1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Builtin calls as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCXXABI.h"
15 #include "CGObjCRuntime.h"
16 #include "CGOpenCLRuntime.h"
17 #include "CGRecordLayout.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "ConstantEmitter.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/OSLog.h"
25 #include "clang/Basic/TargetBuiltins.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/CodeGen/CGFunctionInfo.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/IR/CallSite.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/InlineAsm.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/MDBuilder.h"
35 #include "llvm/Support/ConvertUTF.h"
36 #include "llvm/Support/ScopedPrinter.h"
37 #include "llvm/Support/TargetParser.h"
38 #include <sstream>
39 
40 using namespace clang;
41 using namespace CodeGen;
42 using namespace llvm;
43 
44 static
clamp(int64_t Value,int64_t Low,int64_t High)45 int64_t clamp(int64_t Value, int64_t Low, int64_t High) {
46   return std::min(High, std::max(Low, Value));
47 }
48 
49 /// getBuiltinLibFunction - Given a builtin id for a function like
50 /// "__builtin_fabsf", return a Function* for "fabsf".
getBuiltinLibFunction(const FunctionDecl * FD,unsigned BuiltinID)51 llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
52                                                      unsigned BuiltinID) {
53   assert(Context.BuiltinInfo.isLibFunction(BuiltinID));
54 
55   // Get the name, skip over the __builtin_ prefix (if necessary).
56   StringRef Name;
57   GlobalDecl D(FD);
58 
59   // If the builtin has been declared explicitly with an assembler label,
60   // use the mangled name. This differs from the plain label on platforms
61   // that prefix labels.
62   if (FD->hasAttr<AsmLabelAttr>())
63     Name = getMangledName(D);
64   else
65     Name = Context.BuiltinInfo.getName(BuiltinID) + 10;
66 
67   llvm::FunctionType *Ty =
68     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
69 
70   return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
71 }
72 
73 /// Emit the conversions required to turn the given value into an
74 /// integer of the given size.
EmitToInt(CodeGenFunction & CGF,llvm::Value * V,QualType T,llvm::IntegerType * IntType)75 static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
76                         QualType T, llvm::IntegerType *IntType) {
77   V = CGF.EmitToMemory(V, T);
78 
79   if (V->getType()->isPointerTy())
80     return CGF.Builder.CreatePtrToInt(V, IntType);
81 
82   assert(V->getType() == IntType);
83   return V;
84 }
85 
EmitFromInt(CodeGenFunction & CGF,llvm::Value * V,QualType T,llvm::Type * ResultType)86 static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
87                           QualType T, llvm::Type *ResultType) {
88   V = CGF.EmitFromMemory(V, T);
89 
90   if (ResultType->isPointerTy())
91     return CGF.Builder.CreateIntToPtr(V, ResultType);
92 
93   assert(V->getType() == ResultType);
94   return V;
95 }
96 
97 /// Utility to insert an atomic instruction based on Intrinsic::ID
98 /// and the expression node.
MakeBinaryAtomicValue(CodeGenFunction & CGF,llvm::AtomicRMWInst::BinOp Kind,const CallExpr * E,AtomicOrdering Ordering=AtomicOrdering::SequentiallyConsistent)99 static Value *MakeBinaryAtomicValue(
100     CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E,
101     AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
102   QualType T = E->getType();
103   assert(E->getArg(0)->getType()->isPointerType());
104   assert(CGF.getContext().hasSameUnqualifiedType(T,
105                                   E->getArg(0)->getType()->getPointeeType()));
106   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
107 
108   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
109   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
110 
111   llvm::IntegerType *IntType =
112     llvm::IntegerType::get(CGF.getLLVMContext(),
113                            CGF.getContext().getTypeSize(T));
114   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
115 
116   llvm::Value *Args[2];
117   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
118   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
119   llvm::Type *ValueType = Args[1]->getType();
120   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
121 
122   llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
123       Kind, Args[0], Args[1], Ordering);
124   return EmitFromInt(CGF, Result, T, ValueType);
125 }
126 
EmitNontemporalStore(CodeGenFunction & CGF,const CallExpr * E)127 static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) {
128   Value *Val = CGF.EmitScalarExpr(E->getArg(0));
129   Value *Address = CGF.EmitScalarExpr(E->getArg(1));
130 
131   // Convert the type of the pointer to a pointer to the stored type.
132   Val = CGF.EmitToMemory(Val, E->getArg(0)->getType());
133   Value *BC = CGF.Builder.CreateBitCast(
134       Address, llvm::PointerType::getUnqual(Val->getType()), "cast");
135   LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType());
136   LV.setNontemporal(true);
137   CGF.EmitStoreOfScalar(Val, LV, false);
138   return nullptr;
139 }
140 
EmitNontemporalLoad(CodeGenFunction & CGF,const CallExpr * E)141 static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) {
142   Value *Address = CGF.EmitScalarExpr(E->getArg(0));
143 
144   LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType());
145   LV.setNontemporal(true);
146   return CGF.EmitLoadOfScalar(LV, E->getExprLoc());
147 }
148 
EmitBinaryAtomic(CodeGenFunction & CGF,llvm::AtomicRMWInst::BinOp Kind,const CallExpr * E)149 static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
150                                llvm::AtomicRMWInst::BinOp Kind,
151                                const CallExpr *E) {
152   return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E));
153 }
154 
155 /// Utility to insert an atomic instruction based Intrinsic::ID and
156 /// the expression node, where the return value is the result of the
157 /// operation.
EmitBinaryAtomicPost(CodeGenFunction & CGF,llvm::AtomicRMWInst::BinOp Kind,const CallExpr * E,Instruction::BinaryOps Op,bool Invert=false)158 static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
159                                    llvm::AtomicRMWInst::BinOp Kind,
160                                    const CallExpr *E,
161                                    Instruction::BinaryOps Op,
162                                    bool Invert = false) {
163   QualType T = E->getType();
164   assert(E->getArg(0)->getType()->isPointerType());
165   assert(CGF.getContext().hasSameUnqualifiedType(T,
166                                   E->getArg(0)->getType()->getPointeeType()));
167   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
168 
169   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
170   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
171 
172   llvm::IntegerType *IntType =
173     llvm::IntegerType::get(CGF.getLLVMContext(),
174                            CGF.getContext().getTypeSize(T));
175   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
176 
177   llvm::Value *Args[2];
178   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
179   llvm::Type *ValueType = Args[1]->getType();
180   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
181   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
182 
183   llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
184       Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent);
185   Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
186   if (Invert)
187     Result = CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result,
188                                      llvm::ConstantInt::get(IntType, -1));
189   Result = EmitFromInt(CGF, Result, T, ValueType);
190   return RValue::get(Result);
191 }
192 
193 /// Utility to insert an atomic cmpxchg instruction.
194 ///
195 /// @param CGF The current codegen function.
196 /// @param E   Builtin call expression to convert to cmpxchg.
197 ///            arg0 - address to operate on
198 ///            arg1 - value to compare with
199 ///            arg2 - new value
200 /// @param ReturnBool Specifies whether to return success flag of
201 ///                   cmpxchg result or the old value.
202 ///
203 /// @returns result of cmpxchg, according to ReturnBool
204 ///
205 /// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics
206 /// invoke the function EmitAtomicCmpXchgForMSIntrin.
MakeAtomicCmpXchgValue(CodeGenFunction & CGF,const CallExpr * E,bool ReturnBool)207 static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E,
208                                      bool ReturnBool) {
209   QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType();
210   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
211   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
212 
213   llvm::IntegerType *IntType = llvm::IntegerType::get(
214       CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
215   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
216 
217   Value *Args[3];
218   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
219   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
220   llvm::Type *ValueType = Args[1]->getType();
221   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
222   Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType);
223 
224   Value *Pair = CGF.Builder.CreateAtomicCmpXchg(
225       Args[0], Args[1], Args[2], llvm::AtomicOrdering::SequentiallyConsistent,
226       llvm::AtomicOrdering::SequentiallyConsistent);
227   if (ReturnBool)
228     // Extract boolean success flag and zext it to int.
229     return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1),
230                                   CGF.ConvertType(E->getType()));
231   else
232     // Extract old value and emit it using the same type as compare value.
233     return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T,
234                        ValueType);
235 }
236 
237 /// This function should be invoked to emit atomic cmpxchg for Microsoft's
238 /// _InterlockedCompareExchange* intrinsics which have the following signature:
239 /// T _InterlockedCompareExchange(T volatile *Destination,
240 ///                               T Exchange,
241 ///                               T Comparand);
242 ///
243 /// Whereas the llvm 'cmpxchg' instruction has the following syntax:
244 /// cmpxchg *Destination, Comparand, Exchange.
245 /// So we need to swap Comparand and Exchange when invoking
246 /// CreateAtomicCmpXchg. That is the reason we could not use the above utility
247 /// function MakeAtomicCmpXchgValue since it expects the arguments to be
248 /// already swapped.
249 
250 static
EmitAtomicCmpXchgForMSIntrin(CodeGenFunction & CGF,const CallExpr * E,AtomicOrdering SuccessOrdering=AtomicOrdering::SequentiallyConsistent)251 Value *EmitAtomicCmpXchgForMSIntrin(CodeGenFunction &CGF, const CallExpr *E,
252     AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) {
253   assert(E->getArg(0)->getType()->isPointerType());
254   assert(CGF.getContext().hasSameUnqualifiedType(
255       E->getType(), E->getArg(0)->getType()->getPointeeType()));
256   assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
257                                                  E->getArg(1)->getType()));
258   assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
259                                                  E->getArg(2)->getType()));
260 
261   auto *Destination = CGF.EmitScalarExpr(E->getArg(0));
262   auto *Comparand = CGF.EmitScalarExpr(E->getArg(2));
263   auto *Exchange = CGF.EmitScalarExpr(E->getArg(1));
264 
265   // For Release ordering, the failure ordering should be Monotonic.
266   auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ?
267                          AtomicOrdering::Monotonic :
268                          SuccessOrdering;
269 
270   auto *Result = CGF.Builder.CreateAtomicCmpXchg(
271                    Destination, Comparand, Exchange,
272                    SuccessOrdering, FailureOrdering);
273   Result->setVolatile(true);
274   return CGF.Builder.CreateExtractValue(Result, 0);
275 }
276 
EmitAtomicIncrementValue(CodeGenFunction & CGF,const CallExpr * E,AtomicOrdering Ordering=AtomicOrdering::SequentiallyConsistent)277 static Value *EmitAtomicIncrementValue(CodeGenFunction &CGF, const CallExpr *E,
278     AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
279   assert(E->getArg(0)->getType()->isPointerType());
280 
281   auto *IntTy = CGF.ConvertType(E->getType());
282   auto *Result = CGF.Builder.CreateAtomicRMW(
283                    AtomicRMWInst::Add,
284                    CGF.EmitScalarExpr(E->getArg(0)),
285                    ConstantInt::get(IntTy, 1),
286                    Ordering);
287   return CGF.Builder.CreateAdd(Result, ConstantInt::get(IntTy, 1));
288 }
289 
EmitAtomicDecrementValue(CodeGenFunction & CGF,const CallExpr * E,AtomicOrdering Ordering=AtomicOrdering::SequentiallyConsistent)290 static Value *EmitAtomicDecrementValue(CodeGenFunction &CGF, const CallExpr *E,
291     AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
292   assert(E->getArg(0)->getType()->isPointerType());
293 
294   auto *IntTy = CGF.ConvertType(E->getType());
295   auto *Result = CGF.Builder.CreateAtomicRMW(
296                    AtomicRMWInst::Sub,
297                    CGF.EmitScalarExpr(E->getArg(0)),
298                    ConstantInt::get(IntTy, 1),
299                    Ordering);
300   return CGF.Builder.CreateSub(Result, ConstantInt::get(IntTy, 1));
301 }
302 
303 // Emit a simple mangled intrinsic that has 1 argument and a return type
304 // matching the argument type.
emitUnaryBuiltin(CodeGenFunction & CGF,const CallExpr * E,unsigned IntrinsicID)305 static Value *emitUnaryBuiltin(CodeGenFunction &CGF,
306                                const CallExpr *E,
307                                unsigned IntrinsicID) {
308   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
309 
310   Value *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
311   return CGF.Builder.CreateCall(F, Src0);
312 }
313 
314 // Emit an intrinsic that has 2 operands of the same type as its result.
emitBinaryBuiltin(CodeGenFunction & CGF,const CallExpr * E,unsigned IntrinsicID)315 static Value *emitBinaryBuiltin(CodeGenFunction &CGF,
316                                 const CallExpr *E,
317                                 unsigned IntrinsicID) {
318   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
319   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
320 
321   Value *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
322   return CGF.Builder.CreateCall(F, { Src0, Src1 });
323 }
324 
325 // Emit an intrinsic that has 3 operands of the same type as its result.
emitTernaryBuiltin(CodeGenFunction & CGF,const CallExpr * E,unsigned IntrinsicID)326 static Value *emitTernaryBuiltin(CodeGenFunction &CGF,
327                                  const CallExpr *E,
328                                  unsigned IntrinsicID) {
329   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
330   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
331   llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
332 
333   Value *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
334   return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
335 }
336 
337 // Emit an intrinsic that has 1 float or double operand, and 1 integer.
emitFPIntBuiltin(CodeGenFunction & CGF,const CallExpr * E,unsigned IntrinsicID)338 static Value *emitFPIntBuiltin(CodeGenFunction &CGF,
339                                const CallExpr *E,
340                                unsigned IntrinsicID) {
341   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
342   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
343 
344   Value *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
345   return CGF.Builder.CreateCall(F, {Src0, Src1});
346 }
347 
348 /// EmitFAbs - Emit a call to @llvm.fabs().
EmitFAbs(CodeGenFunction & CGF,Value * V)349 static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) {
350   Value *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType());
351   llvm::CallInst *Call = CGF.Builder.CreateCall(F, V);
352   Call->setDoesNotAccessMemory();
353   return Call;
354 }
355 
356 /// Emit the computation of the sign bit for a floating point value. Returns
357 /// the i1 sign bit value.
