1 //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements sparse conditional constant propagation and merging:
11 //
12 // Specifically, this:
13 //   * Assumes values are constant unless proven otherwise
14 //   * Assumes BasicBlocks are dead unless proven otherwise
15 //   * Proves values to be constant, and replaces them with constants
16 //   * Proves conditional branches to be unconditional
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "llvm/Transforms/Scalar/SCCP.h"
21 #include "llvm/ADT/ArrayRef.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/DenseSet.h"
24 #include "llvm/ADT/PointerIntPair.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/GlobalsModRef.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 #include "llvm/Analysis/ValueLattice.h"
34 #include "llvm/Analysis/ValueLatticeUtils.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CallSite.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/InstVisitor.h"
44 #include "llvm/IR/InstrTypes.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/Module.h"
48 #include "llvm/IR/PassManager.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Transforms/Scalar.h"
58 #include "llvm/Transforms/Utils/PredicateInfo.h"
59 #include <cassert>
60 #include <utility>
61 #include <vector>
62 
63 using namespace llvm;
64 
65 #define DEBUG_TYPE "sccp"
66 
67 STATISTIC(NumInstRemoved, "Number of instructions removed");
68 STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
69 
70 STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
71 STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
72 STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
73 
74 namespace {
75 
76 /// LatticeVal class - This class represents the different lattice values that
77 /// an LLVM value may occupy.  It is a simple class with value semantics.
78 ///
79 class LatticeVal {
80   enum LatticeValueTy {
81     /// unknown - This LLVM Value has no known value yet.
82     unknown,
83 
84     /// constant - This LLVM Value has a specific constant value.
85     constant,
86 
87     /// forcedconstant - This LLVM Value was thought to be undef until
88     /// ResolvedUndefsIn.  This is treated just like 'constant', but if merged
89     /// with another (different) constant, it goes to overdefined, instead of
90     /// asserting.
91     forcedconstant,
92 
93     /// overdefined - This instruction is not known to be constant, and we know
94     /// it has a value.
95     overdefined
96   };
97 
98   /// Val: This stores the current lattice value along with the Constant* for
99   /// the constant if this is a 'constant' or 'forcedconstant' value.
100   PointerIntPair<Constant *, 2, LatticeValueTy> Val;
101 
getLatticeValue() const102   LatticeValueTy getLatticeValue() const {
103     return Val.getInt();
104   }
105 
106 public:
LatticeVal()107   LatticeVal() : Val(nullptr, unknown) {}
108 
isUnknown() const109   bool isUnknown() const { return getLatticeValue() == unknown; }
110 
isConstant() const111   bool isConstant() const {
112     return getLatticeValue() == constant || getLatticeValue() == forcedconstant;
113   }
114 
isOverdefined() const115   bool isOverdefined() const { return getLatticeValue() == overdefined; }
116 
getConstant() const117   Constant *getConstant() const {
118     assert(isConstant() && "Cannot get the constant of a non-constant!");
119     return Val.getPointer();
120   }
121 
122   /// markOverdefined - Return true if this is a change in status.
markOverdefined()123   bool markOverdefined() {
124     if (isOverdefined())
125       return false;
126 
127     Val.setInt(overdefined);
128     return true;
129   }
130 
131   /// markConstant - Return true if this is a change in status.
markConstant(Constant * V)132   bool markConstant(Constant *V) {
133     if (getLatticeValue() == constant) { // Constant but not forcedconstant.
134       assert(getConstant() == V && "Marking constant with different value");
135       return false;
136     }
137 
138     if (isUnknown()) {
139       Val.setInt(constant);
140       assert(V && "Marking constant with NULL");
141       Val.setPointer(V);
142     } else {
143       assert(getLatticeValue() == forcedconstant &&
144              "Cannot move from overdefined to constant!");
145       // Stay at forcedconstant if the constant is the same.
146       if (V == getConstant()) return false;
147 
148       // Otherwise, we go to overdefined.  Assumptions made based on the
149       // forced value are possibly wrong.  Assuming this is another constant
150       // could expose a contradiction.
151       Val.setInt(overdefined);
152     }
153     return true;
154   }
155 
156   /// getConstantInt - If this is a constant with a ConstantInt value, return it
157   /// otherwise return null.
getConstantInt() const158   ConstantInt *getConstantInt() const {
159     if (isConstant())
160       return dyn_cast<ConstantInt>(getConstant());
161     return nullptr;
162   }
163 
164   /// getBlockAddress - If this is a constant with a BlockAddress value, return
165   /// it, otherwise return null.
getBlockAddress() const166   BlockAddress *getBlockAddress() const {
167     if (isConstant())
168       return dyn_cast<BlockAddress>(getConstant());
169     return nullptr;
170   }
171 
markForcedConstant(Constant * V)172   void markForcedConstant(Constant *V) {
173     assert(isUnknown() && "Can't force a defined value!");
174     Val.setInt(forcedconstant);
175     Val.setPointer(V);
176   }
177 
toValueLattice() const178   ValueLatticeElement toValueLattice() const {
179     if (isOverdefined())
180       return ValueLatticeElement::getOverdefined();
181     if (isConstant())
182       return ValueLatticeElement::get(getConstant());
183     return ValueLatticeElement();
184   }
185 };
186 
187 //===----------------------------------------------------------------------===//
188 //
189 /// SCCPSolver - This class is a general purpose solver for Sparse Conditional
190 /// Constant Propagation.
191 ///
192 class SCCPSolver : public InstVisitor<SCCPSolver> {
193   const DataLayout &DL;
194   const TargetLibraryInfo *TLI;
195   SmallPtrSet<BasicBlock *, 8> BBExecutable; // The BBs that are executable.
196   DenseMap<Value *, LatticeVal> ValueState;  // The state each value is in.
197   // The state each parameter is in.
198   DenseMap<Value *, ValueLatticeElement> ParamState;
199 
200   /// StructValueState - This maintains ValueState for values that have
201   /// StructType, for example for formal arguments, calls, insertelement, etc.
202   DenseMap<std::pair<Value *, unsigned>, LatticeVal> StructValueState;
203 
204   /// GlobalValue - If we are tracking any values for the contents of a global
205   /// variable, we keep a mapping from the constant accessor to the element of
206   /// the global, to the currently known value.  If the value becomes
207   /// overdefined, it's entry is simply removed from this map.
208   DenseMap<GlobalVariable *, LatticeVal> TrackedGlobals;
209 
210   /// TrackedRetVals - If we are tracking arguments into and the return
211   /// value out of a function, it will have an entry in this map, indicating
212   /// what the known return value for the function is.
213   DenseMap<Function *, LatticeVal> TrackedRetVals;
214 
215   /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
216   /// that return multiple values.
217   DenseMap<std::pair<Function *, unsigned>, LatticeVal> TrackedMultipleRetVals;
218 
219   /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
220   /// represented here for efficient lookup.
221   SmallPtrSet<Function *, 16> MRVFunctionsTracked;
222 
223   /// MustTailFunctions - Each function here is a callee of non-removable
224   /// musttail call site.
225   SmallPtrSet<Function *, 16> MustTailCallees;
226 
227   /// TrackingIncomingArguments - This is the set of functions for whose
228   /// arguments we make optimistic assumptions about and try to prove as
229   /// constants.
230   SmallPtrSet<Function *, 16> TrackingIncomingArguments;
231 
232   /// The reason for two worklists is that overdefined is the lowest state
233   /// on the lattice, and moving things to overdefined as fast as possible
234   /// makes SCCP converge much faster.
235   ///
236   /// By having a separate worklist, we accomplish this because everything
237   /// possibly overdefined will become overdefined at the soonest possible
238   /// point.
239   SmallVector<Value *, 64> OverdefinedInstWorkList;
240   SmallVector<Value *, 64> InstWorkList;
241 
242   // The BasicBlock work list
243   SmallVector<BasicBlock *, 64>  BBWorkList;
244 
245   /// KnownFeasibleEdges - Entries in this set are edges which have already had
246   /// PHI nodes retriggered.
247   using Edge = std::pair<BasicBlock *, BasicBlock *>;
248   DenseSet<Edge> KnownFeasibleEdges;
249 
250   DenseMap<Function *, AnalysisResultsForFn> AnalysisResults;
251   DenseMap<Value *, SmallPtrSet<User *, 2>> AdditionalUsers;
252 
253 public:
addAnalysis(Function & F,AnalysisResultsForFn A)254   void addAnalysis(Function &F, AnalysisResultsForFn A) {
255     AnalysisResults.insert({&F, std::move(A)});
256   }
257 
getPredicateInfoFor(Instruction * I)258   const PredicateBase *getPredicateInfoFor(Instruction *I) {
259     auto A = AnalysisResults.find(I->getParent()->getParent());
260     if (A == AnalysisResults.end())
261       return nullptr;
262     return A->second.PredInfo->getPredicateInfoFor(I);
263   }
264 
getDTU(Function & F)265   DomTreeUpdater getDTU(Function &F) {
266     auto A = AnalysisResults.find(&F);
267     assert(A != AnalysisResults.end() && "Need analysis results for function.");
268     return {A->second.DT, A->second.PDT, DomTreeUpdater::UpdateStrategy::Lazy};
269   }
270 
SCCPSolver(const DataLayout & DL,const TargetLibraryInfo * tli)271   SCCPSolver(const DataLayout &DL, const TargetLibraryInfo *tli)
272       : DL(DL), TLI(tli) {}
273 
274   /// MarkBlockExecutable - This method can be used by clients to mark all of
275   /// the blocks that are known to be intrinsically live in the processed unit.
276   ///
277   /// This returns true if the block was not considered live before.
MarkBlockExecutable(BasicBlock * BB)278   bool MarkBlockExecutable(BasicBlock *BB) {
279     if (!BBExecutable.insert(BB).second)
280       return false;
281     LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
282     BBWorkList.push_back(BB);  // Add the block to the work list!
283     return true;
284   }
285 
286   /// TrackValueOfGlobalVariable - Clients can use this method to
287   /// inform the SCCPSolver that it should track loads and stores to the
288   /// specified global variable if it can.  This is only legal to call if
289   /// performing Interprocedural SCCP.
TrackValueOfGlobalVariable(GlobalVariable * GV)290   void TrackValueOfGlobalVariable(GlobalVariable *GV) {
291     // We only track the contents of scalar globals.
292     if (GV->getValueType()->isSingleValueType()) {
293       LatticeVal &IV = TrackedGlobals[GV];
294       if (!isa<UndefValue>(GV->getInitializer()))
295         IV.markConstant(GV->getInitializer());
296     }
297   }
298 
299   /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
300   /// and out of the specified function (which cannot have its address taken),
301   /// this method must be called.
