1 //===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements a top-down list scheduler, using standard algorithms.
11 // The basic approach uses a priority queue of available nodes to schedule.
12 // One at a time, nodes are taken from the priority queue (thus in priority
13 // order), checked for legality to schedule, and emitted if legal.
14 //
15 // Nodes may not be legal to schedule either due to structural hazards (e.g.
16 // pipeline or resource constraints) or because an input to the instruction has
17 // not completed execution.
18 //
19 //===----------------------------------------------------------------------===//
20 
21 #include "AggressiveAntiDepBreaker.h"
22 #include "AntiDepBreaker.h"
23 #include "CriticalAntiDepBreaker.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/CodeGen/LatencyPriorityQueue.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFunctionPass.h"
29 #include "llvm/CodeGen/MachineLoopInfo.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/Passes.h"
32 #include "llvm/CodeGen/RegisterClassInfo.h"
33 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
34 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
35 #include "llvm/CodeGen/SchedulerRegistry.h"
36 #include "llvm/CodeGen/TargetInstrInfo.h"
37 #include "llvm/CodeGen/TargetLowering.h"
38 #include "llvm/CodeGen/TargetPassConfig.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/raw_ostream.h"
46 using namespace llvm;
47 
48 #define DEBUG_TYPE "post-RA-sched"
49 
50 STATISTIC(NumNoops, "Number of noops inserted");
51 STATISTIC(NumStalls, "Number of pipeline stalls");
52 STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies");
53 
54 // Post-RA scheduling is enabled with
55 // TargetSubtargetInfo.enablePostRAScheduler(). This flag can be used to
56 // override the target.
57 static cl::opt<bool>
58 EnablePostRAScheduler("post-RA-scheduler",
59                        cl::desc("Enable scheduling after register allocation"),
60                        cl::init(false), cl::Hidden);
61 static cl::opt<std::string>
62 EnableAntiDepBreaking("break-anti-dependencies",
63                       cl::desc("Break post-RA scheduling anti-dependencies: "
64                                "\"critical\", \"all\", or \"none\""),
65                       cl::init("none"), cl::Hidden);
66 
67 // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
68 static cl::opt<int>
69 DebugDiv("postra-sched-debugdiv",
70                       cl::desc("Debug control MBBs that are scheduled"),
71                       cl::init(0), cl::Hidden);
72 static cl::opt<int>
73 DebugMod("postra-sched-debugmod",
74                       cl::desc("Debug control MBBs that are scheduled"),
75                       cl::init(0), cl::Hidden);
76 
~AntiDepBreaker()77 AntiDepBreaker::~AntiDepBreaker() { }
78 
79 namespace {
80   class PostRAScheduler : public MachineFunctionPass {
81     const TargetInstrInfo *TII;
82     RegisterClassInfo RegClassInfo;
83 
84   public:
85     static char ID;
PostRAScheduler()86     PostRAScheduler() : MachineFunctionPass(ID) {}
87 
getAnalysisUsage(AnalysisUsage & AU) const88     void getAnalysisUsage(AnalysisUsage &AU) const override {
89       AU.setPreservesCFG();
90       AU.addRequired<AAResultsWrapperPass>();
91       AU.addRequired<TargetPassConfig>();
92       AU.addRequired<MachineDominatorTree>();
93       AU.addPreserved<MachineDominatorTree>();
94       AU.addRequired<MachineLoopInfo>();
95       AU.addPreserved<MachineLoopInfo>();
96       MachineFunctionPass::getAnalysisUsage(AU);
97     }
98 
getRequiredProperties() const99     MachineFunctionProperties getRequiredProperties() const override {
100       return MachineFunctionProperties().set(
101           MachineFunctionProperties::Property::NoVRegs);
102     }
103 
104     bool runOnMachineFunction(MachineFunction &Fn) override;
105 
106   private:
107     bool enablePostRAScheduler(
108         const TargetSubtargetInfo &ST, CodeGenOpt::Level OptLevel,
109         TargetSubtargetInfo::AntiDepBreakMode &Mode,
110         TargetSubtargetInfo::RegClassVector &CriticalPathRCs) const;
111   };
112   char PostRAScheduler::ID = 0;
113 
114   class SchedulePostRATDList : public ScheduleDAGInstrs {
115     /// AvailableQueue - The priority queue to use for the available SUnits.
