1 //===----- ScheduleDAGFast.cpp - Fast poor list scheduler -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements a fast scheduler.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstrEmitter.h"
15 #include "ScheduleDAGSDNodes.h"
16 #include "SDNodeDbgValue.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/CodeGen/SchedulerRegistry.h"
21 #include "llvm/CodeGen/SelectionDAGISel.h"
22 #include "llvm/CodeGen/TargetInstrInfo.h"
23 #include "llvm/CodeGen/TargetRegisterInfo.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/InlineAsm.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/raw_ostream.h"
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "pre-RA-sched"
32 
33 STATISTIC(NumUnfolds,    "Number of nodes unfolded");
34 STATISTIC(NumDups,       "Number of duplicated nodes");
35 STATISTIC(NumPRCopies,   "Number of physical copies");
36 
37 static RegisterScheduler
38   fastDAGScheduler("fast", "Fast suboptimal list scheduling",
39                    createFastDAGScheduler);
40 static RegisterScheduler
41   linearizeDAGScheduler("linearize", "Linearize DAG, no scheduling",
42                         createDAGLinearizer);
43 
44 
45 namespace {
46   /// FastPriorityQueue - A degenerate priority queue that considers
47   /// all nodes to have the same priority.
48   ///
49   struct FastPriorityQueue {
50     SmallVector<SUnit *, 16> Queue;
51 
empty__anond3588be00111::FastPriorityQueue52     bool empty() const { return Queue.empty(); }
53 
push__anond3588be00111::FastPriorityQueue54     void push(SUnit *U) {
55       Queue.push_back(U);
56     }
57 
pop__anond3588be00111::FastPriorityQueue58     SUnit *pop() {
59       if (empty()) return nullptr;
60       SUnit *V = Queue.back();
61       Queue.pop_back();
62       return V;
63     }
64   };
65 
66 //===----------------------------------------------------------------------===//
67 /// ScheduleDAGFast - The actual "fast" list scheduler implementation.
68 ///
69 class ScheduleDAGFast : public ScheduleDAGSDNodes {
70 private:
71   /// AvailableQueue - The priority queue to use for the available SUnits.
72   FastPriorityQueue AvailableQueue;
73 
74   /// LiveRegDefs - A set of physical registers and their definition
75   /// that are "live". These nodes must be scheduled before any other nodes that
76   /// modifies the registers can be scheduled.
77   unsigned NumLiveRegs;
78   std::vector<SUnit*> LiveRegDefs;
79   std::vector<unsigned> LiveRegCycles;
80 
81 public:
ScheduleDAGFast(MachineFunction & mf)82   ScheduleDAGFast(MachineFunction &mf)
83     : ScheduleDAGSDNodes(mf) {}
84 
85   void Schedule() override;
86 
87   /// AddPred - adds a predecessor edge to SUnit SU.
88   /// This returns true if this is a new predecessor.
AddPred(SUnit * SU,const SDep & D)89   void AddPred(SUnit *SU, const SDep &D) {
90     SU->addPred(D);
91   }
92 
93   /// RemovePred - removes a predecessor edge from SUnit SU.
94   /// This returns true if an edge was removed.
RemovePred(SUnit * SU,const SDep & D)95   void RemovePred(SUnit *SU, const SDep &D) {
96     SU->removePred(D);
97   }
98 
99 private:
100   void ReleasePred(SUnit *SU, SDep *PredEdge);
101   void ReleasePredecessors(SUnit *SU, unsigned CurCycle);
102   void ScheduleNodeBottomUp(SUnit*, unsigned);
103   SUnit *CopyAndMoveSuccessors(SUnit*);
104   void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
105                                 const TargetRegisterClass*,
106                                 const TargetRegisterClass*,
107                                 SmallVectorImpl<SUnit*>&);
108   bool DelayForLiveRegsBottomUp(SUnit*, SmallVectorImpl<unsigned>&);
109   void ListScheduleBottomUp();
110 
111   /// forceUnitLatencies - The fast scheduler doesn't care about real latencies.
forceUnitLatencies() const112   bool forceUnitLatencies() const override { return true; }
113 };
114 }  // end anonymous namespace
115 
116 
117 /// Schedule - Schedule the DAG using list scheduling.