AddTrackedFunction(Function * F)302   void AddTrackedFunction(Function *F) {
303     // Add an entry, F -> undef.
304     if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
305       MRVFunctionsTracked.insert(F);
306       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
307         TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
308                                                      LatticeVal()));
309     } else
310       TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
311   }
312 
313   /// AddMustTailCallee - If the SCCP solver finds that this function is called
314   /// from non-removable musttail call site.
AddMustTailCallee(Function * F)315   void AddMustTailCallee(Function *F) {
316     MustTailCallees.insert(F);
317   }
318 
319   /// Returns true if the given function is called from non-removable musttail
320   /// call site.
isMustTailCallee(Function * F)321   bool isMustTailCallee(Function *F) {
322     return MustTailCallees.count(F);
323   }
324 
AddArgumentTrackedFunction(Function * F)325   void AddArgumentTrackedFunction(Function *F) {
326     TrackingIncomingArguments.insert(F);
327   }
328 
329   /// Returns true if the given function is in the solver's set of
330   /// argument-tracked functions.
isArgumentTrackedFunction(Function * F)331   bool isArgumentTrackedFunction(Function *F) {
332     return TrackingIncomingArguments.count(F);
333   }
334 
335   /// Solve - Solve for constants and executable blocks.
336   void Solve();
337 
338   /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
339   /// that branches on undef values cannot reach any of their successors.
340   /// However, this is not a safe assumption.  After we solve dataflow, this
341   /// method should be use to handle this.  If this returns true, the solver
342   /// should be rerun.
343   bool ResolvedUndefsIn(Function &F);
344 
isBlockExecutable(BasicBlock * BB) const345   bool isBlockExecutable(BasicBlock *BB) const {
346     return BBExecutable.count(BB);
347   }
348 
349   // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
350   // block to the 'To' basic block is currently feasible.
351   bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
352 
getStructLatticeValueFor(Value * V) const353   std::vector<LatticeVal> getStructLatticeValueFor(Value *V) const {
354     std::vector<LatticeVal> StructValues;
355     auto *STy = dyn_cast<StructType>(V->getType());
356     assert(STy && "getStructLatticeValueFor() can be called only on structs");
357     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
358       auto I = StructValueState.find(std::make_pair(V, i));
359       assert(I != StructValueState.end() && "Value not in valuemap!");
360       StructValues.push_back(I->second);
361     }
362     return StructValues;
363   }
364 
getLatticeValueFor(Value * V) const365   const LatticeVal &getLatticeValueFor(Value *V) const {
366     assert(!V->getType()->isStructTy() &&
367            "Should use getStructLatticeValueFor");
368     DenseMap<Value *, LatticeVal>::const_iterator I = ValueState.find(V);
369     assert(I != ValueState.end() &&
370            "V not found in ValueState nor Paramstate map!");
371     return I->second;
372   }
373 
374   /// getTrackedRetVals - Get the inferred return value map.
getTrackedRetVals()375   const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
376     return TrackedRetVals;
377   }
378 
379   /// getTrackedGlobals - Get and return the set of inferred initializers for
380   /// global variables.
getTrackedGlobals()381   const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
382     return TrackedGlobals;
383   }
384 
385   /// getMRVFunctionsTracked - Get the set of functions which return multiple
386   /// values tracked by the pass.
getMRVFunctionsTracked()387   const SmallPtrSet<Function *, 16> getMRVFunctionsTracked() {
388     return MRVFunctionsTracked;
389   }
390 
391   /// getMustTailCallees - Get the set of functions which are called
392   /// from non-removable musttail call sites.
getMustTailCallees()393   const SmallPtrSet<Function *, 16> getMustTailCallees() {
394     return MustTailCallees;
395   }
396 
397   /// markOverdefined - Mark the specified value overdefined.  This
398   /// works with both scalars and structs.
markOverdefined(Value * V)399   void markOverdefined(Value *V) {
400     if (auto *STy = dyn_cast<StructType>(V->getType()))
401       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
402         markOverdefined(getStructValueState(V, i), V);
403     else
404       markOverdefined(ValueState[V], V);
405   }
406 
407   // isStructLatticeConstant - Return true if all the lattice values
408   // corresponding to elements of the structure are not overdefined,
409   // false otherwise.
isStructLatticeConstant(Function * F,StructType * STy)410   bool isStructLatticeConstant(Function *F, StructType *STy) {
411     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
412       const auto &It = TrackedMultipleRetVals.find(std::make_pair(F, i));
413       assert(It != TrackedMultipleRetVals.end());
414       LatticeVal LV = It->second;
415       if (LV.isOverdefined())
416         return false;
417     }
418     return true;
419   }
420 
421 private:
422   // pushToWorkList - Helper for markConstant/markForcedConstant/markOverdefined
pushToWorkList(LatticeVal & IV,Value * V)423   void pushToWorkList(LatticeVal &IV, Value *V) {
424     if (IV.isOverdefined())
425       return OverdefinedInstWorkList.push_back(V);
426     InstWorkList.push_back(V);
427   }
428 
429   // markConstant - Make a value be marked as "constant".  If the value
430   // is not already a constant, add it to the instruction work list so that
431   // the users of the instruction are updated later.
markConstant(LatticeVal & IV,Value * V,Constant * C)432   bool markConstant(LatticeVal &IV, Value *V, Constant *C) {
433     if (!IV.markConstant(C)) return false;
434     LLVM_DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
435     pushToWorkList(IV, V);
436     return true;
437   }
438 
markConstant(Value * V,Constant * C)439   bool markConstant(Value *V, Constant *C) {
440     assert(!V->getType()->isStructTy() && "structs should use mergeInValue");
441     return markConstant(ValueState[V], V, C);
442   }
443 
markForcedConstant(Value * V,Constant * C)444   void markForcedConstant(Value *V, Constant *C) {
445     assert(!V->getType()->isStructTy() && "structs should use mergeInValue");
446     LatticeVal &IV = ValueState[V];
447     IV.markForcedConstant(C);
448     LLVM_DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n');
449     pushToWorkList(IV, V);
450   }
451 
452   // markOverdefined - Make a value be marked as "overdefined". If the
453   // value is not already overdefined, add it to the overdefined instruction
454   // work list so that the users of the instruction are updated later.
markOverdefined(LatticeVal & IV,Value * V)455   bool markOverdefined(LatticeVal &IV, Value *V) {
456     if (!IV.markOverdefined()) return false;
457 
458     LLVM_DEBUG(dbgs() << "markOverdefined: ";
459                if (auto *F = dyn_cast<Function>(V)) dbgs()
460                << "Function '" << F->getName() << "'\n";
461                else dbgs() << *V << '\n');
462     // Only instructions go on the work list
463     pushToWorkList(IV, V);
464     return true;
465   }
466 
mergeInValue(LatticeVal & IV,Value * V,LatticeVal MergeWithV)467   bool mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) {
468     if (IV.isOverdefined() || MergeWithV.isUnknown())
469       return false; // Noop.
470     if (MergeWithV.isOverdefined())
471       return markOverdefined(IV, V);
472     if (IV.isUnknown())
473       return markConstant(IV, V, MergeWithV.getConstant());
474     if (IV.getConstant() != MergeWithV.getConstant())
475       return markOverdefined(IV, V);
476     return false;
477   }
478 
mergeInValue(Value * V,LatticeVal MergeWithV)479   bool mergeInValue(Value *V, LatticeVal MergeWithV) {
480     assert(!V->getType()->isStructTy() &&
481            "non-structs should use markConstant");
482     return mergeInValue(ValueState[V], V, MergeWithV);
483   }
484 
485   /// getValueState - Return the LatticeVal object that corresponds to the
486   /// value.  This function handles the case when the value hasn't been seen yet
487   /// by properly seeding constants etc.
getValueState(Value * V)488   LatticeVal &getValueState(Value *V) {
489     assert(!V->getType()->isStructTy() && "Should use getStructValueState");
490 
491     std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I =
492       ValueState.insert(std::make_pair(V, LatticeVal()));
493     LatticeVal &LV = I.first->second;
494 
495     if (!I.second)
496       return LV;  // Common case, already in the map.
497 
498     if (auto *C = dyn_cast<Constant>(V)) {
499       // Undef values remain unknown.
500       if (!isa<UndefValue>(V))
501         LV.markConstant(C);          // Constants are constant
502     }
503 
504     // All others are underdefined by default.
505     return LV;
506   }
507 
getParamState(Value * V)508   ValueLatticeElement &getParamState(Value *V) {
509     assert(!V->getType()->isStructTy() && "Should use getStructValueState");
510 
511     std::pair<DenseMap<Value*, ValueLatticeElement>::iterator, bool>
512         PI = ParamState.insert(std::make_pair(V, ValueLatticeElement()));
513     ValueLatticeElement &LV = PI.first->second;
514     if (PI.second)
515       LV = getValueState(V).toValueLattice();
516 
517     return LV;
518   }
519 
520   /// getStructValueState - Return the LatticeVal object that corresponds to the
521   /// value/field pair.  This function handles the case when the value hasn't
522   /// been seen yet by properly seeding constants etc.
getStructValueState(Value * V,unsigned i)523   LatticeVal &getStructValueState(Value *V, unsigned i) {
524     assert(V->getType()->isStructTy() && "Should use getValueState");
525     assert(i < cast<StructType>(V->getType())->getNumElements() &&
526            "Invalid element #");
527 
528     std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator,
529               bool> I = StructValueState.insert(
530                         std::make_pair(std::make_pair(V, i), LatticeVal()));
531     LatticeVal &LV = I.first->second;
532 
533     if (!I.second)
534       return LV;  // Common case, already in the map.
535 
536     if (auto *C = dyn_cast<Constant>(V)) {
537       Constant *Elt = C->getAggregateElement(i);
538 
539       if (!Elt)
540         LV.markOverdefined();      // Unknown sort of constant.
541       else if (isa<UndefValue>(Elt))
542         ; // Undef values remain unknown.
543       else
544         LV.markConstant(Elt);      // Constants are constant.
545     }
546 
547     // All others are underdefined by default.
548     return LV;
549   }
550 
551   /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
552   /// work list if it is not already executable.
markEdgeExecutable(BasicBlock * Source,BasicBlock * Dest)553   bool markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
554     if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
555       return false;  // This edge is already known to be executable!
556 
557     if (!MarkBlockExecutable(Dest)) {
558       // If the destination is already executable, we just made an *edge*
559       // feasible that wasn't before.  Revisit the PHI nodes in the block
560       // because they have potentially new operands.
