1 //===- InstCombineShifts.cpp ----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitShl, visitLShr, and visitAShr functions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/IR/PatternMatch.h"
19 using namespace llvm;
20 using namespace PatternMatch;
21 
22 #define DEBUG_TYPE "instcombine"
23 
commonShiftTransforms(BinaryOperator & I)24 Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
25   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
26   assert(Op0->getType() == Op1->getType());
27 
28   // See if we can fold away this shift.
29   if (SimplifyDemandedInstructionBits(I))
30     return &I;
31 
32   // Try to fold constant and into select arguments.
33   if (isa<Constant>(Op0))
34     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
35       if (Instruction *R = FoldOpIntoSelect(I, SI))
36         return R;
37 
38   if (Constant *CUI = dyn_cast<Constant>(Op1))
39     if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
40       return Res;
41 
42   // (C1 shift (A add C2)) -> (C1 shift C2) shift A)
43   // iff A and C2 are both positive.
44   Value *A;
45   Constant *C;
46   if (match(Op0, m_Constant()) && match(Op1, m_Add(m_Value(A), m_Constant(C))))
47     if (isKnownNonNegative(A, DL, 0, &AC, &I, &DT) &&
48         isKnownNonNegative(C, DL, 0, &AC, &I, &DT))
49       return BinaryOperator::Create(
50           I.getOpcode(), Builder.CreateBinOp(I.getOpcode(), Op0, C), A);
51 
52   // X shift (A srem B) -> X shift (A and B-1) iff B is a power of 2.
53   // Because shifts by negative values (which could occur if A were negative)
54   // are undefined.
55   const APInt *B;
56   if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Power2(B)))) {
57     // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't
58     // demand the sign bit (and many others) here??
59     Value *Rem = Builder.CreateAnd(A, ConstantInt::get(I.getType(), *B - 1),
60                                    Op1->getName());
61     I.setOperand(1, Rem);
62     return &I;
63   }
64 
65   return nullptr;
66 }
67 
68 /// Return true if we can simplify two logical (either left or right) shifts
69 /// that have constant shift amounts: OuterShift (InnerShift X, C1), C2.
canEvaluateShiftedShift(unsigned OuterShAmt,bool IsOuterShl,Instruction * InnerShift,InstCombiner & IC,Instruction * CxtI)70 static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl,
71                                     Instruction *InnerShift, InstCombiner &IC,
72                                     Instruction *CxtI) {
73   assert(InnerShift->isLogicalShift() && "Unexpected instruction type");
74 
75   // We need constant scalar or constant splat shifts.
76   const APInt *InnerShiftConst;
77   if (!match(InnerShift->getOperand(1), m_APInt(InnerShiftConst)))
78     return false;
79 
80   // Two logical shifts in the same direction:
81   // shl (shl X, C1), C2 -->  shl X, C1 + C2
82   // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
83   bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
84   if (IsInnerShl == IsOuterShl)
85     return true;
86 
87   // Equal shift amounts in opposite directions become bitwise 'and':
88   // lshr (shl X, C), C --> and X, C'
89   // shl (lshr X, C), C --> and X, C'
90   if (*InnerShiftConst == OuterShAmt)
91     return true;
92 
93   // If the 2nd shift is bigger than the 1st, we can fold:
94   // lshr (shl X, C1), C2 -->  and (shl X, C1 - C2), C3
95   // shl (lshr X, C1), C2 --> and (lshr X, C1 - C2), C3
96   // but it isn't profitable unless we know the and'd out bits are already zero.
97   // Also, check that the inner shift is valid (less than the type width) or
98   // we'll crash trying to produce the bit mask for the 'and'.
99   unsigned TypeWidth = InnerShift->getType()->getScalarSizeInBits();
100   if (InnerShiftConst->ugt(OuterShAmt) && InnerShiftConst->ult(TypeWidth)) {
101     unsigned InnerShAmt = InnerShiftConst->getZExtValue();
102     unsigned MaskShift =
103         IsInnerShl ? TypeWidth - InnerShAmt : InnerShAmt - OuterShAmt;
104     APInt Mask = APInt::getLowBitsSet(TypeWidth, OuterShAmt) << MaskShift;
105     if (IC.MaskedValueIsZero(InnerShift->getOperand(0), Mask, 0, CxtI))
106       return true;
107   }
108 
109   return false;
110 }
111 
112 /// See if we can compute the specified value, but shifted logically to the left
113 /// or right by some number of bits. This should return true if the expression
114 /// can be computed for the same cost as the current expression tree. This is
115 /// used to eliminate extraneous shifting from things like:
116 ///      %C = shl i128 %A, 64
117 ///      %D = shl i128 %B, 96
118 ///      %E = or i128 %C, %D
119 ///      %F = lshr i128 %E, 64
120 /// where the client will ask if E can be computed shifted right by 64-bits. If
121 /// this succeeds, getShiftedValue() will be called to produce the value.
canEvaluateShifted(Value * V,unsigned NumBits,bool IsLeftShift,InstCombiner & IC,Instruction * CxtI)122 static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift,
123                                InstCombiner &IC, Instruction *CxtI) {
124   // We can always evaluate constants shifted.