Schedule()118 void ScheduleDAGFast::Schedule() {
119   LLVM_DEBUG(dbgs() << "********** List Scheduling **********\n");
120 
121   NumLiveRegs = 0;
122   LiveRegDefs.resize(TRI->getNumRegs(), nullptr);
123   LiveRegCycles.resize(TRI->getNumRegs(), 0);
124 
125   // Build the scheduling graph.
126   BuildSchedGraph(nullptr);
127 
128   LLVM_DEBUG(dump());
129 
130   // Execute the actual scheduling loop.
131   ListScheduleBottomUp();
132 }
133 
134 //===----------------------------------------------------------------------===//
135 //  Bottom-Up Scheduling
136 //===----------------------------------------------------------------------===//
137 
138 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
139 /// the AvailableQueue if the count reaches zero. Also update its cycle bound.
ReleasePred(SUnit * SU,SDep * PredEdge)140 void ScheduleDAGFast::ReleasePred(SUnit *SU, SDep *PredEdge) {
141   SUnit *PredSU = PredEdge->getSUnit();
142 
143 #ifndef NDEBUG
144   if (PredSU->NumSuccsLeft == 0) {
145     dbgs() << "*** Scheduling failed! ***\n";
146     dumpNode(*PredSU);
147     dbgs() << " has been released too many times!\n";
148     llvm_unreachable(nullptr);
149   }
150 #endif
151   --PredSU->NumSuccsLeft;
152 
153   // If all the node's successors are scheduled, this node is ready
154   // to be scheduled. Ignore the special EntrySU node.
155   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
156     PredSU->isAvailable = true;
157     AvailableQueue.push(PredSU);
158   }
159 }
160 
ReleasePredecessors(SUnit * SU,unsigned CurCycle)161 void ScheduleDAGFast::ReleasePredecessors(SUnit *SU, unsigned CurCycle) {
162   // Bottom up: release predecessors
163   for (SDep &Pred : SU->Preds) {
164     ReleasePred(SU, &Pred);
165     if (Pred.isAssignedRegDep()) {
166       // This is a physical register dependency and it's impossible or
167       // expensive to copy the register. Make sure nothing that can
168       // clobber the register is scheduled between the predecessor and
169       // this node.
170       if (!LiveRegDefs[Pred.getReg()]) {
171         ++NumLiveRegs;
172         LiveRegDefs[Pred.getReg()] = Pred.getSUnit();
173         LiveRegCycles[Pred.getReg()] = CurCycle;
174       }
175     }
176   }
177 }
178 
179 /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
180 /// count of its predecessors. If a predecessor pending count is zero, add it to
181 /// the Available queue.
ScheduleNodeBottomUp(SUnit * SU,unsigned CurCycle)182 void ScheduleDAGFast::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
183   LLVM_DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
184   LLVM_DEBUG(dumpNode(*SU));
185 
186   assert(CurCycle >= SU->getHeight() && "Node scheduled below its height!");
187   SU->setHeightToAtLeast(CurCycle);
188   Sequence.push_back(SU);
189 
190   ReleasePredecessors(SU, CurCycle);
191 
192   // Release all the implicit physical register defs that are live.
193   for (SDep &Succ : SU->Succs) {
194     if (Succ.isAssignedRegDep()) {
195       if (LiveRegCycles[Succ.getReg()] == Succ.getSUnit()->getHeight()) {
196         assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
197         assert(LiveRegDefs[Succ.getReg()] == SU &&
198                "Physical register dependency violated?");
199         --NumLiveRegs;
200         LiveRegDefs[Succ.getReg()] = nullptr;
201         LiveRegCycles[Succ.getReg()] = 0;
202       }
203     }
204   }
205 
206   SU->isScheduled = true;
207 }
208 
209 /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
210 /// successors to the newly created node.