116     ///
117     LatencyPriorityQueue AvailableQueue;
118 
119     /// PendingQueue - This contains all of the instructions whose operands have
120     /// been issued, but their results are not ready yet (due to the latency of
121     /// the operation).  Once the operands becomes available, the instruction is
122     /// added to the AvailableQueue.
123     std::vector<SUnit*> PendingQueue;
124 
125     /// HazardRec - The hazard recognizer to use.
126     ScheduleHazardRecognizer *HazardRec;
127 
128     /// AntiDepBreak - Anti-dependence breaking object, or NULL if none
129     AntiDepBreaker *AntiDepBreak;
130 
131     /// AA - AliasAnalysis for making memory reference queries.
132     AliasAnalysis *AA;
133 
134     /// The schedule. Null SUnit*'s represent noop instructions.
135     std::vector<SUnit*> Sequence;
136 
137     /// Ordered list of DAG postprocessing steps.
138     std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;
139 
140     /// The index in BB of RegionEnd.
141     ///
142     /// This is the instruction number from the top of the current block, not
143     /// the SlotIndex. It is only used by the AntiDepBreaker.
144     unsigned EndIndex;
145 
146   public:
147     SchedulePostRATDList(
148         MachineFunction &MF, MachineLoopInfo &MLI, AliasAnalysis *AA,
149         const RegisterClassInfo &,
150         TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
151         SmallVectorImpl<const TargetRegisterClass *> &CriticalPathRCs);
152 
153     ~SchedulePostRATDList() override;
154 
155     /// startBlock - Initialize register live-range state for scheduling in
156     /// this block.
157     ///
158     void startBlock(MachineBasicBlock *BB) override;
159 
160     // Set the index of RegionEnd within the current BB.
setEndIndex(unsigned EndIdx)161     void setEndIndex(unsigned EndIdx) { EndIndex = EndIdx; }
162 
163     /// Initialize the scheduler state for the next scheduling region.
164     void enterRegion(MachineBasicBlock *bb,
165                      MachineBasicBlock::iterator begin,
166                      MachineBasicBlock::iterator end,
167                      unsigned regioninstrs) override;
168 
169     /// Notify that the scheduler has finished scheduling the current region.
170     void exitRegion() override;
171 
172     /// Schedule - Schedule the instruction range using list scheduling.
173     ///
174     void schedule() override;
175 
176     void EmitSchedule();
177 
178     /// Observe - Update liveness information to account for the current
179     /// instruction, which will not be scheduled.
180     ///
181     void Observe(MachineInstr &MI, unsigned Count);
182 
183     /// finishBlock - Clean up register live-range state.
184     ///
185     void finishBlock() override;
186 
187   private:
188     /// Apply each ScheduleDAGMutation step in order.
189     void postprocessDAG();
190 
191     void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
192     void ReleaseSuccessors(SUnit *SU);
193     void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
194     void ListScheduleTopDown();
195 
196     void dumpSchedule() const;
197     void emitNoop(unsigned CurCycle);
198   };
199 }
200 
201 char &llvm::PostRASchedulerID = PostRAScheduler::ID;
202 
203 INITIALIZE_PASS(PostRAScheduler, DEBUG_TYPE,
204                 "Post RA top-down list latency scheduler", false, false)
205 
SchedulePostRATDList(MachineFunction & MF,MachineLoopInfo & MLI,AliasAnalysis * AA,const RegisterClassInfo & RCI,TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,SmallVectorImpl<const TargetRegisterClass * > & CriticalPathRCs)206 SchedulePostRATDList::SchedulePostRATDList(
207     MachineFunction &MF, MachineLoopInfo &MLI, AliasAnalysis *AA,
208     const RegisterClassInfo &RCI,
209     TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
210     SmallVectorImpl<const TargetRegisterClass *> &CriticalPathRCs)
211     : ScheduleDAGInstrs(MF, &MLI), AA(AA), EndIndex(0) {
212 
213   const InstrItineraryData *InstrItins =
214       MF.getSubtarget().getInstrItineraryData();
215   HazardRec =
216       MF.getSubtarget().getInstrInfo()->CreateTargetPostRAHazardRecognizer(
217           InstrItins, this);
218   MF.getSubtarget().getPostRAMutations(Mutations);
219 
220   assert((AntiDepMode == TargetSubtargetInfo::ANTIDEP_NONE ||
221           MRI.tracksLiveness()) &&
222          "Live-ins must be accurate for anti-dependency breaking");
223   AntiDepBreak =
224     ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_ALL) ?