EmitSignBit(CodeGenFunction & CGF,Value * V)358 static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) {
359   LLVMContext &C = CGF.CGM.getLLVMContext();
360 
361   llvm::Type *Ty = V->getType();
362   int Width = Ty->getPrimitiveSizeInBits();
363   llvm::Type *IntTy = llvm::IntegerType::get(C, Width);
364   V = CGF.Builder.CreateBitCast(V, IntTy);
365   if (Ty->isPPC_FP128Ty()) {
366     // We want the sign bit of the higher-order double. The bitcast we just
367     // did works as if the double-double was stored to memory and then
368     // read as an i128. The "store" will put the higher-order double in the
369     // lower address in both little- and big-Endian modes, but the "load"
370     // will treat those bits as a different part of the i128: the low bits in
371     // little-Endian, the high bits in big-Endian. Therefore, on big-Endian
372     // we need to shift the high bits down to the low before truncating.
373     Width >>= 1;
374     if (CGF.getTarget().isBigEndian()) {
375       Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width);
376       V = CGF.Builder.CreateLShr(V, ShiftCst);
377     }
378     // We are truncating value in order to extract the higher-order
379     // double, which we will be using to extract the sign from.
380     IntTy = llvm::IntegerType::get(C, Width);
381     V = CGF.Builder.CreateTrunc(V, IntTy);
382   }
383   Value *Zero = llvm::Constant::getNullValue(IntTy);
384   return CGF.Builder.CreateICmpSLT(V, Zero);
385 }
386 
emitLibraryCall(CodeGenFunction & CGF,const FunctionDecl * FD,const CallExpr * E,llvm::Constant * calleeValue)387 static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD,
388                               const CallExpr *E, llvm::Constant *calleeValue) {
389   CGCallee callee = CGCallee::forDirect(calleeValue, GlobalDecl(FD));
390   return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot());
391 }
392 
393 /// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
394 /// depending on IntrinsicID.
395 ///
396 /// \arg CGF The current codegen function.
397 /// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
398 /// \arg X The first argument to the llvm.*.with.overflow.*.
399 /// \arg Y The second argument to the llvm.*.with.overflow.*.
400 /// \arg Carry The carry returned by the llvm.*.with.overflow.*.
401 /// \returns The result (i.e. sum/product) returned by the intrinsic.
EmitOverflowIntrinsic(CodeGenFunction & CGF,const llvm::Intrinsic::ID IntrinsicID,llvm::Value * X,llvm::Value * Y,llvm::Value * & Carry)402 static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
403                                           const llvm::Intrinsic::ID IntrinsicID,
404                                           llvm::Value *X, llvm::Value *Y,
405                                           llvm::Value *&Carry) {
406   // Make sure we have integers of the same width.
407   assert(X->getType() == Y->getType() &&
408          "Arguments must be the same type. (Did you forget to make sure both "
409          "arguments have the same integer width?)");
410 
411   llvm::Value *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
412   llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y});
413   Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
414   return CGF.Builder.CreateExtractValue(Tmp, 0);
415 }
416 
emitRangedBuiltin(CodeGenFunction & CGF,unsigned IntrinsicID,int low,int high)417 static Value *emitRangedBuiltin(CodeGenFunction &CGF,
418                                 unsigned IntrinsicID,
419                                 int low, int high) {
420     llvm::MDBuilder MDHelper(CGF.getLLVMContext());
421     llvm::MDNode *RNode = MDHelper.createRange(APInt(32, low), APInt(32, high));
422     Value *F = CGF.CGM.getIntrinsic(IntrinsicID, {});
423     llvm::Instruction *Call = CGF.Builder.CreateCall(F);
424     Call->setMetadata(llvm::LLVMContext::MD_range, RNode);
425     return Call;
426 }
427 
428 namespace {
429   struct WidthAndSignedness {
430     unsigned Width;
431     bool Signed;
432   };
433 }
434 
435 static WidthAndSignedness
getIntegerWidthAndSignedness(const clang::ASTContext & context,const clang::QualType Type)436 getIntegerWidthAndSignedness(const clang::ASTContext &context,
437                              const clang::QualType Type) {
438   assert(Type->isIntegerType() && "Given type is not an integer.");
439   unsigned Width = Type->isBooleanType() ? 1 : context.getTypeInfo(Type).Width;
440   bool Signed = Type->isSignedIntegerType();
441   return {Width, Signed};
442 }
443 
444 // Given one or more integer types, this function produces an integer type that
445 // encompasses them: any value in one of the given types could be expressed in
446 // the encompassing type.
447 static struct WidthAndSignedness
EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types)448 EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) {
449   assert(Types.size() > 0 && "Empty list of types.");
450 
451   // If any of the given types is signed, we must return a signed type.
452   bool Signed = false;
453   for (const auto &Type : Types) {
454     Signed |= Type.Signed;
455   }
456 
457   // The encompassing type must have a width greater than or equal to the width
458   // of the specified types.  Additionally, if the encompassing type is signed,
459   // its width must be strictly greater than the width of any unsigned types
460   // given.
461   unsigned Width = 0;
462   for (const auto &Type : Types) {
463     unsigned MinWidth = Type.Width + (Signed && !Type.Signed);
464     if (Width < MinWidth) {
465       Width = MinWidth;
466     }
467   }
468 
469   return {Width, Signed};
470 }
471 
EmitVAStartEnd(Value * ArgValue,bool IsStart)472 Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) {
473   llvm::Type *DestType = Int8PtrTy;
474   if (ArgValue->getType() != DestType)
475     ArgValue =
476         Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data());
477 
478   Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend;
479   return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue);
480 }
481 
482 /// Checks if using the result of __builtin_object_size(p, @p From) in place of
483 /// __builtin_object_size(p, @p To) is correct
areBOSTypesCompatible(int From,int To)484 static bool areBOSTypesCompatible(int From, int To) {
485   // Note: Our __builtin_object_size implementation currently treats Type=0 and
486   // Type=2 identically. Encoding this implementation detail here may make
487   // improving __builtin_object_size difficult in the future, so it's omitted.
488   return From == To || (From == 0 && To == 1) || (From == 3 && To == 2);
489 }
490 
491 static llvm::Value *
getDefaultBuiltinObjectSizeResult(unsigned Type,llvm::IntegerType * ResType)492 getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) {
493   return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true);
494 }
495 
496 llvm::Value *
evaluateOrEmitBuiltinObjectSize(const Expr * E,unsigned Type,llvm::IntegerType * ResType,llvm::Value * EmittedE)497 CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
498                                                  llvm::IntegerType *ResType,
499                                                  llvm::Value *EmittedE) {
500   uint64_t ObjectSize;
501   if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type))
502     return emitBuiltinObjectSize(E, Type, ResType, EmittedE);
503   return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true);
504 }
505 
506 /// Returns a Value corresponding to the size of the given expression.
507 /// This Value may be either of the following:
508 ///   - A llvm::Argument (if E is a param with the pass_object_size attribute on
509 ///     it)
510 ///   - A call to the @llvm.objectsize intrinsic
511 ///
512 /// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null
513 /// and we wouldn't otherwise try to reference a pass_object_size parameter,
514 /// we'll call @llvm.objectsize on EmittedE, rather than emitting E.
515 llvm::Value *
emitBuiltinObjectSize(const Expr * E,unsigned Type,llvm::IntegerType * ResType,llvm::Value * EmittedE)516 CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type,
517                                        llvm::IntegerType *ResType,
518                                        llvm::Value *EmittedE) {
519   // We need to reference an argument if the pointer is a parameter with the
520   // pass_object_size attribute.
521   if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
522     auto *Param = dyn_cast<ParmVarDecl>(D->getDecl());
523     auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>();
524     if (Param != nullptr && PS != nullptr &&
525         areBOSTypesCompatible(PS->getType(), Type)) {
526       auto Iter = SizeArguments.find(Param);
527       assert(Iter != SizeArguments.end());
528 
529       const ImplicitParamDecl *D = Iter->second;
530       auto DIter = LocalDeclMap.find(D);
531       assert(DIter != LocalDeclMap.end());
532 
533       return EmitLoadOfScalar(DIter->second, /*volatile=*/false,
534                               getContext().getSizeType(), E->getBeginLoc());
535     }
536   }
537 
538   // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't
539   // evaluate E for side-effects. In either case, we shouldn't lower to
540   // @llvm.objectsize.
541   if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext())))
542     return getDefaultBuiltinObjectSizeResult(Type, ResType);
543 
544   Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E);
545   assert(Ptr->getType()->isPointerTy() &&
546          "Non-pointer passed to __builtin_object_size?");
547 
548   Value *F = CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()});
549 
550   // LLVM only supports 0 and 2, make sure that we pass along that as a boolean.
551   Value *Min = Builder.getInt1((Type & 2) != 0);
552   // For GCC compatibility, __builtin_object_size treat NULL as unknown size.
553   Value *NullIsUnknown = Builder.getTrue();
554   return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown});
555 }
556 
557 namespace {
558 /// A struct to generically describe a bit test intrinsic.
559 struct BitTest {
560   enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set };
561   enum InterlockingKind : uint8_t {
562     Unlocked,
563     Sequential,
564     Acquire,
565     Release,
566     NoFence
567   };
568 
569   ActionKind Action;
570   InterlockingKind Interlocking;
571   bool Is64Bit;
572 
573   static BitTest decodeBitTestBuiltin(unsigned BuiltinID);
574 };
575 } // namespace
576 
decodeBitTestBuiltin(unsigned BuiltinID)577 BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) {
578   switch (BuiltinID) {
579     // Main portable variants.
580   case Builtin::BI_bittest:
581     return {TestOnly, Unlocked, false};
582   case Builtin::BI_bittestandcomplement:
583     return {Complement, Unlocked, false};
584   case Builtin::BI_bittestandreset:
585     return {Reset, Unlocked, false};
586   case Builtin::BI_bittestandset:
587     return {Set, Unlocked, false};
588   case Builtin::BI_interlockedbittestandreset:
589     return {Reset, Sequential, false};
590   case Builtin::BI_interlockedbittestandset:
591     return {Set, Sequential, false};
592 
593     // X86-specific 64-bit variants.
594   case Builtin::BI_bittest64:
595     return {TestOnly, Unlocked, true};
596   case Builtin::BI_bittestandcomplement64:
597     return {Complement, Unlocked, true};
598   case Builtin::BI_bittestandreset64:
599     return {Reset, Unlocked, true};
600   case Builtin::BI_bittestandset64:
601     return {Set, Unlocked, true};
602   case Builtin::BI_interlockedbittestandreset64:
603     return {Reset, Sequential, true};
604   case Builtin::BI_interlockedbittestandset64:
605     return {Set, Sequential, true};
606 
607     // ARM/AArch64-specific ordering variants.
608   case Builtin::BI_interlockedbittestandset_acq:
609     return {Set, Acquire, false};
610   case Builtin::BI_interlockedbittestandset_rel:
611     return {Set, Release, false};
612   case Builtin::BI_interlockedbittestandset_nf:
613     return {Set, NoFence, false};
614   case Builtin::BI_interlockedbittestandreset_acq:
615     return {Reset, Acquire, false};
616   case Builtin::BI_interlockedbittestandreset_rel:
617     return {Reset, Release, false};
618   case Builtin::BI_interlockedbittestandreset_nf:
619     return {Reset, NoFence, false};
620   }
621   llvm_unreachable("expected only bittest intrinsics");
622 }
623 
bitActionToX86BTCode(BitTest::ActionKind A)624 static char bitActionToX86BTCode(BitTest::ActionKind A) {
625   switch (A) {
626   case BitTest::TestOnly:   return '\0';
627   case BitTest::Complement: return 'c';
628   case BitTest::Reset:      return 'r';
629   case BitTest::Set:        return 's';
630   }
631   llvm_unreachable("invalid action");
632 }
633 
EmitX86BitTestIntrinsic(CodeGenFunction & CGF,BitTest BT,const CallExpr * E,Value * BitBase,Value * BitPos)634 static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF,
635                                             BitTest BT,
636                                             const CallExpr *E, Value *BitBase,
637                                             Value *BitPos) {
638   char Action = bitActionToX86BTCode(BT.Action);
639   char SizeSuffix = BT.Is64Bit ? 'q' : 'l';
640 
641   // Build the assembly.
642   SmallString<64> Asm;
643   raw_svector_ostream AsmOS(Asm);
644   if (BT.Interlocking != BitTest::Unlocked)
645     AsmOS << "lock ";
646   AsmOS << "bt";
647   if (Action)
648     AsmOS << Action;
649   AsmOS << SizeSuffix << " $2, ($1)\n\tsetc ${0:b}";
650 
651   // Build the constraints. FIXME: We should support immediates when possible.
652   std::string Constraints = "=r,r,r,~{cc},~{flags},~{fpsr}";
653   llvm::IntegerType *IntType = llvm::IntegerType::get(
654       CGF.getLLVMContext(),
655       CGF.getContext().getTypeSize(E->getArg(1)->getType()));
656   llvm::Type *IntPtrType = IntType->getPointerTo();
657   llvm::FunctionType *FTy =
658       llvm::FunctionType::get(CGF.Int8Ty, {IntPtrType, IntType}, false);
659 
660   llvm::InlineAsm *IA =
661       llvm::InlineAsm::get(FTy, Asm, Constraints, /*SideEffects=*/true);
662   return CGF.Builder.CreateCall(IA, {BitBase, BitPos});
663 }
664 
665 static llvm::AtomicOrdering
getBitTestAtomicOrdering(BitTest::InterlockingKind I)666 getBitTestAtomicOrdering(BitTest::InterlockingKind I) {
667   switch (I) {
668   case BitTest::Unlocked:   return llvm::AtomicOrdering::NotAtomic;
669   case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent;
670   case BitTest::Acquire:    return llvm::AtomicOrdering::Acquire;
671   case BitTest::Release:    return llvm::AtomicOrdering::Release;
672   case BitTest::NoFence:    return llvm::AtomicOrdering::Monotonic;
673   }
674   llvm_unreachable("invalid interlocking");
675 }
676 
677 /// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of
678 /// bits and a bit position and read and optionally modify the bit at that
679 /// position. The position index can be arbitrarily large, i.e. it can be larger
680 /// than 31 or 63, so we need an indexed load in the general case.