CopyAndMoveSuccessors(SUnit * SU)211 SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) {
212   if (SU->getNode()->getGluedNode())
213     return nullptr;
214 
215   SDNode *N = SU->getNode();
216   if (!N)
217     return nullptr;
218 
219   SUnit *NewSU;
220   bool TryUnfold = false;
221   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
222     MVT VT = N->getSimpleValueType(i);
223     if (VT == MVT::Glue)
224       return nullptr;
225     else if (VT == MVT::Other)
226       TryUnfold = true;
227   }
228   for (const SDValue &Op : N->op_values()) {
229     MVT VT = Op.getNode()->getSimpleValueType(Op.getResNo());
230     if (VT == MVT::Glue)
231       return nullptr;
232   }
233 
234   if (TryUnfold) {
235     SmallVector<SDNode*, 2> NewNodes;
236     if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
237       return nullptr;
238 
239     LLVM_DEBUG(dbgs() << "Unfolding SU # " << SU->NodeNum << "\n");
240     assert(NewNodes.size() == 2 && "Expected a load folding node!");
241 
242     N = NewNodes[1];
243     SDNode *LoadNode = NewNodes[0];
244     unsigned NumVals = N->getNumValues();
245     unsigned OldNumVals = SU->getNode()->getNumValues();
246     for (unsigned i = 0; i != NumVals; ++i)
247       DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
248     DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
249                                    SDValue(LoadNode, 1));
250 
251     SUnit *NewSU = newSUnit(N);
252     assert(N->getNodeId() == -1 && "Node already inserted!");
253     N->setNodeId(NewSU->NodeNum);
254 
255     const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
256     for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
257       if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
258         NewSU->isTwoAddress = true;
259         break;
260       }
261     }
262     if (MCID.isCommutable())
263       NewSU->isCommutable = true;
264 
265     // LoadNode may already exist. This can happen when there is another
266     // load from the same location and producing the same type of value
267     // but it has different alignment or volatileness.
268     bool isNewLoad = true;
269     SUnit *LoadSU;
270     if (LoadNode->getNodeId() != -1) {
271       LoadSU = &SUnits[LoadNode->getNodeId()];
272       isNewLoad = false;
273     } else {
274       LoadSU = newSUnit(LoadNode);
275       LoadNode->setNodeId(LoadSU->NodeNum);
276     }
277 
278     SDep ChainPred;
279     SmallVector<SDep, 4> ChainSuccs;
280     SmallVector<SDep, 4> LoadPreds;
281     SmallVector<SDep, 4> NodePreds;
282     SmallVector<SDep, 4> NodeSuccs;
283     for (SDep &Pred : SU->Preds) {
284       if (Pred.isCtrl())
285         ChainPred = Pred;
286       else if (Pred.getSUnit()->getNode() &&
287                Pred.getSUnit()->getNode()->isOperandOf(LoadNode))
288         LoadPreds.push_back(Pred);
289       else
290         NodePreds.push_back(Pred);
291     }
292     for (SDep &Succ : SU->Succs) {
293       if (Succ.isCtrl())
294         ChainSuccs.push_back(Succ);
295       else
296         NodeSuccs.push_back(Succ);
297     }
298 
299     if (ChainPred.getSUnit()) {
300       RemovePred(SU, ChainPred);
301       if (isNewLoad)
302         AddPred(LoadSU, ChainPred);
303     }
304     for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
305       const SDep &Pred = LoadPreds[i];
306       RemovePred(SU, Pred);
307       if (isNewLoad) {
308         AddPred(LoadSU, Pred);
309       }
310     }
311     for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
312       const SDep &Pred = NodePreds[i];
313       RemovePred(SU, Pred);
314       AddPred(NewSU, Pred);
315     }
316     for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
317       SDep D = NodeSuccs[i];
318       SUnit *SuccDep = D.getSUnit();
319       D.setSUnit(SU);
320       RemovePred(SuccDep, D);
321       D.setSUnit(NewSU);
322       AddPred(SuccDep, D);
323     }
324     for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
325       SDep D = ChainSuccs[i];
326       SUnit *SuccDep = D.getSUnit();
327       D.setSUnit(SU);
328       RemovePred(SuccDep, D);
329       if (isNewLoad) {
330         D.setSUnit(LoadSU);
331         AddPred(SuccDep, D);
332       }
333     }
334     if (isNewLoad) {
335       SDep D(LoadSU, SDep::Barrier);
336       D.setLatency(LoadSU->Latency);
337       AddPred(NewSU, D);
338     }
339 
340     ++NumUnfolds;
341 
342     if (NewSU->NumSuccsLeft == 0) {
343       NewSU->isAvailable = true;
344       return NewSU;
345     }
346     SU = NewSU;
347   }
348 
349   LLVM_DEBUG(dbgs() << "Duplicating SU # " << SU->NodeNum << "\n");
350   NewSU = Clone(SU);
351 
352   // New SUnit has the exact same predecessors.
