Info(Info), NoteFailure(NoteFailure) {}
~DelayedNoteFailureRAII()8729   ~DelayedNoteFailureRAII() {
8730     if (NoteFailure) {
8731       bool ContinueAfterFailure = Info.noteFailure();
8732       (void)ContinueAfterFailure;
8733       assert(ContinueAfterFailure &&
8734              "Shouldn't have kept evaluating on failure.");
8735     }
8736   }
8737 };
8738 }
8739 
8740 template <class SuccessCB, class AfterCB>
8741 static bool
EvaluateComparisonBinaryOperator(EvalInfo & Info,const BinaryOperator * E,SuccessCB && Success,AfterCB && DoAfter)8742 EvaluateComparisonBinaryOperator(EvalInfo &Info, const BinaryOperator *E,
8743                                  SuccessCB &&Success, AfterCB &&DoAfter) {
8744   assert(E->isComparisonOp() && "expected comparison operator");
8745   assert((E->getOpcode() == BO_Cmp ||
8746           E->getType()->isIntegralOrEnumerationType()) &&
8747          "unsupported binary expression evaluation");
8748   auto Error = [&](const Expr *E) {
8749     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
8750     return false;
8751   };
8752 
8753   using CCR = ComparisonCategoryResult;
8754   bool IsRelational = E->isRelationalOp();
8755   bool IsEquality = E->isEqualityOp();
8756   if (E->getOpcode() == BO_Cmp) {
8757     const ComparisonCategoryInfo &CmpInfo =
8758         Info.Ctx.CompCategories.getInfoForType(E->getType());
8759     IsRelational = CmpInfo.isOrdered();
8760     IsEquality = CmpInfo.isEquality();
8761   }
8762 
8763   QualType LHSTy = E->getLHS()->getType();
8764   QualType RHSTy = E->getRHS()->getType();
8765 
8766   if (LHSTy->isIntegralOrEnumerationType() &&
8767       RHSTy->isIntegralOrEnumerationType()) {
8768     APSInt LHS, RHS;
8769     bool LHSOK = EvaluateInteger(E->getLHS(), LHS, Info);
8770     if (!LHSOK && !Info.noteFailure())
8771       return false;
8772     if (!EvaluateInteger(E->getRHS(), RHS, Info) || !LHSOK)
8773       return false;
8774     if (LHS < RHS)
8775       return Success(CCR::Less, E);
8776     if (LHS > RHS)
8777       return Success(CCR::Greater, E);
8778     return Success(CCR::Equal, E);
8779   }
8780 
8781   if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) {
8782     ComplexValue LHS, RHS;
8783     bool LHSOK;
8784     if (E->isAssignmentOp()) {
8785       LValue LV;
8786       EvaluateLValue(E->getLHS(), LV, Info);
8787       LHSOK = false;
8788     } else if (LHSTy->isRealFloatingType()) {
8789       LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info);
8790       if (LHSOK) {
8791         LHS.makeComplexFloat();
8792         LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics());
8793       }
8794     } else {
8795       LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
8796     }
8797     if (!LHSOK && !Info.noteFailure())
8798       return false;
8799 
8800     if (E->getRHS()->getType()->isRealFloatingType()) {
8801       if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK)
8802         return false;
8803       RHS.makeComplexFloat();
8804       RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics());
8805     } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
8806       return false;
8807 
8808     if (LHS.isComplexFloat()) {
8809       APFloat::cmpResult CR_r =
8810         LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
8811       APFloat::cmpResult CR_i =
8812         LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
8813       bool IsEqual = CR_r == APFloat::cmpEqual && CR_i == APFloat::cmpEqual;
8814       return Success(IsEqual ? CCR::Equal : CCR::Nonequal, E);
8815     } else {
8816       assert(IsEquality && "invalid complex comparison");
8817       bool IsEqual = LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
8818                      LHS.getComplexIntImag() == RHS.getComplexIntImag();
8819       return Success(IsEqual ? CCR::Equal : CCR::Nonequal, E);
8820     }
8821   }
8822 
8823   if (LHSTy->isRealFloatingType() &&
8824       RHSTy->isRealFloatingType()) {
8825     APFloat RHS(0.0), LHS(0.0);
8826 
8827     bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
8828     if (!LHSOK && !Info.noteFailure())
8829       return false;
8830 
8831     if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
8832       return false;
8833 
8834     assert(E->isComparisonOp() && "Invalid binary operator!");
8835     auto GetCmpRes = [&]() {
8836       switch (LHS.compare(RHS)) {
8837       case APFloat::cmpEqual:
8838         return CCR::Equal;
8839       case APFloat::cmpLessThan:
8840         return CCR::Less;
8841       case APFloat::cmpGreaterThan:
8842         return CCR::Greater;
8843       case APFloat::cmpUnordered:
8844         return CCR::Unordered;
8845       }
8846       llvm_unreachable("Unrecognised APFloat::cmpResult enum");
8847     };
8848     return Success(GetCmpRes(), E);
8849   }
8850 
8851   if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
8852     LValue LHSValue, RHSValue;
8853 
8854     bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
8855     if (!LHSOK && !Info.noteFailure())
8856       return false;
8857 
8858     if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
8859       return false;
8860 
8861     // Reject differing bases from the normal codepath; we special-case
8862     // comparisons to null.
8863     if (!HasSameBase(LHSValue, RHSValue)) {
8864       // Inequalities and subtractions between unrelated pointers have
8865       // unspecified or undefined behavior.
8866       if (!IsEquality)
8867         return Error(E);
8868       // A constant address may compare equal to the address of a symbol.
8869       // The one exception is that address of an object cannot compare equal
8870       // to a null pointer constant.
8871       if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
8872           (!RHSValue.Base && !RHSValue.Offset.isZero()))
8873         return Error(E);
8874       // It's implementation-defined whether distinct literals will have
8875       // distinct addresses. In clang, the result of such a comparison is
8876       // unspecified, so it is not a constant expression. However, we do know
8877       // that the address of a literal will be non-null.
8878       if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
8879           LHSValue.Base && RHSValue.Base)
8880         return Error(E);
8881       // We can't tell whether weak symbols will end up pointing to the same
8882       // object.
8883       if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
8884         return Error(E);
8885       // We can't compare the address of the start of one object with the
8886       // past-the-end address of another object, per C++ DR1652.
8887       if ((LHSValue.Base && LHSValue.Offset.isZero() &&
8888            isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue)) ||
8889           (RHSValue.Base && RHSValue.Offset.isZero() &&
8890            isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue)))
8891         return Error(E);
8892       // We can't tell whether an object is at the same address as another
8893       // zero sized object.
8894       if ((RHSValue.Base && isZeroSized(LHSValue)) ||
8895           (LHSValue.Base && isZeroSized(RHSValue)))
8896         return Error(E);
8897       return Success(CCR::Nonequal, E);
8898     }
8899 
8900     const CharUnits &LHSOffset = LHSValue.getLValueOffset();
8901     const CharUnits &RHSOffset = RHSValue.getLValueOffset();
8902 
8903     SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
8904     SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
8905 
8906     // C++11 [expr.rel]p3:
8907     //   Pointers to void (after pointer conversions) can be compared, with a
8908     //   result defined as follows: If both pointers represent the same
8909     //   address or are both the null pointer value, the result is true if the
8910     //   operator is <= or >= and false otherwise; otherwise the result is
8911     //   unspecified.
8912     // We interpret this as applying to pointers to *cv* void.
8913     if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset && IsRelational)
8914       Info.CCEDiag(E, diag::note_constexpr_void_comparison);
8915 
8916     // C++11 [expr.rel]p2:
8917     // - If two pointers point to non-static data members of the same object,
8918     //   or to subobjects or array elements fo such members, recursively, the
8919     //   pointer to the later declared member compares greater provided the
8920     //   two members have the same access control and provided their class is
8921     //   not a union.
8922     //   [...]
8923     // - Otherwise pointer comparisons are unspecified.
8924     if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && IsRelational) {
8925       bool WasArrayIndex;
8926       unsigned Mismatch = FindDesignatorMismatch(
8927           getType(LHSValue.Base), LHSDesignator, RHSDesignator, WasArrayIndex);
8928       // At the point where the designators diverge, the comparison has a
8929       // specified value if:
8930       //  - we are comparing array indices
8931       //  - we are comparing fields of a union, or fields with the same access
8932       // Otherwise, the result is unspecified and thus the comparison is not a
8933       // constant expression.
8934       if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
8935           Mismatch < RHSDesignator.Entries.size()) {
8936         const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
8937         const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
8938         if (!LF && !RF)
8939           Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
8940         else if (!LF)
8941           Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
8942               << getAsBaseClass(LHSDesignator.Entries[Mismatch])
8943               << RF->getParent() << RF;
8944         else if (!RF)
8945           Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
8946               << getAsBaseClass(RHSDesignator.Entries[Mismatch])
8947               << LF->getParent() << LF;
8948         else if (!LF->getParent()->isUnion() &&
8949                  LF->getAccess() != RF->getAccess())
8950           Info.CCEDiag(E,
8951                        diag::note_constexpr_pointer_comparison_differing_access)
8952               << LF << LF->getAccess() << RF << RF->getAccess()
8953               << LF->getParent();
8954       }
8955     }
8956 
8957     // The comparison here must be unsigned, and performed with the same
8958     // width as the pointer.
8959     unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
8960     uint64_t CompareLHS = LHSOffset.getQuantity();
8961     uint64_t CompareRHS = RHSOffset.getQuantity();
8962     assert(PtrSize <= 64 && "Unexpected pointer width");
8963     uint64_t Mask = ~0ULL >> (64 - PtrSize);
8964     CompareLHS &= Mask;
8965     CompareRHS &= Mask;
8966 
8967     // If there is a base and this is a relational operator, we can only
8968     // compare pointers within the object in question; otherwise, the result
8969     // depends on where the object is located in memory.
8970     if (!LHSValue.Base.isNull() && IsRelational) {
8971       QualType BaseTy = getType(LHSValue.Base);
8972       if (BaseTy->isIncompleteType())
8973         return Error(E);
8974       CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
8975       uint64_t OffsetLimit = Size.getQuantity();
8976       if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
8977         return Error(E);
8978     }
8979 
8980     if (CompareLHS < CompareRHS)
8981       return Success(CCR::Less, E);
8982     if (CompareLHS > CompareRHS)
8983       return Success(CCR::Greater, E);
8984     return Success(CCR::Equal, E);
8985   }
8986 
8987   if (LHSTy->isMemberPointerType()) {
8988     assert(IsEquality && "unexpected member pointer operation");
8989     assert(RHSTy->isMemberPointerType() && "invalid comparison");
8990 
8991     MemberPtr LHSValue, RHSValue;
8992 
8993     bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
8994     if (!LHSOK && !Info.noteFailure())
8995       return false;
8996 
8997     if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
8998       return false;
8999 
9000     // C++11 [expr.eq]p2:
9001     //   If both operands are null, they compare equal. Otherwise if only one is
9002     //   null, they compare unequal.
9003     if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
9004       bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
9005       return Success(Equal ? CCR::Equal : CCR::Nonequal, E);
9006     }
9007 
9008     //   Otherwise if either is a pointer to a virtual member function, the
9009     //   result is unspecified.
9010     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
9011       if (MD->isVirtual())
9012         Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
9013     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
9014       if (MD->isVirtual())
9015         Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
9016 
9017     //   Otherwise they compare equal if and only if they would refer to the
9018     //   same member of the same most derived object or the same subobject if
9019     //   they were dereferenced with a hypothetical object of the associated
9020     //   class type.
9021     bool Equal = LHSValue == RHSValue;
9022     return Success(Equal ? CCR::Equal : CCR::Nonequal, E);
9023   }
9024 
9025   if (LHSTy->isNullPtrType()) {
9026     assert(E->isComparisonOp() && "unexpected nullptr operation");
9027     assert(RHSTy->isNullPtrType() && "missing pointer conversion");
9028     // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
9029     // are compared, the result is true of the operator is <=, >= or ==, and
9030     // false otherwise.
9031     return Success(CCR::Equal, E);
9032   }
9033 
9034   return DoAfter();
9035 }
9036 
VisitBinCmp(const BinaryOperator * E)9037 bool RecordExprEvaluator::VisitBinCmp(const BinaryOperator *E) {
9038   if (!CheckLiteralType(Info, E))
9039     return false;
9040 
9041   auto OnSuccess = [&](ComparisonCategoryResult ResKind,
9042                        const BinaryOperator *E) {
9043     // Evaluation succeeded. Lookup the information for the comparison category
9044     // type and fetch the VarDecl for the result.