225      (AntiDepBreaker *)new AggressiveAntiDepBreaker(MF, RCI, CriticalPathRCs) :
226      ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_CRITICAL) ?
227       (AntiDepBreaker *)new CriticalAntiDepBreaker(MF, RCI) : nullptr));
228 }
229 
~SchedulePostRATDList()230 SchedulePostRATDList::~SchedulePostRATDList() {
231   delete HazardRec;
232   delete AntiDepBreak;
233 }
234 
235 /// Initialize state associated with the next scheduling region.
enterRegion(MachineBasicBlock * bb,MachineBasicBlock::iterator begin,MachineBasicBlock::iterator end,unsigned regioninstrs)236 void SchedulePostRATDList::enterRegion(MachineBasicBlock *bb,
237                  MachineBasicBlock::iterator begin,
238                  MachineBasicBlock::iterator end,
239                  unsigned regioninstrs) {
240   ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
241   Sequence.clear();
242 }
243 
244 /// Print the schedule before exiting the region.
exitRegion()245 void SchedulePostRATDList::exitRegion() {
246   LLVM_DEBUG({
247     dbgs() << "*** Final schedule ***\n";
248     dumpSchedule();
249     dbgs() << '\n';
250   });
251   ScheduleDAGInstrs::exitRegion();
252 }
253 
254 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
255 /// dumpSchedule - dump the scheduled Sequence.
dumpSchedule() const256 LLVM_DUMP_METHOD void SchedulePostRATDList::dumpSchedule() const {
257   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
258     if (SUnit *SU = Sequence[i])
259       dumpNode(*SU);
260     else
261       dbgs() << "**** NOOP ****\n";
262   }
263 }
264 #endif
265 
enablePostRAScheduler(const TargetSubtargetInfo & ST,CodeGenOpt::Level OptLevel,TargetSubtargetInfo::AntiDepBreakMode & Mode,TargetSubtargetInfo::RegClassVector & CriticalPathRCs) const266 bool PostRAScheduler::enablePostRAScheduler(
267     const TargetSubtargetInfo &ST,
268     CodeGenOpt::Level OptLevel,
269     TargetSubtargetInfo::AntiDepBreakMode &Mode,
270     TargetSubtargetInfo::RegClassVector &CriticalPathRCs) const {
271   Mode = ST.getAntiDepBreakMode();
272   ST.getCriticalPathRCs(CriticalPathRCs);
273 
274   // Check for explicit enable/disable of post-ra scheduling.
275   if (EnablePostRAScheduler.getPosition() > 0)
276     return EnablePostRAScheduler;
277 
278   return ST.enablePostRAScheduler() &&
279          OptLevel >= ST.getOptLevelToEnablePostRAScheduler();
280 }
281 
runOnMachineFunction(MachineFunction & Fn)282 bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
283   if (skipFunction(Fn.getFunction()))
284     return false;
285 
286   TII = Fn.getSubtarget().getInstrInfo();
287   MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
288   AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
289   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
290 
291   RegClassInfo.runOnMachineFunction(Fn);
292 
293   TargetSubtargetInfo::AntiDepBreakMode AntiDepMode =
294     TargetSubtargetInfo::ANTIDEP_NONE;
295   SmallVector<const TargetRegisterClass*, 4> CriticalPathRCs;
296 
297   // Check that post-RA scheduling is enabled for this target.