353   for (SDep &Pred : SU->Preds)
354     if (!Pred.isArtificial())
355       AddPred(NewSU, Pred);
356 
357   // Only copy scheduled successors. Cut them from old node's successor
358   // list and move them over.
359   SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
360   for (SDep &Succ : SU->Succs) {
361     if (Succ.isArtificial())
362       continue;
363     SUnit *SuccSU = Succ.getSUnit();
364     if (SuccSU->isScheduled) {
365       SDep D = Succ;
366       D.setSUnit(NewSU);
367       AddPred(SuccSU, D);
368       D.setSUnit(SU);
369       DelDeps.push_back(std::make_pair(SuccSU, D));
370     }
371   }
372   for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
373     RemovePred(DelDeps[i].first, DelDeps[i].second);
374 
375   ++NumDups;
376   return NewSU;
377 }
378 
379 /// InsertCopiesAndMoveSuccs - Insert register copies and move all
380 /// scheduled successors of the given SUnit to the last copy.
InsertCopiesAndMoveSuccs(SUnit * SU,unsigned Reg,const TargetRegisterClass * DestRC,const TargetRegisterClass * SrcRC,SmallVectorImpl<SUnit * > & Copies)381 void ScheduleDAGFast::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
382                                               const TargetRegisterClass *DestRC,
383                                               const TargetRegisterClass *SrcRC,
384                                               SmallVectorImpl<SUnit*> &Copies) {
385   SUnit *CopyFromSU = newSUnit(static_cast<SDNode *>(nullptr));
386   CopyFromSU->CopySrcRC = SrcRC;
387   CopyFromSU->CopyDstRC = DestRC;
388 
389   SUnit *CopyToSU = newSUnit(static_cast<SDNode *>(nullptr));
390   CopyToSU->CopySrcRC = DestRC;
391   CopyToSU->CopyDstRC = SrcRC;
392 
393   // Only copy scheduled successors. Cut them from old node's successor
394   // list and move them over.
395   SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
396   for (SDep &Succ : SU->Succs) {
397     if (Succ.isArtificial())
398       continue;
399     SUnit *SuccSU = Succ.getSUnit();
400     if (SuccSU->isScheduled) {
401       SDep D = Succ;
402       D.setSUnit(CopyToSU);
403       AddPred(SuccSU, D);
404       DelDeps.push_back(std::make_pair(SuccSU, Succ));
405     }
406   }
407   for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
408     RemovePred(DelDeps[i].first, DelDeps[i].second);
409   }
410   SDep FromDep(SU, SDep::Data, Reg);
411   FromDep.setLatency(SU->Latency);
412   AddPred(CopyFromSU, FromDep);
413   SDep ToDep(CopyFromSU, SDep::Data, 0);
414   ToDep.setLatency(CopyFromSU->Latency);
415   AddPred(CopyToSU, ToDep);
416 
417   Copies.push_back(CopyFromSU);
418   Copies.push_back(CopyToSU);
419 
420   ++NumPRCopies;
421 }
422 
423 /// getPhysicalRegisterVT - Returns the ValueType of the physical register
424 /// definition of the specified node.