EmitBitTestIntrinsic(CodeGenFunction & CGF,unsigned BuiltinID,const CallExpr * E)681 static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF,
682                                          unsigned BuiltinID,
683                                          const CallExpr *E) {
684   Value *BitBase = CGF.EmitScalarExpr(E->getArg(0));
685   Value *BitPos = CGF.EmitScalarExpr(E->getArg(1));
686 
687   BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID);
688 
689   // X86 has special BT, BTC, BTR, and BTS instructions that handle the array
690   // indexing operation internally. Use them if possible.
691   llvm::Triple::ArchType Arch = CGF.getTarget().getTriple().getArch();
692   if (Arch == llvm::Triple::x86 || Arch == llvm::Triple::x86_64)
693     return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos);
694 
695   // Otherwise, use generic code to load one byte and test the bit. Use all but
696   // the bottom three bits as the array index, and the bottom three bits to form
697   // a mask.
698   // Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0;
699   Value *ByteIndex = CGF.Builder.CreateAShr(
700       BitPos, llvm::ConstantInt::get(BitPos->getType(), 3), "bittest.byteidx");
701   Value *BitBaseI8 = CGF.Builder.CreatePointerCast(BitBase, CGF.Int8PtrTy);
702   Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBaseI8,
703                                                  ByteIndex, "bittest.byteaddr"),
704                    CharUnits::One());
705   Value *PosLow =
706       CGF.Builder.CreateAnd(CGF.Builder.CreateTrunc(BitPos, CGF.Int8Ty),
707                             llvm::ConstantInt::get(CGF.Int8Ty, 0x7));
708 
709   // The updating instructions will need a mask.
710   Value *Mask = nullptr;
711   if (BT.Action != BitTest::TestOnly) {
712     Mask = CGF.Builder.CreateShl(llvm::ConstantInt::get(CGF.Int8Ty, 1), PosLow,
713                                  "bittest.mask");
714   }
715 
716   // Check the action and ordering of the interlocked intrinsics.
717   llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(BT.Interlocking);
718 
719   Value *OldByte = nullptr;
720   if (Ordering != llvm::AtomicOrdering::NotAtomic) {
721     // Emit a combined atomicrmw load/store operation for the interlocked
722     // intrinsics.
723     llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or;
724     if (BT.Action == BitTest::Reset) {
725       Mask = CGF.Builder.CreateNot(Mask);
726       RMWOp = llvm::AtomicRMWInst::And;
727     }
728     OldByte = CGF.Builder.CreateAtomicRMW(RMWOp, ByteAddr.getPointer(), Mask,
729                                           Ordering);
730   } else {
731     // Emit a plain load for the non-interlocked intrinsics.
732     OldByte = CGF.Builder.CreateLoad(ByteAddr, "bittest.byte");
733     Value *NewByte = nullptr;
734     switch (BT.Action) {
735     case BitTest::TestOnly:
736       // Don't store anything.
737       break;
738     case BitTest::Complement:
739       NewByte = CGF.Builder.CreateXor(OldByte, Mask);
740       break;
741     case BitTest::Reset:
742       NewByte = CGF.Builder.CreateAnd(OldByte, CGF.Builder.CreateNot(Mask));
743       break;
744     case BitTest::Set:
745       NewByte = CGF.Builder.CreateOr(OldByte, Mask);
746       break;
747     }
748     if (NewByte)
749       CGF.Builder.CreateStore(NewByte, ByteAddr);
750   }
751 
752   // However we loaded the old byte, either by plain load or atomicrmw, shift
753   // the bit into the low position and mask it to 0 or 1.
754   Value *ShiftedByte = CGF.Builder.CreateLShr(OldByte, PosLow, "bittest.shr");
755   return CGF.Builder.CreateAnd(
756       ShiftedByte, llvm::ConstantInt::get(CGF.Int8Ty, 1), "bittest.res");
757 }
758 
759 namespace {
760 enum class MSVCSetJmpKind {
761   _setjmpex,
762   _setjmp3,
763   _setjmp
764 };
765 }
766 
767 /// MSVC handles setjmp a bit differently on different platforms. On every
768 /// architecture except 32-bit x86, the frame address is passed. On x86, extra
769 /// parameters can be passed as variadic arguments, but we always pass none.
EmitMSVCRTSetJmp(CodeGenFunction & CGF,MSVCSetJmpKind SJKind,const CallExpr * E)770 static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind,
771                                const CallExpr *E) {
772   llvm::Value *Arg1 = nullptr;
773   llvm::Type *Arg1Ty = nullptr;
774   StringRef Name;
775   bool IsVarArg = false;
776   if (SJKind == MSVCSetJmpKind::_setjmp3) {
777     Name = "_setjmp3";
778     Arg1Ty = CGF.Int32Ty;
779     Arg1 = llvm::ConstantInt::get(CGF.IntTy, 0);
780     IsVarArg = true;
781   } else {
782     Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex";
783     Arg1Ty = CGF.Int8PtrTy;
784     if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) {
785       Arg1 = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(Intrinsic::sponentry));
786     } else
787       Arg1 = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(Intrinsic::frameaddress),
788                                     llvm::ConstantInt::get(CGF.Int32Ty, 0));
789   }
790 
791   // Mark the call site and declaration with ReturnsTwice.
792   llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty};
793   llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get(
794       CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex,
795       llvm::Attribute::ReturnsTwice);
796   llvm::Constant *SetJmpFn = CGF.CGM.CreateRuntimeFunction(
797       llvm::FunctionType::get(CGF.IntTy, ArgTypes, IsVarArg), Name,
798       ReturnsTwiceAttr, /*Local=*/true);
799 
800   llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast(
801       CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy);
802   llvm::Value *Args[] = {Buf, Arg1};
803   llvm::CallSite CS = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args);
804   CS.setAttributes(ReturnsTwiceAttr);
805   return RValue::get(CS.getInstruction());
806 }
807 
808 // Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code,
809 // we handle them here.
810 enum class CodeGenFunction::MSVCIntrin {
811   _BitScanForward,
812   _BitScanReverse,
813   _InterlockedAnd,
814   _InterlockedDecrement,
815   _InterlockedExchange,
816   _InterlockedExchangeAdd,
817   _InterlockedExchangeSub,
818   _InterlockedIncrement,
819   _InterlockedOr,
820   _InterlockedXor,
821   _InterlockedExchangeAdd_acq,
822   _InterlockedExchangeAdd_rel,
823   _InterlockedExchangeAdd_nf,
824   _InterlockedExchange_acq,
825   _InterlockedExchange_rel,
826   _InterlockedExchange_nf,
827   _InterlockedCompareExchange_acq,
828   _InterlockedCompareExchange_rel,
829   _InterlockedCompareExchange_nf,
830   _InterlockedOr_acq,
831   _InterlockedOr_rel,
832   _InterlockedOr_nf,
833   _InterlockedXor_acq,
834   _InterlockedXor_rel,
835   _InterlockedXor_nf,
836   _InterlockedAnd_acq,
837   _InterlockedAnd_rel,
838   _InterlockedAnd_nf,
839   _InterlockedIncrement_acq,
840   _InterlockedIncrement_rel,
841   _InterlockedIncrement_nf,
842   _InterlockedDecrement_acq,
843   _InterlockedDecrement_rel,
844   _InterlockedDecrement_nf,
845   __fastfail,
846 };
847 
EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID,const CallExpr * E)848 Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID,
849                                             const CallExpr *E) {
850   switch (BuiltinID) {
851   case MSVCIntrin::_BitScanForward:
852   case MSVCIntrin::_BitScanReverse: {
853     Value *ArgValue = EmitScalarExpr(E->getArg(1));
854 
855     llvm::Type *ArgType = ArgValue->getType();
856     llvm::Type *IndexType =
857       EmitScalarExpr(E->getArg(0))->getType()->getPointerElementType();
858     llvm::Type *ResultType = ConvertType(E->getType());
859 
860     Value *ArgZero = llvm::Constant::getNullValue(ArgType);
861     Value *ResZero = llvm::Constant::getNullValue(ResultType);
862     Value *ResOne = llvm::ConstantInt::get(ResultType, 1);
863 
864     BasicBlock *Begin = Builder.GetInsertBlock();
865     BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn);
866     Builder.SetInsertPoint(End);
867     PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result");
868 
869     Builder.SetInsertPoint(Begin);
870     Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero);
871     BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn);
872     Builder.CreateCondBr(IsZero, End, NotZero);
873     Result->addIncoming(ResZero, Begin);
874 
875     Builder.SetInsertPoint(NotZero);
876     Address IndexAddress = EmitPointerWithAlignment(E->getArg(0));
877 
878     if (BuiltinID == MSVCIntrin::_BitScanForward) {
879       Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
880       Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
881       ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
882       Builder.CreateStore(ZeroCount, IndexAddress, false);
883     } else {
884       unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth();
885       Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1);
886 
887       Value *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
888       Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
889       ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
890       Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount);
891       Builder.CreateStore(Index, IndexAddress, false);
892     }
893     Builder.CreateBr(End);
894     Result->addIncoming(ResOne, NotZero);
895 
896     Builder.SetInsertPoint(End);
897     return Result;
898   }
899   case MSVCIntrin::_InterlockedAnd:
900     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E);
901   case MSVCIntrin::_InterlockedExchange:
902     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E);
903   case MSVCIntrin::_InterlockedExchangeAdd:
904     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E);
905   case MSVCIntrin::_InterlockedExchangeSub:
906     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E);
907   case MSVCIntrin::_InterlockedOr:
908     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E);
909   case MSVCIntrin::_InterlockedXor:
910     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E);
911   case MSVCIntrin::_InterlockedExchangeAdd_acq:
912     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
913                                  AtomicOrdering::Acquire);
914   case MSVCIntrin::_InterlockedExchangeAdd_rel:
915     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
916                                  AtomicOrdering::Release);
917   case MSVCIntrin::_InterlockedExchangeAdd_nf:
918     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
919                                  AtomicOrdering::Monotonic);
920   case MSVCIntrin::_InterlockedExchange_acq:
921     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
922                                  AtomicOrdering::Acquire);
923   case MSVCIntrin::_InterlockedExchange_rel:
924     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
925                                  AtomicOrdering::Release);
926   case MSVCIntrin::_InterlockedExchange_nf:
927     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
928                                  AtomicOrdering::Monotonic);
929   case MSVCIntrin::_InterlockedCompareExchange_acq:
930     return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Acquire);
931   case MSVCIntrin::_InterlockedCompareExchange_rel:
932     return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Release);
933   case MSVCIntrin::_InterlockedCompareExchange_nf:
934     return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Monotonic);
935   case MSVCIntrin::_InterlockedOr_acq:
936     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
937                                  AtomicOrdering::Acquire);
938   case MSVCIntrin::_InterlockedOr_rel:
939     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
940                                  AtomicOrdering::Release);
941   case MSVCIntrin::_InterlockedOr_nf:
942     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
943                                  AtomicOrdering::Monotonic);
944   case MSVCIntrin::_InterlockedXor_acq:
945     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
946                                  AtomicOrdering::Acquire);
947   case MSVCIntrin::_InterlockedXor_rel:
948     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
949                                  AtomicOrdering::Release);
950   case MSVCIntrin::_InterlockedXor_nf:
951     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
952                                  AtomicOrdering::Monotonic);
953   case MSVCIntrin::_InterlockedAnd_acq:
954     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
955                                  AtomicOrdering::Acquire);
956   case MSVCIntrin::_InterlockedAnd_rel:
957     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
958                                  AtomicOrdering::Release);
959   case MSVCIntrin::_InterlockedAnd_nf:
960     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
961                                  AtomicOrdering::Monotonic);
962   case MSVCIntrin::_InterlockedIncrement_acq:
963     return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Acquire);
964   case MSVCIntrin::_InterlockedIncrement_rel:
965     return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Release);
966   case MSVCIntrin::_InterlockedIncrement_nf:
967     return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Monotonic);
968   case MSVCIntrin::_InterlockedDecrement_acq:
969     return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Acquire);
970   case MSVCIntrin::_InterlockedDecrement_rel:
971     return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Release);
972   case MSVCIntrin::_InterlockedDecrement_nf:
973     return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Monotonic);
974 
975   case MSVCIntrin::_InterlockedDecrement:
976     return EmitAtomicDecrementValue(*this, E);
977   case MSVCIntrin::_InterlockedIncrement:
978     return EmitAtomicIncrementValue(*this, E);
979 
980   case MSVCIntrin::__fastfail: {
981     // Request immediate process termination from the kernel. The instruction
982     // sequences to do this are documented on MSDN:
983     // https://msdn.microsoft.com/en-us/library/dn774154.aspx
984     llvm::Triple::ArchType ISA = getTarget().getTriple().getArch();
985     StringRef Asm, Constraints;
986     switch (ISA) {
987     default:
988       ErrorUnsupported(E, "__fastfail call for this architecture");
989       break;
990     case llvm::Triple::x86:
991     case llvm::Triple::x86_64:
992       Asm = "int $$0x29";
993       Constraints = "{cx}";
994       break;
995     case llvm::Triple::thumb:
996       Asm = "udf #251";
997       Constraints = "{r0}";
998       break;
999     }
1000     llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false);
1001     llvm::InlineAsm *IA =
1002         llvm::InlineAsm::get(FTy, Asm, Constraints, /*SideEffects=*/true);
1003     llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
1004         getLLVMContext(), llvm::AttributeList::FunctionIndex,
1005         llvm::Attribute::NoReturn);
1006     CallSite CS = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0)));
1007     CS.setAttributes(NoReturnAttr);
1008     return CS.getInstruction();
1009   }
1010   }
1011   llvm_unreachable("Incorrect MSVC intrinsic!");
1012 }
1013 
1014 namespace {
1015 // ARC cleanup for __builtin_os_log_format
1016 struct CallObjCArcUse final : EHScopeStack::Cleanup {
CallObjCArcUse__anon692fc7ed0411::CallObjCArcUse1017   CallObjCArcUse(llvm::Value *object) : object(object) {}
1018   llvm::Value *object;
1019 
Emit__anon692fc7ed0411::CallObjCArcUse1020   void Emit(CodeGenFunction &CGF, Flags flags) override {
1021     CGF.EmitARCIntrinsicUse(object);
1022   }
1023 };
1024 }
1025 
EmitCheckedArgForBuiltin(const Expr * E,BuiltinCheckKind Kind)1026 Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E,
1027                                                  BuiltinCheckKind Kind) {
1028   assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero)
1029           && "Unsupported builtin check kind");
1030 
1031   Value *ArgValue = EmitScalarExpr(E);
1032   if (!SanOpts.has(SanitizerKind::Builtin) || !getTarget().isCLZForZeroUndef())
1033     return ArgValue;
1034 
1035   SanitizerScope SanScope(this);
1036   Value *Cond = Builder.CreateICmpNE(
1037       ArgValue, llvm::Constant::getNullValue(ArgValue->getType()));
1038   EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin),
1039             SanitizerHandler::InvalidBuiltin,
1040             {EmitCheckSourceLocation(E->getExprLoc()),
1041              llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)},
1042             None);
1043   return ArgValue;
1044 }
1045 
1046 /// Get the argument type for arguments to os_log_helper.