9045     const ComparisonCategoryInfo &CmpInfo =
9046         Info.Ctx.CompCategories.getInfoForType(E->getType());
9047     const VarDecl *VD =
9048         CmpInfo.getValueInfo(CmpInfo.makeWeakResult(ResKind))->VD;
9049     // Check and evaluate the result as a constant expression.
9050     LValue LV;
9051     LV.set(VD);
9052     if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
9053       return false;
9054     return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result);
9055   };
9056   return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
9057     return ExprEvaluatorBaseTy::VisitBinCmp(E);
9058   });
9059 }
9060 
VisitBinaryOperator(const BinaryOperator * E)9061 bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
9062   // We don't call noteFailure immediately because the assignment happens after
9063   // we evaluate LHS and RHS.
9064   if (!Info.keepEvaluatingAfterFailure() && E->isAssignmentOp())
9065     return Error(E);
9066 
9067   DelayedNoteFailureRAII MaybeNoteFailureLater(Info, E->isAssignmentOp());
9068   if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
9069     return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
9070 
9071   assert((!E->getLHS()->getType()->isIntegralOrEnumerationType() ||
9072           !E->getRHS()->getType()->isIntegralOrEnumerationType()) &&
9073          "DataRecursiveIntBinOpEvaluator should have handled integral types");
9074 
9075   if (E->isComparisonOp()) {
9076     // Evaluate builtin binary comparisons by evaluating them as C++2a three-way
9077     // comparisons and then translating the result.
9078     auto OnSuccess = [&](ComparisonCategoryResult ResKind,
9079                          const BinaryOperator *E) {
9080       using CCR = ComparisonCategoryResult;
9081       bool IsEqual   = ResKind == CCR::Equal,
9082            IsLess    = ResKind == CCR::Less,
9083            IsGreater = ResKind == CCR::Greater;
9084       auto Op = E->getOpcode();
9085       switch (Op) {
9086       default:
9087         llvm_unreachable("unsupported binary operator");
9088       case BO_EQ:
9089       case BO_NE:
9090         return Success(IsEqual == (Op == BO_EQ), E);
9091       case BO_LT: return Success(IsLess, E);
9092       case BO_GT: return Success(IsGreater, E);
9093       case BO_LE: return Success(IsEqual || IsLess, E);
9094       case BO_GE: return Success(IsEqual || IsGreater, E);
9095       }
9096     };
9097     return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
9098       return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
9099     });
9100   }
9101 
9102   QualType LHSTy = E->getLHS()->getType();
9103   QualType RHSTy = E->getRHS()->getType();
9104 
9105   if (LHSTy->isPointerType() && RHSTy->isPointerType() &&
9106       E->getOpcode() == BO_Sub) {
9107     LValue LHSValue, RHSValue;
9108 
9109     bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
9110     if (!LHSOK && !Info.noteFailure())
9111       return false;
9112 
9113     if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
9114       return false;
9115 
9116     // Reject differing bases from the normal codepath; we special-case
9117     // comparisons to null.
9118     if (!HasSameBase(LHSValue, RHSValue)) {
9119       // Handle &&A - &&B.
9120       if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
9121         return Error(E);
9122       const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr *>();
9123       const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr *>();
9124       if (!LHSExpr || !RHSExpr)
9125         return Error(E);
9126       const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
9127       const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
9128       if (!LHSAddrExpr || !RHSAddrExpr)
9129         return Error(E);
9130       // Make sure both labels come from the same function.
9131       if (LHSAddrExpr->getLabel()->getDeclContext() !=
9132           RHSAddrExpr->getLabel()->getDeclContext())
9133         return Error(E);
9134       return Success(APValue(LHSAddrExpr, RHSAddrExpr), E);
9135     }
9136     const CharUnits &LHSOffset = LHSValue.getLValueOffset();
9137     const CharUnits &RHSOffset = RHSValue.getLValueOffset();
9138 
9139     SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
9140     SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
9141 
9142     // C++11 [expr.add]p6:
9143     //   Unless both pointers point to elements of the same array object, or
9144     //   one past the last element of the array object, the behavior is
9145     //   undefined.
9146     if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
9147         !AreElementsOfSameArray(getType(LHSValue.Base), LHSDesignator,
9148                                 RHSDesignator))
9149       Info.CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
9150 
9151     QualType Type = E->getLHS()->getType();
9152     QualType ElementType = Type->getAs<PointerType>()->getPointeeType();
9153 
9154     CharUnits ElementSize;
9155     if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
9156       return false;
9157 
9158     // As an extension, a type may have zero size (empty struct or union in
9159     // C, array of zero length). Pointer subtraction in such cases has
9160     // undefined behavior, so is not constant.
9161     if (ElementSize.isZero()) {
9162       Info.FFDiag(E, diag::note_constexpr_pointer_subtraction_zero_size)
9163           << ElementType;
9164       return false;
9165     }
9166 
9167     // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
9168     // and produce incorrect results when it overflows. Such behavior
9169     // appears to be non-conforming, but is common, so perhaps we should
9170     // assume the standard intended for such cases to be undefined behavior
9171     // and check for them.
9172 
9173     // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
9174     // overflow in the final conversion to ptrdiff_t.
9175     APSInt LHS(llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
9176     APSInt RHS(llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
9177     APSInt ElemSize(llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true),
9178                     false);
9179     APSInt TrueResult = (LHS - RHS) / ElemSize;
9180     APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
9181 
9182     if (Result.extend(65) != TrueResult &&
9183         !HandleOverflow(Info, E, TrueResult, E->getType()))
9184       return false;
9185     return Success(Result, E);
9186   }
9187 
9188   return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
9189 }
9190 
9191 /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
9192 /// a result as the expression's type.
VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr * E)9193 bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
9194                                     const UnaryExprOrTypeTraitExpr *E) {
9195   switch(E->getKind()) {
9196   case UETT_AlignOf: {
9197     if (E->isArgumentType())
9198       return Success(GetAlignOfType(Info, E->getArgumentType()), E);
9199     else
9200       return Success(GetAlignOfExpr(Info, E->getArgumentExpr()), E);
9201   }
9202 
9203   case UETT_VecStep: {
9204     QualType Ty = E->getTypeOfArgument();
9205 
9206     if (Ty->isVectorType()) {
9207       unsigned n = Ty->castAs<VectorType>()->getNumElements();
9208 
9209       // The vec_step built-in functions that take a 3-component
9210       // vector return 4. (OpenCL 1.1 spec 6.11.12)
9211       if (n == 3)
9212         n = 4;
9213 
9214       return Success(n, E);
9215     } else
9216       return Success(1, E);
9217   }
9218 
9219   case UETT_SizeOf: {
9220     QualType SrcTy = E->getTypeOfArgument();
9221     // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
9222     //   the result is the size of the referenced type."
9223     if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
9224       SrcTy = Ref->getPointeeType();
9225 
9226     CharUnits Sizeof;
9227     if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
9228       return false;
9229     return Success(Sizeof, E);
9230   }
9231   case UETT_OpenMPRequiredSimdAlign:
9232     assert(E->isArgumentType());
9233     return Success(
9234         Info.Ctx.toCharUnitsFromBits(
9235                     Info.Ctx.getOpenMPDefaultSimdAlign(E->getArgumentType()))
9236             .getQuantity(),
9237         E);
9238   }
9239 
9240   llvm_unreachable("unknown expr/type trait");
9241 }
9242 
VisitOffsetOfExpr(const OffsetOfExpr * OOE)9243 bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
9244   CharUnits Result;
9245   unsigned n = OOE->getNumComponents();
9246   if (n == 0)
9247     return Error(OOE);
9248   QualType CurrentType = OOE->getTypeSourceInfo()->getType();
9249   for (unsigned i = 0; i != n; ++i) {
9250     OffsetOfNode ON = OOE->getComponent(i);
9251     switch (ON.getKind()) {
9252     case OffsetOfNode::Array: {
9253       const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
9254       APSInt IdxResult;
9255       if (!EvaluateInteger(Idx, IdxResult, Info))
9256         return false;
9257       const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
9258       if (!AT)
9259         return Error(OOE);
9260       CurrentType = AT->getElementType();
9261       CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
9262       Result += IdxResult.getSExtValue() * ElementSize;
9263       break;
9264     }
9265 
9266     case OffsetOfNode::Field: {
9267       FieldDecl *MemberDecl = ON.getField();
9268       const RecordType *RT = CurrentType->getAs<RecordType>();
9269       if (!RT)
9270         return Error(OOE);
9271       RecordDecl *RD = RT->getDecl();
9272       if (RD->isInvalidDecl()) return false;
9273       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
9274       unsigned i = MemberDecl->getFieldIndex();
9275       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
9276       Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
9277       CurrentType = MemberDecl->getType().getNonReferenceType();
9278       break;
9279     }
9280 
9281     case OffsetOfNode::Identifier:
9282       llvm_unreachable("dependent __builtin_offsetof");
9283 
9284     case OffsetOfNode::Base: {
9285       CXXBaseSpecifier *BaseSpec = ON.getBase();
9286       if (BaseSpec->isVirtual())
9287         return Error(OOE);
9288 
9289       // Find the layout of the class whose base we are looking into.
9290       const RecordType *RT = CurrentType->getAs<RecordType>();
9291       if (!RT)
9292         return Error(OOE);
9293       RecordDecl *RD = RT->getDecl();
9294       if (RD->isInvalidDecl()) return false;
9295       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
9296 
9297       // Find the base class itself.
9298       CurrentType = BaseSpec->getType();
9299       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
9300       if (!BaseRT)
9301         return Error(OOE);
9302 
9303       // Add the offset to the base.
9304       Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
9305       break;
9306     }
9307     }
9308   }
9309   return Success(Result, OOE);
9310 }
9311 
VisitUnaryOperator(const UnaryOperator * E)9312 bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
9313   switch (E->getOpcode()) {
9314   default:
9315     // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
9316     // See C99 6.6p3.
9317     return Error(E);
9318   case UO_Extension:
9319     // FIXME: Should extension allow i-c-e extension expressions in its scope?
9320     // If so, we could clear the diagnostic ID.
9321     return Visit(E->getSubExpr());
9322   case UO_Plus:
9323     // The result is just the value.
9324     return Visit(E->getSubExpr());
9325   case UO_Minus: {
9326     if (!Visit(E->getSubExpr()))
9327       return false;
9328     if (!Result.isInt()) return Error(E);
9329     const APSInt &Value = Result.getInt();
9330     if (Value.isSigned() && Value.isMinSignedValue() && E->canOverflow() &&
9331         !HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
9332                         E->getType()))
9333       return false;
9334     return Success(-Value, E);
9335   }
9336   case UO_Not: {
9337     if (!Visit(E->getSubExpr()))
9338       return false;
9339     if (!Result.isInt()) return Error(E);
9340     return Success(~Result.getInt(), E);
9341   }
9342   case UO_LNot: {
9343     bool bres;
9344     if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
9345       return false;
9346     return Success(!bres, E);
9347   }
9348   }
9349 }
9350 
9351 /// HandleCast - This is used to evaluate implicit or explicit casts where the
9352 /// result type is integer.