425 /// FIXME: Move to SelectionDAG?
getPhysicalRegisterVT(SDNode * N,unsigned Reg,const TargetInstrInfo * TII)426 static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
427                                  const TargetInstrInfo *TII) {
428   unsigned NumRes;
429   if (N->getOpcode() == ISD::CopyFromReg) {
430     // CopyFromReg has: "chain, Val, glue" so operand 1 gives the type.
431     NumRes = 1;
432   } else {
433     const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
434     assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
435     NumRes = MCID.getNumDefs();
436     for (const MCPhysReg *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
437       if (Reg == *ImpDef)
438         break;
439       ++NumRes;
440     }
441   }
442   return N->getSimpleValueType(NumRes);
443 }
444 
445 /// CheckForLiveRegDef - Return true and update live register vector if the
446 /// specified register def of the specified SUnit clobbers any "live" registers.
CheckForLiveRegDef(SUnit * SU,unsigned Reg,std::vector<SUnit * > & LiveRegDefs,SmallSet<unsigned,4> & RegAdded,SmallVectorImpl<unsigned> & LRegs,const TargetRegisterInfo * TRI)447 static bool CheckForLiveRegDef(SUnit *SU, unsigned Reg,
448                                std::vector<SUnit*> &LiveRegDefs,
449                                SmallSet<unsigned, 4> &RegAdded,
450                                SmallVectorImpl<unsigned> &LRegs,
451                                const TargetRegisterInfo *TRI) {
452   bool Added = false;
453   for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
454     if (LiveRegDefs[*AI] && LiveRegDefs[*AI] != SU) {
455       if (RegAdded.insert(*AI).second) {
456         LRegs.push_back(*AI);
457         Added = true;
458       }
459     }
460   }
461   return Added;
462 }
463 
464 /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
465 /// scheduling of the given node to satisfy live physical register dependencies.
466 /// If the specific node is the last one that's available to schedule, do
467 /// whatever is necessary (i.e. backtracking or cloning) to make it possible.
DelayForLiveRegsBottomUp(SUnit * SU,SmallVectorImpl<unsigned> & LRegs)468 bool ScheduleDAGFast::DelayForLiveRegsBottomUp(SUnit *SU,
469                                               SmallVectorImpl<unsigned> &LRegs){
470   if (NumLiveRegs == 0)
471     return false;
472 
473   SmallSet<unsigned, 4> RegAdded;
474   // If this node would clobber any "live" register, then it's not ready.
475   for (SDep &Pred : SU->Preds) {
476     if (Pred.isAssignedRegDep()) {
477       CheckForLiveRegDef(Pred.getSUnit(), Pred.getReg(), LiveRegDefs,
478                          RegAdded, LRegs, TRI);
479     }
480   }
481 
482   for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
483     if (Node->getOpcode() == ISD::INLINEASM) {
484       // Inline asm can clobber physical defs.
485       unsigned NumOps = Node->getNumOperands();
486       if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
487         --NumOps;  // Ignore the glue operand.
488 
489       for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
490         unsigned Flags =
491           cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
492         unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
493 
494         ++i; // Skip the ID value.
495         if (InlineAsm::isRegDefKind(Flags) ||
496             InlineAsm::isRegDefEarlyClobberKind(Flags) ||
497             InlineAsm::isClobberKind(Flags)) {
498           // Check for def of register or earlyclobber register.