561       LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
562                         << " -> " << Dest->getName() << '\n');
563 
564       for (PHINode &PN : Dest->phis())
565         visitPHINode(PN);
566     }
567     return true;
568   }
569 
570   // getFeasibleSuccessors - Return a vector of booleans to indicate which
571   // successors are reachable from a given terminator instruction.
572   void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs);
573 
574   // OperandChangedState - This method is invoked on all of the users of an
575   // instruction that was just changed state somehow.  Based on this
576   // information, we need to update the specified user of this instruction.
OperandChangedState(Instruction * I)577   void OperandChangedState(Instruction *I) {
578     if (BBExecutable.count(I->getParent()))   // Inst is executable?
579       visit(*I);
580   }
581 
582   // Add U as additional user of V.
addAdditionalUser(Value * V,User * U)583   void addAdditionalUser(Value *V, User *U) {
584     auto Iter = AdditionalUsers.insert({V, {}});
585     Iter.first->second.insert(U);
586   }
587 
588   // Mark I's users as changed, including AdditionalUsers.
markUsersAsChanged(Value * I)589   void markUsersAsChanged(Value *I) {
590     for (User *U : I->users())
591       if (auto *UI = dyn_cast<Instruction>(U))
592         OperandChangedState(UI);
593 
594     auto Iter = AdditionalUsers.find(I);
595     if (Iter != AdditionalUsers.end()) {
596       for (User *U : Iter->second)
597         if (auto *UI = dyn_cast<Instruction>(U))
598           OperandChangedState(UI);
599     }
600   }
601 
602 private:
603   friend class InstVisitor<SCCPSolver>;
604 
605   // visit implementations - Something changed in this instruction.  Either an
606   // operand made a transition, or the instruction is newly executable.  Change
607   // the value type of I to reflect these changes if appropriate.
608   void visitPHINode(PHINode &I);
609 
610   // Terminators
611 
612   void visitReturnInst(ReturnInst &I);
613   void visitTerminator(Instruction &TI);
614 
615   void visitCastInst(CastInst &I);
616   void visitSelectInst(SelectInst &I);
617   void visitBinaryOperator(Instruction &I);
618   void visitCmpInst(CmpInst &I);
619   void visitExtractValueInst(ExtractValueInst &EVI);
620   void visitInsertValueInst(InsertValueInst &IVI);
621 
visitCatchSwitchInst(CatchSwitchInst & CPI)622   void visitCatchSwitchInst(CatchSwitchInst &CPI) {
623     markOverdefined(&CPI);
624     visitTerminator(CPI);
625   }
626 
627   // Instructions that cannot be folded away.
628 
629   void visitStoreInst     (StoreInst &I);
630   void visitLoadInst      (LoadInst &I);
631   void visitGetElementPtrInst(GetElementPtrInst &I);
632 
visitCallInst(CallInst & I)633   void visitCallInst      (CallInst &I) {
634     visitCallSite(&I);
635   }
636 
visitInvokeInst(InvokeInst & II)637   void visitInvokeInst    (InvokeInst &II) {
638     visitCallSite(&II);
639     visitTerminator(II);
640   }
641 
642   void visitCallSite      (CallSite CS);
visitResumeInst(ResumeInst & I)643   void visitResumeInst    (ResumeInst &I) { /*returns void*/ }
visitUnreachableInst(UnreachableInst & I)644   void visitUnreachableInst(UnreachableInst &I) { /*returns void*/ }
visitFenceInst(FenceInst & I)645   void visitFenceInst     (FenceInst &I) { /*returns void*/ }
646 
visitInstruction(Instruction & I)647   void visitInstruction(Instruction &I) {
648     // All the instructions we don't do any special handling for just
649     // go to overdefined.
650     LLVM_DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n');
651     markOverdefined(&I);
652   }
653 };
654 
655 } // end anonymous namespace
656 
657 // getFeasibleSuccessors - Return a vector of booleans to indicate which
658 // successors are reachable from a given terminator instruction.
getFeasibleSuccessors(Instruction & TI,SmallVectorImpl<bool> & Succs)659 void SCCPSolver::getFeasibleSuccessors(Instruction &TI,
660                                        SmallVectorImpl<bool> &Succs) {
661   Succs.resize(TI.getNumSuccessors());
662   if (auto *BI = dyn_cast<BranchInst>(&TI)) {
663     if (BI->isUnconditional()) {
664       Succs[0] = true;
665       return;
666     }
667 
668     LatticeVal BCValue = getValueState(BI->getCondition());
669     ConstantInt *CI = BCValue.getConstantInt();
670     if (!CI) {
671       // Overdefined condition variables, and branches on unfoldable constant
672       // conditions, mean the branch could go either way.
673       if (!BCValue.isUnknown())
674         Succs[0] = Succs[1] = true;
675       return;
676     }
677 
678     // Constant condition variables mean the branch can only go a single way.
679     Succs[CI->isZero()] = true;
680     return;
681   }
682 
683   // Unwinding instructions successors are always executable.
684   if (TI.isExceptionalTerminator()) {
685     Succs.assign(TI.getNumSuccessors(), true);
686     return;
687   }
688 
689   if (auto *SI = dyn_cast<SwitchInst>(&TI)) {
690     if (!SI->getNumCases()) {
691       Succs[0] = true;
692       return;
693     }
694     LatticeVal SCValue = getValueState(SI->getCondition());
695     ConstantInt *CI = SCValue.getConstantInt();
696 
697     if (!CI) {   // Overdefined or unknown condition?
698       // All destinations are executable!
699       if (!SCValue.isUnknown())
700         Succs.assign(TI.getNumSuccessors(), true);
701       return;
702     }
703 
704     Succs[SI->findCaseValue(CI)->getSuccessorIndex()] = true;
705     return;
706   }
707 
708   // In case of indirect branch and its address is a blockaddress, we mark
709   // the target as executable.
710   if (auto *IBR = dyn_cast<IndirectBrInst>(&TI)) {
711     // Casts are folded by visitCastInst.
712     LatticeVal IBRValue = getValueState(IBR->getAddress());
713     BlockAddress *Addr = IBRValue.getBlockAddress();
714     if (!Addr) {   // Overdefined or unknown condition?
715       // All destinations are executable!
716       if (!IBRValue.isUnknown())
717         Succs.assign(TI.getNumSuccessors(), true);
718       return;
719     }
720 
721     BasicBlock* T = Addr->getBasicBlock();
722     assert(Addr->getFunction() == T->getParent() &&
723            "Block address of a different function ?");
724     for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) {
725       // This is the target.
726       if (IBR->getDestination(i) == T) {
727         Succs[i] = true;
728         return;
729       }
730     }
731 
732     // If we didn't find our destination in the IBR successor list, then we
733     // have undefined behavior. Its ok to assume no successor is executable.
734     return;
735   }
736 
737   LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n');
738   llvm_unreachable("SCCP: Don't know how to handle this terminator!");
739 }
740 
741 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
742 // block to the 'To' basic block is currently feasible.
isEdgeFeasible(BasicBlock * From,BasicBlock * To)743 bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
744   // Check if we've called markEdgeExecutable on the edge yet. (We could
745   // be more aggressive and try to consider edges which haven't been marked
746   // yet, but there isn't any need.)
747   return KnownFeasibleEdges.count(Edge(From, To));
748 }
749 
750 // visit Implementations - Something changed in this instruction, either an
751 // operand made a transition, or the instruction is newly executable.  Change
752 // the value type of I to reflect these changes if appropriate.  This method
753 // makes sure to do the following actions:
754 //
755 // 1. If a phi node merges two constants in, and has conflicting value coming
756 //    from different branches, or if the PHI node merges in an overdefined
757 //    value, then the PHI node becomes overdefined.
758 // 2. If a phi node merges only constants in, and they all agree on value, the
759 //    PHI node becomes a constant value equal to that.
760 // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
761 // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
762 // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
763 // 6. If a conditional branch has a value that is constant, make the selected
764 //    destination executable
765 // 7. If a conditional branch has a value that is overdefined, make all
766 //    successors executable.
visitPHINode(PHINode & PN)767 void SCCPSolver::visitPHINode(PHINode &PN) {
768   // If this PN returns a struct, just mark the result overdefined.
769   // TODO: We could do a lot better than this if code actually uses this.
770   if (PN.getType()->isStructTy())
771     return (void)markOverdefined(&PN);
772 
773   if (getValueState(&PN).isOverdefined())
774     return;  // Quick exit
775 
776   // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
777   // and slow us down a lot.  Just mark them overdefined.
778   if (PN.getNumIncomingValues() > 64)
779     return (void)markOverdefined(&PN);
780 
781   // Look at all of the executable operands of the PHI node.  If any of them
782   // are overdefined, the PHI becomes overdefined as well.  If they are all
783   // constant, and they agree with each other, the PHI becomes the identical
784   // constant.  If they are constant and don't agree, the PHI is overdefined.
785   // If there are no executable operands, the PHI remains unknown.
786   Constant *OperandVal = nullptr;
787   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
788     LatticeVal IV = getValueState(PN.getIncomingValue(i));
789     if (IV.isUnknown()) continue;  // Doesn't influence PHI node.
790 
791     if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
792       continue;
793 
794     if (IV.isOverdefined())    // PHI node becomes overdefined!
795       return (void)markOverdefined(&PN);
796 
797     if (!OperandVal) {   // Grab the first value.
798       OperandVal = IV.getConstant();
799       continue;
800     }
801 
802     // There is already a reachable operand.  If we conflict with it,
803     // then the PHI node becomes overdefined.  If we agree with it, we
804     // can continue on.
805 
806     // Check to see if there are two different constants merging, if so, the PHI
807     // node is overdefined.
808     if (IV.getConstant() != OperandVal)
809       return (void)markOverdefined(&PN);
810   }
811 
812   // If we exited the loop, this means that the PHI node only has constant
813   // arguments that agree with each other(and OperandVal is the constant) or
814   // OperandVal is null because there are no defined incoming arguments.  If
815   // this is the case, the PHI remains unknown.
816   if (OperandVal)
817     markConstant(&PN, OperandVal);      // Acquire operand value
818 }
819 
visitReturnInst(ReturnInst & I)820 void SCCPSolver::visitReturnInst(ReturnInst &I) {
821   if (I.getNumOperands() == 0) return;  // ret void
822 
823   Function *F = I.getParent()->getParent();
824   Value *ResultOp = I.getOperand(0);
825 
826   // If we are tracking the return value of this function, merge it in.
827   if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
828     DenseMap<Function*, LatticeVal>::iterator TFRVI =
829       TrackedRetVals.find(F);
830     if (TFRVI != TrackedRetVals.end()) {
831       mergeInValue(TFRVI->second, F, getValueState(ResultOp));
832       return;
833     }
834   }
835 
836   // Handle functions that return multiple values.