125   if (isa<Constant>(V))
126     return true;
127 
128   Instruction *I = dyn_cast<Instruction>(V);
129   if (!I) return false;
130 
131   // If this is the opposite shift, we can directly reuse the input of the shift
132   // if the needed bits are already zero in the input.  This allows us to reuse
133   // the value which means that we don't care if the shift has multiple uses.
134   //  TODO:  Handle opposite shift by exact value.
135   ConstantInt *CI = nullptr;
136   if ((IsLeftShift && match(I, m_LShr(m_Value(), m_ConstantInt(CI)))) ||
137       (!IsLeftShift && match(I, m_Shl(m_Value(), m_ConstantInt(CI))))) {
138     if (CI->getValue() == NumBits) {
139       // TODO: Check that the input bits are already zero with MaskedValueIsZero
140 #if 0
141       // If this is a truncate of a logical shr, we can truncate it to a smaller
142       // lshr iff we know that the bits we would otherwise be shifting in are
143       // already zeros.
144       uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
145       uint32_t BitWidth = Ty->getScalarSizeInBits();
146       if (MaskedValueIsZero(I->getOperand(0),
147             APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
148           CI->getLimitedValue(BitWidth) < BitWidth) {
149         return CanEvaluateTruncated(I->getOperand(0), Ty);
150       }
151 #endif
152 
153     }
154   }
155 
156   // We can't mutate something that has multiple uses: doing so would
157   // require duplicating the instruction in general, which isn't profitable.
158   if (!I->hasOneUse()) return false;
159 
160   switch (I->getOpcode()) {
161   default: return false;
162   case Instruction::And:
163   case Instruction::Or:
164   case Instruction::Xor:
165     // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
166     return canEvaluateShifted(I->getOperand(0), NumBits, IsLeftShift, IC, I) &&
167            canEvaluateShifted(I->getOperand(1), NumBits, IsLeftShift, IC, I);
168 
169   case Instruction::Shl:
170   case Instruction::LShr:
171     return canEvaluateShiftedShift(NumBits, IsLeftShift, I, IC, CxtI);
172 
173   case Instruction::Select: {
174     SelectInst *SI = cast<SelectInst>(I);
175     Value *TrueVal = SI->getTrueValue();
176     Value *FalseVal = SI->getFalseValue();
177     return canEvaluateShifted(TrueVal, NumBits, IsLeftShift, IC, SI) &&
178            canEvaluateShifted(FalseVal, NumBits, IsLeftShift, IC, SI);
179   }
180   case Instruction::PHI: {
181     // We can change a phi if we can change all operands.  Note that we never
182     // get into trouble with cyclic PHIs here because we only consider
183     // instructions with a single use.
184     PHINode *PN = cast<PHINode>(I);
185     for (Value *IncValue : PN->incoming_values())
186       if (!canEvaluateShifted(IncValue, NumBits, IsLeftShift, IC, PN))
187         return false;
188     return true;
189   }
190   }
191 }
192 
193 /// Fold OuterShift (InnerShift X, C1), C2.
194 /// See canEvaluateShiftedShift() for the constraints on these instructions.
foldShiftedShift(BinaryOperator * InnerShift,unsigned OuterShAmt,bool IsOuterShl,InstCombiner::BuilderTy & Builder)195 static Value *foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt,
196                                bool IsOuterShl,
197                                InstCombiner::BuilderTy &Builder) {
198   bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
199   Type *ShType = InnerShift->getType();
200   unsigned TypeWidth = ShType->getScalarSizeInBits();
201 
202   // We only accept shifts-by-a-constant in canEvaluateShifted().
203   const APInt *C1;
204   match(InnerShift->getOperand(1), m_APInt(C1));
205   unsigned InnerShAmt = C1->getZExtValue();
206 
207   // Change the shift amount and clear the appropriate IR flags.
208   auto NewInnerShift = [&](unsigned ShAmt) {
209     InnerShift->setOperand(1, ConstantInt::get(ShType, ShAmt));
210     if (IsInnerShl) {
211       InnerShift->setHasNoUnsignedWrap(false);
212       InnerShift->setHasNoSignedWrap(false);
213     } else {
214       InnerShift->setIsExact(false);
215     }
216     return InnerShift;
217   };
218 
219   // Two logical shifts in the same direction:
220   // shl (shl X, C1), C2 -->  shl X, C1 + C2
221   // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
222   if (IsInnerShl == IsOuterShl) {
223     // If this is an oversized composite shift, then unsigned shifts get 0.