VisitCastExpr(const CastExpr * E)9353 bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
9354   const Expr *SubExpr = E->getSubExpr();
9355   QualType DestType = E->getType();
9356   QualType SrcType = SubExpr->getType();
9357 
9358   switch (E->getCastKind()) {
9359   case CK_BaseToDerived:
9360   case CK_DerivedToBase:
9361   case CK_UncheckedDerivedToBase:
9362   case CK_Dynamic:
9363   case CK_ToUnion:
9364   case CK_ArrayToPointerDecay:
9365   case CK_FunctionToPointerDecay:
9366   case CK_NullToPointer:
9367   case CK_NullToMemberPointer:
9368   case CK_BaseToDerivedMemberPointer:
9369   case CK_DerivedToBaseMemberPointer:
9370   case CK_ReinterpretMemberPointer:
9371   case CK_ConstructorConversion:
9372   case CK_IntegralToPointer:
9373   case CK_ToVoid:
9374   case CK_VectorSplat:
9375   case CK_IntegralToFloating:
9376   case CK_FloatingCast:
9377   case CK_CPointerToObjCPointerCast:
9378   case CK_BlockPointerToObjCPointerCast:
9379   case CK_AnyPointerToBlockPointerCast:
9380   case CK_ObjCObjectLValueCast:
9381   case CK_FloatingRealToComplex:
9382   case CK_FloatingComplexToReal:
9383   case CK_FloatingComplexCast:
9384   case CK_FloatingComplexToIntegralComplex:
9385   case CK_IntegralRealToComplex:
9386   case CK_IntegralComplexCast:
9387   case CK_IntegralComplexToFloatingComplex:
9388   case CK_BuiltinFnToFnPtr:
9389   case CK_ZeroToOCLEvent:
9390   case CK_ZeroToOCLQueue:
9391   case CK_NonAtomicToAtomic:
9392   case CK_AddressSpaceConversion:
9393   case CK_IntToOCLSampler:
9394     llvm_unreachable("invalid cast kind for integral value");
9395 
9396   case CK_BitCast:
9397   case CK_Dependent:
9398   case CK_LValueBitCast:
9399   case CK_ARCProduceObject:
9400   case CK_ARCConsumeObject:
9401   case CK_ARCReclaimReturnedObject:
9402   case CK_ARCExtendBlockObject:
9403   case CK_CopyAndAutoreleaseBlockObject:
9404     return Error(E);
9405 
9406   case CK_UserDefinedConversion:
9407   case CK_LValueToRValue:
9408   case CK_AtomicToNonAtomic:
9409   case CK_NoOp:
9410     return ExprEvaluatorBaseTy::VisitCastExpr(E);
9411 
9412   case CK_MemberPointerToBoolean:
9413   case CK_PointerToBoolean:
9414   case CK_IntegralToBoolean:
9415   case CK_FloatingToBoolean:
9416   case CK_BooleanToSignedIntegral:
9417   case CK_FloatingComplexToBoolean:
9418   case CK_IntegralComplexToBoolean: {
9419     bool BoolResult;
9420     if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
9421       return false;
9422     uint64_t IntResult = BoolResult;
9423     if (BoolResult && E->getCastKind() == CK_BooleanToSignedIntegral)
9424       IntResult = (uint64_t)-1;
9425     return Success(IntResult, E);
9426   }
9427 
9428   case CK_IntegralCast: {
9429     if (!Visit(SubExpr))
9430       return false;
9431 
9432     if (!Result.isInt()) {
9433       // Allow casts of address-of-label differences if they are no-ops
9434       // or narrowing.  (The narrowing case isn't actually guaranteed to
9435       // be constant-evaluatable except in some narrow cases which are hard
9436       // to detect here.  We let it through on the assumption the user knows
9437       // what they are doing.)
9438       if (Result.isAddrLabelDiff())
9439         return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
9440       // Only allow casts of lvalues if they are lossless.
9441       return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
9442     }
9443 
9444     return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
9445                                       Result.getInt()), E);
9446   }
9447 
9448   case CK_PointerToIntegral: {
9449     CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
9450 
9451     LValue LV;
9452     if (!EvaluatePointer(SubExpr, LV, Info))
9453       return false;
9454 
9455     if (LV.getLValueBase()) {
9456       // Only allow based lvalue casts if they are lossless.
9457       // FIXME: Allow a larger integer size than the pointer size, and allow
9458       // narrowing back down to pointer width in subsequent integral casts.
9459       // FIXME: Check integer type's active bits, not its type size.
9460       if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
9461         return Error(E);
9462 
9463       LV.Designator.setInvalid();
9464       LV.moveInto(Result);
9465       return true;
9466     }
9467 
9468     uint64_t V;
9469     if (LV.isNullPointer())
9470       V = Info.Ctx.getTargetNullPointerValue(SrcType);
9471     else
9472       V = LV.getLValueOffset().getQuantity();
9473 
9474     APSInt AsInt = Info.Ctx.MakeIntValue(V, SrcType);
9475     return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
9476   }
9477 
9478   case CK_IntegralComplexToReal: {
9479     ComplexValue C;
9480     if (!EvaluateComplex(SubExpr, C, Info))
9481       return false;
9482     return Success(C.getComplexIntReal(), E);
9483   }
9484 
9485   case CK_FloatingToIntegral: {
9486     APFloat F(0.0);
9487     if (!EvaluateFloat(SubExpr, F, Info))
9488       return false;
9489 
9490     APSInt Value;
9491     if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
9492       return false;
9493     return Success(Value, E);
9494   }
9495   }
9496 
9497   llvm_unreachable("unknown cast resulting in integral value");
9498 }
9499 
VisitUnaryReal(const UnaryOperator * E)9500 bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
9501   if (E->getSubExpr()->getType()->isAnyComplexType()) {
9502     ComplexValue LV;
9503     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
9504       return false;
9505     if (!LV.isComplexInt())
9506       return Error(E);
9507     return Success(LV.getComplexIntReal(), E);
9508   }
9509 
9510   return Visit(E->getSubExpr());
9511 }
9512 
VisitUnaryImag(const UnaryOperator * E)9513 bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
9514   if (E->getSubExpr()->getType()->isComplexIntegerType()) {
9515     ComplexValue LV;
9516     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
9517       return false;
9518     if (!LV.isComplexInt())
9519       return Error(E);
9520     return Success(LV.getComplexIntImag(), E);
9521   }
9522 
9523   VisitIgnoredValue(E->getSubExpr());
9524   return Success(0, E);
9525 }
9526 
VisitSizeOfPackExpr(const SizeOfPackExpr * E)9527 bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
9528   return Success(E->getPackLength(), E);
9529 }
9530 
VisitCXXNoexceptExpr(const CXXNoexceptExpr * E)9531 bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
9532   return Success(E->getValue(), E);
9533 }
9534 
VisitUnaryOperator(const UnaryOperator * E)9535 bool FixedPointExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
9536   switch (E->getOpcode()) {
9537     default:
9538       // Invalid unary operators
9539       return Error(E);
9540     case UO_Plus:
9541       // The result is just the value.
9542       return Visit(E->getSubExpr());
9543     case UO_Minus: {
9544       if (!Visit(E->getSubExpr())) return false;
9545       if (!Result.isInt()) return Error(E);
9546       const APSInt &Value = Result.getInt();
9547       if (Value.isSigned() && Value.isMinSignedValue() && E->canOverflow()) {
9548         SmallString<64> S;
9549         FixedPointValueToString(S, Value,
9550                                 Info.Ctx.getTypeInfo(E->getType()).Width,
9551                                 /*Radix=*/10);
9552         Info.CCEDiag(E, diag::note_constexpr_overflow) << S << E->getType();
9553         if (Info.noteUndefinedBehavior()) return false;
9554       }
9555       return Success(-Value, E);
9556     }
9557     case UO_LNot: {
9558       bool bres;
9559       if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
9560         return false;
9561       return Success(!bres, E);
9562     }
9563   }
9564 }
9565 
9566 //===----------------------------------------------------------------------===//
9567 // Float Evaluation
9568 //===----------------------------------------------------------------------===//
9569 
9570 namespace {
9571 class FloatExprEvaluator
9572   : public ExprEvaluatorBase<FloatExprEvaluator> {
9573   APFloat &Result;
9574 public:
FloatExprEvaluator(EvalInfo & info,APFloat & result)9575   FloatExprEvaluator(EvalInfo &info, APFloat &result)
9576     : ExprEvaluatorBaseTy(info), Result(result) {}
9577 
Success(const APValue & V,const Expr * e)9578   bool Success(const APValue &V, const Expr *e) {
9579     Result = V.getFloat();
9580     return true;
9581   }
9582 
ZeroInitialization(const Expr * E)9583   bool ZeroInitialization(const Expr *E) {
9584     Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
9585     return true;
9586   }
9587 
9588   bool VisitCallExpr(const CallExpr *E);
9589 
9590   bool VisitUnaryOperator(const UnaryOperator *E);
9591   bool VisitBinaryOperator(const BinaryOperator *E);
9592   bool VisitFloatingLiteral(const FloatingLiteral *E);
9593   bool VisitCastExpr(const CastExpr *E);
9594 
9595   bool VisitUnaryReal(const UnaryOperator *E);
9596   bool VisitUnaryImag(const UnaryOperator *E);
9597 
9598   // FIXME: Missing: array subscript of vector, member of vector
9599 };
9600 } // end anonymous namespace
9601 
EvaluateFloat(const Expr * E,APFloat & Result,EvalInfo & Info)9602 static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
9603   assert(E->isRValue() && E->getType()->isRealFloatingType());
9604   return FloatExprEvaluator(Info, Result).Visit(E);
9605 }
9606 
TryEvaluateBuiltinNaN(const ASTContext & Context,QualType ResultTy,const Expr * Arg,bool SNaN,llvm::APFloat & Result)9607 static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
9608                                   QualType ResultTy,
9609                                   const Expr *Arg,
9610                                   bool SNaN,
9611                                   llvm::APFloat &Result) {
9612   const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
9613   if (!S) return false;
9614 
9615   const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
9616 
9617   llvm::APInt fill;
9618 
9619   // Treat empty strings as if they were zero.
9620   if (S->getString().empty())
9621     fill = llvm::APInt(32, 0);
9622   else if (S->getString().getAsInteger(0, fill))
9623     return false;
9624 
9625   if (Context.getTargetInfo().isNan2008()) {
9626     if (SNaN)
9627       Result = llvm::APFloat::getSNaN(Sem, false, &fill);
9628     else
9629       Result = llvm::APFloat::getQNaN(Sem, false, &fill);
9630   } else {
9631     // Prior to IEEE 754-2008, architectures were allowed to choose whether
9632     // the first bit of their significand was set for qNaN or sNaN. MIPS chose
9633     // a different encoding to what became a standard in 2008, and for pre-
9634     // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as
9635     // sNaN. This is now known as "legacy NaN" encoding.
9636     if (SNaN)
9637       Result = llvm::APFloat::getQNaN(Sem, false, &fill);
9638     else
9639       Result = llvm::APFloat::getSNaN(Sem, false, &fill);
9640   }
9641 
9642   return true;
9643 }
9644 
VisitCallExpr(const CallExpr * E)9645 bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
9646   switch (E->getBuiltinCallee()) {
9647   default:
9648     return ExprEvaluatorBaseTy::VisitCallExpr(E);
9649 
9650   case Builtin::BI__builtin_huge_val:
9651   case Builtin::BI__builtin_huge_valf:
9652   case Builtin::BI__builtin_huge_vall:
9653   case Builtin::BI__builtin_huge_valf128:
9654   case Builtin::BI__builtin_inf:
9655   case Builtin::BI__builtin_inff:
9656   case Builtin::BI__builtin_infl:
9657   case Builtin::BI__builtin_inff128: {
9658     const llvm::fltSemantics &Sem =
9659       Info.Ctx.getFloatTypeSemantics(E->getType());
9660     Result = llvm::APFloat::getInf(Sem);
9661     return true;
9662   }
9663 
9664   case Builtin::BI__builtin_nans:
9665   case Builtin::BI__builtin_nansf:
9666   case Builtin::BI__builtin_nansl:
9667   case Builtin::BI__builtin_nansf128:
9668     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
9669                                true, Result))
9670       return Error(E);
9671     return true;
9672 
9673   case Builtin::BI__builtin_nan:
9674   case Builtin::BI__builtin_nanf:
9675   case Builtin::BI__builtin_nanl:
9676   case Builtin::BI__builtin_nanf128:
9677     // If this is __builtin_nan() turn this into a nan, otherwise we
9678     // can't constant fold it.