getOSLogArgType(ASTContext & C,int Size)1047 static CanQualType getOSLogArgType(ASTContext &C, int Size) {
1048   QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false);
1049   return C.getCanonicalType(UnsignedTy);
1050 }
1051 
generateBuiltinOSLogHelperFunction(const analyze_os_log::OSLogBufferLayout & Layout,CharUnits BufferAlignment)1052 llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction(
1053     const analyze_os_log::OSLogBufferLayout &Layout,
1054     CharUnits BufferAlignment) {
1055   ASTContext &Ctx = getContext();
1056 
1057   llvm::SmallString<64> Name;
1058   {
1059     raw_svector_ostream OS(Name);
1060     OS << "__os_log_helper";
1061     OS << "_" << BufferAlignment.getQuantity();
1062     OS << "_" << int(Layout.getSummaryByte());
1063     OS << "_" << int(Layout.getNumArgsByte());
1064     for (const auto &Item : Layout.Items)
1065       OS << "_" << int(Item.getSizeByte()) << "_"
1066          << int(Item.getDescriptorByte());
1067   }
1068 
1069   if (llvm::Function *F = CGM.getModule().getFunction(Name))
1070     return F;
1071 
1072   llvm::SmallVector<QualType, 4> ArgTys;
1073   llvm::SmallVector<ImplicitParamDecl, 4> Params;
1074   Params.emplace_back(Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"),
1075                       Ctx.VoidPtrTy, ImplicitParamDecl::Other);
1076   ArgTys.emplace_back(Ctx.VoidPtrTy);
1077 
1078   for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) {
1079     char Size = Layout.Items[I].getSizeByte();
1080     if (!Size)
1081       continue;
1082 
1083     QualType ArgTy = getOSLogArgType(Ctx, Size);
1084     Params.emplace_back(
1085         Ctx, nullptr, SourceLocation(),
1086         &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), ArgTy,
1087         ImplicitParamDecl::Other);
1088     ArgTys.emplace_back(ArgTy);
1089   }
1090 
1091   FunctionArgList Args;
1092   for (auto &P : Params)
1093     Args.push_back(&P);
1094 
1095   QualType ReturnTy = Ctx.VoidTy;
1096   QualType FuncionTy = Ctx.getFunctionType(ReturnTy, ArgTys, {});
1097 
1098   // The helper function has linkonce_odr linkage to enable the linker to merge
1099   // identical functions. To ensure the merging always happens, 'noinline' is
1100   // attached to the function when compiling with -Oz.
1101   const CGFunctionInfo &FI =
1102       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, Args);
1103   llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI);
1104   llvm::Function *Fn = llvm::Function::Create(
1105       FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule());
1106   Fn->setVisibility(llvm::GlobalValue::HiddenVisibility);
1107   CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn);
1108   CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn);
1109 
1110   // Attach 'noinline' at -Oz.
1111   if (CGM.getCodeGenOpts().OptimizeSize == 2)
1112     Fn->addFnAttr(llvm::Attribute::NoInline);
1113 
1114   auto NL = ApplyDebugLocation::CreateEmpty(*this);
1115   IdentifierInfo *II = &Ctx.Idents.get(Name);
1116   FunctionDecl *FD = FunctionDecl::Create(
1117       Ctx, Ctx.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
1118       FuncionTy, nullptr, SC_PrivateExtern, false, false);
1119 
1120   StartFunction(FD, ReturnTy, Fn, FI, Args);
1121 
1122   // Create a scope with an artificial location for the body of this function.
1123   auto AL = ApplyDebugLocation::CreateArtificial(*this);
1124 
1125   CharUnits Offset;
1126   Address BufAddr(Builder.CreateLoad(GetAddrOfLocalVar(&Params[0]), "buf"),
1127                   BufferAlignment);
1128   Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()),
1129                       Builder.CreateConstByteGEP(BufAddr, Offset++, "summary"));
1130   Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()),
1131                       Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs"));
1132 
1133   unsigned I = 1;
1134   for (const auto &Item : Layout.Items) {
1135     Builder.CreateStore(
1136         Builder.getInt8(Item.getDescriptorByte()),
1137         Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor"));
1138     Builder.CreateStore(
1139         Builder.getInt8(Item.getSizeByte()),
1140         Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize"));
1141 
1142     CharUnits Size = Item.size();
1143     if (!Size.getQuantity())
1144       continue;
1145 
1146     Address Arg = GetAddrOfLocalVar(&Params[I]);
1147     Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData");
1148     Addr = Builder.CreateBitCast(Addr, Arg.getPointer()->getType(),
1149                                  "argDataCast");
1150     Builder.CreateStore(Builder.CreateLoad(Arg), Addr);
1151     Offset += Size;
1152     ++I;
1153   }
1154 
1155   FinishFunction();
1156 
1157   return Fn;
1158 }
1159 
emitBuiltinOSLogFormat(const CallExpr & E)1160 RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) {
1161   assert(E.getNumArgs() >= 2 &&
1162          "__builtin_os_log_format takes at least 2 arguments");
1163   ASTContext &Ctx = getContext();
1164   analyze_os_log::OSLogBufferLayout Layout;
1165   analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout);
1166   Address BufAddr = EmitPointerWithAlignment(E.getArg(0));
1167   llvm::SmallVector<llvm::Value *, 4> RetainableOperands;
1168 
1169   // Ignore argument 1, the format string. It is not currently used.
1170   CallArgList Args;
1171   Args.add(RValue::get(BufAddr.getPointer()), Ctx.VoidPtrTy);
1172 
1173   for (const auto &Item : Layout.Items) {
1174     int Size = Item.getSizeByte();
1175     if (!Size)
1176       continue;
1177 
1178     llvm::Value *ArgVal;
1179 
1180     if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) {
1181       uint64_t Val = 0;
1182       for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I)
1183         Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8;
1184       ArgVal = llvm::Constant::getIntegerValue(Int64Ty, llvm::APInt(64, Val));
1185     } else if (const Expr *TheExpr = Item.getExpr()) {
1186       ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false);
1187 
1188       // Check if this is a retainable type.
1189       if (TheExpr->getType()->isObjCRetainableType()) {
1190         assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar &&
1191                "Only scalar can be a ObjC retainable type");
1192         // Check if the object is constant, if not, save it in
1193         // RetainableOperands.
1194         if (!isa<Constant>(ArgVal))
1195           RetainableOperands.push_back(ArgVal);
1196       }
1197     } else {
1198       ArgVal = Builder.getInt32(Item.getConstValue().getQuantity());
1199     }
1200 
1201     unsigned ArgValSize =
1202         CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType());
1203     llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(),
1204                                                      ArgValSize);
1205     ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy);
1206     CanQualType ArgTy = getOSLogArgType(Ctx, Size);
1207     // If ArgVal has type x86_fp80, zero-extend ArgVal.
1208     ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy));
1209     Args.add(RValue::get(ArgVal), ArgTy);
1210   }
1211 
1212   const CGFunctionInfo &FI =
1213       CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args);
1214   llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction(
1215       Layout, BufAddr.getAlignment());
1216   EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args);
1217 
1218   // Push a clang.arc.use cleanup for each object in RetainableOperands. The
1219   // cleanup will cause the use to appear after the final log call, keeping
1220   // the object valid while it’s held in the log buffer.  Note that if there’s
1221   // a release cleanup on the object, it will already be active; since
1222   // cleanups are emitted in reverse order, the use will occur before the
1223   // object is released.
1224   if (!RetainableOperands.empty() && getLangOpts().ObjCAutoRefCount &&
1225       CGM.getCodeGenOpts().OptimizationLevel != 0)
1226     for (llvm::Value *Object : RetainableOperands)
1227       pushFullExprCleanup<CallObjCArcUse>(getARCCleanupKind(), Object);
1228 
1229   return RValue::get(BufAddr.getPointer());
1230 }
1231 
1232 /// Determine if a binop is a checked mixed-sign multiply we can specialize.
isSpecialMixedSignMultiply(unsigned BuiltinID,WidthAndSignedness Op1Info,WidthAndSignedness Op2Info,WidthAndSignedness ResultInfo)1233 static bool isSpecialMixedSignMultiply(unsigned BuiltinID,
1234                                        WidthAndSignedness Op1Info,
1235                                        WidthAndSignedness Op2Info,
1236                                        WidthAndSignedness ResultInfo) {
1237   return BuiltinID == Builtin::BI__builtin_mul_overflow &&
1238          std::max(Op1Info.Width, Op2Info.Width) >= ResultInfo.Width &&
1239          Op1Info.Signed != Op2Info.Signed;
1240 }
1241 
1242 /// Emit a checked mixed-sign multiply. This is a cheaper specialization of
1243 /// the generic checked-binop irgen.
1244 static RValue
EmitCheckedMixedSignMultiply(CodeGenFunction & CGF,const clang::Expr * Op1,WidthAndSignedness Op1Info,const clang::Expr * Op2,WidthAndSignedness Op2Info,const clang::Expr * ResultArg,QualType ResultQTy,WidthAndSignedness ResultInfo)1245 EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1,
1246                              WidthAndSignedness Op1Info, const clang::Expr *Op2,
1247                              WidthAndSignedness Op2Info,
1248                              const clang::Expr *ResultArg, QualType ResultQTy,
1249                              WidthAndSignedness ResultInfo) {
1250   assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info,
1251                                     Op2Info, ResultInfo) &&
1252          "Not a mixed-sign multipliction we can specialize");
1253 
1254   // Emit the signed and unsigned operands.
1255   const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2;
1256   const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1;
1257   llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp);
1258   llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp);
1259   unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width : Op2Info.Width;
1260   unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width : Op1Info.Width;
1261 
1262   // One of the operands may be smaller than the other. If so, [s|z]ext it.
1263   if (SignedOpWidth < UnsignedOpWidth)
1264     Signed = CGF.Builder.CreateSExt(Signed, Unsigned->getType(), "op.sext");
1265   if (UnsignedOpWidth < SignedOpWidth)
1266     Unsigned = CGF.Builder.CreateZExt(Unsigned, Signed->getType(), "op.zext");
1267 
1268   llvm::Type *OpTy = Signed->getType();
1269   llvm::Value *Zero = llvm::Constant::getNullValue(OpTy);
1270   Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
1271   llvm::Type *ResTy = ResultPtr.getElementType();
1272   unsigned OpWidth = std::max(Op1Info.Width, Op2Info.Width);
1273 
1274   // Take the absolute value of the signed operand.
1275   llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero);
1276   llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed);
1277   llvm::Value *AbsSigned =
1278       CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed);
1279 
1280   // Perform a checked unsigned multiplication.
1281   llvm::Value *UnsignedOverflow;
1282   llvm::Value *UnsignedResult =
1283       EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned,
1284                             Unsigned, UnsignedOverflow);
1285 
1286   llvm::Value *Overflow, *Result;
1287   if (ResultInfo.Signed) {
1288     // Signed overflow occurs if the result is greater than INT_MAX or lesser
1289     // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative).
1290     auto IntMax =
1291         llvm::APInt::getSignedMaxValue(ResultInfo.Width).zextOrSelf(OpWidth);
1292     llvm::Value *MaxResult =
1293         CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax),
1294                               CGF.Builder.CreateZExt(IsNegative, OpTy));
1295     llvm::Value *SignedOverflow =
1296         CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult);
1297     Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow);
1298 
1299     // Prepare the signed result (possibly by negating it).
1300     llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult);
1301     llvm::Value *SignedResult =
1302         CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult);
1303     Result = CGF.Builder.CreateTrunc(SignedResult, ResTy);
1304   } else {
1305     // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX.
1306     llvm::Value *Underflow = CGF.Builder.CreateAnd(
1307         IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult));
1308     Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow);
1309     if (ResultInfo.Width < OpWidth) {
1310       auto IntMax =
1311           llvm::APInt::getMaxValue(ResultInfo.Width).zext(OpWidth);
1312       llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT(
1313           UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax));
1314       Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow);
1315     }
1316 
1317     // Negate the product if it would be negative in infinite precision.