224     if (InnerShAmt + OuterShAmt >= TypeWidth)
225       return Constant::getNullValue(ShType);
226 
227     return NewInnerShift(InnerShAmt + OuterShAmt);
228   }
229 
230   // Equal shift amounts in opposite directions become bitwise 'and':
231   // lshr (shl X, C), C --> and X, C'
232   // shl (lshr X, C), C --> and X, C'
233   if (InnerShAmt == OuterShAmt) {
234     APInt Mask = IsInnerShl
235                      ? APInt::getLowBitsSet(TypeWidth, TypeWidth - OuterShAmt)
236                      : APInt::getHighBitsSet(TypeWidth, TypeWidth - OuterShAmt);
237     Value *And = Builder.CreateAnd(InnerShift->getOperand(0),
238                                    ConstantInt::get(ShType, Mask));
239     if (auto *AndI = dyn_cast<Instruction>(And)) {
240       AndI->moveBefore(InnerShift);
241       AndI->takeName(InnerShift);
242     }
243     return And;
244   }
245 
246   assert(InnerShAmt > OuterShAmt &&
247          "Unexpected opposite direction logical shift pair");
248 
249   // In general, we would need an 'and' for this transform, but
250   // canEvaluateShiftedShift() guarantees that the masked-off bits are not used.
251   // lshr (shl X, C1), C2 -->  shl X, C1 - C2
252   // shl (lshr X, C1), C2 --> lshr X, C1 - C2
253   return NewInnerShift(InnerShAmt - OuterShAmt);
254 }
255 
256 /// When canEvaluateShifted() returns true for an expression, this function
257 /// inserts the new computation that produces the shifted value.
getShiftedValue(Value * V,unsigned NumBits,bool isLeftShift,InstCombiner & IC,const DataLayout & DL)258 static Value *getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
259                               InstCombiner &IC, const DataLayout &DL) {
260   // We can always evaluate constants shifted.
261   if (Constant *C = dyn_cast<Constant>(V)) {
262     if (isLeftShift)
263       V = IC.Builder.CreateShl(C, NumBits);
264     else
265       V = IC.Builder.CreateLShr(C, NumBits);
266     // If we got a constantexpr back, try to simplify it with TD info.
267     if (auto *C = dyn_cast<Constant>(V))
268       if (auto *FoldedC =
269               ConstantFoldConstant(C, DL, &IC.getTargetLibraryInfo()))
270         V = FoldedC;
271     return V;
272   }
273 
274   Instruction *I = cast<Instruction>(V);
275   IC.Worklist.Add(I);
276 
277   switch (I->getOpcode()) {
278   default: llvm_unreachable("Inconsistency with CanEvaluateShifted");
279   case Instruction::And:
280   case Instruction::Or:
281   case Instruction::Xor:
282     // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
283     I->setOperand(
284         0, getShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL));
285     I->setOperand(
286         1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
287     return I;
288 
289   case Instruction::Shl:
290   case Instruction::LShr:
291     return foldShiftedShift(cast<BinaryOperator>(I), NumBits, isLeftShift,
292                             IC.Builder);
293 
294   case Instruction::Select:
295     I->setOperand(
296         1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
297     I->setOperand(
298         2, getShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL));
299     return I;
300   case Instruction::PHI: {
301     // We can change a phi if we can change all operands.  Note that we never
302     // get into trouble with cyclic PHIs here because we only consider
303     // instructions with a single use.
304     PHINode *PN = cast<PHINode>(I);
305     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
306       PN->setIncomingValue(i, getShiftedValue(PN->getIncomingValue(i), NumBits,
307                                               isLeftShift, IC, DL));
308     return PN;
309   }
310   }
311 }
312 
313 // If this is a bitwise operator or add with a constant RHS we might be able
314 // to pull it through a shift.
canShiftBinOpWithConstantRHS(BinaryOperator & Shift,BinaryOperator * BO,const APInt & C)315 static bool canShiftBinOpWithConstantRHS(BinaryOperator &Shift,
316                                          BinaryOperator *BO,
317                                          const APInt &C) {
318   bool IsValid = true;     // Valid only for And, Or Xor,
319   bool HighBitSet = false; // Transform ifhigh bit of constant set?
320 
321   switch (BO->getOpcode()) {
322   default: IsValid = false; break;   // Do not perform transform!
323   case Instruction::Add:
324     IsValid = Shift.getOpcode() == Instruction::Shl;
325     break;
326   case Instruction::Or:
327   case Instruction::Xor:
328     HighBitSet = false;
329     break;
330   case Instruction::And:
331     HighBitSet = true;
332     break;
333   }
334 
335   // If this is a signed shift right, and the high bit is modified
336   // by the logical operation, do not perform the transformation.
337   // The HighBitSet boolean indicates the value of the high bit of
338   // the constant which would cause it to be modified for this
339   // operation.