9679     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
9680                                false, Result))
9681       return Error(E);
9682     return true;
9683 
9684   case Builtin::BI__builtin_fabs:
9685   case Builtin::BI__builtin_fabsf:
9686   case Builtin::BI__builtin_fabsl:
9687   case Builtin::BI__builtin_fabsf128:
9688     if (!EvaluateFloat(E->getArg(0), Result, Info))
9689       return false;
9690 
9691     if (Result.isNegative())
9692       Result.changeSign();
9693     return true;
9694 
9695   // FIXME: Builtin::BI__builtin_powi
9696   // FIXME: Builtin::BI__builtin_powif
9697   // FIXME: Builtin::BI__builtin_powil
9698 
9699   case Builtin::BI__builtin_copysign:
9700   case Builtin::BI__builtin_copysignf:
9701   case Builtin::BI__builtin_copysignl:
9702   case Builtin::BI__builtin_copysignf128: {
9703     APFloat RHS(0.);
9704     if (!EvaluateFloat(E->getArg(0), Result, Info) ||
9705         !EvaluateFloat(E->getArg(1), RHS, Info))
9706       return false;
9707     Result.copySign(RHS);
9708     return true;
9709   }
9710   }
9711 }
9712 
VisitUnaryReal(const UnaryOperator * E)9713 bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
9714   if (E->getSubExpr()->getType()->isAnyComplexType()) {
9715     ComplexValue CV;
9716     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
9717       return false;
9718     Result = CV.FloatReal;
9719     return true;
9720   }
9721 
9722   return Visit(E->getSubExpr());
9723 }
9724 
VisitUnaryImag(const UnaryOperator * E)9725 bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
9726   if (E->getSubExpr()->getType()->isAnyComplexType()) {
9727     ComplexValue CV;
9728     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
9729       return false;
9730     Result = CV.FloatImag;
9731     return true;
9732   }
9733 
9734   VisitIgnoredValue(E->getSubExpr());
9735   const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
9736   Result = llvm::APFloat::getZero(Sem);
9737   return true;
9738 }
9739 
VisitUnaryOperator(const UnaryOperator * E)9740 bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
9741   switch (E->getOpcode()) {
9742   default: return Error(E);
9743   case UO_Plus:
9744     return EvaluateFloat(E->getSubExpr(), Result, Info);
9745   case UO_Minus:
9746     if (!EvaluateFloat(E->getSubExpr(), Result, Info))
9747       return false;
9748     Result.changeSign();
9749     return true;
9750   }
9751 }
9752 
VisitBinaryOperator(const BinaryOperator * E)9753 bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
9754   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
9755     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
9756 
9757   APFloat RHS(0.0);
9758   bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
9759   if (!LHSOK && !Info.noteFailure())
9760     return false;
9761   return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK &&
9762          handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS);
9763 }
9764 
VisitFloatingLiteral(const FloatingLiteral * E)9765 bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
9766   Result = E->getValue();
9767   return true;
9768 }
9769 
VisitCastExpr(const CastExpr * E)9770 bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
9771   const Expr* SubExpr = E->getSubExpr();
9772 
9773   switch (E->getCastKind()) {
9774   default:
9775     return ExprEvaluatorBaseTy::VisitCastExpr(E);
9776 
9777   case CK_IntegralToFloating: {
9778     APSInt IntResult;
9779     return EvaluateInteger(SubExpr, IntResult, Info) &&
9780            HandleIntToFloatCast(Info, E, SubExpr->getType(), IntResult,
9781                                 E->getType(), Result);
9782   }
9783 
9784   case CK_FloatingCast: {
9785     if (!Visit(SubExpr))
9786       return false;
9787     return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
9788                                   Result);
9789   }
9790 
9791   case CK_FloatingComplexToReal: {
9792     ComplexValue V;
9793     if (!EvaluateComplex(SubExpr, V, Info))
9794       return false;
9795     Result = V.getComplexFloatReal();
9796     return true;
9797   }
9798   }
9799 }
9800 
9801 //===----------------------------------------------------------------------===//
9802 // Complex Evaluation (for float and integer)
9803 //===----------------------------------------------------------------------===//
9804 
9805 namespace {
9806 class ComplexExprEvaluator
9807   : public ExprEvaluatorBase<ComplexExprEvaluator> {
9808   ComplexValue &Result;
9809 
9810 public:
ComplexExprEvaluator(EvalInfo & info,ComplexValue & Result)9811   ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
9812     : ExprEvaluatorBaseTy(info), Result(Result) {}
9813 
Success(const APValue & V,const Expr * e)9814   bool Success(const APValue &V, const Expr *e) {
9815     Result.setFrom(V);
9816     return true;
9817   }
9818 
9819   bool ZeroInitialization(const Expr *E);
9820 
9821   //===--------------------------------------------------------------------===//
9822   //                            Visitor Methods
9823   //===--------------------------------------------------------------------===//
9824 
9825   bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
9826   bool VisitCastExpr(const CastExpr *E);
9827   bool VisitBinaryOperator(const BinaryOperator *E);
9828   bool VisitUnaryOperator(const UnaryOperator *E);
9829   bool VisitInitListExpr(const InitListExpr *E);
9830 };
9831 } // end anonymous namespace
9832 
EvaluateComplex(const Expr * E,ComplexValue & Result,EvalInfo & Info)9833 static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
9834                             EvalInfo &Info) {
9835   assert(E->isRValue() && E->getType()->isAnyComplexType());
9836   return ComplexExprEvaluator(Info, Result).Visit(E);
9837 }
9838 
ZeroInitialization(const Expr * E)9839 bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
9840   QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
9841   if (ElemTy->isRealFloatingType()) {
9842     Result.makeComplexFloat();
9843     APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
9844     Result.FloatReal = Zero;
9845     Result.FloatImag = Zero;
9846   } else {
9847     Result.makeComplexInt();
9848     APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
9849     Result.IntReal = Zero;
9850     Result.IntImag = Zero;
9851   }
9852   return true;
9853 }
9854 
VisitImaginaryLiteral(const ImaginaryLiteral * E)9855 bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
9856   const Expr* SubExpr = E->getSubExpr();
9857 
9858   if (SubExpr->getType()->isRealFloatingType()) {
9859     Result.makeComplexFloat();
9860     APFloat &Imag = Result.FloatImag;
9861     if (!EvaluateFloat(SubExpr, Imag, Info))
9862       return false;
9863 
9864     Result.FloatReal = APFloat(Imag.getSemantics());
9865     return true;
9866   } else {
9867     assert(SubExpr->getType()->isIntegerType() &&
9868            "Unexpected imaginary literal.");
9869 
9870     Result.makeComplexInt();
9871     APSInt &Imag = Result.IntImag;
9872     if (!EvaluateInteger(SubExpr, Imag, Info))
9873       return false;
9874 
9875     Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
9876     return true;
9877   }
9878 }
9879 
VisitCastExpr(const CastExpr * E)9880 bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
9881 
9882   switch (E->getCastKind()) {
9883   case CK_BitCast:
9884   case CK_BaseToDerived:
9885   case CK_DerivedToBase:
9886   case CK_UncheckedDerivedToBase:
9887   case CK_Dynamic:
9888   case CK_ToUnion:
9889   case CK_ArrayToPointerDecay:
9890   case CK_FunctionToPointerDecay:
9891   case CK_NullToPointer:
9892   case CK_NullToMemberPointer:
9893   case CK_BaseToDerivedMemberPointer:
9894   case CK_DerivedToBaseMemberPointer:
9895   case CK_MemberPointerToBoolean:
9896   case CK_ReinterpretMemberPointer:
9897   case CK_ConstructorConversion:
9898   case CK_IntegralToPointer:
9899   case CK_PointerToIntegral:
9900   case CK_PointerToBoolean:
9901   case CK_ToVoid:
9902   case CK_VectorSplat:
9903   case CK_IntegralCast:
9904   case CK_BooleanToSignedIntegral:
9905   case CK_IntegralToBoolean:
9906   case CK_IntegralToFloating:
9907   case CK_FloatingToIntegral:
9908   case CK_FloatingToBoolean:
9909   case CK_FloatingCast:
9910   case CK_CPointerToObjCPointerCast:
9911   case CK_BlockPointerToObjCPointerCast:
9912   case CK_AnyPointerToBlockPointerCast:
9913   case CK_ObjCObjectLValueCast:
9914   case CK_FloatingComplexToReal:
9915   case CK_FloatingComplexToBoolean:
9916   case CK_IntegralComplexToReal:
9917   case CK_IntegralComplexToBoolean:
9918   case CK_ARCProduceObject:
9919   case CK_ARCConsumeObject:
9920   case CK_ARCReclaimReturnedObject:
9921   case CK_ARCExtendBlockObject:
9922   case CK_CopyAndAutoreleaseBlockObject:
9923   case CK_BuiltinFnToFnPtr:
9924   case CK_ZeroToOCLEvent:
9925   case CK_ZeroToOCLQueue:
9926   case CK_NonAtomicToAtomic:
9927   case CK_AddressSpaceConversion:
9928   case CK_IntToOCLSampler:
9929     llvm_unreachable("invalid cast kind for complex value");
9930 
9931   case CK_LValueToRValue:
9932   case CK_AtomicToNonAtomic:
9933   case CK_NoOp:
9934     return ExprEvaluatorBaseTy::VisitCastExpr(E);
9935 
9936   case CK_Dependent:
9937   case CK_LValueBitCast:
9938   case CK_UserDefinedConversion:
9939     return Error(E);
9940 
9941   case CK_FloatingRealToComplex: {
9942     APFloat &Real = Result.FloatReal;
9943     if (!EvaluateFloat(E->getSubExpr(), Real, Info))
9944       return false;
9945 
9946     Result.makeComplexFloat();
9947     Result.FloatImag = APFloat(Real.getSemantics());
9948     return true;
9949   }
9950 
9951   case CK_FloatingComplexCast: {
9952     if (!Visit(E->getSubExpr()))
9953       return false;
9954 
9955     QualType To = E->getType()->getAs<ComplexType>()->getElementType();
9956     QualType From
9957       = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
9958 
9959     return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
9960            HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
9961   }
9962 
9963   case CK_FloatingComplexToIntegralComplex: {
9964     if (!Visit(E->getSubExpr()))
9965       return false;
9966 
9967     QualType To = E->getType()->getAs<ComplexType>()->getElementType();
9968     QualType From
9969       = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
9970     Result.makeComplexInt();
9971     return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
9972                                 To, Result.IntReal) &&
9973            HandleFloatToIntCast(Info, E, From, Result.FloatImag,
9974                                 To, Result.IntImag);
9975   }
9976 
9977   case CK_IntegralRealToComplex: {
9978     APSInt &Real = Result.IntReal;
9979     if (!EvaluateInteger(E->getSubExpr(), Real, Info))
9980       return false;
9981 
9982     Result.makeComplexInt();
9983     Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
9984     return true;
9985   }
9986 
9987   case CK_IntegralComplexCast: {
9988     if (!Visit(E->getSubExpr()))
9989       return false;
9990 
9991     QualType To = E->getType()->getAs<ComplexType>()->getElementType();
9992     QualType From
9993       = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
9994 
9995     Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
9996     Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
9997     return true;
9998   }
9999 
10000   case CK_IntegralComplexToFloatingComplex: {
10001     if (!Visit(E->getSubExpr()))
10002       return false;
10003 
10004     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
10005     QualType From
10006       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
10007     Result.makeComplexFloat();
10008     return HandleIntToFloatCast(Info, E, From, Result.IntReal,
10009                                 To, Result.FloatReal) &&
10010            HandleIntToFloatCast(Info, E, From, Result.IntImag,
10011                                 To, Result.FloatImag);
10012   }
10013   }
10014 
10015   llvm_unreachable("unknown cast resulting in complex value");
10016 }
10017 
VisitBinaryOperator(const BinaryOperator * E)10018 bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
10019   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
10020     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
10021 
10022   // Track whether the LHS or RHS is real at the type system level. When this is
10023   // the case we can simplify our evaluation strategy.
10024   bool LHSReal = false, RHSReal = false;
10025 
10026   bool LHSOK;
10027   if (E->getLHS()->getType()->isRealFloatingType()) {
10028     LHSReal = true;
10029     APFloat &Real = Result.FloatReal;
10030     LHSOK = EvaluateFloat(E->getLHS(), Real, Info);
10031     if (LHSOK) {
10032       Result.makeComplexFloat();
10033       Result.FloatImag = APFloat(Real.getSemantics());
10034     }
10035   } else {
10036     LHSOK = Visit(E->getLHS());
10037   }
10038   if (!LHSOK && !Info.noteFailure())
10039     return false;
10040 
10041   ComplexValue RHS;
10042   if (E->getRHS()->getType()->isRealFloatingType()) {
10043     RHSReal = true;
10044     APFloat &Real = RHS.FloatReal;
10045     if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK)
10046       return false;
10047     RHS.makeComplexFloat();
10048     RHS.FloatImag = APFloat(Real.getSemantics());
10049   } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
10050     return false;
10051 
10052   assert(!(LHSReal && RHSReal) &&
10053          "Cannot have both operands of a complex operation be real.");
10054   switch (E->getOpcode()) {
10055   default: return Error(E);
10056   case BO_Add:
10057     if (Result.isComplexFloat()) {
10058       Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
10059                                        APFloat::rmNearestTiesToEven);
10060       if (LHSReal)
10061         Result.getComplexFloatImag() = RHS.getComplexFloatImag();
10062       else if (!RHSReal)
10063         Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
10064                                          APFloat::rmNearestTiesToEven);
10065     } else {
10066       Result.getComplexIntReal() += RHS.getComplexIntReal();
10067       Result.getComplexIntImag() += RHS.getComplexIntImag();
10068     }
10069     break;
10070   case BO_Sub:
10071     if (Result.isComplexFloat()) {
10072       Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
10073                                             APFloat::rmNearestTiesToEven);
10074       if (LHSReal) {
10075         Result.getComplexFloatImag() = RHS.getComplexFloatImag();
10076         Result.getComplexFloatImag().changeSign();
10077       } else if (!RHSReal) {
10078         Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
10079                                               APFloat::rmNearestTiesToEven);
10080       }
10081     } else {
10082       Result.getComplexIntReal() -= RHS.getComplexIntReal();
10083       Result.getComplexIntImag() -= RHS.getComplexIntImag();
10084     }
10085     break;
10086   case BO_Mul:
10087     if (Result.isComplexFloat()) {
10088       // This is an implementation of complex multiplication according to the
10089       // constraints laid out in C11 Annex G. The implemention uses the
10090       // following naming scheme:
10091       //   (a + ib) * (c + id)
10092       ComplexValue LHS = Result;
10093       APFloat &A = LHS.getComplexFloatReal();
10094       APFloat &B = LHS.getComplexFloatImag();
10095       APFloat &C = RHS.getComplexFloatReal();
10096       APFloat &D = RHS.getComplexFloatImag();
10097       APFloat &ResR = Result.getComplexFloatReal();
10098       APFloat &ResI = Result.getComplexFloatImag();
10099       if (LHSReal) {
10100         assert(!RHSReal && "Cannot have two real operands for a complex op!");
10101         ResR = A * C;
10102         ResI = A * D;
10103       } else if (RHSReal) {
10104         ResR = C * A;
10105         ResI = C * B;
10106       } else {
10107         // In the fully general case, we need to handle NaNs and infinities
10108         // robustly.