1318     Result = CGF.Builder.CreateSelect(
1319         IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult);
1320 
1321     Result = CGF.Builder.CreateTrunc(Result, ResTy);
1322   }
1323   assert(Overflow && Result && "Missing overflow or result");
1324 
1325   bool isVolatile =
1326       ResultArg->getType()->getPointeeType().isVolatileQualified();
1327   CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
1328                           isVolatile);
1329   return RValue::get(Overflow);
1330 }
1331 
dumpRecord(CodeGenFunction & CGF,QualType RType,Value * & RecordPtr,CharUnits Align,Value * Func,int Lvl)1332 static llvm::Value *dumpRecord(CodeGenFunction &CGF, QualType RType,
1333                                Value *&RecordPtr, CharUnits Align, Value *Func,
1334                                int Lvl) {
1335   const auto *RT = RType->getAs<RecordType>();
1336   ASTContext &Context = CGF.getContext();
1337   RecordDecl *RD = RT->getDecl()->getDefinition();
1338   ASTContext &Ctx = RD->getASTContext();
1339   const ASTRecordLayout &RL = Ctx.getASTRecordLayout(RD);
1340   std::string Pad = std::string(Lvl * 4, ' ');
1341 
1342   Value *GString =
1343       CGF.Builder.CreateGlobalStringPtr(RType.getAsString() + " {\n");
1344   Value *Res = CGF.Builder.CreateCall(Func, {GString});
1345 
1346   static llvm::DenseMap<QualType, const char *> Types;
1347   if (Types.empty()) {
1348     Types[Context.CharTy] = "%c";
1349     Types[Context.BoolTy] = "%d";
1350     Types[Context.SignedCharTy] = "%hhd";
1351     Types[Context.UnsignedCharTy] = "%hhu";
1352     Types[Context.IntTy] = "%d";
1353     Types[Context.UnsignedIntTy] = "%u";
1354     Types[Context.LongTy] = "%ld";
1355     Types[Context.UnsignedLongTy] = "%lu";
1356     Types[Context.LongLongTy] = "%lld";
1357     Types[Context.UnsignedLongLongTy] = "%llu";
1358     Types[Context.ShortTy] = "%hd";
1359     Types[Context.UnsignedShortTy] = "%hu";
1360     Types[Context.VoidPtrTy] = "%p";
1361     Types[Context.FloatTy] = "%f";
1362     Types[Context.DoubleTy] = "%f";
1363     Types[Context.LongDoubleTy] = "%Lf";
1364     Types[Context.getPointerType(Context.CharTy)] = "%s";
1365     Types[Context.getPointerType(Context.getConstType(Context.CharTy))] = "%s";
1366   }
1367 
1368   for (const auto *FD : RD->fields()) {
1369     uint64_t Off = RL.getFieldOffset(FD->getFieldIndex());
1370     Off = Ctx.toCharUnitsFromBits(Off).getQuantity();
1371 
1372     Value *FieldPtr = RecordPtr;
1373     if (RD->isUnion())
1374       FieldPtr = CGF.Builder.CreatePointerCast(
1375           FieldPtr, CGF.ConvertType(Context.getPointerType(FD->getType())));
1376     else
1377       FieldPtr = CGF.Builder.CreateStructGEP(CGF.ConvertType(RType), FieldPtr,
1378                                              FD->getFieldIndex());
1379 
1380     GString = CGF.Builder.CreateGlobalStringPtr(
1381         llvm::Twine(Pad)
1382             .concat(FD->getType().getAsString())
1383             .concat(llvm::Twine(' '))
1384             .concat(FD->getNameAsString())
1385             .concat(" : ")
1386             .str());
1387     Value *TmpRes = CGF.Builder.CreateCall(Func, {GString});
1388     Res = CGF.Builder.CreateAdd(Res, TmpRes);
1389 
1390     QualType CanonicalType =
1391         FD->getType().getUnqualifiedType().getCanonicalType();
1392 
1393     // We check whether we are in a recursive type
1394     if (CanonicalType->isRecordType()) {
1395       Value *TmpRes =
1396           dumpRecord(CGF, CanonicalType, FieldPtr, Align, Func, Lvl + 1);
1397       Res = CGF.Builder.CreateAdd(TmpRes, Res);
1398       continue;
1399     }
1400 
1401     // We try to determine the best format to print the current field
1402     llvm::Twine Format = Types.find(CanonicalType) == Types.end()
1403                              ? Types[Context.VoidPtrTy]
1404                              : Types[CanonicalType];
1405 
1406     Address FieldAddress = Address(FieldPtr, Align);
1407     FieldPtr = CGF.Builder.CreateLoad(FieldAddress);
1408 
1409     // FIXME Need to handle bitfield here
1410     GString = CGF.Builder.CreateGlobalStringPtr(
1411         Format.concat(llvm::Twine('\n')).str());
1412     TmpRes = CGF.Builder.CreateCall(Func, {GString, FieldPtr});
1413     Res = CGF.Builder.CreateAdd(Res, TmpRes);
1414   }
1415 
1416   GString = CGF.Builder.CreateGlobalStringPtr(Pad + "}\n");
1417   Value *TmpRes = CGF.Builder.CreateCall(Func, {GString});
1418   Res = CGF.Builder.CreateAdd(Res, TmpRes);
1419   return Res;
1420 }
1421 
1422 static bool
TypeRequiresBuiltinLaunderImp(const ASTContext & Ctx,QualType Ty,llvm::SmallPtrSetImpl<const Decl * > & Seen)1423 TypeRequiresBuiltinLaunderImp(const ASTContext &Ctx, QualType Ty,
1424                               llvm::SmallPtrSetImpl<const Decl *> &Seen) {
1425   if (const auto *Arr = Ctx.getAsArrayType(Ty))
1426     Ty = Ctx.getBaseElementType(Arr);
1427 
1428   const auto *Record = Ty->getAsCXXRecordDecl();
1429   if (!Record)
1430     return false;
1431 
1432   // We've already checked this type, or are in the process of checking it.
1433   if (!Seen.insert(Record).second)
1434     return false;
1435 
1436   assert(Record->hasDefinition() &&
1437          "Incomplete types should already be diagnosed");
1438 
1439   if (Record->isDynamicClass())
1440     return true;
1441 
1442   for (FieldDecl *F : Record->fields()) {
1443     if (TypeRequiresBuiltinLaunderImp(Ctx, F->getType(), Seen))
1444       return true;
1445   }
1446   return false;
1447 }
1448 
1449 /// Determine if the specified type requires laundering by checking if it is a
1450 /// dynamic class type or contains a subobject which is a dynamic class type.
TypeRequiresBuiltinLaunder(CodeGenModule & CGM,QualType Ty)1451 static bool TypeRequiresBuiltinLaunder(CodeGenModule &CGM, QualType Ty) {
1452   if (!CGM.getCodeGenOpts().StrictVTablePointers)
1453     return false;
1454   llvm::SmallPtrSet<const Decl *, 16> Seen;
1455   return TypeRequiresBuiltinLaunderImp(CGM.getContext(), Ty, Seen);
1456 }
1457 
emitRotate(const CallExpr * E,bool IsRotateRight)1458 RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) {
1459   llvm::Value *Src = EmitScalarExpr(E->getArg(0));
1460   llvm::Value *ShiftAmt = EmitScalarExpr(E->getArg(1));
1461 
1462   // The builtin's shift arg may have a different type than the source arg and
1463   // result, but the LLVM intrinsic uses the same type for all values.
1464   llvm::Type *Ty = Src->getType();
1465   ShiftAmt = Builder.CreateIntCast(ShiftAmt, Ty, false);
1466 
1467   // Rotate is a special case of LLVM funnel shift - 1st 2 args are the same.
1468   unsigned IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl;
1469   Value *F = CGM.getIntrinsic(IID, Ty);
1470   return RValue::get(Builder.CreateCall(F, { Src, Src, ShiftAmt }));
1471 }
1472 
EmitBuiltinExpr(const GlobalDecl GD,unsigned BuiltinID,const CallExpr * E,ReturnValueSlot ReturnValue)1473 RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
1474                                         const CallExpr *E,
1475                                         ReturnValueSlot ReturnValue) {
1476   const FunctionDecl *FD = GD.getDecl()->getAsFunction();
1477   // See if we can constant fold this builtin.  If so, don't emit it at all.
1478   Expr::EvalResult Result;
1479   if (E->EvaluateAsRValue(Result, CGM.getContext()) &&
1480       !Result.hasSideEffects()) {
1481     if (Result.Val.isInt())
1482       return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
1483                                                 Result.Val.getInt()));
1484     if (Result.Val.isFloat())
1485       return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
1486                                                Result.Val.getFloat()));
1487   }
1488 
1489   // There are LLVM math intrinsics/instructions corresponding to math library
1490   // functions except the LLVM op will never set errno while the math library
1491   // might. Also, math builtins have the same semantics as their math library
1492   // twins. Thus, we can transform math library and builtin calls to their
1493   // LLVM counterparts if the call is marked 'const' (known to never set errno).
1494   if (FD->hasAttr<ConstAttr>()) {
1495     switch (BuiltinID) {
1496     case Builtin::BIceil:
1497     case Builtin::BIceilf:
1498     case Builtin::BIceill:
1499     case Builtin::BI__builtin_ceil:
1500     case Builtin::BI__builtin_ceilf:
1501     case Builtin::BI__builtin_ceill:
1502       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::ceil));
1503 
1504     case Builtin::BIcopysign:
1505     case Builtin::BIcopysignf:
1506     case Builtin::BIcopysignl:
1507     case Builtin::BI__builtin_copysign:
1508     case Builtin::BI__builtin_copysignf:
1509     case Builtin::BI__builtin_copysignl:
1510     case Builtin::BI__builtin_copysignf128:
1511       return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign));
1512 
1513     case Builtin::BIcos:
1514     case Builtin::BIcosf:
1515     case Builtin::BIcosl:
1516     case Builtin::BI__builtin_cos:
1517     case Builtin::BI__builtin_cosf:
1518     case Builtin::BI__builtin_cosl:
1519       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::cos));
1520 
1521     case Builtin::BIexp:
1522     case Builtin::BIexpf:
1523     case Builtin::BIexpl:
1524     case Builtin::BI__builtin_exp:
1525     case Builtin::BI__builtin_expf:
1526     case Builtin::BI__builtin_expl:
1527       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::exp));
1528 
1529     case Builtin::BIexp2:
1530     case Builtin::BIexp2f:
1531     case Builtin::BIexp2l:
1532     case Builtin::BI__builtin_exp2:
1533     case Builtin::BI__builtin_exp2f:
1534     case Builtin::BI__builtin_exp2l:
1535       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::exp2));
1536 
1537     case Builtin::BIfabs:
1538     case Builtin::BIfabsf:
1539     case Builtin::BIfabsl:
1540     case Builtin::BI__builtin_fabs:
1541     case Builtin::BI__builtin_fabsf:
1542     case Builtin::BI__builtin_fabsl:
1543     case Builtin::BI__builtin_fabsf128:
1544       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs));
1545 
1546     case Builtin::BIfloor:
1547     case Builtin::BIfloorf:
1548     case Builtin::BIfloorl:
1549     case Builtin::BI__builtin_floor:
1550     case Builtin::BI__builtin_floorf:
1551     case Builtin::BI__builtin_floorl:
1552       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::floor));
1553 
1554     case Builtin::BIfma:
1555     case Builtin::BIfmaf:
1556     case Builtin::BIfmal:
1557     case Builtin::BI__builtin_fma:
1558     case Builtin::BI__builtin_fmaf:
1559     case Builtin::BI__builtin_fmal:
1560       return RValue::get(emitTernaryBuiltin(*this, E, Intrinsic::fma));
1561 
1562     case Builtin::BIfmax:
1563     case Builtin::BIfmaxf:
1564     case Builtin::BIfmaxl:
1565     case Builtin::BI__builtin_fmax:
1566     case Builtin::BI__builtin_fmaxf:
1567     case Builtin::BI__builtin_fmaxl:
1568       return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::maxnum));
1569 
1570     case Builtin::BIfmin:
1571     case Builtin::BIfminf:
1572     case Builtin::BIfminl:
1573     case Builtin::BI__builtin_fmin:
1574     case Builtin::BI__builtin_fminf:
1575     case Builtin::BI__builtin_fminl:
1576       return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::minnum));
1577 
1578     // fmod() is a special-case. It maps to the frem instruction rather than an
1579     // LLVM intrinsic.