340   //
341   if (IsValid && Shift.getOpcode() == Instruction::AShr)
342     IsValid = C.isNegative() == HighBitSet;
343 
344   return IsValid;
345 }
346 
FoldShiftByConstant(Value * Op0,Constant * Op1,BinaryOperator & I)347 Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, Constant *Op1,
348                                                BinaryOperator &I) {
349   bool isLeftShift = I.getOpcode() == Instruction::Shl;
350 
351   const APInt *Op1C;
352   if (!match(Op1, m_APInt(Op1C)))
353     return nullptr;
354 
355   // See if we can propagate this shift into the input, this covers the trivial
356   // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
357   if (I.getOpcode() != Instruction::AShr &&
358       canEvaluateShifted(Op0, Op1C->getZExtValue(), isLeftShift, *this, &I)) {
359     LLVM_DEBUG(
360         dbgs() << "ICE: GetShiftedValue propagating shift through expression"
361                   " to eliminate shift:\n  IN: "
362                << *Op0 << "\n  SH: " << I << "\n");
363 
364     return replaceInstUsesWith(
365         I, getShiftedValue(Op0, Op1C->getZExtValue(), isLeftShift, *this, DL));
366   }
367 
368   // See if we can simplify any instructions used by the instruction whose sole
369   // purpose is to compute bits we don't care about.
370   unsigned TypeBits = Op0->getType()->getScalarSizeInBits();
371 
372   assert(!Op1C->uge(TypeBits) &&
373          "Shift over the type width should have been removed already");
374 
375   if (Instruction *FoldedShift = foldBinOpIntoSelectOrPhi(I))
376     return FoldedShift;
377 
378   // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
379   if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
380     Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
381     // If 'shift2' is an ashr, we would have to get the sign bit into a funny
382     // place.  Don't try to do this transformation in this case.  Also, we
383     // require that the input operand is a shift-by-constant so that we have
384     // confidence that the shifts will get folded together.  We could do this
385     // xform in more cases, but it is unlikely to be profitable.
386     if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
387         isa<ConstantInt>(TrOp->getOperand(1))) {
388       // Okay, we'll do this xform.  Make the shift of shift.
389       Constant *ShAmt =
390           ConstantExpr::getZExt(cast<Constant>(Op1), TrOp->getType());
391       // (shift2 (shift1 & 0x00FF), c2)
392       Value *NSh = Builder.CreateBinOp(I.getOpcode(), TrOp, ShAmt, I.getName());
393 
394       // For logical shifts, the truncation has the effect of making the high
395       // part of the register be zeros.  Emulate this by inserting an AND to
396       // clear the top bits as needed.  This 'and' will usually be zapped by
397       // other xforms later if dead.
398       unsigned SrcSize = TrOp->getType()->getScalarSizeInBits();
399       unsigned DstSize = TI->getType()->getScalarSizeInBits();
400       APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
401 
402       // The mask we constructed says what the trunc would do if occurring
403       // between the shifts.  We want to know the effect *after* the second
404       // shift.  We know that it is a logical shift by a constant, so adjust the
405       // mask as appropriate.
406       if (I.getOpcode() == Instruction::Shl)
407         MaskV <<= Op1C->getZExtValue();
408       else {
409         assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
410         MaskV.lshrInPlace(Op1C->getZExtValue());
411       }
412 
413       // shift1 & 0x00FF
414       Value *And = Builder.CreateAnd(NSh,
415                                      ConstantInt::get(I.getContext(), MaskV),
416                                      TI->getName());
417 
418       // Return the value truncated to the interesting size.
419       return new TruncInst(And, I.getType());
420     }
421   }
422 
423   if (Op0->hasOneUse()) {
424     if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
425       // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
426       Value *V1, *V2;
427       ConstantInt *CC;
428       switch (Op0BO->getOpcode()) {
429       default: break;
430       case Instruction::Add:
431       case Instruction::And:
432       case Instruction::Or:
433       case Instruction::Xor: {
434         // These operators commute.