10109         APFloat AC = A * C;
10110         APFloat BD = B * D;
10111         APFloat AD = A * D;
10112         APFloat BC = B * C;
10113         ResR = AC - BD;
10114         ResI = AD + BC;
10115         if (ResR.isNaN() && ResI.isNaN()) {
10116           bool Recalc = false;
10117           if (A.isInfinity() || B.isInfinity()) {
10118             A = APFloat::copySign(
10119                 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
10120             B = APFloat::copySign(
10121                 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
10122             if (C.isNaN())
10123               C = APFloat::copySign(APFloat(C.getSemantics()), C);
10124             if (D.isNaN())
10125               D = APFloat::copySign(APFloat(D.getSemantics()), D);
10126             Recalc = true;
10127           }
10128           if (C.isInfinity() || D.isInfinity()) {
10129             C = APFloat::copySign(
10130                 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
10131             D = APFloat::copySign(
10132                 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
10133             if (A.isNaN())
10134               A = APFloat::copySign(APFloat(A.getSemantics()), A);
10135             if (B.isNaN())
10136               B = APFloat::copySign(APFloat(B.getSemantics()), B);
10137             Recalc = true;
10138           }
10139           if (!Recalc && (AC.isInfinity() || BD.isInfinity() ||
10140                           AD.isInfinity() || BC.isInfinity())) {
10141             if (A.isNaN())
10142               A = APFloat::copySign(APFloat(A.getSemantics()), A);
10143             if (B.isNaN())
10144               B = APFloat::copySign(APFloat(B.getSemantics()), B);
10145             if (C.isNaN())
10146               C = APFloat::copySign(APFloat(C.getSemantics()), C);
10147             if (D.isNaN())
10148               D = APFloat::copySign(APFloat(D.getSemantics()), D);
10149             Recalc = true;
10150           }
10151           if (Recalc) {
10152             ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D);
10153             ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C);
10154           }
10155         }
10156       }
10157     } else {
10158       ComplexValue LHS = Result;
10159       Result.getComplexIntReal() =
10160         (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
10161          LHS.getComplexIntImag() * RHS.getComplexIntImag());
10162       Result.getComplexIntImag() =
10163         (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
10164          LHS.getComplexIntImag() * RHS.getComplexIntReal());
10165     }
10166     break;
10167   case BO_Div:
10168     if (Result.isComplexFloat()) {
10169       // This is an implementation of complex division according to the
10170       // constraints laid out in C11 Annex G. The implemention uses the
10171       // following naming scheme:
10172       //   (a + ib) / (c + id)
10173       ComplexValue LHS = Result;
10174       APFloat &A = LHS.getComplexFloatReal();
10175       APFloat &B = LHS.getComplexFloatImag();
10176       APFloat &C = RHS.getComplexFloatReal();
10177       APFloat &D = RHS.getComplexFloatImag();
10178       APFloat &ResR = Result.getComplexFloatReal();
10179       APFloat &ResI = Result.getComplexFloatImag();
10180       if (RHSReal) {
10181         ResR = A / C;
10182         ResI = B / C;
10183       } else {
10184         if (LHSReal) {
10185           // No real optimizations we can do here, stub out with zero.
10186           B = APFloat::getZero(A.getSemantics());
10187         }
10188         int DenomLogB = 0;
10189         APFloat MaxCD = maxnum(abs(C), abs(D));
10190         if (MaxCD.isFinite()) {
10191           DenomLogB = ilogb(MaxCD);
10192           C = scalbn(C, -DenomLogB, APFloat::rmNearestTiesToEven);
10193           D = scalbn(D, -DenomLogB, APFloat::rmNearestTiesToEven);
10194         }
10195         APFloat Denom = C * C + D * D;
10196         ResR = scalbn((A * C + B * D) / Denom, -DenomLogB,
10197                       APFloat::rmNearestTiesToEven);
10198         ResI = scalbn((B * C - A * D) / Denom, -DenomLogB,
10199                       APFloat::rmNearestTiesToEven);
10200         if (ResR.isNaN() && ResI.isNaN()) {
10201           if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) {
10202             ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A;
10203             ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B;
10204           } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() &&
10205                      D.isFinite()) {
10206             A = APFloat::copySign(
10207                 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
10208             B = APFloat::copySign(
10209                 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
10210             ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D);
10211             ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D);
10212           } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) {
10213             C = APFloat::copySign(
10214                 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
10215             D = APFloat::copySign(
10216                 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
10217             ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D);
10218             ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D);
10219           }
10220         }
10221       }
10222     } else {
10223       if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
10224         return Error(E, diag::note_expr_divide_by_zero);
10225 
10226       ComplexValue LHS = Result;
10227       APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
10228         RHS.getComplexIntImag() * RHS.getComplexIntImag();
10229       Result.getComplexIntReal() =
10230         (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
10231          LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
10232       Result.getComplexIntImag() =
10233         (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
10234          LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
10235     }
10236     break;
10237   }
10238 
10239   return true;
10240 }
10241 
VisitUnaryOperator(const UnaryOperator * E)10242 bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
10243   // Get the operand value into 'Result'.
10244   if (!Visit(E->getSubExpr()))
10245     return false;
10246 
10247   switch (E->getOpcode()) {
10248   default:
10249     return Error(E);
10250   case UO_Extension:
10251     return true;
10252   case UO_Plus:
10253     // The result is always just the subexpr.
10254     return true;
10255   case UO_Minus:
10256     if (Result.isComplexFloat()) {
10257       Result.getComplexFloatReal().changeSign();
10258       Result.getComplexFloatImag().changeSign();
10259     }
10260     else {
10261       Result.getComplexIntReal() = -Result.getComplexIntReal();
10262       Result.getComplexIntImag() = -Result.getComplexIntImag();
10263     }
10264     return true;
10265   case UO_Not:
10266     if (Result.isComplexFloat())
10267       Result.getComplexFloatImag().changeSign();
10268     else
10269       Result.getComplexIntImag() = -Result.getComplexIntImag();
10270     return true;
10271   }
10272 }
10273 
VisitInitListExpr(const InitListExpr * E)10274 bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
10275   if (E->getNumInits() == 2) {
10276     if (E->getType()->isComplexType()) {
10277       Result.makeComplexFloat();
10278       if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
10279         return false;
10280       if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
10281         return false;
10282     } else {
10283       Result.makeComplexInt();
10284       if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
10285         return false;
10286       if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
10287         return false;
10288     }
10289     return true;
10290   }
10291   return ExprEvaluatorBaseTy::VisitInitListExpr(E);
10292 }
10293 
10294 //===----------------------------------------------------------------------===//
10295 // Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
10296 // implicit conversion.
10297 //===----------------------------------------------------------------------===//
10298 
10299 namespace {
10300 class AtomicExprEvaluator :
10301     public ExprEvaluatorBase<AtomicExprEvaluator> {
10302   const LValue *This;
10303   APValue &Result;
10304 public:
AtomicExprEvaluator(EvalInfo & Info,const LValue * This,APValue & Result)10305   AtomicExprEvaluator(EvalInfo &Info, const LValue *This, APValue &Result)
10306       : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
10307 
Success(const APValue & V,const Expr * E)10308   bool Success(const APValue &V, const Expr *E) {
10309     Result = V;
10310     return true;
10311   }
10312 
ZeroInitialization(const Expr * E)10313   bool ZeroInitialization(const Expr *E) {
10314     ImplicitValueInitExpr VIE(
10315         E->getType()->castAs<AtomicType>()->getValueType());
10316     // For atomic-qualified class (and array) types in C++, initialize the
10317     // _Atomic-wrapped subobject directly, in-place.
10318     return This ? EvaluateInPlace(Result, Info, *This, &VIE)
10319                 : Evaluate(Result, Info, &VIE);
10320   }
10321 
VisitCastExpr(const CastExpr * E)10322   bool VisitCastExpr(const CastExpr *E) {
10323     switch (E->getCastKind()) {
10324     default:
10325       return ExprEvaluatorBaseTy::VisitCastExpr(E);
10326     case CK_NonAtomicToAtomic:
10327       return This ? EvaluateInPlace(Result, Info, *This, E->getSubExpr())
10328                   : Evaluate(Result, Info, E->getSubExpr());
10329     }
10330   }
10331 };
10332 } // end anonymous namespace
10333 
EvaluateAtomic(const Expr * E,const LValue * This,APValue & Result,EvalInfo & Info)10334 static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
10335                            EvalInfo &Info) {
10336   assert(E->isRValue() && E->getType()->isAtomicType());
10337   return AtomicExprEvaluator(Info, This, Result).Visit(E);
10338 }
10339 
10340 //===----------------------------------------------------------------------===//
10341 // Void expression evaluation, primarily for a cast to void on the LHS of a
10342 // comma operator
10343 //===----------------------------------------------------------------------===//
10344 
10345 namespace {
10346 class VoidExprEvaluator
10347   : public ExprEvaluatorBase<VoidExprEvaluator> {
10348 public:
VoidExprEvaluator(EvalInfo & Info)10349   VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
10350 
Success(const APValue & V,const Expr * e)10351   bool Success(const APValue &V, const Expr *e) { return true; }
10352 
ZeroInitialization(const Expr * E)10353   bool ZeroInitialization(const Expr *E) { return true; }
10354 
VisitCastExpr(const CastExpr * E)10355   bool VisitCastExpr(const CastExpr *E) {
10356     switch (E->getCastKind()) {
10357     default:
10358       return ExprEvaluatorBaseTy::VisitCastExpr(E);
10359     case CK_ToVoid:
10360       VisitIgnoredValue(E->getSubExpr());
10361       return true;
10362     }
10363   }
10364 
VisitCallExpr(const CallExpr * E)10365   bool VisitCallExpr(const CallExpr *E) {
10366     switch (E->getBuiltinCallee()) {
10367     default:
10368       return ExprEvaluatorBaseTy::VisitCallExpr(E);
10369     case Builtin::BI__assume:
10370     case Builtin::BI__builtin_assume:
10371       // The argument is not evaluated!
10372       return true;
10373     }
10374   }
10375 };
10376 } // end anonymous namespace
10377 
EvaluateVoid(const Expr * E,EvalInfo & Info)10378 static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
10379   assert(E->isRValue() && E->getType()->isVoidType());
10380   return VoidExprEvaluator(Info).Visit(E);
10381 }
10382 
10383 //===----------------------------------------------------------------------===//
10384 // Top level Expr::EvaluateAsRValue method.
10385 //===----------------------------------------------------------------------===//
10386 
Evaluate(APValue & Result,EvalInfo & Info,const Expr * E)10387 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
10388   // In C, function designators are not lvalues, but we evaluate them as if they
10389   // are.