298   // This may upgrade the AntiDepMode.
299   if (!enablePostRAScheduler(Fn.getSubtarget(), PassConfig->getOptLevel(),
300                              AntiDepMode, CriticalPathRCs))
301     return false;
302 
303   // Check for antidep breaking override...
304   if (EnableAntiDepBreaking.getPosition() > 0) {
305     AntiDepMode = (EnableAntiDepBreaking == "all")
306       ? TargetSubtargetInfo::ANTIDEP_ALL
307       : ((EnableAntiDepBreaking == "critical")
308          ? TargetSubtargetInfo::ANTIDEP_CRITICAL
309          : TargetSubtargetInfo::ANTIDEP_NONE);
310   }
311 
312   LLVM_DEBUG(dbgs() << "PostRAScheduler\n");
313 
314   SchedulePostRATDList Scheduler(Fn, MLI, AA, RegClassInfo, AntiDepMode,
315                                  CriticalPathRCs);
316 
317   // Loop over all of the basic blocks
318   for (auto &MBB : Fn) {
319 #ifndef NDEBUG
320     // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
321     if (DebugDiv > 0) {
322       static int bbcnt = 0;
323       if (bbcnt++ % DebugDiv != DebugMod)
324         continue;
325       dbgs() << "*** DEBUG scheduling " << Fn.getName() << ":"
326              << printMBBReference(MBB) << " ***\n";
327     }
328 #endif
329 
330     // Initialize register live-range state for scheduling in this block.
331     Scheduler.startBlock(&MBB);
332 
333     // Schedule each sequence of instructions not interrupted by a label
334     // or anything else that effectively needs to shut down scheduling.
335     MachineBasicBlock::iterator Current = MBB.end();
336     unsigned Count = MBB.size(), CurrentCount = Count;
337     for (MachineBasicBlock::iterator I = Current; I != MBB.begin();) {
338       MachineInstr &MI = *std::prev(I);
339       --Count;
340       // Calls are not scheduling boundaries before register allocation, but
341       // post-ra we don't gain anything by scheduling across calls since we
342       // don't need to worry about register pressure.
343       if (MI.isCall() || TII->isSchedulingBoundary(MI, &MBB, Fn)) {
344         Scheduler.enterRegion(&MBB, I, Current, CurrentCount - Count);
345         Scheduler.setEndIndex(CurrentCount);
346         Scheduler.schedule();
347         Scheduler.exitRegion();
348         Scheduler.EmitSchedule();
349         Current = &MI;
350         CurrentCount = Count;
351         Scheduler.Observe(MI, CurrentCount);
352       }
353       I = MI;
354       if (MI.isBundle())
355         Count -= MI.getBundleSize();
356     }
357     assert(Count == 0 && "Instruction count mismatch!");
358     assert((MBB.begin() == Current || CurrentCount != 0) &&
359            "Instruction count mismatch!");
360     Scheduler.enterRegion(&MBB, MBB.begin(), Current, CurrentCount);
361     Scheduler.setEndIndex(CurrentCount);
362     Scheduler.schedule();
363     Scheduler.exitRegion();
364     Scheduler.EmitSchedule();
365 
366     // Clean up register live-range state.
367     Scheduler.finishBlock();
368 
369     // Update register kills
370     Scheduler.fixupKills(MBB);
371   }
372 
373   return true;
374 }
375 
376 /// StartBlock - Initialize register live-range state for scheduling in
377 /// this block.
378 ///
startBlock(MachineBasicBlock * BB)379 void SchedulePostRATDList::startBlock(MachineBasicBlock *BB) {
380   // Call the superclass.
381   ScheduleDAGInstrs::startBlock(BB);
382 
383   // Reset the hazard recognizer and anti-dep breaker.
384   HazardRec->Reset();
385   if (AntiDepBreak)
386     AntiDepBreak->StartBlock(BB);
387 }
388 
389 /// Schedule - Schedule the instruction range using list scheduling.