435         // Turn (Y + (X >> C)) << C  ->  (X + (Y << C)) & (~0 << C)
436         if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
437             match(Op0BO->getOperand(1), m_Shr(m_Value(V1),
438                   m_Specific(Op1)))) {
439           Value *YS =         // (Y << C)
440             Builder.CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
441           // (X + (Y << C))
442           Value *X = Builder.CreateBinOp(Op0BO->getOpcode(), YS, V1,
443                                          Op0BO->getOperand(1)->getName());
444           unsigned Op1Val = Op1C->getLimitedValue(TypeBits);
445 
446           APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val);
447           Constant *Mask = ConstantInt::get(I.getContext(), Bits);
448           if (VectorType *VT = dyn_cast<VectorType>(X->getType()))
449             Mask = ConstantVector::getSplat(VT->getNumElements(), Mask);
450           return BinaryOperator::CreateAnd(X, Mask);
451         }
452 
453         // Turn (Y + ((X >> C) & CC)) << C  ->  ((X & (CC << C)) + (Y << C))
454         Value *Op0BOOp1 = Op0BO->getOperand(1);
455         if (isLeftShift && Op0BOOp1->hasOneUse() &&
456             match(Op0BOOp1,
457                   m_And(m_OneUse(m_Shr(m_Value(V1), m_Specific(Op1))),
458                         m_ConstantInt(CC)))) {
459           Value *YS =   // (Y << C)
460             Builder.CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
461           // X & (CC << C)
462           Value *XM = Builder.CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
463                                         V1->getName()+".mask");
464           return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
465         }
466         LLVM_FALLTHROUGH;
467       }
468 
469       case Instruction::Sub: {
470         // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
471         if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
472             match(Op0BO->getOperand(0), m_Shr(m_Value(V1),
473                   m_Specific(Op1)))) {
474           Value *YS =  // (Y << C)
475             Builder.CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
476           // (X + (Y << C))
477           Value *X = Builder.CreateBinOp(Op0BO->getOpcode(), V1, YS,
478                                          Op0BO->getOperand(0)->getName());
479           unsigned Op1Val = Op1C->getLimitedValue(TypeBits);
480 
481           APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val);
482           Constant *Mask = ConstantInt::get(I.getContext(), Bits);
483           if (VectorType *VT = dyn_cast<VectorType>(X->getType()))
484             Mask = ConstantVector::getSplat(VT->getNumElements(), Mask);
485           return BinaryOperator::CreateAnd(X, Mask);
486         }
487 
488         // Turn (((X >> C)&CC) + Y) << C  ->  (X + (Y << C)) & (CC << C)
489         if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
490             match(Op0BO->getOperand(0),
491                   m_And(m_OneUse(m_Shr(m_Value(V1), m_Value(V2))),
492                         m_ConstantInt(CC))) && V2 == Op1) {
493           Value *YS = // (Y << C)
494             Builder.CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
495           // X & (CC << C)
496           Value *XM = Builder.CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
497                                         V1->getName()+".mask");
498 
499           return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
500         }
501 
502         break;
503       }
504       }
505 
506 
507       // If the operand is a bitwise operator with a constant RHS, and the
508       // shift is the only use, we can pull it out of the shift.
509       const APInt *Op0C;
510       if (match(Op0BO->getOperand(1), m_APInt(Op0C))) {
511         if (canShiftBinOpWithConstantRHS(I, Op0BO, *Op0C)) {
512           Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
513                                      cast<Constant>(Op0BO->getOperand(1)), Op1);
514 
515           Value *NewShift =
516             Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
517           NewShift->takeName(Op0BO);
518 
519           return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
520                                         NewRHS);
521         }
522       }
523 
524       // If the operand is a subtract with a constant LHS, and the shift
525       // is the only use, we can pull it out of the shift.
526       // This folds (shl (sub C1, X), C2) -> (sub (C1 << C2), (shl X, C2))
527       if (isLeftShift && Op0BO->getOpcode() == Instruction::Sub &&
528           match(Op0BO->getOperand(0), m_APInt(Op0C))) {
529         Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
530                                    cast<Constant>(Op0BO->getOperand(0)), Op1);
531 
532         Value *NewShift = Builder.CreateShl(Op0BO->getOperand(1), Op1);
533         NewShift->takeName(Op0BO);
534 
535         return BinaryOperator::CreateSub(NewRHS, NewShift);
536       }
537     }
538 
539     // If we have a select that conditionally executes some binary operator,
540     // see if we can pull it the select and operator through the shift.