1580     case Builtin::BIfmod:
1581     case Builtin::BIfmodf:
1582     case Builtin::BIfmodl:
1583     case Builtin::BI__builtin_fmod:
1584     case Builtin::BI__builtin_fmodf:
1585     case Builtin::BI__builtin_fmodl: {
1586       Value *Arg1 = EmitScalarExpr(E->getArg(0));
1587       Value *Arg2 = EmitScalarExpr(E->getArg(1));
1588       return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod"));
1589     }
1590 
1591     case Builtin::BIlog:
1592     case Builtin::BIlogf:
1593     case Builtin::BIlogl:
1594     case Builtin::BI__builtin_log:
1595     case Builtin::BI__builtin_logf:
1596     case Builtin::BI__builtin_logl:
1597       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::log));
1598 
1599     case Builtin::BIlog10:
1600     case Builtin::BIlog10f:
1601     case Builtin::BIlog10l:
1602     case Builtin::BI__builtin_log10:
1603     case Builtin::BI__builtin_log10f:
1604     case Builtin::BI__builtin_log10l:
1605       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::log10));
1606 
1607     case Builtin::BIlog2:
1608     case Builtin::BIlog2f:
1609     case Builtin::BIlog2l:
1610     case Builtin::BI__builtin_log2:
1611     case Builtin::BI__builtin_log2f:
1612     case Builtin::BI__builtin_log2l:
1613       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::log2));
1614 
1615     case Builtin::BInearbyint:
1616     case Builtin::BInearbyintf:
1617     case Builtin::BInearbyintl:
1618     case Builtin::BI__builtin_nearbyint:
1619     case Builtin::BI__builtin_nearbyintf:
1620     case Builtin::BI__builtin_nearbyintl:
1621       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::nearbyint));
1622 
1623     case Builtin::BIpow:
1624     case Builtin::BIpowf:
1625     case Builtin::BIpowl:
1626     case Builtin::BI__builtin_pow:
1627     case Builtin::BI__builtin_powf:
1628     case Builtin::BI__builtin_powl:
1629       return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::pow));
1630 
1631     case Builtin::BIrint:
1632     case Builtin::BIrintf:
1633     case Builtin::BIrintl:
1634     case Builtin::BI__builtin_rint:
1635     case Builtin::BI__builtin_rintf:
1636     case Builtin::BI__builtin_rintl:
1637       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::rint));
1638 
1639     case Builtin::BIround:
1640     case Builtin::BIroundf:
1641     case Builtin::BIroundl:
1642     case Builtin::BI__builtin_round:
1643     case Builtin::BI__builtin_roundf:
1644     case Builtin::BI__builtin_roundl:
1645       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::round));
1646 
1647     case Builtin::BIsin:
1648     case Builtin::BIsinf:
1649     case Builtin::BIsinl:
1650     case Builtin::BI__builtin_sin:
1651     case Builtin::BI__builtin_sinf:
1652     case Builtin::BI__builtin_sinl:
1653       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::sin));
1654 
1655     case Builtin::BIsqrt:
1656     case Builtin::BIsqrtf:
1657     case Builtin::BIsqrtl:
1658     case Builtin::BI__builtin_sqrt:
1659     case Builtin::BI__builtin_sqrtf:
1660     case Builtin::BI__builtin_sqrtl:
1661       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::sqrt));
1662 
1663     case Builtin::BItrunc:
1664     case Builtin::BItruncf:
1665     case Builtin::BItruncl:
1666     case Builtin::BI__builtin_trunc:
1667     case Builtin::BI__builtin_truncf:
1668     case Builtin::BI__builtin_truncl:
1669       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::trunc));
1670 
1671     default:
1672       break;
1673     }
1674   }
1675 
1676   switch (BuiltinID) {
1677   default: break;
1678   case Builtin::BI__builtin___CFStringMakeConstantString:
1679   case Builtin::BI__builtin___NSStringMakeConstantString:
1680     return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType()));
1681   case Builtin::BI__builtin_stdarg_start:
1682   case Builtin::BI__builtin_va_start:
1683   case Builtin::BI__va_start:
1684   case Builtin::BI__builtin_va_end:
1685     return RValue::get(
1686         EmitVAStartEnd(BuiltinID == Builtin::BI__va_start
1687                            ? EmitScalarExpr(E->getArg(0))
1688                            : EmitVAListRef(E->getArg(0)).getPointer(),
1689                        BuiltinID != Builtin::BI__builtin_va_end));
1690   case Builtin::BI__builtin_va_copy: {
1691     Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer();
1692     Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer();
1693 
1694     llvm::Type *Type = Int8PtrTy;
1695 
1696     DstPtr = Builder.CreateBitCast(DstPtr, Type);
1697     SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
1698     return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy),
1699                                           {DstPtr, SrcPtr}));
1700   }
1701   case Builtin::BI__builtin_abs:
1702   case Builtin::BI__builtin_labs:
1703   case Builtin::BI__builtin_llabs: {
1704     // X < 0 ? -X : X
1705     // The negation has 'nsw' because abs of INT_MIN is undefined.
1706     Value *ArgValue = EmitScalarExpr(E->getArg(0));
1707     Value *NegOp = Builder.CreateNSWNeg(ArgValue, "neg");
1708     Constant *Zero = llvm::Constant::getNullValue(ArgValue->getType());
1709     Value *CmpResult = Builder.CreateICmpSLT(ArgValue, Zero, "abscond");
1710     Value *Result = Builder.CreateSelect(CmpResult, NegOp, ArgValue, "abs");
1711     return RValue::get(Result);
1712   }
1713   case Builtin::BI__builtin_conj:
1714   case Builtin::BI__builtin_conjf:
1715   case Builtin::BI__builtin_conjl: {
1716     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
1717     Value *Real = ComplexVal.first;
1718     Value *Imag = ComplexVal.second;
1719     Value *Zero =
1720       Imag->getType()->isFPOrFPVectorTy()
1721         ? llvm::ConstantFP::getZeroValueForNegation(Imag->getType())
1722         : llvm::Constant::getNullValue(Imag->getType());
1723 
1724     Imag = Builder.CreateFSub(Zero, Imag, "sub");
1725     return RValue::getComplex(std::make_pair(Real, Imag));
1726   }
1727   case Builtin::BI__builtin_creal:
1728   case Builtin::BI__builtin_crealf:
1729   case Builtin::BI__builtin_creall:
1730   case Builtin::BIcreal:
1731   case Builtin::BIcrealf:
1732   case Builtin::BIcreall: {
1733     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
1734     return RValue::get(ComplexVal.first);
1735   }
1736 
1737   case Builtin::BI__builtin_dump_struct: {
1738     Value *Func = EmitScalarExpr(E->getArg(1)->IgnoreImpCasts());
1739     CharUnits Arg0Align = EmitPointerWithAlignment(E->getArg(0)).getAlignment();
1740 
1741     const Expr *Arg0 = E->getArg(0)->IgnoreImpCasts();
1742     QualType Arg0Type = Arg0->getType()->getPointeeType();
1743 
1744     Value *RecordPtr = EmitScalarExpr(Arg0);
1745     Value *Res = dumpRecord(*this, Arg0Type, RecordPtr, Arg0Align, Func, 0);
1746     return RValue::get(Res);
1747   }
1748 
1749   case Builtin::BI__builtin_cimag:
1750   case Builtin::BI__builtin_cimagf:
1751   case Builtin::BI__builtin_cimagl:
1752   case Builtin::BIcimag:
1753   case Builtin::BIcimagf:
1754   case Builtin::BIcimagl: {
1755     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
1756     return RValue::get(ComplexVal.second);
1757   }
1758 
1759   case Builtin::BI__builtin_clrsb:
1760   case Builtin::BI__builtin_clrsbl:
1761   case Builtin::BI__builtin_clrsbll: {
1762     // clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or
1763     Value *ArgValue = EmitScalarExpr(E->getArg(0));
1764 
1765     llvm::Type *ArgType = ArgValue->getType();
1766     Value *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
1767 
1768     llvm::Type *ResultType = ConvertType(E->getType());
1769     Value *Zero = llvm::Constant::getNullValue(ArgType);
1770     Value *IsNeg = Builder.CreateICmpSLT(ArgValue, Zero, "isneg");
1771     Value *Inverse = Builder.CreateNot(ArgValue, "not");
1772     Value *Tmp = Builder.CreateSelect(IsNeg, Inverse, ArgValue);
1773     Value *Ctlz = Builder.CreateCall(F, {Tmp, Builder.getFalse()});
1774     Value *Result = Builder.CreateSub(Ctlz, llvm::ConstantInt::get(ArgType, 1));
1775     Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1776                                    "cast");
1777     return RValue::get(Result);
1778   }
1779   case Builtin::BI__builtin_ctzs:
1780   case Builtin::BI__builtin_ctz:
1781   case Builtin::BI__builtin_ctzl:
1782   case Builtin::BI__builtin_ctzll: {
1783     Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero);
1784 
1785     llvm::Type *ArgType = ArgValue->getType();
1786     Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
1787 
1788     llvm::Type *ResultType = ConvertType(E->getType());
1789     Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
1790     Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
1791     if (Result->getType() != ResultType)
1792       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1793                                      "cast");
1794     return RValue::get(Result);
1795   }
1796   case Builtin::BI__builtin_clzs:
1797   case Builtin::BI__builtin_clz:
1798   case Builtin::BI__builtin_clzl:
1799   case Builtin::BI__builtin_clzll: {
1800     Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero);
1801 
1802     llvm::Type *ArgType = ArgValue->getType();
1803     Value *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
1804 
1805     llvm::Type *ResultType = ConvertType(E->getType());
1806     Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
1807     Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
1808     if (Result->getType() != ResultType)
1809       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1810                                      "cast");
1811     return RValue::get(Result);
1812   }
1813   case Builtin::BI__builtin_ffs:
1814   case Builtin::BI__builtin_ffsl:
1815   case Builtin::BI__builtin_ffsll: {
1816     // ffs(x) -> x ? cttz(x) + 1 : 0
1817     Value *ArgValue = EmitScalarExpr(E->getArg(0));
1818 
1819     llvm::Type *ArgType = ArgValue->getType();
1820     Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
1821 
1822     llvm::Type *ResultType = ConvertType(E->getType());
1823     Value *Tmp =
1824         Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}),
1825                           llvm::ConstantInt::get(ArgType, 1));
1826     Value *Zero = llvm::Constant::getNullValue(ArgType);
1827     Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
1828     Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
1829     if (Result->getType() != ResultType)
1830       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1831                                      "cast");
1832     return RValue::get(Result);
1833   }
1834   case Builtin::BI__builtin_parity:
1835   case Builtin::BI__builtin_parityl:
1836   case Builtin::BI__builtin_parityll: {
1837     // parity(x) -> ctpop(x) & 1
1838     Value *ArgValue = EmitScalarExpr(E->getArg(0));
1839 
1840     llvm::Type *ArgType = ArgValue->getType();
1841     Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
1842 
1843     llvm::Type *ResultType = ConvertType(E->getType());
1844     Value *Tmp = Builder.CreateCall(F, ArgValue);
1845     Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
1846     if (Result->getType() != ResultType)
1847       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1848                                      "cast");
1849     return RValue::get(Result);
1850   }
1851   case Builtin::BI__lzcnt16:
1852   case Builtin::BI__lzcnt:
1853   case Builtin::BI__lzcnt64: {
1854     Value *ArgValue = EmitScalarExpr(E->getArg(0));
1855 
1856     llvm::Type *ArgType = ArgValue->getType();
1857     Value *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
1858 
1859     llvm::Type *ResultType = ConvertType(E->getType());
1860     Value *Result = Builder.CreateCall(F, {ArgValue, Builder.getFalse()});
1861     if (Result->getType() != ResultType)
1862       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1863                                      "cast");
1864     return RValue::get(Result);
1865   }
1866   case Builtin::BI__popcnt16:
1867   case Builtin::BI__popcnt:
1868   case Builtin::BI__popcnt64:
1869   case Builtin::BI__builtin_popcount:
1870   case Builtin::BI__builtin_popcountl:
1871   case Builtin::BI__builtin_popcountll: {
1872     Value *ArgValue = EmitScalarExpr(E->getArg(0));
1873 
1874     llvm::Type *ArgType = ArgValue->getType();
1875     Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
1876 
1877     llvm::Type *ResultType = ConvertType(E->getType());
1878     Value *Result = Builder.CreateCall(F, ArgValue);
1879     if (Result->getType() != ResultType)
1880       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
1881                                      "cast");
1882     return RValue::get(Result);
1883   }
1884   case Builtin::BI__builtin_unpredictable: {
1885     // Always return the argument of __builtin_unpredictable. LLVM does not
1886     // handle this builtin. Metadata for this builtin should be added directly
1887     // to instructions such as branches or switches that use it.
1888     return RValue::get(EmitScalarExpr(E->getArg(0)));
1889   }
1890   case Builtin::BI__builtin_expect: {
1891     Value *ArgValue = EmitScalarExpr(E->getArg(0));
1892     llvm::Type *ArgType = ArgValue->getType();
1893 
1894     Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
1895     // Don't generate llvm.expect on -O0 as the backend won't use it for
1896     // anything.
1897     // Note, we still IRGen ExpectedValue because it could have side-effects.
1898     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1899       return RValue::get(ArgValue);
1900 
1901     Value *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
1902     Value *Result =
1903         Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval");
1904     return RValue::get(Result);
1905   }
1906   case Builtin::BI__builtin_assume_aligned: {
1907     const Expr *Ptr = E->getArg(0);
1908     Value *PtrValue = EmitScalarExpr(Ptr);
1909     Value *OffsetValue =
1910       (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr;
1911 
1912     Value *AlignmentValue = EmitScalarExpr(E->getArg(1));
1913     ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue);
1914     unsigned Alignment = (unsigned)AlignmentCI->getZExtValue();
1915 
1916     EmitAlignmentAssumption(PtrValue, Ptr, /*The expr loc is sufficient.*/ SourceLocation(),
1917                             Alignment, OffsetValue);
1918     return RValue::get(PtrValue);
1919   }
1920   case Builtin::BI__assume:
1921   case Builtin::BI__builtin_assume: {
1922     if (E->getArg(0)->HasSideEffects(getContext()))
1923       return RValue::get(nullptr);
1924 
1925     Value *ArgValue = EmitScalarExpr(E->getArg(0));
1926     Value *FnAssume = CGM.getIntrinsic(Intrinsic::assume);
1927     return RValue::get(Builder.CreateCall(FnAssume, ArgValue));
1928   }
1929   case Builtin::BI__builtin_bswap16:
1930   case Builtin::BI__builtin_bswap32:
1931   case Builtin::BI__builtin_bswap64: {
1932     return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap));
1933   }
1934   case Builtin::BI__builtin_bitreverse8:
1935   case Builtin::BI__builtin_bitreverse16:
1936   case Builtin::BI__builtin_bitreverse32:
1937   case Builtin::BI__builtin_bitreverse64: {
1938     return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse));
1939   }
1940   case Builtin::BI__builtin_rotateleft8:
1941   case Builtin::BI__builtin_rotateleft16:
1942   case Builtin::BI__builtin_rotateleft32:
1943   case Builtin::BI__builtin_rotateleft64:
1944   case Builtin::BI_rotl8: // Microsoft variants of rotate left
1945   case Builtin::BI_rotl16:
1946   case Builtin::BI_rotl:
1947   case Builtin::BI_lrotl:
1948   case Builtin::BI_rotl64:
1949     return emitRotate(E, false);
1950 
1951   case Builtin::BI__builtin_rotateright8:
1952   case Builtin::BI__builtin_rotateright16:
1953   case Builtin::BI__builtin_rotateright32:
1954   case Builtin::BI__builtin_rotateright64:
1955   case Builtin::BI_rotr8: // Microsoft variants of rotate right
1956   case Builtin::BI_rotr16:
1957   case Builtin::BI_rotr:
1958   case Builtin::BI_lrotr:
1959   case Builtin::BI_rotr64:
1960     return emitRotate(E, true);
1961 
1962   case Builtin::BI__builtin_constant_p: {
1963     llvm::Type *ResultType = ConvertType(E->getType());
1964     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1965       // At -O0, we don't perform inlining, so we don't need to delay the
1966       // processing.