837   if (!TrackedMultipleRetVals.empty()) {
838     if (auto *STy = dyn_cast<StructType>(ResultOp->getType()))
839       if (MRVFunctionsTracked.count(F))
840         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
841           mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
842                        getStructValueState(ResultOp, i));
843   }
844 }
845 
visitTerminator(Instruction & TI)846 void SCCPSolver::visitTerminator(Instruction &TI) {
847   SmallVector<bool, 16> SuccFeasible;
848   getFeasibleSuccessors(TI, SuccFeasible);
849 
850   BasicBlock *BB = TI.getParent();
851 
852   // Mark all feasible successors executable.
853   for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
854     if (SuccFeasible[i])
855       markEdgeExecutable(BB, TI.getSuccessor(i));
856 }
857 
visitCastInst(CastInst & I)858 void SCCPSolver::visitCastInst(CastInst &I) {
859   LatticeVal OpSt = getValueState(I.getOperand(0));
860   if (OpSt.isOverdefined())          // Inherit overdefinedness of operand
861     markOverdefined(&I);
862   else if (OpSt.isConstant()) {
863     // Fold the constant as we build.
864     Constant *C = ConstantFoldCastOperand(I.getOpcode(), OpSt.getConstant(),
865                                           I.getType(), DL);
866     if (isa<UndefValue>(C))
867       return;
868     // Propagate constant value
869     markConstant(&I, C);
870   }
871 }
872 
visitExtractValueInst(ExtractValueInst & EVI)873 void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
874   // If this returns a struct, mark all elements over defined, we don't track
875   // structs in structs.
876   if (EVI.getType()->isStructTy())
877     return (void)markOverdefined(&EVI);
878 
879   // If this is extracting from more than one level of struct, we don't know.
880   if (EVI.getNumIndices() != 1)
881     return (void)markOverdefined(&EVI);
882 
883   Value *AggVal = EVI.getAggregateOperand();
884   if (AggVal->getType()->isStructTy()) {
885     unsigned i = *EVI.idx_begin();
886     LatticeVal EltVal = getStructValueState(AggVal, i);
887     mergeInValue(getValueState(&EVI), &EVI, EltVal);
888   } else {
889     // Otherwise, must be extracting from an array.
890     return (void)markOverdefined(&EVI);
891   }
892 }
893 
visitInsertValueInst(InsertValueInst & IVI)894 void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
895   auto *STy = dyn_cast<StructType>(IVI.getType());
896   if (!STy)
897     return (void)markOverdefined(&IVI);
898 
899   // If this has more than one index, we can't handle it, drive all results to
900   // undef.
901   if (IVI.getNumIndices() != 1)
902     return (void)markOverdefined(&IVI);
903 
904   Value *Aggr = IVI.getAggregateOperand();
905   unsigned Idx = *IVI.idx_begin();
906 
907   // Compute the result based on what we're inserting.
908   for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
909     // This passes through all values that aren't the inserted element.
910     if (i != Idx) {
911       LatticeVal EltVal = getStructValueState(Aggr, i);
912       mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
913       continue;
914     }
915 
916     Value *Val = IVI.getInsertedValueOperand();
917     if (Val->getType()->isStructTy())
918       // We don't track structs in structs.
919       markOverdefined(getStructValueState(&IVI, i), &IVI);
920     else {
921       LatticeVal InVal = getValueState(Val);
922       mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
923     }
924   }
925 }
926 
visitSelectInst(SelectInst & I)927 void SCCPSolver::visitSelectInst(SelectInst &I) {
928   // If this select returns a struct, just mark the result overdefined.
929   // TODO: We could do a lot better than this if code actually uses this.
930   if (I.getType()->isStructTy())
931     return (void)markOverdefined(&I);
932 
933   LatticeVal CondValue = getValueState(I.getCondition());
934   if (CondValue.isUnknown())
935     return;
936 
937   if (ConstantInt *CondCB = CondValue.getConstantInt()) {
938     Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
939     mergeInValue(&I, getValueState(OpVal));
940     return;
941   }
942 
943   // Otherwise, the condition is overdefined or a constant we can't evaluate.
944   // See if we can produce something better than overdefined based on the T/F
945   // value.
946   LatticeVal TVal = getValueState(I.getTrueValue());
947   LatticeVal FVal = getValueState(I.getFalseValue());
948 
949   // select ?, C, C -> C.
950   if (TVal.isConstant() && FVal.isConstant() &&
951       TVal.getConstant() == FVal.getConstant())
952     return (void)markConstant(&I, FVal.getConstant());
953 
954   if (TVal.isUnknown())   // select ?, undef, X -> X.
955     return (void)mergeInValue(&I, FVal);
956   if (FVal.isUnknown())   // select ?, X, undef -> X.
957     return (void)mergeInValue(&I, TVal);
958   markOverdefined(&I);
959 }
960 
961 // Handle Binary Operators.
visitBinaryOperator(Instruction & I)962 void SCCPSolver::visitBinaryOperator(Instruction &I) {
963   LatticeVal V1State = getValueState(I.getOperand(0));
964   LatticeVal V2State = getValueState(I.getOperand(1));
965 
966   LatticeVal &IV = ValueState[&I];
967   if (IV.isOverdefined()) return;
968 
969   if (V1State.isConstant() && V2State.isConstant()) {
970     Constant *C = ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
971                                     V2State.getConstant());
972     // X op Y -> undef.
973     if (isa<UndefValue>(C))
974       return;
975     return (void)markConstant(IV, &I, C);
976   }
977 
978   // If something is undef, wait for it to resolve.
979   if (!V1State.isOverdefined() && !V2State.isOverdefined())
980     return;
981 
982   // Otherwise, one of our operands is overdefined.  Try to produce something
983   // better than overdefined with some tricks.
984   // If this is 0 / Y, it doesn't matter that the second operand is
985   // overdefined, and we can replace it with zero.
986   if (I.getOpcode() == Instruction::UDiv || I.getOpcode() == Instruction::SDiv)
987     if (V1State.isConstant() && V1State.getConstant()->isNullValue())
988       return (void)markConstant(IV, &I, V1State.getConstant());
989 
990   // If this is:
991   // -> AND/MUL with 0
992   // -> OR with -1
993   // it doesn't matter that the other operand is overdefined.
994   if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Mul ||
995       I.getOpcode() == Instruction::Or) {
996     LatticeVal *NonOverdefVal = nullptr;
997     if (!V1State.isOverdefined())
998       NonOverdefVal = &V1State;
999     else if (!V2State.isOverdefined())
1000       NonOverdefVal = &V2State;
1001 
1002     if (NonOverdefVal) {
1003       if (NonOverdefVal->isUnknown())
1004         return;
1005 
1006       if (I.getOpcode() == Instruction::And ||
1007           I.getOpcode() == Instruction::Mul) {
1008         // X and 0 = 0
1009         // X * 0 = 0
1010         if (NonOverdefVal->getConstant()->isNullValue())
1011           return (void)markConstant(IV, &I, NonOverdefVal->getConstant());
1012       } else {
1013         // X or -1 = -1
1014         if (ConstantInt *CI = NonOverdefVal->getConstantInt())
1015           if (CI->isMinusOne())
1016             return (void)markConstant(IV, &I, NonOverdefVal->getConstant());
1017       }
1018     }
1019   }
1020 
1021   markOverdefined(&I);
1022 }
1023 
1024 // Handle ICmpInst instruction.
visitCmpInst(CmpInst & I)1025 void SCCPSolver::visitCmpInst(CmpInst &I) {
1026   // Do not cache this lookup, getValueState calls later in the function might
1027   // invalidate the reference.
1028   if (ValueState[&I].isOverdefined()) return;
1029 
1030   Value *Op1 = I.getOperand(0);
1031   Value *Op2 = I.getOperand(1);
1032 
1033   // For parameters, use ParamState which includes constant range info if
1034   // available.
1035   auto V1Param = ParamState.find(Op1);
1036   ValueLatticeElement V1State = (V1Param != ParamState.end())
1037                                     ? V1Param->second
1038                                     : getValueState(Op1).toValueLattice();
1039 
1040   auto V2Param = ParamState.find(Op2);
1041   ValueLatticeElement V2State = V2Param != ParamState.end()
1042                                     ? V2Param->second
1043                                     : getValueState(Op2).toValueLattice();
1044 
1045   Constant *C = V1State.getCompare(I.getPredicate(), I.getType(), V2State);
1046   if (C) {
1047     if (isa<UndefValue>(C))
1048       return;
1049     LatticeVal CV;
1050     CV.markConstant(C);
1051     mergeInValue(&I, CV);
1052     return;
1053   }
1054 
1055   // If operands are still unknown, wait for it to resolve.
1056   if (!V1State.isOverdefined() && !V2State.isOverdefined() &&
1057       !ValueState[&I].isConstant())
1058     return;
1059 
1060   markOverdefined(&I);
1061 }
1062 
1063 // Handle getelementptr instructions.  If all operands are constants then we
1064 // can turn this into a getelementptr ConstantExpr.
visitGetElementPtrInst(GetElementPtrInst & I)1065 void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
1066   if (ValueState[&I].isOverdefined()) return;
1067 
1068   SmallVector<Constant*, 8> Operands;
1069   Operands.reserve(I.getNumOperands());
1070 
1071   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1072     LatticeVal State = getValueState(I.getOperand(i));
1073     if (State.isUnknown())
1074       return;  // Operands are not resolved yet.
1075 
1076     if (State.isOverdefined())
1077       return (void)markOverdefined(&I);
1078 
1079     assert(State.isConstant() && "Unknown state!");
1080     Operands.push_back(State.getConstant());
1081   }
1082 
1083   Constant *Ptr = Operands[0];
1084   auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end());
1085   Constant *C =
1086       ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr, Indices);
1087   if (isa<UndefValue>(C))
1088       return;
1089   markConstant(&I, C);
1090 }
1091 
visitStoreInst(StoreInst & SI)1092 void SCCPSolver::visitStoreInst(StoreInst &SI) {
1093   // If this store is of a struct, ignore it.
1094   if (SI.getOperand(0)->getType()->isStructTy())
1095     return;
1096 
1097   if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1098     return;
1099 
1100   GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1101   DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
1102   if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
1103 
1104   // Get the value we are storing into the global, then merge it.
1105   mergeInValue(I->second, GV, getValueState(SI.getOperand(0)));
1106   if (I->second.isOverdefined())
1107     TrackedGlobals.erase(I);      // No need to keep tracking this!
1108 }
1109 
1110 // Handle load instructions.  If the operand is a constant pointer to a constant
1111 // global, we can replace the load with the loaded constant value!
visitLoadInst(LoadInst & I)1112 void SCCPSolver::visitLoadInst(LoadInst &I) {
1113   // If this load is of a struct, just mark the result overdefined.