541     //
542     // For example, turning:
543     //   shl (select C, (add X, C1), X), C2
544     // Into:
545     //   Y = shl X, C2
546     //   select C, (add Y, C1 << C2), Y
547     Value *Cond;
548     BinaryOperator *TBO;
549     Value *FalseVal;
550     if (match(Op0, m_Select(m_Value(Cond), m_OneUse(m_BinOp(TBO)),
551                             m_Value(FalseVal)))) {
552       const APInt *C;
553       if (!isa<Constant>(FalseVal) && TBO->getOperand(0) == FalseVal &&
554           match(TBO->getOperand(1), m_APInt(C)) &&
555           canShiftBinOpWithConstantRHS(I, TBO, *C)) {
556         Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
557                                        cast<Constant>(TBO->getOperand(1)), Op1);
558 
559         Value *NewShift =
560           Builder.CreateBinOp(I.getOpcode(), FalseVal, Op1);
561         Value *NewOp = Builder.CreateBinOp(TBO->getOpcode(), NewShift,
562                                            NewRHS);
563         return SelectInst::Create(Cond, NewOp, NewShift);
564       }
565     }
566 
567     BinaryOperator *FBO;
568     Value *TrueVal;
569     if (match(Op0, m_Select(m_Value(Cond), m_Value(TrueVal),
570                             m_OneUse(m_BinOp(FBO))))) {
571       const APInt *C;
572       if (!isa<Constant>(TrueVal) && FBO->getOperand(0) == TrueVal &&
573           match(FBO->getOperand(1), m_APInt(C)) &&
574           canShiftBinOpWithConstantRHS(I, FBO, *C)) {
575         Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
576                                        cast<Constant>(FBO->getOperand(1)), Op1);
577 
578         Value *NewShift =
579           Builder.CreateBinOp(I.getOpcode(), TrueVal, Op1);
580         Value *NewOp = Builder.CreateBinOp(FBO->getOpcode(), NewShift,
581                                            NewRHS);
582         return SelectInst::Create(Cond, NewShift, NewOp);
583       }
584     }
585   }
586 
587   return nullptr;
588 }
589 
visitShl(BinaryOperator & I)590 Instruction *InstCombiner::visitShl(BinaryOperator &I) {
591   if (Value *V = SimplifyShlInst(I.getOperand(0), I.getOperand(1),
592                                  I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
593                                  SQ.getWithInstruction(&I)))
594     return replaceInstUsesWith(I, V);
595 
596   if (Instruction *X = foldVectorBinop(I))
597     return X;
598 
599   if (Instruction *V = commonShiftTransforms(I))
600     return V;
601 
602   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
603   Type *Ty = I.getType();
604   const APInt *ShAmtAPInt;
605   if (match(Op1, m_APInt(ShAmtAPInt))) {
606     unsigned ShAmt = ShAmtAPInt->getZExtValue();
607     unsigned BitWidth = Ty->getScalarSizeInBits();
608 
609     // shl (zext X), ShAmt --> zext (shl X, ShAmt)
610     // This is only valid if X would have zeros shifted out.
611     Value *X;
612     if (match(Op0, m_ZExt(m_Value(X)))) {
613       unsigned SrcWidth = X->getType()->getScalarSizeInBits();
614       if (ShAmt < SrcWidth &&
615           MaskedValueIsZero(X, APInt::getHighBitsSet(SrcWidth, ShAmt), 0, &I))
616         return new ZExtInst(Builder.CreateShl(X, ShAmt), Ty);
617     }
618 
619     // (X >> C) << C --> X & (-1 << C)
620     if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1)))) {
621       APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt));
622       return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
623     }
624 
625     // FIXME: we do not yet transform non-exact shr's. The backend (DAGCombine)
626     // needs a few fixes for the rotate pattern recognition first.
627     const APInt *ShOp1;
628     if (match(Op0, m_Exact(m_Shr(m_Value(X), m_APInt(ShOp1))))) {
629       unsigned ShrAmt = ShOp1->getZExtValue();
630       if (ShrAmt < ShAmt) {
631         // If C1 < C2: (X >>?,exact C1) << C2 --> X << (C2 - C1)
632         Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShrAmt);
633         auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
634         NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
635         NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
636         return NewShl;
637       }
638       if (ShrAmt > ShAmt) {
639         // If C1 > C2: (X >>?exact C1) << C2 --> X >>?exact (C1 - C2)
640         Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmt);
641         auto *NewShr = BinaryOperator::Create(
642             cast<BinaryOperator>(Op0)->getOpcode(), X, ShiftDiff);
643         NewShr->setIsExact(true);
644         return NewShr;
645       }
646     }
647 
648     if (match(Op0, m_Shl(m_Value(X), m_APInt(ShOp1)))) {
649       unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
650       // Oversized shifts are simplified to zero in InstSimplify.
651       if (AmtSum < BitWidth)
652         // (X << C1) << C2 --> X << (C1 + C2)
653         return BinaryOperator::CreateShl(X, ConstantInt::get(Ty, AmtSum));
654     }
655 
656     // If the shifted-out value is known-zero, then this is a NUW shift.
657     if (!I.hasNoUnsignedWrap() &&
658         MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, ShAmt), 0, &I)) {
659       I.setHasNoUnsignedWrap();
660       return &I;
661     }
662 
663     // If the shifted-out value is all signbits, then this is a NSW shift.
664     if (!I.hasNoSignedWrap() && ComputeNumSignBits(Op0, 0, &I) > ShAmt) {
665       I.setHasNoSignedWrap();
666       return &I;
667     }
668   }
669 
670   // Transform  (x >> y) << y  to  x & (-1 << y)
671   // Valid for any type of right-shift.