499           for (; NumVals; --NumVals, ++i) {
500             unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
501             if (TargetRegisterInfo::isPhysicalRegister(Reg))
502               CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI);
503           }
504         } else
505           i += NumVals;
506       }
507       continue;
508     }
509     if (!Node->isMachineOpcode())
510       continue;
511     const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
512     if (!MCID.ImplicitDefs)
513       continue;
514     for (const MCPhysReg *Reg = MCID.getImplicitDefs(); *Reg; ++Reg) {
515       CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI);
516     }
517   }
518   return !LRegs.empty();
519 }
520 
521 
522 /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
523 /// schedulers.
ListScheduleBottomUp()524 void ScheduleDAGFast::ListScheduleBottomUp() {
525   unsigned CurCycle = 0;
526 
527   // Release any predecessors of the special Exit node.
528   ReleasePredecessors(&ExitSU, CurCycle);
529 
530   // Add root to Available queue.
531   if (!SUnits.empty()) {
532     SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
533     assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
534     RootSU->isAvailable = true;
535     AvailableQueue.push(RootSU);
536   }
537 
538   // While Available queue is not empty, grab the node with the highest
539   // priority. If it is not ready put it back.  Schedule the node.
540   SmallVector<SUnit*, 4> NotReady;
541   DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
542   Sequence.reserve(SUnits.size());
543   while (!AvailableQueue.empty()) {
544     bool Delayed = false;
545     LRegsMap.clear();
546     SUnit *CurSU = AvailableQueue.pop();
547     while (CurSU) {
548       SmallVector<unsigned, 4> LRegs;
549       if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
550         break;
551       Delayed = true;
552       LRegsMap.insert(std::make_pair(CurSU, LRegs));
553 
554       CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
555       NotReady.push_back(CurSU);
556       CurSU = AvailableQueue.pop();
557     }
558 
559     // All candidates are delayed due to live physical reg dependencies.
560     // Try code duplication or inserting cross class copies
561     // to resolve it.
562     if (Delayed && !CurSU) {
563       if (!CurSU) {
564         // Try duplicating the nodes that produces these
565         // "expensive to copy" values to break the dependency. In case even
566         // that doesn't work, insert cross class copies.
567         SUnit *TrySU = NotReady[0];
568         SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
569         assert(LRegs.size() == 1 && "Can't handle this yet!");
570         unsigned Reg = LRegs[0];
571         SUnit *LRDef = LiveRegDefs[Reg];
572         MVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
573         const TargetRegisterClass *RC =
574           TRI->getMinimalPhysRegClass(Reg, VT);
575         const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
576 
577         // If cross copy register class is the same as RC, then it must be
578         // possible copy the value directly. Do not try duplicate the def.
579         // If cross copy register class is not the same as RC, then it's
580         // possible to copy the value but it require cross register class copies
581         // and it is expensive.
582         // If cross copy register class is null, then it's not possible to copy
583         // the value at all.
584         SUnit *NewDef = nullptr;
585         if (DestRC != RC) {
586           NewDef = CopyAndMoveSuccessors(LRDef);
587           if (!DestRC && !NewDef)
588             report_fatal_error("Can't handle live physical "
589                                "register dependency!");
590         }
591         if (!NewDef) {
592           // Issue copies, these can be expensive cross register class copies.
593           SmallVector<SUnit*, 2> Copies;
594           InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
595           LLVM_DEBUG(dbgs() << "Adding an edge from SU # " << TrySU->NodeNum
596                             << " to SU #" << Copies.front()->NodeNum << "\n");
597           AddPred(TrySU, SDep(Copies.front(), SDep::Artificial));
598           NewDef = Copies.back();
599         }
600 
601         LLVM_DEBUG(dbgs() << "Adding an edge from SU # " << NewDef->NodeNum
602                           << " to SU #" << TrySU->NodeNum << "\n");
603         LiveRegDefs[Reg] = NewDef;
604         AddPred(NewDef, SDep(TrySU, SDep::Artificial));
605         TrySU->isAvailable = false;
606         CurSU = NewDef;
607       }
608 
609       if (!CurSU) {
610         llvm_unreachable("Unable to resolve live physical register dependencies!");
611       }
612     }
613 
614     // Add the nodes that aren't ready back onto the available list.