1114   if (I.getType()->isStructTy())
1115     return (void)markOverdefined(&I);
1116 
1117   LatticeVal PtrVal = getValueState(I.getOperand(0));
1118   if (PtrVal.isUnknown()) return;   // The pointer is not resolved yet!
1119 
1120   LatticeVal &IV = ValueState[&I];
1121   if (IV.isOverdefined()) return;
1122 
1123   if (!PtrVal.isConstant() || I.isVolatile())
1124     return (void)markOverdefined(IV, &I);
1125 
1126   Constant *Ptr = PtrVal.getConstant();
1127 
1128   // load null is undefined.
1129   if (isa<ConstantPointerNull>(Ptr)) {
1130     if (NullPointerIsDefined(I.getFunction(), I.getPointerAddressSpace()))
1131       return (void)markOverdefined(IV, &I);
1132     else
1133       return;
1134   }
1135 
1136   // Transform load (constant global) into the value loaded.
1137   if (auto *GV = dyn_cast<GlobalVariable>(Ptr)) {
1138     if (!TrackedGlobals.empty()) {
1139       // If we are tracking this global, merge in the known value for it.
1140       DenseMap<GlobalVariable*, LatticeVal>::iterator It =
1141         TrackedGlobals.find(GV);
1142       if (It != TrackedGlobals.end()) {
1143         mergeInValue(IV, &I, It->second);
1144         return;
1145       }
1146     }
1147   }
1148 
1149   // Transform load from a constant into a constant if possible.
1150   if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL)) {
1151     if (isa<UndefValue>(C))
1152       return;
1153     return (void)markConstant(IV, &I, C);
1154   }
1155 
1156   // Otherwise we cannot say for certain what value this load will produce.
1157   // Bail out.
1158   markOverdefined(IV, &I);
1159 }
1160 
visitCallSite(CallSite CS)1161 void SCCPSolver::visitCallSite(CallSite CS) {
1162   Function *F = CS.getCalledFunction();
1163   Instruction *I = CS.getInstruction();
1164 
1165   if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1166     if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
1167       if (ValueState[I].isOverdefined())
1168         return;
1169 
1170       auto *PI = getPredicateInfoFor(I);
1171       if (!PI)
1172         return;
1173 
1174       Value *CopyOf = I->getOperand(0);
1175       auto *PBranch = dyn_cast<PredicateBranch>(PI);
1176       if (!PBranch) {
1177         mergeInValue(ValueState[I], I, getValueState(CopyOf));
1178         return;
1179       }
1180 
1181       Value *Cond = PBranch->Condition;
1182 
1183       // Everything below relies on the condition being a comparison.
1184       auto *Cmp = dyn_cast<CmpInst>(Cond);
1185       if (!Cmp) {
1186         mergeInValue(ValueState[I], I, getValueState(CopyOf));
1187         return;
1188       }
1189 
1190       Value *CmpOp0 = Cmp->getOperand(0);
1191       Value *CmpOp1 = Cmp->getOperand(1);
1192       if (CopyOf != CmpOp0 && CopyOf != CmpOp1) {
1193         mergeInValue(ValueState[I], I, getValueState(CopyOf));
1194         return;
1195       }
1196 
1197       if (CmpOp0 != CopyOf)
1198         std::swap(CmpOp0, CmpOp1);
1199 
1200       LatticeVal OriginalVal = getValueState(CopyOf);
1201       LatticeVal EqVal = getValueState(CmpOp1);
1202       LatticeVal &IV = ValueState[I];
1203       if (PBranch->TrueEdge && Cmp->getPredicate() == CmpInst::ICMP_EQ) {
1204         addAdditionalUser(CmpOp1, I);
1205         if (OriginalVal.isConstant())
1206           mergeInValue(IV, I, OriginalVal);
1207         else
1208           mergeInValue(IV, I, EqVal);
1209         return;
1210       }
1211       if (!PBranch->TrueEdge && Cmp->getPredicate() == CmpInst::ICMP_NE) {
1212         addAdditionalUser(CmpOp1, I);
1213         if (OriginalVal.isConstant())
1214           mergeInValue(IV, I, OriginalVal);
1215         else
1216           mergeInValue(IV, I, EqVal);
1217         return;
1218       }
1219 
1220       return (void)mergeInValue(IV, I, getValueState(CopyOf));
1221     }
1222   }
1223 
1224   // The common case is that we aren't tracking the callee, either because we
1225   // are not doing interprocedural analysis or the callee is indirect, or is
1226   // external.  Handle these cases first.
1227   if (!F || F->isDeclaration()) {
1228 CallOverdefined:
1229     // Void return and not tracking callee, just bail.
1230     if (I->getType()->isVoidTy()) return;
1231 
1232     // Otherwise, if we have a single return value case, and if the function is
1233     // a declaration, maybe we can constant fold it.
1234     if (F && F->isDeclaration() && !I->getType()->isStructTy() &&
1235         canConstantFoldCallTo(CS, F)) {
1236       SmallVector<Constant*, 8> Operands;
1237       for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
1238            AI != E; ++AI) {
1239         if (AI->get()->getType()->isStructTy())
1240           return markOverdefined(I); // Can't handle struct args.
1241         LatticeVal State = getValueState(*AI);
1242 
1243         if (State.isUnknown())
1244           return;  // Operands are not resolved yet.
1245         if (State.isOverdefined())
1246           return (void)markOverdefined(I);
1247         assert(State.isConstant() && "Unknown state!");
1248         Operands.push_back(State.getConstant());
1249       }
1250 
1251       if (getValueState(I).isOverdefined())
1252         return;
1253 
1254       // If we can constant fold this, mark the result of the call as a
1255       // constant.
1256       if (Constant *C = ConstantFoldCall(CS, F, Operands, TLI)) {
1257         // call -> undef.
1258         if (isa<UndefValue>(C))
1259           return;
1260         return (void)markConstant(I, C);
1261       }
1262     }
1263 
1264     // Otherwise, we don't know anything about this call, mark it overdefined.
1265     return (void)markOverdefined(I);
1266   }
1267 
1268   // If this is a local function that doesn't have its address taken, mark its
1269   // entry block executable and merge in the actual arguments to the call into
1270   // the formal arguments of the function.
1271   if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){
1272     MarkBlockExecutable(&F->front());
1273 
1274     // Propagate information from this call site into the callee.
1275     CallSite::arg_iterator CAI = CS.arg_begin();
1276     for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1277          AI != E; ++AI, ++CAI) {
1278       // If this argument is byval, and if the function is not readonly, there
1279       // will be an implicit copy formed of the input aggregate.
1280       if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
1281         markOverdefined(&*AI);
1282         continue;
1283       }
1284 
1285       if (auto *STy = dyn_cast<StructType>(AI->getType())) {
1286         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1287           LatticeVal CallArg = getStructValueState(*CAI, i);
1288           mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg);
1289         }
1290       } else {
1291         // Most other parts of the Solver still only use the simpler value
1292         // lattice, so we propagate changes for parameters to both lattices.
1293         LatticeVal ConcreteArgument = getValueState(*CAI);
1294         bool ParamChanged =
1295             getParamState(&*AI).mergeIn(ConcreteArgument.toValueLattice(), DL);
1296          bool ValueChanged = mergeInValue(&*AI, ConcreteArgument);
1297         // Add argument to work list, if the state of a parameter changes but
1298         // ValueState does not change (because it is already overdefined there),
1299         // We have to take changes in ParamState into account, as it is used
1300         // when evaluating Cmp instructions.
1301         if (!ValueChanged && ParamChanged)
1302           pushToWorkList(ValueState[&*AI], &*AI);
1303       }
1304     }
1305   }
1306 
1307   // If this is a single/zero retval case, see if we're tracking the function.
1308   if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
1309     if (!MRVFunctionsTracked.count(F))
1310       goto CallOverdefined;  // Not tracking this callee.
1311 
1312     // If we are tracking this callee, propagate the result of the function
1313     // into this call site.
1314     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1315       mergeInValue(getStructValueState(I, i), I,
1316                    TrackedMultipleRetVals[std::make_pair(F, i)]);
1317   } else {
1318     DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
1319     if (TFRVI == TrackedRetVals.end())
1320       goto CallOverdefined;  // Not tracking this callee.
1321 
1322     // If so, propagate the return value of the callee into this call result.
1323     mergeInValue(I, TFRVI->second);
1324   }
1325 }
1326 
Solve()1327 void SCCPSolver::Solve() {
1328   // Process the work lists until they are empty!
1329   while (!BBWorkList.empty() || !InstWorkList.empty() ||
1330          !OverdefinedInstWorkList.empty()) {
1331     // Process the overdefined instruction's work list first, which drives other
1332     // things to overdefined more quickly.
1333     while (!OverdefinedInstWorkList.empty()) {
1334       Value *I = OverdefinedInstWorkList.pop_back_val();
1335 
1336       LLVM_DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
1337 
1338       // "I" got into the work list because it either made the transition from
1339       // bottom to constant, or to overdefined.
1340       //
1341       // Anything on this worklist that is overdefined need not be visited
1342       // since all of its users will have already been marked as overdefined
1343       // Update all of the users of this instruction's value.
1344       //
1345       markUsersAsChanged(I);
1346     }
1347 
1348     // Process the instruction work list.
1349     while (!InstWorkList.empty()) {
1350       Value *I = InstWorkList.pop_back_val();
1351 
1352       LLVM_DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
1353 
1354       // "I" got into the work list because it made the transition from undef to
1355       // constant.
1356       //
1357       // Anything on this worklist that is overdefined need not be visited
1358       // since all of its users will have already been marked as overdefined.
1359       // Update all of the users of this instruction's value.
1360       //
1361       if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
1362         markUsersAsChanged(I);
1363     }
1364 
1365     // Process the basic block work list.
1366     while (!BBWorkList.empty()) {
1367       BasicBlock *BB = BBWorkList.back();
1368       BBWorkList.pop_back();
1369 
1370       LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
1371 
1372       // Notify all instructions in this basic block that they are newly
1373       // executable.
1374       visit(BB);
1375     }
1376   }
1377 }
1378 
1379 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
1380 /// that branches on undef values cannot reach any of their successors.
1381 /// However, this is not a safe assumption.  After we solve dataflow, this
1382 /// method should be use to handle this.  If this returns true, the solver
1383 /// should be rerun.