390 ///
schedule()391 void SchedulePostRATDList::schedule() {
392   // Build the scheduling graph.
393   buildSchedGraph(AA);
394 
395   if (AntiDepBreak) {
396     unsigned Broken =
397       AntiDepBreak->BreakAntiDependencies(SUnits, RegionBegin, RegionEnd,
398                                           EndIndex, DbgValues);
399 
400     if (Broken != 0) {
401       // We made changes. Update the dependency graph.
402       // Theoretically we could update the graph in place:
403       // When a live range is changed to use a different register, remove
404       // the def's anti-dependence *and* output-dependence edges due to
405       // that register, and add new anti-dependence and output-dependence
406       // edges based on the next live range of the register.
407       ScheduleDAG::clearDAG();
408       buildSchedGraph(AA);
409 
410       NumFixedAnti += Broken;
411     }
412   }
413 
414   postprocessDAG();
415 
416   LLVM_DEBUG(dbgs() << "********** List Scheduling **********\n");
417   LLVM_DEBUG(dump());
418 
419   AvailableQueue.initNodes(SUnits);
420   ListScheduleTopDown();
421   AvailableQueue.releaseState();
422 }
423 
424 /// Observe - Update liveness information to account for the current
425 /// instruction, which will not be scheduled.
426 ///
Observe(MachineInstr & MI,unsigned Count)427 void SchedulePostRATDList::Observe(MachineInstr &MI, unsigned Count) {
428   if (AntiDepBreak)
429     AntiDepBreak->Observe(MI, Count, EndIndex);
430 }
431 
432 /// FinishBlock - Clean up register live-range state.
433 ///
finishBlock()434 void SchedulePostRATDList::finishBlock() {
435   if (AntiDepBreak)
436     AntiDepBreak->FinishBlock();
437 
438   // Call the superclass.
439   ScheduleDAGInstrs::finishBlock();
440 }
441 
442 /// Apply each ScheduleDAGMutation step in order.
postprocessDAG()443 void SchedulePostRATDList::postprocessDAG() {
444   for (auto &M : Mutations)
445     M->apply(this);
446 }
447 
448 //===----------------------------------------------------------------------===//
449 //  Top-Down Scheduling
450 //===----------------------------------------------------------------------===//
451 
452 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
453 /// the PendingQueue if the count reaches zero.
ReleaseSucc(SUnit * SU,SDep * SuccEdge)454 void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
455   SUnit *SuccSU = SuccEdge->getSUnit();
456 
457   if (SuccEdge->isWeak()) {
458     --SuccSU->WeakPredsLeft;
459     return;
460   }
461 #ifndef NDEBUG
462   if (SuccSU->NumPredsLeft == 0) {
463     dbgs() << "*** Scheduling failed! ***\n";
464     dumpNode(*SuccSU);
465     dbgs() << " has been released too many times!\n";
466     llvm_unreachable(nullptr);
467   }
468 #endif
469   --SuccSU->NumPredsLeft;
470 
471   // Standard scheduler algorithms will recompute the depth of the successor
472   // here as such:
473   //   SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
474   //
475   // However, we lazily compute node depth instead. Note that
476   // ScheduleNodeTopDown has already updated the depth of this node which causes
477   // all descendents to be marked dirty. Setting the successor depth explicitly
478   // here would cause depth to be recomputed for all its ancestors. If the
479   // successor is not yet ready (because of a transitively redundant edge) then
480   // this causes depth computation to be quadratic in the size of the DAG.
481 
482   // If all the node's predecessors are scheduled, this node is ready
483   // to be scheduled. Ignore the special ExitSU node.
484   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
485     PendingQueue.push_back(SuccSU);
486 }
487 
488 /// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
ReleaseSuccessors(SUnit * SU)489 void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
490   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
491        I != E; ++I) {
492     ReleaseSucc(SU, &*I);
493   }
494 }
495 
496 /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
497 /// count of its successors. If a successor pending count is zero, add it to
498 /// the Available queue.