672   Value *X;
673   if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) {
674     Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
675     Value *Mask = Builder.CreateShl(AllOnes, Op1);
676     return BinaryOperator::CreateAnd(Mask, X);
677   }
678 
679   Constant *C1;
680   if (match(Op1, m_Constant(C1))) {
681     Constant *C2;
682     Value *X;
683     // (C2 << X) << C1 --> (C2 << C1) << X
684     if (match(Op0, m_OneUse(m_Shl(m_Constant(C2), m_Value(X)))))
685       return BinaryOperator::CreateShl(ConstantExpr::getShl(C2, C1), X);
686 
687     // (X * C2) << C1 --> X * (C2 << C1)
688     if (match(Op0, m_Mul(m_Value(X), m_Constant(C2))))
689       return BinaryOperator::CreateMul(X, ConstantExpr::getShl(C2, C1));
690   }
691 
692   return nullptr;
693 }
694 
visitLShr(BinaryOperator & I)695 Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
696   if (Value *V = SimplifyLShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
697                                   SQ.getWithInstruction(&I)))
698     return replaceInstUsesWith(I, V);
699 
700   if (Instruction *X = foldVectorBinop(I))
701     return X;
702 
703   if (Instruction *R = commonShiftTransforms(I))
704     return R;
705 
706   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
707   Type *Ty = I.getType();
708   const APInt *ShAmtAPInt;
709   if (match(Op1, m_APInt(ShAmtAPInt))) {
710     unsigned ShAmt = ShAmtAPInt->getZExtValue();
711     unsigned BitWidth = Ty->getScalarSizeInBits();
712     auto *II = dyn_cast<IntrinsicInst>(Op0);
713     if (II && isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmt &&
714         (II->getIntrinsicID() == Intrinsic::ctlz ||
715          II->getIntrinsicID() == Intrinsic::cttz ||
716          II->getIntrinsicID() == Intrinsic::ctpop)) {
717       // ctlz.i32(x)>>5  --> zext(x == 0)
718       // cttz.i32(x)>>5  --> zext(x == 0)
719       // ctpop.i32(x)>>5 --> zext(x == -1)
720       bool IsPop = II->getIntrinsicID() == Intrinsic::ctpop;
721       Constant *RHS = ConstantInt::getSigned(Ty, IsPop ? -1 : 0);
722       Value *Cmp = Builder.CreateICmpEQ(II->getArgOperand(0), RHS);
723       return new ZExtInst(Cmp, Ty);
724     }
725 
726     Value *X;
727     const APInt *ShOp1;
728     if (match(Op0, m_Shl(m_Value(X), m_APInt(ShOp1))) && ShOp1->ult(BitWidth)) {
729       if (ShOp1->ult(ShAmt)) {
730         unsigned ShlAmt = ShOp1->getZExtValue();
731         Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
732         if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
733           // (X <<nuw C1) >>u C2 --> X >>u (C2 - C1)
734           auto *NewLShr = BinaryOperator::CreateLShr(X, ShiftDiff);
735           NewLShr->setIsExact(I.isExact());
736           return NewLShr;
737         }
738         // (X << C1) >>u C2  --> (X >>u (C2 - C1)) & (-1 >> C2)
739         Value *NewLShr = Builder.CreateLShr(X, ShiftDiff, "", I.isExact());
740         APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt));
741         return BinaryOperator::CreateAnd(NewLShr, ConstantInt::get(Ty, Mask));
742       }
743       if (ShOp1->ugt(ShAmt)) {
744         unsigned ShlAmt = ShOp1->getZExtValue();
745         Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
746         if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
747           // (X <<nuw C1) >>u C2 --> X <<nuw (C1 - C2)
748           auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
749           NewShl->setHasNoUnsignedWrap(true);
750           return NewShl;
751         }
752         // (X << C1) >>u C2  --> X << (C1 - C2) & (-1 >> C2)
753         Value *NewShl = Builder.CreateShl(X, ShiftDiff);
754         APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt));
755         return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
756       }
757       assert(*ShOp1 == ShAmt);
758       // (X << C) >>u C --> X & (-1 >>u C)
759       APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt));
760       return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
761     }
762 
763     if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) &&
764         (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) {
765       assert(ShAmt < X->getType()->getScalarSizeInBits() &&
766              "Big shift not simplified to zero?");
767       // lshr (zext iM X to iN), C --> zext (lshr X, C) to iN
768       Value *NewLShr = Builder.CreateLShr(X, ShAmt);
769       return new ZExtInst(NewLShr, Ty);
770     }
771 
772     if (match(Op0, m_SExt(m_Value(X))) &&
773         (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) {
774       // Are we moving the sign bit to the low bit and widening with high zeros?
775       unsigned SrcTyBitWidth = X->getType()->getScalarSizeInBits();
776       if (ShAmt == BitWidth - 1) {
777         // lshr (sext i1 X to iN), N-1 --> zext X to iN
778         if (SrcTyBitWidth == 1)
779           return new ZExtInst(X, Ty);
780 
781         // lshr (sext iM X to iN), N-1 --> zext (lshr X, M-1) to iN
782         if (Op0->hasOneUse()) {
783           Value *NewLShr = Builder.CreateLShr(X, SrcTyBitWidth - 1);
784           return new ZExtInst(NewLShr, Ty);
785         }
786       }
787 
788       // lshr (sext iM X to iN), N-M --> zext (ashr X, min(N-M, M-1)) to iN
789       if (ShAmt == BitWidth - SrcTyBitWidth && Op0->hasOneUse()) {
790         // The new shift amount can't be more than the narrow source type.