615     for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
616       NotReady[i]->isPending = false;
617       // May no longer be available due to backtracking.
618       if (NotReady[i]->isAvailable)
619         AvailableQueue.push(NotReady[i]);
620     }
621     NotReady.clear();
622 
623     if (CurSU)
624       ScheduleNodeBottomUp(CurSU, CurCycle);
625     ++CurCycle;
626   }
627 
628   // Reverse the order since it is bottom up.
629   std::reverse(Sequence.begin(), Sequence.end());
630 
631 #ifndef NDEBUG
632   VerifyScheduledSequence(/*isBottomUp=*/true);
633 #endif
634 }
635 
636 
637 namespace {
638 //===----------------------------------------------------------------------===//
639 // ScheduleDAGLinearize - No scheduling scheduler, it simply linearize the
640 // DAG in topological order.
641 // IMPORTANT: this may not work for targets with phyreg dependency.
642 //
643 class ScheduleDAGLinearize : public ScheduleDAGSDNodes {
644 public:
ScheduleDAGLinearize(MachineFunction & mf)645   ScheduleDAGLinearize(MachineFunction &mf) : ScheduleDAGSDNodes(mf) {}
646 
647   void Schedule() override;
648 
649   MachineBasicBlock *
650     EmitSchedule(MachineBasicBlock::iterator &InsertPos) override;
651 
652 private:
653   std::vector<SDNode*> Sequence;
654   DenseMap<SDNode*, SDNode*> GluedMap;  // Cache glue to its user
655 
656   void ScheduleNode(SDNode *N);
657 };
658 } // end anonymous namespace
659 
ScheduleNode(SDNode * N)660 void ScheduleDAGLinearize::ScheduleNode(SDNode *N) {
661   if (N->getNodeId() != 0)
662     llvm_unreachable(nullptr);
663 
664   if (!N->isMachineOpcode() &&
665       (N->getOpcode() == ISD::EntryToken || isPassiveNode(N)))
666     // These nodes do not need to be translated into MIs.
667     return;
668 
669   LLVM_DEBUG(dbgs() << "\n*** Scheduling: ");
670   LLVM_DEBUG(N->dump(DAG));
671   Sequence.push_back(N);
672 
673   unsigned NumOps = N->getNumOperands();
674   if (unsigned NumLeft = NumOps) {
675     SDNode *GluedOpN = nullptr;
676     do {
677       const SDValue &Op = N->getOperand(NumLeft-1);
678       SDNode *OpN = Op.getNode();
679 
680       if (NumLeft == NumOps && Op.getValueType() == MVT::Glue) {
681         // Schedule glue operand right above N.
682         GluedOpN = OpN;
683         assert(OpN->getNodeId() != 0 && "Glue operand not ready?");
684         OpN->setNodeId(0);
685         ScheduleNode(OpN);
686         continue;
687       }
688 
689       if (OpN == GluedOpN)
690         // Glue operand is already scheduled.
691         continue;
692 
693       DenseMap<SDNode*, SDNode*>::iterator DI = GluedMap.find(OpN);
694       if (DI != GluedMap.end() && DI->second != N)
695         // Users of glues are counted against the glued users.
696         OpN = DI->second;
697 
698       unsigned Degree = OpN->getNodeId();
699       assert(Degree > 0 && "Predecessor over-released!");
700       OpN->setNodeId(--Degree);
701       if (Degree == 0)
702         ScheduleNode(OpN);
703     } while (--NumLeft);
704   }
705 }
706 
707 /// findGluedUser - Find the representative use of a glue value by walking
708 /// the use chain.
findGluedUser(SDNode * N)709 static SDNode *findGluedUser(SDNode *N) {
710   while (SDNode *Glued = N->getGluedUser())
711     N = Glued;
712   return N;
713 }
714 
Schedule()715 void ScheduleDAGLinearize::Schedule() {
716   LLVM_DEBUG(dbgs() << "********** DAG Linearization **********\n");
717 
718   SmallVector<SDNode*, 8> Glues;
719   unsigned DAGSize = 0;
720   for (SDNode &Node : DAG->allnodes()) {
721     SDNode *N = &Node;
722 
723     // Use node id to record degree.