ScheduleNodeTopDown(SUnit * SU,unsigned CurCycle)499 void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
500   LLVM_DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
501   LLVM_DEBUG(dumpNode(*SU));
502 
503   Sequence.push_back(SU);
504   assert(CurCycle >= SU->getDepth() &&
505          "Node scheduled above its depth!");
506   SU->setDepthToAtLeast(CurCycle);
507 
508   ReleaseSuccessors(SU);
509   SU->isScheduled = true;
510   AvailableQueue.scheduledNode(SU);
511 }
512 
513 /// emitNoop - Add a noop to the current instruction sequence.
emitNoop(unsigned CurCycle)514 void SchedulePostRATDList::emitNoop(unsigned CurCycle) {
515   LLVM_DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n');
516   HazardRec->EmitNoop();
517   Sequence.push_back(nullptr);   // NULL here means noop
518   ++NumNoops;
519 }
520 
521 /// ListScheduleTopDown - The main loop of list scheduling for top-down
522 /// schedulers.
ListScheduleTopDown()523 void SchedulePostRATDList::ListScheduleTopDown() {
524   unsigned CurCycle = 0;
525 
526   // We're scheduling top-down but we're visiting the regions in
527   // bottom-up order, so we don't know the hazards at the start of a
528   // region. So assume no hazards (this should usually be ok as most
529   // blocks are a single region).
530   HazardRec->Reset();
531 
532   // Release any successors of the special Entry node.
533   ReleaseSuccessors(&EntrySU);
534 
535   // Add all leaves to Available queue.
536   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
537     // It is available if it has no predecessors.
538     if (!SUnits[i].NumPredsLeft && !SUnits[i].isAvailable) {
539       AvailableQueue.push(&SUnits[i]);
540       SUnits[i].isAvailable = true;
541     }
542   }
543 
544   // In any cycle where we can't schedule any instructions, we must
545   // stall or emit a noop, depending on the target.
546   bool CycleHasInsts = false;
547 
548   // While Available queue is not empty, grab the node with the highest
549   // priority. If it is not ready put it back.  Schedule the node.
550   std::vector<SUnit*> NotReady;
551   Sequence.reserve(SUnits.size());
552   while (!AvailableQueue.empty() || !PendingQueue.empty()) {
553     // Check to see if any of the pending instructions are ready to issue.  If
554     // so, add them to the available queue.
555     unsigned MinDepth = ~0u;
556     for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
557       if (PendingQueue[i]->getDepth() <= CurCycle) {
558         AvailableQueue.push(PendingQueue[i]);
559         PendingQueue[i]->isAvailable = true;
560         PendingQueue[i] = PendingQueue.back();
561         PendingQueue.pop_back();
562         --i; --e;
563       } else if (PendingQueue[i]->getDepth() < MinDepth)
564         MinDepth = PendingQueue[i]->getDepth();
565     }
566 
567     LLVM_DEBUG(dbgs() << "\n*** Examining Available\n";
568                AvailableQueue.dump(this));
569 
570     SUnit *FoundSUnit = nullptr, *NotPreferredSUnit = nullptr;
571     bool HasNoopHazards = false;
572     while (!AvailableQueue.empty()) {
573       SUnit *CurSUnit = AvailableQueue.pop();
574 
575       ScheduleHazardRecognizer::HazardType HT =
576         HazardRec->getHazardType(CurSUnit, 0/*no stalls*/);
577       if (HT == ScheduleHazardRecognizer::NoHazard) {
578         if (HazardRec->ShouldPreferAnother(CurSUnit)) {
579           if (!NotPreferredSUnit) {
580             // If this is the first non-preferred node for this cycle, then
581             // record it and continue searching for a preferred node. If this
582             // is not the first non-preferred node, then treat it as though
583             // there had been a hazard.
584             NotPreferredSUnit = CurSUnit;
585             continue;
586           }
587         } else {
588           FoundSUnit = CurSUnit;
589           break;
590         }
591       }
592 
593       // Remember if this is a noop hazard.