1967       return RValue::get(ConstantInt::get(ResultType, 0));
1968 
1969     const Expr *Arg = E->getArg(0);
1970     QualType ArgType = Arg->getType();
1971     if (!hasScalarEvaluationKind(ArgType) || ArgType->isFunctionType())
1972       // We can only reason about scalar types.
1973       return RValue::get(ConstantInt::get(ResultType, 0));
1974 
1975     Value *ArgValue = EmitScalarExpr(Arg);
1976     Value *F = CGM.getIntrinsic(Intrinsic::is_constant, ConvertType(ArgType));
1977     Value *Result = Builder.CreateCall(F, ArgValue);
1978     if (Result->getType() != ResultType)
1979       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/false);
1980     return RValue::get(Result);
1981   }
1982   case Builtin::BI__builtin_object_size: {
1983     unsigned Type =
1984         E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue();
1985     auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType()));
1986 
1987     // We pass this builtin onto the optimizer so that it can figure out the
1988     // object size in more complex cases.
1989     return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType,
1990                                              /*EmittedE=*/nullptr));
1991   }
1992   case Builtin::BI__builtin_prefetch: {
1993     Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
1994     // FIXME: Technically these constants should of type 'int', yes?
1995     RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
1996       llvm::ConstantInt::get(Int32Ty, 0);
1997     Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
1998       llvm::ConstantInt::get(Int32Ty, 3);
1999     Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
2000     Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
2001     return RValue::get(Builder.CreateCall(F, {Address, RW, Locality, Data}));
2002   }
2003   case Builtin::BI__builtin_readcyclecounter: {
2004     Value *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
2005     return RValue::get(Builder.CreateCall(F));
2006   }
2007   case Builtin::BI__builtin___clear_cache: {
2008     Value *Begin = EmitScalarExpr(E->getArg(0));
2009     Value *End = EmitScalarExpr(E->getArg(1));
2010     Value *F = CGM.getIntrinsic(Intrinsic::clear_cache);
2011     return RValue::get(Builder.CreateCall(F, {Begin, End}));
2012   }
2013   case Builtin::BI__builtin_trap:
2014     return RValue::get(EmitTrapCall(Intrinsic::trap));
2015   case Builtin::BI__debugbreak:
2016     return RValue::get(EmitTrapCall(Intrinsic::debugtrap));
2017   case Builtin::BI__builtin_unreachable: {
2018     EmitUnreachable(E->getExprLoc());
2019 
2020     // We do need to preserve an insertion point.
2021     EmitBlock(createBasicBlock("unreachable.cont"));
2022 
2023     return RValue::get(nullptr);
2024   }
2025 
2026   case Builtin::BI__builtin_powi:
2027   case Builtin::BI__builtin_powif:
2028   case Builtin::BI__builtin_powil: {
2029     Value *Base = EmitScalarExpr(E->getArg(0));
2030     Value *Exponent = EmitScalarExpr(E->getArg(1));
2031     llvm::Type *ArgType = Base->getType();
2032     Value *F = CGM.getIntrinsic(Intrinsic::powi, ArgType);
2033     return RValue::get(Builder.CreateCall(F, {Base, Exponent}));
2034   }
2035 
2036   case Builtin::BI__builtin_isgreater:
2037   case Builtin::BI__builtin_isgreaterequal:
2038   case Builtin::BI__builtin_isless:
2039   case Builtin::BI__builtin_islessequal:
2040   case Builtin::BI__builtin_islessgreater:
2041   case Builtin::BI__builtin_isunordered: {
2042     // Ordered comparisons: we know the arguments to these are matching scalar
2043     // floating point values.
2044     Value *LHS = EmitScalarExpr(E->getArg(0));
2045     Value *RHS = EmitScalarExpr(E->getArg(1));
2046 
2047     switch (BuiltinID) {
2048     default: llvm_unreachable("Unknown ordered comparison");
2049     case Builtin::BI__builtin_isgreater:
2050       LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
2051       break;
2052     case Builtin::BI__builtin_isgreaterequal:
2053       LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
2054       break;
2055     case Builtin::BI__builtin_isless:
2056       LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
2057       break;
2058     case Builtin::BI__builtin_islessequal:
2059       LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
2060       break;
2061     case Builtin::BI__builtin_islessgreater:
2062       LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
2063       break;
2064     case Builtin::BI__builtin_isunordered:
2065       LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
2066       break;
2067     }
2068     // ZExt bool to int type.
2069     return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
2070   }
2071   case Builtin::BI__builtin_isnan: {
2072     Value *V = EmitScalarExpr(E->getArg(0));
2073     V = Builder.CreateFCmpUNO(V, V, "cmp");
2074     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
2075   }
2076 
2077   case Builtin::BIfinite:
2078   case Builtin::BI__finite:
2079   case Builtin::BIfinitef:
2080   case Builtin::BI__finitef:
2081   case Builtin::BIfinitel:
2082   case Builtin::BI__finitel:
2083   case Builtin::BI__builtin_isinf:
2084   case Builtin::BI__builtin_isfinite: {
2085     // isinf(x)    --> fabs(x) == infinity
2086     // isfinite(x) --> fabs(x) != infinity
2087     // x != NaN via the ordered compare in either case.
2088     Value *V = EmitScalarExpr(E->getArg(0));
2089     Value *Fabs = EmitFAbs(*this, V);
2090     Constant *Infinity = ConstantFP::getInfinity(V->getType());
2091     CmpInst::Predicate Pred = (BuiltinID == Builtin::BI__builtin_isinf)
2092                                   ? CmpInst::FCMP_OEQ
2093                                   : CmpInst::FCMP_ONE;
2094     Value *FCmp = Builder.CreateFCmp(Pred, Fabs, Infinity, "cmpinf");
2095     return RValue::get(Builder.CreateZExt(FCmp, ConvertType(E->getType())));
2096   }
2097 
2098   case Builtin::BI__builtin_isinf_sign: {
2099     // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0
2100     Value *Arg = EmitScalarExpr(E->getArg(0));
2101     Value *AbsArg = EmitFAbs(*this, Arg);
2102     Value *IsInf = Builder.CreateFCmpOEQ(
2103         AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf");
2104     Value *IsNeg = EmitSignBit(*this, Arg);
2105 
2106     llvm::Type *IntTy = ConvertType(E->getType());
2107     Value *Zero = Constant::getNullValue(IntTy);
2108     Value *One = ConstantInt::get(IntTy, 1);
2109     Value *NegativeOne = ConstantInt::get(IntTy, -1);
2110     Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One);
2111     Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero);
2112     return RValue::get(Result);
2113   }
2114 
2115   case Builtin::BI__builtin_isnormal: {
2116     // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
2117     Value *V = EmitScalarExpr(E->getArg(0));
2118     Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
2119 
2120     Value *Abs = EmitFAbs(*this, V);
2121     Value *IsLessThanInf =
2122       Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
2123     APFloat Smallest = APFloat::getSmallestNormalized(
2124                    getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
2125     Value *IsNormal =
2126       Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
2127                             "isnormal");
2128     V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
2129     V = Builder.CreateAnd(V, IsNormal, "and");
2130     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
2131   }
2132 
2133   case Builtin::BI__builtin_fpclassify: {
2134     Value *V = EmitScalarExpr(E->getArg(5));
2135     llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
2136 
2137     // Create Result
2138     BasicBlock *Begin = Builder.GetInsertBlock();
2139     BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
2140     Builder.SetInsertPoint(End);
2141     PHINode *Result =
2142       Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
2143                         "fpclassify_result");
2144 
2145     // if (V==0) return FP_ZERO
2146     Builder.SetInsertPoint(Begin);
2147     Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
2148                                           "iszero");
2149     Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
2150     BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
2151     Builder.CreateCondBr(IsZero, End, NotZero);
2152     Result->addIncoming(ZeroLiteral, Begin);
2153 
2154     // if (V != V) return FP_NAN
2155     Builder.SetInsertPoint(NotZero);
2156     Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
2157     Value *NanLiteral = EmitScalarExpr(E->getArg(0));
2158     BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
2159     Builder.CreateCondBr(IsNan, End, NotNan);
2160     Result->addIncoming(NanLiteral, NotZero);
2161 
2162     // if (fabs(V) == infinity) return FP_INFINITY
2163     Builder.SetInsertPoint(NotNan);
2164     Value *VAbs = EmitFAbs(*this, V);
2165     Value *IsInf =
2166       Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
2167                             "isinf");
2168     Value *InfLiteral = EmitScalarExpr(E->getArg(1));
2169     BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
2170     Builder.CreateCondBr(IsInf, End, NotInf);
2171     Result->addIncoming(InfLiteral, NotNan);
2172 
2173     // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
2174     Builder.SetInsertPoint(NotInf);
2175     APFloat Smallest = APFloat::getSmallestNormalized(
2176         getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
2177     Value *IsNormal =
2178       Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
2179                             "isnormal");
2180     Value *NormalResult =
2181       Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
2182                            EmitScalarExpr(E->getArg(3)));
2183     Builder.CreateBr(End);
2184     Result->addIncoming(NormalResult, NotInf);
2185 
2186     // return Result
2187     Builder.SetInsertPoint(End);
2188     return RValue::get(Result);
2189   }
2190 
2191   case Builtin::BIalloca:
2192   case Builtin::BI_alloca:
2193   case Builtin::BI__builtin_alloca: {
2194     Value *Size = EmitScalarExpr(E->getArg(0));
2195     const TargetInfo &TI = getContext().getTargetInfo();
2196     // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__.
2197     unsigned SuitableAlignmentInBytes =
2198         CGM.getContext()
2199             .toCharUnitsFromBits(TI.getSuitableAlign())
2200             .getQuantity();
2201     AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
2202     AI->setAlignment(SuitableAlignmentInBytes);
2203     return RValue::get(AI);
2204   }
2205 
2206   case Builtin::BI__builtin_alloca_with_align: {
2207     Value *Size = EmitScalarExpr(E->getArg(0));
2208     Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1));
2209     auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue);
2210     unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue();
2211     unsigned AlignmentInBytes =
2212         CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getQuantity();
2213     AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
2214     AI->setAlignment(AlignmentInBytes);
2215     return RValue::get(AI);
2216   }
2217 
2218   case Builtin::BIbzero:
2219   case Builtin::BI__builtin_bzero: {
2220     Address Dest = EmitPointerWithAlignment(E->getArg(0));
2221     Value *SizeVal = EmitScalarExpr(E->getArg(1));
2222     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
2223                         E->getArg(0)->getExprLoc(), FD, 0);
2224     Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false);
2225     return RValue::get(nullptr);
2226   }
2227   case Builtin::BImemcpy:
2228   case Builtin::BI__builtin_memcpy: {
2229     Address Dest = EmitPointerWithAlignment(E->getArg(0));
2230     Address Src = EmitPointerWithAlignment(E->getArg(1));
2231     Value *SizeVal = EmitScalarExpr(E->getArg(2));
2232     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
2233                         E->getArg(0)->getExprLoc(), FD, 0);
2234     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
2235                         E->getArg(1)->getExprLoc(), FD, 1);
2236     Builder.CreateMemCpy(Dest, Src, SizeVal, false);
2237     return RValue::get(Dest.getPointer());
2238   }
2239 
2240   case Builtin::BI__builtin_char_memchr:
2241     BuiltinID = Builtin::BI__builtin_memchr;
2242     break;
2243 
2244   case Builtin::BI__builtin___memcpy_chk: {
2245     // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
2246     Expr::EvalResult SizeResult, DstSizeResult;
2247     if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
2248         !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
2249       break;
2250     llvm::APSInt Size = SizeResult.Val.getInt();
2251     llvm::APSInt DstSize = DstSizeResult.Val.getInt();
2252     if (Size.ugt(DstSize))
2253       break;
2254     Address Dest = EmitPointerWithAlignment(E->getArg(0));
2255     Address Src = EmitPointerWithAlignment(E->getArg(1));
2256     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
2257     Builder.CreateMemCpy(Dest, Src, SizeVal, false);
2258     return RValue::get(Dest.getPointer());
2259   }
2260 
2261   case Builtin::BI__builtin_objc_memmove_collectable: {
2262     Address DestAddr = EmitPointerWithAlignment(E->getArg(0));
2263     Address SrcAddr = EmitPointerWithAlignment(E->getArg(1));
2264     Value *SizeVal = EmitScalarExpr(E->getArg(2));
2265     CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
2266                                                   DestAddr, SrcAddr, SizeVal);
2267     return RValue::get(DestAddr.getPointer());
2268   }
2269 
2270   case Builtin::BI__builtin___memmove_chk: {
2271     // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
2272     Expr::EvalResult SizeResult, DstSizeResult;
2273     if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
2274         !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
2275       break;
2276     llvm::APSInt Size = SizeResult.Val.getInt();
2277     llvm::APSInt DstSize = DstSizeResult.Val.getInt();
2278     if (Size.ugt(DstSize))
2279       break;
2280     Address Dest = EmitPointerWithAlignment(E->getArg(0));
2281     Address Src = EmitPointerWithAlignment(E->getArg(1));
2282     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
2283     Builder.CreateMemMove(Dest, Src, SizeVal, false);
2284     return RValue::get(Dest.getPointer());
2285   }
2286 
2287   case Builtin::BImemmove:
2288   case Builtin::BI__builtin_memmove: {
2289     Address Dest = EmitPointerWithAlignment(E->getArg(0));
2290     Address Src = EmitPointerWithAlignment(E->getArg(1));
2291     Value *SizeVal = EmitScalarExpr(E->getArg(2));
2292     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
2293                         E->getArg(0)->getExprLoc(), FD, 0);
2294     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
2295                         E->getArg(1)->getExprLoc(), FD, 1);
2296     Builder.CreateMemMove(Dest, Src, SizeVal, false);
2297     return RValue::get(Dest.getPointer());
2298   }
2299   case Builtin::BImemset:
2300   case Builtin::BI__builtin_memset: {
2301     Address Dest = EmitPointerWithAlignment(E->getArg(0));
2302     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
2303                                          Builder.getInt8Ty());
2304     Value *SizeVal = EmitScalarExpr(E->getArg(2));
2305     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
2306                         E->getArg(0)->getExprLoc(), FD, 0);
2307     Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
2308     return RValue::get(Dest.getPointer());
2309   }
2310   case Builtin::BI__builtin___memset_chk: {
2311     // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
2312     Expr::EvalResult SizeResult, DstSizeResult;
2313     if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
2314         !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
2315       break;
2316     llvm::APSInt Size = SizeResult.Val.getInt();
2317     llvm::APSInt DstSize = DstSizeResult.Val.getInt();
2318     if (Size.ugt(DstSize))
2319       break;
2320     Address Dest = EmitPointerWithAlignment(E->getArg(0));
2321     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
2322                                          Builder.getInt8Ty());
2323     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
2324     Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
2325     return RValue::get(Dest.getPointer());
2326   }
2327   case Builtin::BI__builtin_wmemcmp: {
2328     // The MSVC runtime library does not provide a definition of wmemcmp, so we
2329     // need an inline implementation.