1384 ///
1385 /// This method handles this by finding an unresolved branch and marking it one
1386 /// of the edges from the block as being feasible, even though the condition
1387 /// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
1388 /// CFG and only slightly pessimizes the analysis results (by marking one,
1389 /// potentially infeasible, edge feasible).  This cannot usefully modify the
1390 /// constraints on the condition of the branch, as that would impact other users
1391 /// of the value.
1392 ///
1393 /// This scan also checks for values that use undefs, whose results are actually
1394 /// defined.  For example, 'zext i8 undef to i32' should produce all zeros
1395 /// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
1396 /// even if X isn't defined.
ResolvedUndefsIn(Function & F)1397 bool SCCPSolver::ResolvedUndefsIn(Function &F) {
1398   for (BasicBlock &BB : F) {
1399     if (!BBExecutable.count(&BB))
1400       continue;
1401 
1402     for (Instruction &I : BB) {
1403       // Look for instructions which produce undef values.
1404       if (I.getType()->isVoidTy()) continue;
1405 
1406       if (auto *STy = dyn_cast<StructType>(I.getType())) {
1407         // Only a few things that can be structs matter for undef.
1408 
1409         // Tracked calls must never be marked overdefined in ResolvedUndefsIn.
1410         if (CallSite CS = CallSite(&I))
1411           if (Function *F = CS.getCalledFunction())
1412             if (MRVFunctionsTracked.count(F))
1413               continue;
1414 
1415         // extractvalue and insertvalue don't need to be marked; they are
1416         // tracked as precisely as their operands.
1417         if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
1418           continue;
1419 
1420         // Send the results of everything else to overdefined.  We could be
1421         // more precise than this but it isn't worth bothering.
1422         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1423           LatticeVal &LV = getStructValueState(&I, i);
1424           if (LV.isUnknown())
1425             markOverdefined(LV, &I);
1426         }
1427         continue;
1428       }
1429 
1430       LatticeVal &LV = getValueState(&I);
1431       if (!LV.isUnknown()) continue;
1432 
1433       // extractvalue is safe; check here because the argument is a struct.
1434       if (isa<ExtractValueInst>(I))
1435         continue;
1436 
1437       // Compute the operand LatticeVals, for convenience below.
1438       // Anything taking a struct is conservatively assumed to require
1439       // overdefined markings.
1440       if (I.getOperand(0)->getType()->isStructTy()) {
1441         markOverdefined(&I);
1442         return true;
1443       }
1444       LatticeVal Op0LV = getValueState(I.getOperand(0));
1445       LatticeVal Op1LV;
1446       if (I.getNumOperands() == 2) {
1447         if (I.getOperand(1)->getType()->isStructTy()) {
1448           markOverdefined(&I);
1449           return true;
1450         }
1451 
1452         Op1LV = getValueState(I.getOperand(1));
1453       }
1454       // If this is an instructions whose result is defined even if the input is
1455       // not fully defined, propagate the information.
1456       Type *ITy = I.getType();
1457       switch (I.getOpcode()) {
1458       case Instruction::Add:
1459       case Instruction::Sub:
1460       case Instruction::Trunc:
1461       case Instruction::FPTrunc:
1462       case Instruction::BitCast:
1463         break; // Any undef -> undef
1464       case Instruction::FSub:
1465       case Instruction::FAdd:
1466       case Instruction::FMul:
1467       case Instruction::FDiv:
1468       case Instruction::FRem:
1469         // Floating-point binary operation: be conservative.
1470         if (Op0LV.isUnknown() && Op1LV.isUnknown())
1471           markForcedConstant(&I, Constant::getNullValue(ITy));
1472         else
1473           markOverdefined(&I);
1474         return true;
1475       case Instruction::ZExt:
1476       case Instruction::SExt:
1477       case Instruction::FPToUI:
1478       case Instruction::FPToSI:
1479       case Instruction::FPExt:
1480       case Instruction::PtrToInt:
1481       case Instruction::IntToPtr:
1482       case Instruction::SIToFP:
1483       case Instruction::UIToFP:
1484         // undef -> 0; some outputs are impossible
1485         markForcedConstant(&I, Constant::getNullValue(ITy));
1486         return true;
1487       case Instruction::Mul:
1488       case Instruction::And:
1489         // Both operands undef -> undef
1490         if (Op0LV.isUnknown() && Op1LV.isUnknown())
1491           break;
1492         // undef * X -> 0.   X could be zero.
1493         // undef & X -> 0.   X could be zero.
1494         markForcedConstant(&I, Constant::getNullValue(ITy));
1495         return true;
1496       case Instruction::Or:
1497         // Both operands undef -> undef
1498         if (Op0LV.isUnknown() && Op1LV.isUnknown())
1499           break;
1500         // undef | X -> -1.   X could be -1.
1501         markForcedConstant(&I, Constant::getAllOnesValue(ITy));
1502         return true;
1503       case Instruction::Xor:
1504         // undef ^ undef -> 0; strictly speaking, this is not strictly
1505         // necessary, but we try to be nice to people who expect this
1506         // behavior in simple cases
1507         if (Op0LV.isUnknown() && Op1LV.isUnknown()) {
1508           markForcedConstant(&I, Constant::getNullValue(ITy));
1509           return true;
1510         }
1511         // undef ^ X -> undef
1512         break;
1513       case Instruction::SDiv:
1514       case Instruction::UDiv:
1515       case Instruction::SRem:
1516       case Instruction::URem:
1517         // X / undef -> undef.  No change.
1518         // X % undef -> undef.  No change.
1519         if (Op1LV.isUnknown()) break;
1520 
1521         // X / 0 -> undef.  No change.
1522         // X % 0 -> undef.  No change.
1523         if (Op1LV.isConstant() && Op1LV.getConstant()->isZeroValue())
1524           break;
1525 
1526         // undef / X -> 0.   X could be maxint.
1527         // undef % X -> 0.   X could be 1.
1528         markForcedConstant(&I, Constant::getNullValue(ITy));
1529         return true;
1530       case Instruction::AShr:
1531         // X >>a undef -> undef.
1532         if (Op1LV.isUnknown()) break;
1533 
1534         // Shifting by the bitwidth or more is undefined.
1535         if (Op1LV.isConstant()) {
1536           if (auto *ShiftAmt = Op1LV.getConstantInt())
1537             if (ShiftAmt->getLimitedValue() >=
1538                 ShiftAmt->getType()->getScalarSizeInBits())
1539               break;
1540         }
1541 
1542         // undef >>a X -> 0
1543         markForcedConstant(&I, Constant::getNullValue(ITy));
1544         return true;
1545       case Instruction::LShr:
1546       case Instruction::Shl:
1547         // X << undef -> undef.
1548         // X >> undef -> undef.
1549         if (Op1LV.isUnknown()) break;
1550 
1551         // Shifting by the bitwidth or more is undefined.
1552         if (Op1LV.isConstant()) {
1553           if (auto *ShiftAmt = Op1LV.getConstantInt())
1554             if (ShiftAmt->getLimitedValue() >=
1555                 ShiftAmt->getType()->getScalarSizeInBits())
1556               break;
1557         }
1558 
1559         // undef << X -> 0
1560         // undef >> X -> 0
1561         markForcedConstant(&I, Constant::getNullValue(ITy));
1562         return true;
1563       case Instruction::Select:
1564         Op1LV = getValueState(I.getOperand(1));
1565         // undef ? X : Y  -> X or Y.  There could be commonality between X/Y.
1566         if (Op0LV.isUnknown()) {
1567           if (!Op1LV.isConstant())  // Pick the constant one if there is any.
1568             Op1LV = getValueState(I.getOperand(2));
1569         } else if (Op1LV.isUnknown()) {
1570           // c ? undef : undef -> undef.  No change.
1571           Op1LV = getValueState(I.getOperand(2));
1572           if (Op1LV.isUnknown())
1573             break;
1574           // Otherwise, c ? undef : x -> x.
1575         } else {
1576           // Leave Op1LV as Operand(1)'s LatticeValue.
1577         }
1578 
1579         if (Op1LV.isConstant())
1580           markForcedConstant(&I, Op1LV.getConstant());
1581         else
1582           markOverdefined(&I);
1583         return true;
1584       case Instruction::Load:
1585         // A load here means one of two things: a load of undef from a global,
1586         // a load from an unknown pointer.  Either way, having it return undef
1587         // is okay.
1588         break;
1589       case Instruction::ICmp:
1590         // X == undef -> undef.  Other comparisons get more complicated.
1591         Op0LV = getValueState(I.getOperand(0));
1592         Op1LV = getValueState(I.getOperand(1));
1593 
1594         if ((Op0LV.isUnknown() || Op1LV.isUnknown()) &&
1595             cast<ICmpInst>(&I)->isEquality())
1596           break;
1597         markOverdefined(&I);
1598         return true;
1599       case Instruction::Call:
1600       case Instruction::Invoke:
1601         // There are two reasons a call can have an undef result
1602         // 1. It could be tracked.
1603         // 2. It could be constant-foldable.
1604         // Because of the way we solve return values, tracked calls must
1605         // never be marked overdefined in ResolvedUndefsIn.
1606         if (Function *F = CallSite(&I).getCalledFunction())
1607           if (TrackedRetVals.count(F))
1608             break;
1609 
1610         // If the call is constant-foldable, we mark it overdefined because
1611         // we do not know what return values are valid.
1612         markOverdefined(&I);
1613         return true;
1614       default:
1615         // If we don't know what should happen here, conservatively mark it
1616         // overdefined.
1617         markOverdefined(&I);
1618         return true;
1619       }
1620     }
1621 
1622     // Check to see if we have a branch or switch on an undefined value.  If so
1623     // we force the branch to go one way or the other to make the successor
1624     // values live.  It doesn't really matter which way we force it.
1625     Instruction *TI = BB.getTerminator();
1626     if (auto *BI = dyn_cast<BranchInst>(TI)) {
1627       if (!BI->isConditional()) continue;
1628       if (!getValueState(BI->getCondition()).isUnknown())
1629         continue;
1630 
1631       // If the input to SCCP is actually branch on undef, fix the undef to
1632       // false.
1633       if (isa<UndefValue>(BI->getCondition())) {
1634         BI->setCondition(ConstantInt::getFalse(BI->getContext()));
1635         markEdgeExecutable(&BB, TI->getSuccessor(1));
1636         return true;
1637       }
1638 
1639       // Otherwise, it is a branch on a symbolic value which is currently
1640       // considered to be undef.  Make sure some edge is executable, so a
1641       // branch on "undef" always flows somewhere.
1642       // FIXME: Distinguish between dead code and an LLVM "undef" value.
1643       BasicBlock *DefaultSuccessor = TI->getSuccessor(1);
1644       if (markEdgeExecutable(&BB, DefaultSuccessor))
1645         return true;
1646 
1647       continue;
1648     }
1649 
1650    if (auto *IBR = dyn_cast<IndirectBrInst>(TI)) {
1651       // Indirect branch with no successor ?. Its ok to assume it branches
1652       // to no target.