594       HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
595 
596       NotReady.push_back(CurSUnit);
597     }
598 
599     // If we have a non-preferred node, push it back onto the available list.
600     // If we did not find a preferred node, then schedule this first
601     // non-preferred node.
602     if (NotPreferredSUnit) {
603       if (!FoundSUnit) {
604         LLVM_DEBUG(
605             dbgs() << "*** Will schedule a non-preferred instruction...\n");
606         FoundSUnit = NotPreferredSUnit;
607       } else {
608         AvailableQueue.push(NotPreferredSUnit);
609       }
610 
611       NotPreferredSUnit = nullptr;
612     }
613 
614     // Add the nodes that aren't ready back onto the available list.
615     if (!NotReady.empty()) {
616       AvailableQueue.push_all(NotReady);
617       NotReady.clear();
618     }
619 
620     // If we found a node to schedule...
621     if (FoundSUnit) {
622       // If we need to emit noops prior to this instruction, then do so.
623       unsigned NumPreNoops = HazardRec->PreEmitNoops(FoundSUnit);
624       for (unsigned i = 0; i != NumPreNoops; ++i)
625         emitNoop(CurCycle);
626 
627       // ... schedule the node...
628       ScheduleNodeTopDown(FoundSUnit, CurCycle);
629       HazardRec->EmitInstruction(FoundSUnit);
630       CycleHasInsts = true;
631       if (HazardRec->atIssueLimit()) {
632         LLVM_DEBUG(dbgs() << "*** Max instructions per cycle " << CurCycle
633                           << '\n');
634         HazardRec->AdvanceCycle();
635         ++CurCycle;
636         CycleHasInsts = false;
637       }
638     } else {
639       if (CycleHasInsts) {
640         LLVM_DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n');
641         HazardRec->AdvanceCycle();
642       } else if (!HasNoopHazards) {
643         // Otherwise, we have a pipeline stall, but no other problem,
644         // just advance the current cycle and try again.
645         LLVM_DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n');
646         HazardRec->AdvanceCycle();
647         ++NumStalls;
648       } else {
649         // Otherwise, we have no instructions to issue and we have instructions
650         // that will fault if we don't do this right.  This is the case for
651         // processors without pipeline interlocks and other cases.
652         emitNoop(CurCycle);
653       }
654 
655       ++CurCycle;
656       CycleHasInsts = false;
657     }
658   }
659 
660 #ifndef NDEBUG
661   unsigned ScheduledNodes = VerifyScheduledDAG(/*isBottomUp=*/false);
662   unsigned Noops = 0;
663   for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
664     if (!Sequence[i])
665       ++Noops;
666   assert(Sequence.size() - Noops == ScheduledNodes &&
667          "The number of nodes scheduled doesn't match the expected number!");
668 #endif // NDEBUG
669 }
670 
671 // EmitSchedule - Emit the machine code in scheduled order.
EmitSchedule()672 void SchedulePostRATDList::EmitSchedule() {
673   RegionBegin = RegionEnd;
674 
675   // If first instruction was a DBG_VALUE then put it back.
676   if (FirstDbgValue)
677     BB->splice(RegionEnd, BB, FirstDbgValue);
678 
679   // Then re-insert them according to the given schedule.
680   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
681     if (SUnit *SU = Sequence[i])
682       BB->splice(RegionEnd, BB, SU->getInstr());
683     else
684       // Null SUnit* is a noop.
685       TII->insertNoop(*BB, RegionEnd);
686 
687     // Update the Begin iterator, as the first instruction in the block
688     // may have been scheduled later.
689     if (i == 0)
690       RegionBegin = std::prev(RegionEnd);
691   }
692 
693   // Reinsert any remaining debug_values.
694   for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
695          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
696     std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
697     MachineInstr *DbgValue = P.first;
698     MachineBasicBlock::iterator OrigPrivMI = P.second;
699     BB->splice(++OrigPrivMI, BB, DbgValue);
700   }
701   DbgValues.clear();
702   FirstDbgValue = nullptr;
703 }
704