10390   QualType T = E->getType();
10391   if (E->isGLValue() || T->isFunctionType()) {
10392     LValue LV;
10393     if (!EvaluateLValue(E, LV, Info))
10394       return false;
10395     LV.moveInto(Result);
10396   } else if (T->isVectorType()) {
10397     if (!EvaluateVector(E, Result, Info))
10398       return false;
10399   } else if (T->isIntegralOrEnumerationType()) {
10400     if (!IntExprEvaluator(Info, Result).Visit(E))
10401       return false;
10402   } else if (T->hasPointerRepresentation()) {
10403     LValue LV;
10404     if (!EvaluatePointer(E, LV, Info))
10405       return false;
10406     LV.moveInto(Result);
10407   } else if (T->isRealFloatingType()) {
10408     llvm::APFloat F(0.0);
10409     if (!EvaluateFloat(E, F, Info))
10410       return false;
10411     Result = APValue(F);
10412   } else if (T->isAnyComplexType()) {
10413     ComplexValue C;
10414     if (!EvaluateComplex(E, C, Info))
10415       return false;
10416     C.moveInto(Result);
10417   } else if (T->isFixedPointType()) {
10418     if (!FixedPointExprEvaluator(Info, Result).Visit(E)) return false;
10419   } else if (T->isMemberPointerType()) {
10420     MemberPtr P;
10421     if (!EvaluateMemberPointer(E, P, Info))
10422       return false;
10423     P.moveInto(Result);
10424     return true;
10425   } else if (T->isArrayType()) {
10426     LValue LV;
10427     APValue &Value = createTemporary(E, false, LV, *Info.CurrentCall);
10428     if (!EvaluateArray(E, LV, Value, Info))
10429       return false;
10430     Result = Value;
10431   } else if (T->isRecordType()) {
10432     LValue LV;
10433     APValue &Value = createTemporary(E, false, LV, *Info.CurrentCall);
10434     if (!EvaluateRecord(E, LV, Value, Info))
10435       return false;
10436     Result = Value;
10437   } else if (T->isVoidType()) {
10438     if (!Info.getLangOpts().CPlusPlus11)
10439       Info.CCEDiag(E, diag::note_constexpr_nonliteral)
10440         << E->getType();
10441     if (!EvaluateVoid(E, Info))
10442       return false;
10443   } else if (T->isAtomicType()) {
10444     QualType Unqual = T.getAtomicUnqualifiedType();
10445     if (Unqual->isArrayType() || Unqual->isRecordType()) {
10446       LValue LV;
10447       APValue &Value = createTemporary(E, false, LV, *Info.CurrentCall);
10448       if (!EvaluateAtomic(E, &LV, Value, Info))
10449         return false;
10450     } else {
10451       if (!EvaluateAtomic(E, nullptr, Result, Info))
10452         return false;
10453     }
10454   } else if (Info.getLangOpts().CPlusPlus11) {
10455     Info.FFDiag(E, diag::note_constexpr_nonliteral) << E->getType();
10456     return false;
10457   } else {
10458     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
10459     return false;
10460   }
10461 
10462   return true;
10463 }
10464 
10465 /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
10466 /// cases, the in-place evaluation is essential, since later initializers for
10467 /// an object can indirectly refer to subobjects which were initialized earlier.
EvaluateInPlace(APValue & Result,EvalInfo & Info,const LValue & This,const Expr * E,bool AllowNonLiteralTypes)10468 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
10469                             const Expr *E, bool AllowNonLiteralTypes) {
10470   assert(!E->isValueDependent());
10471 
10472   if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This))
10473     return false;
10474 
10475   if (E->isRValue()) {
10476     // Evaluate arrays and record types in-place, so that later initializers can
10477     // refer to earlier-initialized members of the object.
10478     QualType T = E->getType();
10479     if (T->isArrayType())
10480       return EvaluateArray(E, This, Result, Info);
10481     else if (T->isRecordType())
10482       return EvaluateRecord(E, This, Result, Info);
10483     else if (T->isAtomicType()) {
10484       QualType Unqual = T.getAtomicUnqualifiedType();
10485       if (Unqual->isArrayType() || Unqual->isRecordType())
10486         return EvaluateAtomic(E, &This, Result, Info);
10487     }
10488   }
10489 
10490   // For any other type, in-place evaluation is unimportant.
10491   return Evaluate(Result, Info, E);
10492 }
10493 
10494 /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
10495 /// lvalue-to-rvalue cast if it is an lvalue.
EvaluateAsRValue(EvalInfo & Info,const Expr * E,APValue & Result)10496 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
10497   if (E->getType().isNull())
10498     return false;
10499 
10500   if (!CheckLiteralType(Info, E))
10501     return false;
10502 
10503   if (!::Evaluate(Result, Info, E))
10504     return false;
10505 
10506   if (E->isGLValue()) {
10507     LValue LV;
10508     LV.setFrom(Info.Ctx, Result);
10509     if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
10510       return false;
10511   }
10512 
10513   // Check this core constant expression is a constant expression.
10514   return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result);
10515 }
10516 
FastEvaluateAsRValue(const Expr * Exp,Expr::EvalResult & Result,const ASTContext & Ctx,bool & IsConst)10517 static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
10518                                  const ASTContext &Ctx, bool &IsConst) {
10519   // Fast-path evaluations of integer literals, since we sometimes see files
10520   // containing vast quantities of these.
10521   if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
10522     Result.Val = APValue(APSInt(L->getValue(),
10523                                 L->getType()->isUnsignedIntegerType()));
10524     IsConst = true;
10525     return true;
10526   }
10527 
10528   // This case should be rare, but we need to check it before we check on
10529   // the type below.
10530   if (Exp->getType().isNull()) {
10531     IsConst = false;
10532     return true;
10533   }
10534 
10535   // FIXME: Evaluating values of large array and record types can cause
10536   // performance problems. Only do so in C++11 for now.
10537   if (Exp->isRValue() && (Exp->getType()->isArrayType() ||
10538                           Exp->getType()->isRecordType()) &&
10539       !Ctx.getLangOpts().CPlusPlus11) {
10540     IsConst = false;
10541     return true;
10542   }
10543   return false;
10544 }
10545 
10546 
10547 /// EvaluateAsRValue - Return true if this is a constant which we can fold using
10548 /// any crazy technique (that has nothing to do with language standards) that
10549 /// we want to.  If this function returns true, it returns the folded constant
10550 /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
10551 /// will be applied to the result.
EvaluateAsRValue(EvalResult & Result,const ASTContext & Ctx) const10552 bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const {
10553   bool IsConst;
10554   if (FastEvaluateAsRValue(this, Result, Ctx, IsConst))
10555     return IsConst;
10556 
10557   EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
10558   return ::EvaluateAsRValue(Info, this, Result.Val);
10559 }
10560 
EvaluateAsBooleanCondition(bool & Result,const ASTContext & Ctx) const10561 bool Expr::EvaluateAsBooleanCondition(bool &Result,
10562                                       const ASTContext &Ctx) const {
10563   EvalResult Scratch;
10564   return EvaluateAsRValue(Scratch, Ctx) &&
10565          HandleConversionToBool(Scratch.Val, Result);
10566 }
10567 
hasUnacceptableSideEffect(Expr::EvalStatus & Result,Expr::SideEffectsKind SEK)10568 static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result,
10569                                       Expr::SideEffectsKind SEK) {
10570   return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) ||
10571          (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior);
10572 }
10573 
EvaluateAsInt(APSInt & Result,const ASTContext & Ctx,SideEffectsKind AllowSideEffects) const10574 bool Expr::EvaluateAsInt(APSInt &Result, const ASTContext &Ctx,
10575                          SideEffectsKind AllowSideEffects) const {
10576   if (!getType()->isIntegralOrEnumerationType())
10577     return false;
10578 
10579   EvalResult ExprResult;
10580   if (!EvaluateAsRValue(ExprResult, Ctx) || !ExprResult.Val.isInt() ||
10581       hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
10582     return false;
10583 
10584   Result = ExprResult.Val.getInt();
10585   return true;
10586 }
10587 
EvaluateAsFloat(APFloat & Result,const ASTContext & Ctx,SideEffectsKind AllowSideEffects) const10588 bool Expr::EvaluateAsFloat(APFloat &Result, const ASTContext &Ctx,
10589                            SideEffectsKind AllowSideEffects) const {
10590   if (!getType()->isRealFloatingType())
10591     return false;
10592 
10593   EvalResult ExprResult;
10594   if (!EvaluateAsRValue(ExprResult, Ctx) || !ExprResult.Val.isFloat() ||
10595       hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
10596     return false;
10597 
10598   Result = ExprResult.Val.getFloat();
10599   return true;
10600 }
10601 
EvaluateAsLValue(EvalResult & Result,const ASTContext & Ctx) const10602 bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const {
10603   EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold);
10604 
10605   LValue LV;
10606   if (!EvaluateLValue(this, LV, Info) || Result.HasSideEffects ||
10607       !CheckLValueConstantExpression(Info, getExprLoc(),
10608                                      Ctx.getLValueReferenceType(getType()), LV,
10609                                      Expr::EvaluateForCodeGen))
10610     return false;
10611 
10612   LV.moveInto(Result.Val);
10613   return true;
10614 }
10615 
EvaluateAsConstantExpr(EvalResult & Result,ConstExprUsage Usage,const ASTContext & Ctx) const10616 bool Expr::EvaluateAsConstantExpr(EvalResult &Result, ConstExprUsage Usage,
10617                                   const ASTContext &Ctx) const {
10618   EvalInfo::EvaluationMode EM = EvalInfo::EM_ConstantExpression;
10619   EvalInfo Info(Ctx, Result, EM);
10620   if (!::Evaluate(Result.Val, Info, this))
10621     return false;
10622 
10623   return CheckConstantExpression(Info, getExprLoc(), getType(), Result.Val,
10624                                  Usage);
10625 }
10626 
EvaluateAsInitializer(APValue & Value,const ASTContext & Ctx,const VarDecl * VD,SmallVectorImpl<PartialDiagnosticAt> & Notes) const10627 bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
10628                                  const VarDecl *VD,
10629                             SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
10630   // FIXME: Evaluating initializers for large array and record types can cause
10631   // performance problems. Only do so in C++11 for now.
10632   if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
10633       !Ctx.getLangOpts().CPlusPlus11)
10634     return false;
10635 
10636   Expr::EvalStatus EStatus;
10637   EStatus.Diag = &Notes;
10638 
10639   EvalInfo InitInfo(Ctx, EStatus, VD->isConstexpr()
10640                                       ? EvalInfo::EM_ConstantExpression
10641                                       : EvalInfo::EM_ConstantFold);
10642   InitInfo.setEvaluatingDecl(VD, Value);
10643 
10644   LValue LVal;
10645   LVal.set(VD);
10646 
10647   // C++11 [basic.start.init]p2:
10648   //  Variables with static storage duration or thread storage duration shall be
10649   //  zero-initialized before any other initialization takes place.
10650   // This behavior is not present in C.
10651   if (Ctx.getLangOpts().CPlusPlus && !VD->hasLocalStorage() &&
10652       !VD->getType()->isReferenceType()) {
10653     ImplicitValueInitExpr VIE(VD->getType());
10654     if (!EvaluateInPlace(Value, InitInfo, LVal, &VIE,
10655                          /*AllowNonLiteralTypes=*/true))
10656       return false;
10657   }
10658 
10659   if (!EvaluateInPlace(Value, InitInfo, LVal, this,
10660                        /*AllowNonLiteralTypes=*/true) ||
10661       EStatus.HasSideEffects)
10662     return false;
10663 
10664   return CheckConstantExpression(InitInfo, VD->getLocation(), VD->getType(),
10665                                  Value);
10666 }
10667 
10668 /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
10669 /// constant folded, but discard the result.
isEvaluatable(const ASTContext & Ctx,SideEffectsKind SEK) const10670 bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const {
10671   EvalResult Result;
10672   return EvaluateAsRValue(Result, Ctx) &&
10673          !hasUnacceptableSideEffect(Result, SEK);
10674 }
10675 
EvaluateKnownConstInt(const ASTContext & Ctx,SmallVectorImpl<PartialDiagnosticAt> * Diag) const10676 APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
10677                     SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
10678   EvalResult EvalResult;
10679   EvalResult.Diag = Diag;
10680   bool Result = EvaluateAsRValue(EvalResult, Ctx);
10681   (void)Result;
10682   assert(Result && "Could not evaluate expression");
10683   assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer");
10684 
10685   return EvalResult.Val.getInt();
10686 }
10687 
EvaluateForOverflow(const ASTContext & Ctx) const10688 void Expr::EvaluateForOverflow(const ASTContext &Ctx) const {
10689   bool IsConst;
10690   EvalResult EvalResult;
10691   if (!FastEvaluateAsRValue(this, EvalResult, Ctx, IsConst)) {
10692     EvalInfo Info(Ctx, EvalResult, EvalInfo::EM_EvaluateForOverflow);
10693     (void)::EvaluateAsRValue(Info, this, EvalResult.Val);
10694   }
10695 }
10696 
isGlobalLValue() const10697 bool Expr::EvalResult::isGlobalLValue() const {
10698   assert(Val.isLValue());
10699   return IsGlobalLValue(Val.getLValueBase());
10700 }
10701 
10702 
10703 /// isIntegerConstantExpr - this recursive routine will test if an expression is
10704 /// an integer constant expression.
10705 
10706 /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
10707 /// comma, etc
10708 
10709 // CheckICE - This function does the fundamental ICE checking: the returned
10710 // ICEDiag contains an ICEKind indicating whether the expression is an ICE,
10711 // and a (possibly null) SourceLocation indicating the location of the problem.
10712 //
10713 // Note that to reduce code duplication, this helper does no evaluation
10714 // itself; the caller checks whether the expression is evaluatable, and
10715 // in the rare cases where CheckICE actually cares about the evaluated
10716 // value, it calls into Evaluate.
10717 
10718 namespace {
10719 
10720 enum ICEKind {
10721   /// This expression is an ICE.
10722   IK_ICE,
10723   /// This expression is not an ICE, but if it isn't evaluated, it's
10724   /// a legal subexpression for an ICE. This return value is used to handle
10725   /// the comma operator in C99 mode, and non-constant subexpressions.