724     unsigned Degree = N->use_size();
725     N->setNodeId(Degree);
726     unsigned NumVals = N->getNumValues();
727     if (NumVals && N->getValueType(NumVals-1) == MVT::Glue &&
728         N->hasAnyUseOfValue(NumVals-1)) {
729       SDNode *User = findGluedUser(N);
730       if (User) {
731         Glues.push_back(N);
732         GluedMap.insert(std::make_pair(N, User));
733       }
734     }
735 
736     if (N->isMachineOpcode() ||
737         (N->getOpcode() != ISD::EntryToken && !isPassiveNode(N)))
738       ++DAGSize;
739   }
740 
741   for (unsigned i = 0, e = Glues.size(); i != e; ++i) {
742     SDNode *Glue = Glues[i];
743     SDNode *GUser = GluedMap[Glue];
744     unsigned Degree = Glue->getNodeId();
745     unsigned UDegree = GUser->getNodeId();
746 
747     // Glue user must be scheduled together with the glue operand. So other
748     // users of the glue operand must be treated as its users.
749     SDNode *ImmGUser = Glue->getGluedUser();
750     for (const SDNode *U : Glue->uses())
751       if (U == ImmGUser)
752         --Degree;
753     GUser->setNodeId(UDegree + Degree);
754     Glue->setNodeId(1);
755   }
756 
757   Sequence.reserve(DAGSize);
758   ScheduleNode(DAG->getRoot().getNode());
759 }
760 
761 MachineBasicBlock*
EmitSchedule(MachineBasicBlock::iterator & InsertPos)762 ScheduleDAGLinearize::EmitSchedule(MachineBasicBlock::iterator &InsertPos) {
763   InstrEmitter Emitter(BB, InsertPos);
764   DenseMap<SDValue, unsigned> VRBaseMap;
765 
766   LLVM_DEBUG({ dbgs() << "\n*** Final schedule ***\n"; });
767 
768   unsigned NumNodes = Sequence.size();
769   MachineBasicBlock *BB = Emitter.getBlock();
770   for (unsigned i = 0; i != NumNodes; ++i) {
771     SDNode *N = Sequence[NumNodes-i-1];
772     LLVM_DEBUG(N->dump(DAG));
773     Emitter.EmitNode(N, false, false, VRBaseMap);
774 
775     // Emit any debug values associated with the node.
776     if (N->getHasDebugValue()) {
777       MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos();
778       for (auto DV : DAG->GetDbgValues(N)) {
779         if (!DV->isEmitted())
780           if (auto *DbgMI = Emitter.EmitDbgValue(DV, VRBaseMap))
781             BB->insert(InsertPos, DbgMI);
782       }
783     }
784   }
785 
786   LLVM_DEBUG(dbgs() << '\n');
787 
788   InsertPos = Emitter.getInsertPos();
789   return Emitter.getBlock();
790 }
791 
792 //===----------------------------------------------------------------------===//
793 //                         Public Constructor Functions
794 //===----------------------------------------------------------------------===//
795 
796 llvm::ScheduleDAGSDNodes *
createFastDAGScheduler(SelectionDAGISel * IS,CodeGenOpt::Level)797 llvm::createFastDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) {
798   return new ScheduleDAGFast(*IS->MF);
799 }
800 
801 llvm::ScheduleDAGSDNodes *
createDAGLinearizer(SelectionDAGISel * IS,CodeGenOpt::Level)802 llvm::createDAGLinearizer(SelectionDAGISel *IS, CodeGenOpt::Level) {
803   return new ScheduleDAGLinearize(*IS->MF);
804 }
805