1653       if (IBR->getNumSuccessors() < 1)
1654         continue;
1655 
1656       if (!getValueState(IBR->getAddress()).isUnknown())
1657         continue;
1658 
1659       // If the input to SCCP is actually branch on undef, fix the undef to
1660       // the first successor of the indirect branch.
1661       if (isa<UndefValue>(IBR->getAddress())) {
1662         IBR->setAddress(BlockAddress::get(IBR->getSuccessor(0)));
1663         markEdgeExecutable(&BB, IBR->getSuccessor(0));
1664         return true;
1665       }
1666 
1667       // Otherwise, it is a branch on a symbolic value which is currently
1668       // considered to be undef.  Make sure some edge is executable, so a
1669       // branch on "undef" always flows somewhere.
1670       // FIXME: IndirectBr on "undef" doesn't actually need to go anywhere:
1671       // we can assume the branch has undefined behavior instead.
1672       BasicBlock *DefaultSuccessor = IBR->getSuccessor(0);
1673       if (markEdgeExecutable(&BB, DefaultSuccessor))
1674         return true;
1675 
1676       continue;
1677     }
1678 
1679     if (auto *SI = dyn_cast<SwitchInst>(TI)) {
1680       if (!SI->getNumCases() || !getValueState(SI->getCondition()).isUnknown())
1681         continue;
1682 
1683       // If the input to SCCP is actually switch on undef, fix the undef to
1684       // the first constant.
1685       if (isa<UndefValue>(SI->getCondition())) {
1686         SI->setCondition(SI->case_begin()->getCaseValue());
1687         markEdgeExecutable(&BB, SI->case_begin()->getCaseSuccessor());
1688         return true;
1689       }
1690 
1691       // Otherwise, it is a branch on a symbolic value which is currently
1692       // considered to be undef.  Make sure some edge is executable, so a
1693       // branch on "undef" always flows somewhere.
1694       // FIXME: Distinguish between dead code and an LLVM "undef" value.
1695       BasicBlock *DefaultSuccessor = SI->case_begin()->getCaseSuccessor();
1696       if (markEdgeExecutable(&BB, DefaultSuccessor))
1697         return true;
1698 
1699       continue;
1700     }
1701   }
1702 
1703   return false;
1704 }
1705 
tryToReplaceWithConstant(SCCPSolver & Solver,Value * V)1706 static bool tryToReplaceWithConstant(SCCPSolver &Solver, Value *V) {
1707   Constant *Const = nullptr;
1708   if (V->getType()->isStructTy()) {
1709     std::vector<LatticeVal> IVs = Solver.getStructLatticeValueFor(V);
1710     if (llvm::any_of(IVs,
1711                      [](const LatticeVal &LV) { return LV.isOverdefined(); }))
1712       return false;
1713     std::vector<Constant *> ConstVals;
1714     auto *ST = dyn_cast<StructType>(V->getType());
1715     for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
1716       LatticeVal V = IVs[i];
1717       ConstVals.push_back(V.isConstant()
1718                               ? V.getConstant()
1719                               : UndefValue::get(ST->getElementType(i)));
1720     }
1721     Const = ConstantStruct::get(ST, ConstVals);
1722   } else {
1723     const LatticeVal &IV = Solver.getLatticeValueFor(V);
1724     if (IV.isOverdefined())
1725       return false;
1726 
1727     Const = IV.isConstant() ? IV.getConstant() : UndefValue::get(V->getType());
1728   }
1729   assert(Const && "Constant is nullptr here!");
1730 
1731   // Replacing `musttail` instructions with constant breaks `musttail` invariant
1732   // unless the call itself can be removed
1733   CallInst *CI = dyn_cast<CallInst>(V);
1734   if (CI && CI->isMustTailCall() && !CI->isSafeToRemove()) {
1735     CallSite CS(CI);
1736     Function *F = CS.getCalledFunction();
1737 
1738     // Don't zap returns of the callee
1739     if (F)
1740       Solver.AddMustTailCallee(F);
1741 
1742     LLVM_DEBUG(dbgs() << "  Can\'t treat the result of musttail call : " << *CI
1743                       << " as a constant\n");
1744     return false;
1745   }
1746 
1747   LLVM_DEBUG(dbgs() << "  Constant: " << *Const << " = " << *V << '\n');
1748 
1749   // Replaces all of the uses of a variable with uses of the constant.
1750   V->replaceAllUsesWith(Const);
1751   return true;
1752 }
1753 
1754 // runSCCP() - Run the Sparse Conditional Constant Propagation algorithm,
1755 // and return true if the function was modified.
runSCCP(Function & F,const DataLayout & DL,const TargetLibraryInfo * TLI)1756 static bool runSCCP(Function &F, const DataLayout &DL,
1757                     const TargetLibraryInfo *TLI) {
1758   LLVM_DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
1759   SCCPSolver Solver(DL, TLI);
1760 
1761   // Mark the first block of the function as being executable.
1762   Solver.MarkBlockExecutable(&F.front());
1763 
1764   // Mark all arguments to the function as being overdefined.
1765   for (Argument &AI : F.args())
1766     Solver.markOverdefined(&AI);
1767 
1768   // Solve for constants.
1769   bool ResolvedUndefs = true;
1770   while (ResolvedUndefs) {
1771     Solver.Solve();
1772     LLVM_DEBUG(dbgs() << "RESOLVING UNDEFs\n");
1773     ResolvedUndefs = Solver.ResolvedUndefsIn(F);
1774   }
1775 
1776   bool MadeChanges = false;
1777 
1778   // If we decided that there are basic blocks that are dead in this function,
1779   // delete their contents now.  Note that we cannot actually delete the blocks,
1780   // as we cannot modify the CFG of the function.
1781 
1782   for (BasicBlock &BB : F) {
1783     if (!Solver.isBlockExecutable(&BB)) {
1784       LLVM_DEBUG(dbgs() << "  BasicBlock Dead:" << BB);
1785 
1786       ++NumDeadBlocks;
1787       NumInstRemoved += removeAllNonTerminatorAndEHPadInstructions(&BB);
1788 
1789       MadeChanges = true;
1790       continue;
1791     }
1792 
1793     // Iterate over all of the instructions in a function, replacing them with
1794     // constants if we have found them to be of constant values.
1795     for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) {
1796       Instruction *Inst = &*BI++;
1797       if (Inst->getType()->isVoidTy() || Inst->isTerminator())
1798         continue;
1799 
1800       if (tryToReplaceWithConstant(Solver, Inst)) {
1801         if (isInstructionTriviallyDead(Inst))
1802           Inst->eraseFromParent();
1803         // Hey, we just changed something!
1804         MadeChanges = true;
1805         ++NumInstRemoved;
1806       }
1807     }
1808   }
1809 
1810   return MadeChanges;
1811 }
1812 
run(Function & F,FunctionAnalysisManager & AM)1813 PreservedAnalyses SCCPPass::run(Function &F, FunctionAnalysisManager &AM) {
1814   const DataLayout &DL = F.getParent()->getDataLayout();
1815   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1816   if (!runSCCP(F, DL, &TLI))
1817     return PreservedAnalyses::all();
1818 
1819   auto PA = PreservedAnalyses();
1820   PA.preserve<GlobalsAA>();
1821   PA.preserveSet<CFGAnalyses>();
1822   return PA;
1823 }
1824 
1825 namespace {
1826 
1827 //===--------------------------------------------------------------------===//
1828 //
1829 /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1830 /// Sparse Conditional Constant Propagator.
1831 ///
1832 class SCCPLegacyPass : public FunctionPass {
1833 public:
1834   // Pass identification, replacement for typeid
1835   static char ID;
1836 
SCCPLegacyPass()1837   SCCPLegacyPass() : FunctionPass(ID) {
1838     initializeSCCPLegacyPassPass(*PassRegistry::getPassRegistry());
1839   }
1840 
getAnalysisUsage(AnalysisUsage & AU) const1841   void getAnalysisUsage(AnalysisUsage &AU) const override {
1842     AU.addRequired<TargetLibraryInfoWrapperPass>();
1843     AU.addPreserved<GlobalsAAWrapperPass>();
1844     AU.setPreservesCFG();
1845   }
1846 
1847   // runOnFunction - Run the Sparse Conditional Constant Propagation
1848   // algorithm, and return true if the function was modified.
runOnFunction(Function & F)1849   bool runOnFunction(Function &F) override {
1850     if (skipFunction(F))
1851       return false;
1852     const DataLayout &DL = F.getParent()->getDataLayout();
1853     const TargetLibraryInfo *TLI =
1854         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1855     return runSCCP(F, DL, TLI);
1856   }
1857 };
1858 
1859 } // end anonymous namespace
1860 
1861 char SCCPLegacyPass::ID = 0;
1862 
1863 INITIALIZE_PASS_BEGIN(SCCPLegacyPass, "sccp",
1864                       "Sparse Conditional Constant Propagation", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)1865 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1866 INITIALIZE_PASS_END(SCCPLegacyPass, "sccp",
1867                     "Sparse Conditional Constant Propagation", false, false)
1868 
1869 // createSCCPPass - This is the public interface to this file.
1870 FunctionPass *llvm::createSCCPPass() { return new SCCPLegacyPass(); }
1871 
findReturnsToZap(Function & F,SmallVector<ReturnInst *,8> & ReturnsToZap,SCCPSolver & Solver)1872 static void findReturnsToZap(Function &F,
1873                              SmallVector<ReturnInst *, 8> &ReturnsToZap,
1874                              SCCPSolver &Solver) {
1875   // We can only do this if we know that nothing else can call the function.
1876   if (!Solver.isArgumentTrackedFunction(&F))
1877     return;
1878 
1879   // There is a non-removable musttail call site of this function. Zapping
1880   // returns is not allowed.
1881   if (Solver.isMustTailCallee(&F)) {
1882     LLVM_DEBUG(dbgs() << "Can't zap returns of the function : " << F.getName()
1883                       << " due to present musttail call of it\n");
1884     return;
1885   }
1886 
1887   for (BasicBlock &BB : F) {
1888     if (CallInst *CI = BB.getTerminatingMustTailCall()) {
1889       LLVM_DEBUG(dbgs() << "Can't zap return of the block due to present "
1890                         << "musttail call : " << *CI << "\n");
1891       (void)CI;
1892       return;
1893     }
1894 
1895     if (auto *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
1896       if (!isa<UndefValue>(RI->getOperand(0)))
1897         ReturnsToZap.push_back(RI);
1898   }
1899 }
1900 
1901 // Update the condition for terminators that are branching on indeterminate
1902 // values, forcing them to use a specific edge.
forceIndeterminateEdge(Instruction * I,SCCPSolver & Solver)1903 static void forceIndeterminateEdge(Instruction* I, SCCPSolver &Solver) {
1904   BasicBlock *Dest = nullptr;
1905   Constant *C = nullptr;
1906   if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
1907     if (!isa<ConstantInt>(SI->getCondition())) {
1908       // Indeterminate switch; use first case value.