10726   IK_ICEIfUnevaluated,
10727   /// This expression is not an ICE, and is not a legal subexpression for one.
10728   IK_NotICE
10729 };
10730 
10731 struct ICEDiag {
10732   ICEKind Kind;
10733   SourceLocation Loc;
10734 
ICEDiag__anon2dd07ee62511::ICEDiag10735   ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
10736 };
10737 
10738 }
10739 
NoDiag()10740 static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
10741 
Worst(ICEDiag A,ICEDiag B)10742 static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
10743 
CheckEvalInICE(const Expr * E,const ASTContext & Ctx)10744 static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) {
10745   Expr::EvalResult EVResult;
10746   if (!E->EvaluateAsRValue(EVResult, Ctx) || EVResult.HasSideEffects ||
10747       !EVResult.Val.isInt())
10748     return ICEDiag(IK_NotICE, E->getLocStart());
10749 
10750   return NoDiag();
10751 }
10752 
CheckICE(const Expr * E,const ASTContext & Ctx)10753 static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) {
10754   assert(!E->isValueDependent() && "Should not see value dependent exprs!");
10755   if (!E->getType()->isIntegralOrEnumerationType())
10756     return ICEDiag(IK_NotICE, E->getLocStart());
10757 
10758   switch (E->getStmtClass()) {
10759 #define ABSTRACT_STMT(Node)
10760 #define STMT(Node, Base) case Expr::Node##Class:
10761 #define EXPR(Node, Base)
10762 #include "clang/AST/StmtNodes.inc"
10763   case Expr::PredefinedExprClass:
10764   case Expr::FloatingLiteralClass:
10765   case Expr::ImaginaryLiteralClass:
10766   case Expr::StringLiteralClass:
10767   case Expr::ArraySubscriptExprClass:
10768   case Expr::OMPArraySectionExprClass:
10769   case Expr::MemberExprClass:
10770   case Expr::CompoundAssignOperatorClass:
10771   case Expr::CompoundLiteralExprClass:
10772   case Expr::ExtVectorElementExprClass:
10773   case Expr::DesignatedInitExprClass:
10774   case Expr::ArrayInitLoopExprClass:
10775   case Expr::ArrayInitIndexExprClass:
10776   case Expr::NoInitExprClass:
10777   case Expr::DesignatedInitUpdateExprClass:
10778   case Expr::ImplicitValueInitExprClass:
10779   case Expr::ParenListExprClass:
10780   case Expr::VAArgExprClass:
10781   case Expr::AddrLabelExprClass:
10782   case Expr::StmtExprClass:
10783   case Expr::CXXMemberCallExprClass:
10784   case Expr::CUDAKernelCallExprClass:
10785   case Expr::CXXDynamicCastExprClass:
10786   case Expr::CXXTypeidExprClass:
10787   case Expr::CXXUuidofExprClass:
10788   case Expr::MSPropertyRefExprClass:
10789   case Expr::MSPropertySubscriptExprClass:
10790   case Expr::CXXNullPtrLiteralExprClass:
10791   case Expr::UserDefinedLiteralClass:
10792   case Expr::CXXThisExprClass:
10793   case Expr::CXXThrowExprClass:
10794   case Expr::CXXNewExprClass:
10795   case Expr::CXXDeleteExprClass:
10796   case Expr::CXXPseudoDestructorExprClass:
10797   case Expr::UnresolvedLookupExprClass:
10798   case Expr::TypoExprClass:
10799   case Expr::DependentScopeDeclRefExprClass:
10800   case Expr::CXXConstructExprClass:
10801   case Expr::CXXInheritedCtorInitExprClass:
10802   case Expr::CXXStdInitializerListExprClass:
10803   case Expr::CXXBindTemporaryExprClass:
10804   case Expr::ExprWithCleanupsClass:
10805   case Expr::CXXTemporaryObjectExprClass:
10806   case Expr::CXXUnresolvedConstructExprClass:
10807   case Expr::CXXDependentScopeMemberExprClass:
10808   case Expr::UnresolvedMemberExprClass:
10809   case Expr::ObjCStringLiteralClass:
10810   case Expr::ObjCBoxedExprClass:
10811   case Expr::ObjCArrayLiteralClass:
10812   case Expr::ObjCDictionaryLiteralClass:
10813   case Expr::ObjCEncodeExprClass:
10814   case Expr::ObjCMessageExprClass:
10815   case Expr::ObjCSelectorExprClass:
10816   case Expr::ObjCProtocolExprClass:
10817   case Expr::ObjCIvarRefExprClass:
10818   case Expr::ObjCPropertyRefExprClass:
10819   case Expr::ObjCSubscriptRefExprClass:
10820   case Expr::ObjCIsaExprClass:
10821   case Expr::ObjCAvailabilityCheckExprClass:
10822   case Expr::ShuffleVectorExprClass:
10823   case Expr::ConvertVectorExprClass:
10824   case Expr::BlockExprClass:
10825   case Expr::NoStmtClass:
10826   case Expr::OpaqueValueExprClass:
10827   case Expr::PackExpansionExprClass:
10828   case Expr::SubstNonTypeTemplateParmPackExprClass:
10829   case Expr::FunctionParmPackExprClass:
10830   case Expr::AsTypeExprClass:
10831   case Expr::ObjCIndirectCopyRestoreExprClass:
10832   case Expr::MaterializeTemporaryExprClass:
10833   case Expr::PseudoObjectExprClass:
10834   case Expr::AtomicExprClass:
10835   case Expr::LambdaExprClass:
10836   case Expr::CXXFoldExprClass:
10837   case Expr::CoawaitExprClass:
10838   case Expr::DependentCoawaitExprClass:
10839   case Expr::CoyieldExprClass:
10840     return ICEDiag(IK_NotICE, E->getLocStart());
10841 
10842   case Expr::InitListExprClass: {
10843     // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the
10844     // form "T x = { a };" is equivalent to "T x = a;".
10845     // Unless we're initializing a reference, T is a scalar as it is known to be
10846     // of integral or enumeration type.
10847     if (E->isRValue())
10848       if (cast<InitListExpr>(E)->getNumInits() == 1)
10849         return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx);
10850     return ICEDiag(IK_NotICE, E->getLocStart());
10851   }
10852 
10853   case Expr::SizeOfPackExprClass:
10854   case Expr::GNUNullExprClass:
10855     // GCC considers the GNU __null value to be an integral constant expression.
10856     return NoDiag();
10857 
10858   case Expr::SubstNonTypeTemplateParmExprClass:
10859     return
10860       CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
10861 
10862   case Expr::ParenExprClass:
10863     return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
10864   case Expr::GenericSelectionExprClass:
10865     return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
10866   case Expr::IntegerLiteralClass:
10867   case Expr::FixedPointLiteralClass:
10868   case Expr::CharacterLiteralClass:
10869   case Expr::ObjCBoolLiteralExprClass:
10870   case Expr::CXXBoolLiteralExprClass:
10871   case Expr::CXXScalarValueInitExprClass:
10872   case Expr::TypeTraitExprClass:
10873   case Expr::ArrayTypeTraitExprClass:
10874   case Expr::ExpressionTraitExprClass:
10875   case Expr::CXXNoexceptExprClass:
10876     return NoDiag();
10877   case Expr::CallExprClass:
10878   case Expr::CXXOperatorCallExprClass: {
10879     // C99 6.6/3 allows function calls within unevaluated subexpressions of
10880     // constant expressions, but they can never be ICEs because an ICE cannot
10881     // contain an operand of (pointer to) function type.
10882     const CallExpr *CE = cast<CallExpr>(E);
10883     if (CE->getBuiltinCallee())
10884       return CheckEvalInICE(E, Ctx);
10885     return ICEDiag(IK_NotICE, E->getLocStart());
10886   }
10887   case Expr::DeclRefExprClass: {
10888     if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
10889       return NoDiag();
10890     const ValueDecl *D = cast<DeclRefExpr>(E)->getDecl();
10891     if (Ctx.getLangOpts().CPlusPlus &&
10892         D && IsConstNonVolatile(D->getType())) {
10893       // Parameter variables are never constants.  Without this check,
10894       // getAnyInitializer() can find a default argument, which leads
10895       // to chaos.
10896       if (isa<ParmVarDecl>(D))
10897         return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
10898 
10899       // C++ 7.1.5.1p2
10900       //   A variable of non-volatile const-qualified integral or enumeration
10901       //   type initialized by an ICE can be used in ICEs.
10902       if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
10903         if (!Dcl->getType()->isIntegralOrEnumerationType())
10904           return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
10905 
10906         const VarDecl *VD;
10907         // Look for a declaration of this variable that has an initializer, and
10908         // check whether it is an ICE.
10909         if (Dcl->getAnyInitializer(VD) && VD->checkInitIsICE())
10910           return NoDiag();
10911         else
10912           return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
10913       }
10914     }
10915     return ICEDiag(IK_NotICE, E->getLocStart());
10916   }
10917   case Expr::UnaryOperatorClass: {
10918     const UnaryOperator *Exp = cast<UnaryOperator>(E);
10919     switch (Exp->getOpcode()) {
10920     case UO_PostInc:
10921     case UO_PostDec:
10922     case UO_PreInc:
10923     case UO_PreDec:
10924     case UO_AddrOf:
10925     case UO_Deref:
10926     case UO_Coawait:
10927       // C99 6.6/3 allows increment and decrement within unevaluated
10928       // subexpressions of constant expressions, but they can never be ICEs
10929       // because an ICE cannot contain an lvalue operand.
10930       return ICEDiag(IK_NotICE, E->getLocStart());
10931     case UO_Extension:
10932     case UO_LNot:
10933     case UO_Plus:
10934     case UO_Minus:
10935     case UO_Not:
10936     case UO_Real:
10937     case UO_Imag:
10938       return CheckICE(Exp->getSubExpr(), Ctx);
10939     }
10940 
10941     // OffsetOf falls through here.
10942     LLVM_FALLTHROUGH;
10943   }
10944   case Expr::OffsetOfExprClass: {
10945     // Note that per C99, offsetof must be an ICE. And AFAIK, using
10946     // EvaluateAsRValue matches the proposed gcc behavior for cases like
10947     // "offsetof(struct s{int x[4];}, x[1.0])".  This doesn't affect
10948     // compliance: we should warn earlier for offsetof expressions with
10949     // array subscripts that aren't ICEs, and if the array subscripts
10950     // are ICEs, the value of the offsetof must be an integer constant.
10951     return CheckEvalInICE(E, Ctx);
10952   }
10953   case Expr::UnaryExprOrTypeTraitExprClass: {
10954     const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
10955     if ((Exp->getKind() ==  UETT_SizeOf) &&
10956         Exp->getTypeOfArgument()->isVariableArrayType())
10957       return ICEDiag(IK_NotICE, E->getLocStart());
10958     return NoDiag();
10959   }
10960   case Expr::BinaryOperatorClass: {
10961     const BinaryOperator *Exp = cast<BinaryOperator>(E);
10962     switch (Exp->getOpcode()) {
10963     case BO_PtrMemD:
10964     case BO_PtrMemI:
10965     case BO_Assign:
10966     case BO_MulAssign:
10967     case BO_DivAssign:
10968     case BO_RemAssign:
10969     case BO_AddAssign:
10970     case BO_SubAssign:
10971     case BO_ShlAssign:
10972     case BO_ShrAssign:
10973     case BO_AndAssign:
10974     case BO_XorAssign:
10975     case BO_OrAssign:
10976       // C99 6.6/3 allows assignments within unevaluated subexpressions of
10977       // constant expressions, but they can never be ICEs because an ICE cannot
10978       // contain an lvalue operand.
10979       return ICEDiag(IK_NotICE, E->getLocStart());
10980 
10981     case BO_Mul:
10982     case BO_Div:
10983     case BO_Rem:
10984     case BO_Add:
10985     case BO_Sub:
10986     case BO_Shl:
10987     case BO_Shr:
10988     case BO_LT:
10989     case BO_GT:
10990     case BO_LE:
10991     case BO_GE:
10992     case BO_EQ:
10993     case BO_NE:
10994     case BO_And:
10995     case BO_Xor:
10996     case BO_Or:
10997     case BO_Comma:
10998     case BO_Cmp: {
10999       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
11000       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
11001       if (Exp->getOpcode() == BO_Div ||
11002           Exp->getOpcode() == BO_Rem) {
11003         // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
11004         // we don't evaluate one.
11005         if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
11006           llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
11007           if (REval == 0)
11008             return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
11009           if (REval.isSigned() && REval.isAllOnesValue()) {
11010             llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
11011             if (LEval.isMinSignedValue())
11012               return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
11013           }
11014         }
11015       }
11016       if (Exp->getOpcode() == BO_Comma) {
11017         if (Ctx.getLangOpts().C99) {
11018           // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
11019           // if it isn't evaluated.