791         unsigned NewShAmt = std::min(ShAmt, SrcTyBitWidth - 1);
792         Value *AShr = Builder.CreateAShr(X, NewShAmt);
793         return new ZExtInst(AShr, Ty);
794       }
795     }
796 
797     if (match(Op0, m_LShr(m_Value(X), m_APInt(ShOp1)))) {
798       unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
799       // Oversized shifts are simplified to zero in InstSimplify.
800       if (AmtSum < BitWidth)
801         // (X >>u C1) >>u C2 --> X >>u (C1 + C2)
802         return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
803     }
804 
805     // If the shifted-out value is known-zero, then this is an exact shift.
806     if (!I.isExact() &&
807         MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) {
808       I.setIsExact();
809       return &I;
810     }
811   }
812 
813   // Transform  (x << y) >> y  to  x & (-1 >> y)
814   Value *X;
815   if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))))) {
816     Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
817     Value *Mask = Builder.CreateLShr(AllOnes, Op1);
818     return BinaryOperator::CreateAnd(Mask, X);
819   }
820 
821   return nullptr;
822 }
823 
visitAShr(BinaryOperator & I)824 Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
825   if (Value *V = SimplifyAShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
826                                   SQ.getWithInstruction(&I)))
827     return replaceInstUsesWith(I, V);
828 
829   if (Instruction *X = foldVectorBinop(I))
830     return X;
831 
832   if (Instruction *R = commonShiftTransforms(I))
833     return R;
834 
835   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
836   Type *Ty = I.getType();
837   unsigned BitWidth = Ty->getScalarSizeInBits();
838   const APInt *ShAmtAPInt;
839   if (match(Op1, m_APInt(ShAmtAPInt)) && ShAmtAPInt->ult(BitWidth)) {
840     unsigned ShAmt = ShAmtAPInt->getZExtValue();
841 
842     // If the shift amount equals the difference in width of the destination
843     // and source scalar types:
844     // ashr (shl (zext X), C), C --> sext X
845     Value *X;
846     if (match(Op0, m_Shl(m_ZExt(m_Value(X)), m_Specific(Op1))) &&
847         ShAmt == BitWidth - X->getType()->getScalarSizeInBits())
848       return new SExtInst(X, Ty);
849 
850     // We can't handle (X << C1) >>s C2. It shifts arbitrary bits in. However,
851     // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
852     const APInt *ShOp1;
853     if (match(Op0, m_NSWShl(m_Value(X), m_APInt(ShOp1))) &&
854         ShOp1->ult(BitWidth)) {
855       unsigned ShlAmt = ShOp1->getZExtValue();
856       if (ShlAmt < ShAmt) {
857         // (X <<nsw C1) >>s C2 --> X >>s (C2 - C1)
858         Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
859         auto *NewAShr = BinaryOperator::CreateAShr(X, ShiftDiff);
860         NewAShr->setIsExact(I.isExact());
861         return NewAShr;
862       }
863       if (ShlAmt > ShAmt) {
864         // (X <<nsw C1) >>s C2 --> X <<nsw (C1 - C2)
865         Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
866         auto *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiff);
867         NewShl->setHasNoSignedWrap(true);
868         return NewShl;
869       }
870     }
871 
872     if (match(Op0, m_AShr(m_Value(X), m_APInt(ShOp1))) &&
873         ShOp1->ult(BitWidth)) {
874       unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
875       // Oversized arithmetic shifts replicate the sign bit.
876       AmtSum = std::min(AmtSum, BitWidth - 1);
877       // (X >>s C1) >>s C2 --> X >>s (C1 + C2)
878       return BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum));
879     }
880 
881     if (match(Op0, m_OneUse(m_SExt(m_Value(X)))) &&
882         (Ty->isVectorTy() || shouldChangeType(Ty, X->getType()))) {
883       // ashr (sext X), C --> sext (ashr X, C')
884       Type *SrcTy = X->getType();
885       ShAmt = std::min(ShAmt, SrcTy->getScalarSizeInBits() - 1);
886       Value *NewSh = Builder.CreateAShr(X, ConstantInt::get(SrcTy, ShAmt));
887       return new SExtInst(NewSh, Ty);
888     }
889 
890     // If the shifted-out value is known-zero, then this is an exact shift.
891     if (!I.isExact() &&
892         MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) {
893       I.setIsExact();
894       return &I;
895     }
896   }
897 
898   // See if we can turn a signed shr into an unsigned shr.
899   if (MaskedValueIsZero(Op0, APInt::getSignMask(BitWidth), 0, &I))
900     return BinaryOperator::CreateLShr(Op0, Op1);
901 
902   return nullptr;
903 }
904