1909       Dest = SI->case_begin()->getCaseSuccessor();
1910       C = SI->case_begin()->getCaseValue();
1911     }
1912   } else if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1913     if (!isa<ConstantInt>(BI->getCondition())) {
1914       // Indeterminate branch; use false.
1915       Dest = BI->getSuccessor(1);
1916       C = ConstantInt::getFalse(BI->getContext());
1917     }
1918   } else if (IndirectBrInst *IBR = dyn_cast<IndirectBrInst>(I)) {
1919     if (!isa<BlockAddress>(IBR->getAddress()->stripPointerCasts())) {
1920       // Indeterminate indirectbr; use successor 0.
1921       Dest = IBR->getSuccessor(0);
1922       C = BlockAddress::get(IBR->getSuccessor(0));
1923     }
1924   } else {
1925     llvm_unreachable("Unexpected terminator instruction");
1926   }
1927   if (C) {
1928     assert(Solver.isEdgeFeasible(I->getParent(), Dest) &&
1929            "Didn't find feasible edge?");
1930     (void)Dest;
1931 
1932     I->setOperand(0, C);
1933   }
1934 }
1935 
runIPSCCP(Module & M,const DataLayout & DL,const TargetLibraryInfo * TLI,function_ref<AnalysisResultsForFn (Function &)> getAnalysis)1936 bool llvm::runIPSCCP(
1937     Module &M, const DataLayout &DL, const TargetLibraryInfo *TLI,
1938     function_ref<AnalysisResultsForFn(Function &)> getAnalysis) {
1939   SCCPSolver Solver(DL, TLI);
1940 
1941   // Loop over all functions, marking arguments to those with their addresses
1942   // taken or that are external as overdefined.
1943   for (Function &F : M) {
1944     if (F.isDeclaration())
1945       continue;
1946 
1947     Solver.addAnalysis(F, getAnalysis(F));
1948 
1949     // Determine if we can track the function's return values. If so, add the
1950     // function to the solver's set of return-tracked functions.
1951     if (canTrackReturnsInterprocedurally(&F))
1952       Solver.AddTrackedFunction(&F);
1953 
1954     // Determine if we can track the function's arguments. If so, add the
1955     // function to the solver's set of argument-tracked functions.
1956     if (canTrackArgumentsInterprocedurally(&F)) {
1957       Solver.AddArgumentTrackedFunction(&F);
1958       continue;
1959     }
1960 
1961     // Assume the function is called.
1962     Solver.MarkBlockExecutable(&F.front());
1963 
1964     // Assume nothing about the incoming arguments.
1965     for (Argument &AI : F.args())
1966       Solver.markOverdefined(&AI);
1967   }
1968 
1969   // Determine if we can track any of the module's global variables. If so, add
1970   // the global variables we can track to the solver's set of tracked global
1971   // variables.
1972   for (GlobalVariable &G : M.globals()) {
1973     G.removeDeadConstantUsers();
1974     if (canTrackGlobalVariableInterprocedurally(&G))
1975       Solver.TrackValueOfGlobalVariable(&G);
1976   }
1977 
1978   // Solve for constants.
1979   bool ResolvedUndefs = true;
1980   Solver.Solve();
1981   while (ResolvedUndefs) {
1982     LLVM_DEBUG(dbgs() << "RESOLVING UNDEFS\n");
1983     ResolvedUndefs = false;
1984     for (Function &F : M)
1985       if (Solver.ResolvedUndefsIn(F)) {
1986         // We run Solve() after we resolved an undef in a function, because
1987         // we might deduce a fact that eliminates an undef in another function.
1988         Solver.Solve();
1989         ResolvedUndefs = true;
1990       }
1991   }
1992 
1993   bool MadeChanges = false;
1994 
1995   // Iterate over all of the instructions in the module, replacing them with
1996   // constants if we have found them to be of constant values.
1997 
1998   for (Function &F : M) {
1999     if (F.isDeclaration())
2000       continue;
2001 
2002     SmallVector<BasicBlock *, 512> BlocksToErase;
2003 
2004     if (Solver.isBlockExecutable(&F.front()))
2005       for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;
2006            ++AI) {
2007         if (!AI->use_empty() && tryToReplaceWithConstant(Solver, &*AI)) {
2008           ++IPNumArgsElimed;
2009           continue;
2010         }
2011       }
2012 
2013     for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
2014       if (!Solver.isBlockExecutable(&*BB)) {
2015         LLVM_DEBUG(dbgs() << "  BasicBlock Dead:" << *BB);
2016         ++NumDeadBlocks;
2017 
2018         MadeChanges = true;
2019 
2020         if (&*BB != &F.front())
2021           BlocksToErase.push_back(&*BB);
2022         continue;
2023       }
2024 
2025       for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
2026         Instruction *Inst = &*BI++;
2027         if (Inst->getType()->isVoidTy())
2028           continue;
2029         if (tryToReplaceWithConstant(Solver, Inst)) {
2030           if (Inst->isSafeToRemove())
2031             Inst->eraseFromParent();
2032           // Hey, we just changed something!
2033           MadeChanges = true;
2034           ++IPNumInstRemoved;
2035         }
2036       }
2037     }
2038 
2039     DomTreeUpdater DTU = Solver.getDTU(F);
2040     // Change dead blocks to unreachable. We do it after replacing constants
2041     // in all executable blocks, because changeToUnreachable may remove PHI
2042     // nodes in executable blocks we found values for. The function's entry
2043     // block is not part of BlocksToErase, so we have to handle it separately.
2044     for (BasicBlock *BB : BlocksToErase) {
2045       NumInstRemoved +=
2046           changeToUnreachable(BB->getFirstNonPHI(), /*UseLLVMTrap=*/false,
2047                               /*PreserveLCSSA=*/false, &DTU);
2048     }
2049     if (!Solver.isBlockExecutable(&F.front()))
2050       NumInstRemoved += changeToUnreachable(F.front().getFirstNonPHI(),
2051                                             /*UseLLVMTrap=*/false,
2052                                             /*PreserveLCSSA=*/false, &DTU);
2053 
2054     // Now that all instructions in the function are constant folded,
2055     // use ConstantFoldTerminator to get rid of in-edges, record DT updates and
2056     // delete dead BBs.
2057     for (BasicBlock *DeadBB : BlocksToErase) {
2058       // If there are any PHI nodes in this successor, drop entries for BB now.
2059       for (Value::user_iterator UI = DeadBB->user_begin(),
2060                                 UE = DeadBB->user_end();
2061            UI != UE;) {
2062         // Grab the user and then increment the iterator early, as the user
2063         // will be deleted. Step past all adjacent uses from the same user.
2064         auto *I = dyn_cast<Instruction>(*UI);
2065         do { ++UI; } while (UI != UE && *UI == I);
2066 
2067         // Ignore blockaddress users; BasicBlock's dtor will handle them.
2068         if (!I) continue;
2069 
2070         // If we have forced an edge for an indeterminate value, then force the
2071         // terminator to fold to that edge.
2072         forceIndeterminateEdge(I, Solver);
2073         bool Folded = ConstantFoldTerminator(I->getParent(),
2074                                              /*DeleteDeadConditions=*/false,
2075                                              /*TLI=*/nullptr, &DTU);
2076         assert(Folded &&
2077               "Expect TermInst on constantint or blockaddress to be folded");
2078         (void) Folded;
2079       }
2080       // Mark dead BB for deletion.
2081       DTU.deleteBB(DeadBB);
2082     }
2083 
2084     for (BasicBlock &BB : F) {
2085       for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) {
2086         Instruction *Inst = &*BI++;
2087         if (Solver.getPredicateInfoFor(Inst)) {
2088           if (auto *II = dyn_cast<IntrinsicInst>(Inst)) {
2089             if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
2090               Value *Op = II->getOperand(0);
2091               Inst->replaceAllUsesWith(Op);
2092               Inst->eraseFromParent();
2093             }
2094           }
2095         }
2096       }
2097     }
2098   }
2099 
2100   // If we inferred constant or undef return values for a function, we replaced
2101   // all call uses with the inferred value.  This means we don't need to bother
2102   // actually returning anything from the function.  Replace all return
2103   // instructions with return undef.
2104   //
2105   // Do this in two stages: first identify the functions we should process, then
2106   // actually zap their returns.  This is important because we can only do this
2107   // if the address of the function isn't taken.  In cases where a return is the
2108   // last use of a function, the order of processing functions would affect
2109   // whether other functions are optimizable.
2110   SmallVector<ReturnInst*, 8> ReturnsToZap;
2111 
2112   const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
2113   for (const auto &I : RV) {
2114     Function *F = I.first;
2115     if (I.second.isOverdefined() || F->getReturnType()->isVoidTy())
2116       continue;
2117     findReturnsToZap(*F, ReturnsToZap, Solver);
2118   }
2119 
2120   for (const auto &F : Solver.getMRVFunctionsTracked()) {
2121     assert(F->getReturnType()->isStructTy() &&
2122            "The return type should be a struct");
2123     StructType *STy = cast<StructType>(F->getReturnType());
2124     if (Solver.isStructLatticeConstant(F, STy))
2125       findReturnsToZap(*F, ReturnsToZap, Solver);
2126   }
2127 
2128   // Zap all returns which we've identified as zap to change.
2129   for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) {
2130     Function *F = ReturnsToZap[i]->getParent()->getParent();
2131     ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType()));
2132   }
2133 
2134   // If we inferred constant or undef values for globals variables, we can
2135   // delete the global and any stores that remain to it.
2136   const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
2137   for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
2138          E = TG.end(); I != E; ++I) {
2139     GlobalVariable *GV = I->first;
2140     assert(!I->second.isOverdefined() &&
2141            "Overdefined values should have been taken out of the map!");
2142     LLVM_DEBUG(dbgs() << "Found that GV '" << GV->getName()
2143                       << "' is constant!\n");
2144     while (!GV->use_empty()) {
2145       StoreInst *SI = cast<StoreInst>(GV->user_back());
2146       SI->eraseFromParent();
2147     }
2148     M.getGlobalList().erase(GV);
2149     ++IPNumGlobalConst;
2150   }
2151 
2152   return MadeChanges;
2153 }
2154