11020           if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
11021             return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
11022         } else {
11023           // In both C89 and C++, commas in ICEs are illegal.
11024           return ICEDiag(IK_NotICE, E->getLocStart());
11025         }
11026       }
11027       return Worst(LHSResult, RHSResult);
11028     }
11029     case BO_LAnd:
11030     case BO_LOr: {
11031       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
11032       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
11033       if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
11034         // Rare case where the RHS has a comma "side-effect"; we need
11035         // to actually check the condition to see whether the side
11036         // with the comma is evaluated.
11037         if ((Exp->getOpcode() == BO_LAnd) !=
11038             (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
11039           return RHSResult;
11040         return NoDiag();
11041       }
11042 
11043       return Worst(LHSResult, RHSResult);
11044     }
11045     }
11046     LLVM_FALLTHROUGH;
11047   }
11048   case Expr::ImplicitCastExprClass:
11049   case Expr::CStyleCastExprClass:
11050   case Expr::CXXFunctionalCastExprClass:
11051   case Expr::CXXStaticCastExprClass:
11052   case Expr::CXXReinterpretCastExprClass:
11053   case Expr::CXXConstCastExprClass:
11054   case Expr::ObjCBridgedCastExprClass: {
11055     const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
11056     if (isa<ExplicitCastExpr>(E)) {
11057       if (const FloatingLiteral *FL
11058             = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
11059         unsigned DestWidth = Ctx.getIntWidth(E->getType());
11060         bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
11061         APSInt IgnoredVal(DestWidth, !DestSigned);
11062         bool Ignored;
11063         // If the value does not fit in the destination type, the behavior is
11064         // undefined, so we are not required to treat it as a constant
11065         // expression.
11066         if (FL->getValue().convertToInteger(IgnoredVal,
11067                                             llvm::APFloat::rmTowardZero,
11068                                             &Ignored) & APFloat::opInvalidOp)
11069           return ICEDiag(IK_NotICE, E->getLocStart());
11070         return NoDiag();
11071       }
11072     }
11073     switch (cast<CastExpr>(E)->getCastKind()) {
11074     case CK_LValueToRValue:
11075     case CK_AtomicToNonAtomic:
11076     case CK_NonAtomicToAtomic:
11077     case CK_NoOp:
11078     case CK_IntegralToBoolean:
11079     case CK_IntegralCast:
11080       return CheckICE(SubExpr, Ctx);
11081     default:
11082       return ICEDiag(IK_NotICE, E->getLocStart());
11083     }
11084   }
11085   case Expr::BinaryConditionalOperatorClass: {
11086     const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
11087     ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
11088     if (CommonResult.Kind == IK_NotICE) return CommonResult;
11089     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
11090     if (FalseResult.Kind == IK_NotICE) return FalseResult;
11091     if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
11092     if (FalseResult.Kind == IK_ICEIfUnevaluated &&
11093         Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
11094     return FalseResult;
11095   }
11096   case Expr::ConditionalOperatorClass: {
11097     const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
11098     // If the condition (ignoring parens) is a __builtin_constant_p call,
11099     // then only the true side is actually considered in an integer constant
11100     // expression, and it is fully evaluated.  This is an important GNU
11101     // extension.  See GCC PR38377 for discussion.
11102     if (const CallExpr *CallCE
11103         = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
11104       if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
11105         return CheckEvalInICE(E, Ctx);
11106     ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
11107     if (CondResult.Kind == IK_NotICE)
11108       return CondResult;
11109 
11110     ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
11111     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
11112 
11113     if (TrueResult.Kind == IK_NotICE)
11114       return TrueResult;
11115     if (FalseResult.Kind == IK_NotICE)
11116       return FalseResult;
11117     if (CondResult.Kind == IK_ICEIfUnevaluated)
11118       return CondResult;
11119     if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
11120       return NoDiag();
11121     // Rare case where the diagnostics depend on which side is evaluated
11122     // Note that if we get here, CondResult is 0, and at least one of
11123     // TrueResult and FalseResult is non-zero.
11124     if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
11125       return FalseResult;
11126     return TrueResult;
11127   }
11128   case Expr::CXXDefaultArgExprClass:
11129     return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
11130   case Expr::CXXDefaultInitExprClass:
11131     return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
11132   case Expr::ChooseExprClass: {
11133     return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
11134   }
11135   }
11136 
11137   llvm_unreachable("Invalid StmtClass!");
11138 }
11139 
11140 /// Evaluate an expression as a C++11 integral constant expression.
EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext & Ctx,const Expr * E,llvm::APSInt * Value,SourceLocation * Loc)11141 static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx,
11142                                                     const Expr *E,
11143                                                     llvm::APSInt *Value,
11144                                                     SourceLocation *Loc) {
11145   if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
11146     if (Loc) *Loc = E->getExprLoc();
11147     return false;
11148   }
11149 
11150   APValue Result;
11151   if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
11152     return false;
11153 
11154   if (!Result.isInt()) {
11155     if (Loc) *Loc = E->getExprLoc();
11156     return false;
11157   }
11158 
11159   if (Value) *Value = Result.getInt();
11160   return true;
11161 }
11162 
isIntegerConstantExpr(const ASTContext & Ctx,SourceLocation * Loc) const11163 bool Expr::isIntegerConstantExpr(const ASTContext &Ctx,
11164                                  SourceLocation *Loc) const {
11165   if (Ctx.getLangOpts().CPlusPlus11)
11166     return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc);
11167 
11168   ICEDiag D = CheckICE(this, Ctx);
11169   if (D.Kind != IK_ICE) {
11170     if (Loc) *Loc = D.Loc;
11171     return false;
11172   }
11173   return true;
11174 }
11175 
isIntegerConstantExpr(llvm::APSInt & Value,const ASTContext & Ctx,SourceLocation * Loc,bool isEvaluated) const11176 bool Expr::isIntegerConstantExpr(llvm::APSInt &Value, const ASTContext &Ctx,
11177                                  SourceLocation *Loc, bool isEvaluated) const {
11178   if (Ctx.getLangOpts().CPlusPlus11)
11179     return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc);
11180 
11181   if (!isIntegerConstantExpr(Ctx, Loc))
11182     return false;
11183   // The only possible side-effects here are due to UB discovered in the
11184   // evaluation (for instance, INT_MAX + 1). In such a case, we are still
11185   // required to treat the expression as an ICE, so we produce the folded
11186   // value.
11187   if (!EvaluateAsInt(Value, Ctx, SE_AllowSideEffects))
11188     llvm_unreachable("ICE cannot be evaluated!");
11189   return true;
11190 }
11191 
isCXX98IntegralConstantExpr(const ASTContext & Ctx) const11192 bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const {
11193   return CheckICE(this, Ctx).Kind == IK_ICE;
11194 }
11195 
isCXX11ConstantExpr(const ASTContext & Ctx,APValue * Result,SourceLocation * Loc) const11196 bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result,
11197                                SourceLocation *Loc) const {
11198   // We support this checking in C++98 mode in order to diagnose compatibility
11199   // issues.
11200   assert(Ctx.getLangOpts().CPlusPlus);
11201 
11202   // Build evaluation settings.
11203   Expr::EvalStatus Status;
11204   SmallVector<PartialDiagnosticAt, 8> Diags;
11205   Status.Diag = &Diags;
11206   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
11207 
11208   APValue Scratch;
11209   bool IsConstExpr = ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch);
11210 
11211   if (!Diags.empty()) {
11212     IsConstExpr = false;
11213     if (Loc) *Loc = Diags[0].first;
11214   } else if (!IsConstExpr) {
11215     // FIXME: This shouldn't happen.
11216     if (Loc) *Loc = getExprLoc();
11217   }
11218 
11219   return IsConstExpr;
11220 }
11221 
EvaluateWithSubstitution(APValue & Value,ASTContext & Ctx,const FunctionDecl * Callee,ArrayRef<const Expr * > Args,const Expr * This) const11222 bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
11223                                     const FunctionDecl *Callee,
11224                                     ArrayRef<const Expr*> Args,
11225                                     const Expr *This) const {
11226   Expr::EvalStatus Status;
11227   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated);
11228 
11229   LValue ThisVal;
11230   const LValue *ThisPtr = nullptr;
11231   if (This) {
11232 #ifndef NDEBUG
11233     auto *MD = dyn_cast<CXXMethodDecl>(Callee);
11234     assert(MD && "Don't provide `this` for non-methods.");
11235     assert(!MD->isStatic() && "Don't provide `this` for static methods.");
11236 #endif
11237     if (EvaluateObjectArgument(Info, This, ThisVal))
11238       ThisPtr = &ThisVal;
11239     if (Info.EvalStatus.HasSideEffects)
11240       return false;
11241   }
11242 
11243   ArgVector ArgValues(Args.size());
11244   for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
11245        I != E; ++I) {
11246     if ((*I)->isValueDependent() ||
11247         !Evaluate(ArgValues[I - Args.begin()], Info, *I))
11248       // If evaluation fails, throw away the argument entirely.
11249       ArgValues[I - Args.begin()] = APValue();
11250     if (Info.EvalStatus.HasSideEffects)
11251       return false;
11252   }
11253 
11254   // Build fake call to Callee.
11255   CallStackFrame Frame(Info, Callee->getLocation(), Callee, ThisPtr,
11256                        ArgValues.data());
11257   return Evaluate(Value, Info, this) && !Info.EvalStatus.HasSideEffects;
11258 }
11259 
isPotentialConstantExpr(const FunctionDecl * FD,SmallVectorImpl<PartialDiagnosticAt> & Diags)11260 bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
11261                                    SmallVectorImpl<
11262                                      PartialDiagnosticAt> &Diags) {
11263   // FIXME: It would be useful to check constexpr function templates, but at the
11264   // moment the constant expression evaluator cannot cope with the non-rigorous
11265   // ASTs which we build for dependent expressions.
11266   if (FD->isDependentContext())
11267     return true;
11268 
11269   Expr::EvalStatus Status;
11270   Status.Diag = &Diags;
11271 
11272   EvalInfo Info(FD->getASTContext(), Status,
11273                 EvalInfo::EM_PotentialConstantExpression);
11274 
11275   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
11276   const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr;
11277 
11278   // Fabricate an arbitrary expression on the stack and pretend that it
11279   // is a temporary being used as the 'this' pointer.
11280   LValue This;
11281   ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
11282   This.set({&VIE, Info.CurrentCall->Index});
11283 
11284   ArrayRef<const Expr*> Args;
11285 
11286   APValue Scratch;
11287   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
11288     // Evaluate the call as a constant initializer, to allow the construction
11289     // of objects of non-literal types.
11290     Info.setEvaluatingDecl(This.getLValueBase(), Scratch);
11291     HandleConstructorCall(&VIE, This, Args, CD, Info, Scratch);
11292   } else {
11293     SourceLocation Loc = FD->getLocation();
11294     HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : nullptr,
11295                        Args, FD->getBody(), Info, Scratch, nullptr);
11296   }
11297 
11298   return Diags.empty();
11299 }
11300 
isPotentialConstantExprUnevaluated(Expr * E,const FunctionDecl * FD,SmallVectorImpl<PartialDiagnosticAt> & Diags)11301 bool Expr::isPotentialConstantExprUnevaluated(Expr *E,
11302                                               const FunctionDecl *FD,
11303                                               SmallVectorImpl<
11304                                                 PartialDiagnosticAt> &Diags) {
11305   Expr::EvalStatus Status;
11306   Status.Diag = &Diags;
11307 
11308   EvalInfo Info(FD->getASTContext(), Status,
11309                 EvalInfo::EM_PotentialConstantExpressionUnevaluated);
11310 
11311   // Fabricate a call stack frame to give the arguments a plausible cover story.
11312   ArrayRef<const Expr*> Args;
11313   ArgVector ArgValues(0);
11314   bool Success = EvaluateArgs(Args, ArgValues, Info);
11315   (void)Success;
11316   assert(Success &&
11317          "Failed to set up arguments for potential constant evaluation");
11318   CallStackFrame Frame(Info, SourceLocation(), FD, nullptr, ArgValues.data());
11319 
11320   APValue ResultScratch;
11321   Evaluate(ResultScratch, Info, E);
11322   return Diags.empty();
11323 }
11324 
tryEvaluateObjectSize(uint64_t & Result,ASTContext & Ctx,unsigned Type) const11325 bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
11326                                  unsigned Type) const {
11327   if (!getType()->isPointerType())
11328     return false;
11329 
11330   Expr::EvalStatus Status;
11331   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
11332   return tryEvaluateBuiltinObjectSize(this, Type, Info, Result);
11333 }
11334