2330     if (!getTarget().getTriple().isOSMSVCRT())
2331       break;
2332 
2333     llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
2334 
2335     Value *Dst = EmitScalarExpr(E->getArg(0));
2336     Value *Src = EmitScalarExpr(E->getArg(1));
2337     Value *Size = EmitScalarExpr(E->getArg(2));
2338 
2339     BasicBlock *Entry = Builder.GetInsertBlock();
2340     BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt");
2341     BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt");
2342     BasicBlock *Next = createBasicBlock("wmemcmp.next");
2343     BasicBlock *Exit = createBasicBlock("wmemcmp.exit");
2344     Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
2345     Builder.CreateCondBr(SizeEq0, Exit, CmpGT);
2346 
2347     EmitBlock(CmpGT);
2348     PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2);
2349     DstPhi->addIncoming(Dst, Entry);
2350     PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2);
2351     SrcPhi->addIncoming(Src, Entry);
2352     PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
2353     SizePhi->addIncoming(Size, Entry);
2354     CharUnits WCharAlign =
2355         getContext().getTypeAlignInChars(getContext().WCharTy);
2356     Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign);
2357     Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign);
2358     Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh);
2359     Builder.CreateCondBr(DstGtSrc, Exit, CmpLT);
2360 
2361     EmitBlock(CmpLT);
2362     Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh);
2363     Builder.CreateCondBr(DstLtSrc, Exit, Next);
2364 
2365     EmitBlock(Next);
2366     Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1);
2367     Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1);
2368     Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
2369     Value *NextSizeEq0 =
2370         Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
2371     Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT);
2372     DstPhi->addIncoming(NextDst, Next);
2373     SrcPhi->addIncoming(NextSrc, Next);
2374     SizePhi->addIncoming(NextSize, Next);
2375 
2376     EmitBlock(Exit);
2377     PHINode *Ret = Builder.CreatePHI(IntTy, 4);
2378     Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry);
2379     Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT);
2380     Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT);
2381     Ret->addIncoming(ConstantInt::get(IntTy, 0), Next);
2382     return RValue::get(Ret);
2383   }
2384   case Builtin::BI__builtin_dwarf_cfa: {
2385     // The offset in bytes from the first argument to the CFA.
2386     //
2387     // Why on earth is this in the frontend?  Is there any reason at
2388     // all that the backend can't reasonably determine this while
2389     // lowering llvm.eh.dwarf.cfa()?
2390     //
2391     // TODO: If there's a satisfactory reason, add a target hook for
2392     // this instead of hard-coding 0, which is correct for most targets.
2393     int32_t Offset = 0;
2394 
2395     Value *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
2396     return RValue::get(Builder.CreateCall(F,
2397                                       llvm::ConstantInt::get(Int32Ty, Offset)));
2398   }
2399   case Builtin::BI__builtin_return_address: {
2400     Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
2401                                                    getContext().UnsignedIntTy);
2402     Value *F = CGM.getIntrinsic(Intrinsic::returnaddress);
2403     return RValue::get(Builder.CreateCall(F, Depth));
2404   }
2405   case Builtin::BI_ReturnAddress: {
2406     Value *F = CGM.getIntrinsic(Intrinsic::returnaddress);
2407     return RValue::get(Builder.CreateCall(F, Builder.getInt32(0)));
2408   }
2409   case Builtin::BI__builtin_frame_address: {
2410     Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
2411                                                    getContext().UnsignedIntTy);
2412     Value *F = CGM.getIntrinsic(Intrinsic::frameaddress);
2413     return RValue::get(Builder.CreateCall(F, Depth));
2414   }
2415   case Builtin::BI__builtin_extract_return_addr: {
2416     Value *Address = EmitScalarExpr(E->getArg(0));
2417     Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
2418     return RValue::get(Result);
2419   }
2420   case Builtin::BI__builtin_frob_return_addr: {
2421     Value *Address = EmitScalarExpr(E->getArg(0));
2422     Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
2423     return RValue::get(Result);
2424   }
2425   case Builtin::BI__builtin_dwarf_sp_column: {
2426     llvm::IntegerType *Ty
2427       = cast<llvm::IntegerType>(ConvertType(E->getType()));
2428     int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
2429     if (Column == -1) {
2430       CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
2431       return RValue::get(llvm::UndefValue::get(Ty));
2432     }
2433     return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
2434   }
2435   case Builtin::BI__builtin_init_dwarf_reg_size_table: {
2436     Value *Address = EmitScalarExpr(E->getArg(0));
2437     if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
2438       CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
2439     return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
2440   }
2441   case Builtin::BI__builtin_eh_return: {
2442     Value *Int = EmitScalarExpr(E->getArg(0));
2443     Value *Ptr = EmitScalarExpr(E->getArg(1));
2444 
2445     llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
2446     assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
2447            "LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
2448     Value *F = CGM.getIntrinsic(IntTy->getBitWidth() == 32
2449                                   ? Intrinsic::eh_return_i32
2450                                   : Intrinsic::eh_return_i64);
2451     Builder.CreateCall(F, {Int, Ptr});
2452     Builder.CreateUnreachable();
2453 
2454     // We do need to preserve an insertion point.
2455     EmitBlock(createBasicBlock("builtin_eh_return.cont"));
2456 
2457     return RValue::get(nullptr);
2458   }
2459   case Builtin::BI__builtin_unwind_init: {
2460     Value *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
2461     return RValue::get(Builder.CreateCall(F));
2462   }
2463   case Builtin::BI__builtin_extend_pointer: {
2464     // Extends a pointer to the size of an _Unwind_Word, which is
2465     // uint64_t on all platforms.  Generally this gets poked into a
2466     // register and eventually used as an address, so if the
2467     // addressing registers are wider than pointers and the platform
2468     // doesn't implicitly ignore high-order bits when doing
2469     // addressing, we need to make sure we zext / sext based on
2470     // the platform's expectations.
2471     //
2472     // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
2473 
2474     // Cast the pointer to intptr_t.
2475     Value *Ptr = EmitScalarExpr(E->getArg(0));
2476     Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
2477 
2478     // If that's 64 bits, we're done.
2479     if (IntPtrTy->getBitWidth() == 64)
2480       return RValue::get(Result);
2481 
2482     // Otherwise, ask the codegen data what to do.
2483     if (getTargetHooks().extendPointerWithSExt())
2484       return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
2485     else
2486       return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
2487   }
2488   case Builtin::BI__builtin_setjmp: {
2489     // Buffer is a void**.
2490     Address Buf = EmitPointerWithAlignment(E->getArg(0));
2491 
2492     // Store the frame pointer to the setjmp buffer.
2493     Value *FrameAddr =
2494       Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
2495                          ConstantInt::get(Int32Ty, 0));
2496     Builder.CreateStore(FrameAddr, Buf);
2497 
2498     // Store the stack pointer to the setjmp buffer.
2499     Value *StackAddr =
2500         Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
2501     Address StackSaveSlot =
2502       Builder.CreateConstInBoundsGEP(Buf, 2, getPointerSize());
2503     Builder.CreateStore(StackAddr, StackSaveSlot);
2504 
2505     // Call LLVM's EH setjmp, which is lightweight.
2506     Value *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
2507     Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
2508     return RValue::get(Builder.CreateCall(F, Buf.getPointer()));
2509   }
2510   case Builtin::BI__builtin_longjmp: {
2511     Value *Buf = EmitScalarExpr(E->getArg(0));
2512     Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
2513 
2514     // Call LLVM's EH longjmp, which is lightweight.
2515     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
2516 
2517     // longjmp doesn't return; mark this as unreachable.
2518     Builder.CreateUnreachable();
2519 
2520     // We do need to preserve an insertion point.
2521     EmitBlock(createBasicBlock("longjmp.cont"));
2522 
2523     return RValue::get(nullptr);
2524   }
2525   case Builtin::BI__builtin_launder: {
2526     const Expr *Arg = E->getArg(0);
2527     QualType ArgTy = Arg->getType()->getPointeeType();
2528     Value *Ptr = EmitScalarExpr(Arg);
2529     if (TypeRequiresBuiltinLaunder(CGM, ArgTy))
2530       Ptr = Builder.CreateLaunderInvariantGroup(Ptr);
2531 
2532     return RValue::get(Ptr);
2533   }
2534   case Builtin::BI__sync_fetch_and_add:
2535   case Builtin::BI__sync_fetch_and_sub:
2536   case Builtin::BI__sync_fetch_and_or:
2537   case Builtin::BI__sync_fetch_and_and:
2538   case Builtin::BI__sync_fetch_and_xor:
2539   case Builtin::BI__sync_fetch_and_nand:
2540   case Builtin::BI__sync_add_and_fetch:
2541   case Builtin::BI__sync_sub_and_fetch:
2542   case Builtin::BI__sync_and_and_fetch:
2543   case Builtin::BI__sync_or_and_fetch:
2544   case Builtin::BI__sync_xor_and_fetch:
2545   case Builtin::BI__sync_nand_and_fetch:
2546   case Builtin::BI__sync_val_compare_and_swap:
2547   case Builtin::BI__sync_bool_compare_and_swap:
2548   case Builtin::BI__sync_lock_test_and_set:
2549   case Builtin::BI__sync_lock_release:
2550   case Builtin::BI__sync_swap:
2551     llvm_unreachable("Shouldn't make it through sema");
2552   case Builtin::BI__sync_fetch_and_add_1:
2553   case Builtin::BI__sync_fetch_and_add_2:
2554   case Builtin::BI__sync_fetch_and_add_4:
2555   case Builtin::BI__sync_fetch_and_add_8:
2556   case Builtin::BI__sync_fetch_and_add_16:
2557     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
2558   case Builtin::BI__sync_fetch_and_sub_1:
2559   case Builtin::BI__sync_fetch_and_sub_2:
2560   case Builtin::BI__sync_fetch_and_sub_4:
2561   case Builtin::BI__sync_fetch_and_sub_8:
2562   case Builtin::BI__sync_fetch_and_sub_16:
2563     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
2564   case Builtin::BI__sync_fetch_and_or_1:
2565   case Builtin::BI__sync_fetch_and_or_2:
2566   case Builtin::BI__sync_fetch_and_or_4:
2567   case Builtin::BI__sync_fetch_and_or_8:
2568   case Builtin::BI__sync_fetch_and_or_16:
2569     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
2570   case Builtin::BI__sync_fetch_and_and_1:
2571   case Builtin::BI__sync_fetch_and_and_2:
2572   case Builtin::BI__sync_fetch_and_and_4:
2573   case Builtin::BI__sync_fetch_and_and_8:
2574   case Builtin::BI__sync_fetch_and_and_16:
2575     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
2576   case Builtin::BI__sync_fetch_and_xor_1:
2577   case Builtin::BI__sync_fetch_and_xor_2:
2578   case Builtin::BI__sync_fetch_and_xor_4:
2579   case Builtin::BI__sync_fetch_and_xor_8:
2580   case Builtin::BI__sync_fetch_and_xor_16:
2581     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
2582   case Builtin::BI__sync_fetch_and_nand_1:
2583   case Builtin::BI__sync_fetch_and_nand_2:
2584   case Builtin::BI__sync_fetch_and_nand_4:
2585   case Builtin::BI__sync_fetch_and_nand_8:
2586   case Builtin::BI__sync_fetch_and_nand_16:
2587     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E);
2588 
2589   // Clang extensions: not overloaded yet.
2590   case Builtin::BI__sync_fetch_and_min:
2591     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
2592   case Builtin::BI__sync_fetch_and_max:
2593     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
2594   case Builtin::BI__sync_fetch_and_umin:
2595     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
2596   case Builtin::BI__sync_fetch_and_umax:
2597     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
2598 
2599   case Builtin::BI__sync_add_and_fetch_1:
2600   case Builtin::BI__sync_add_and_fetch_2:
2601   case Builtin::BI__sync_add_and_fetch_4:
2602   case Builtin::BI__sync_add_and_fetch_8:
2603   case Builtin::BI__sync_add_and_fetch_16:
2604     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
2605                                 llvm::Instruction::Add);
2606   case Builtin::BI__sync_sub_and_fetch_1:
2607   case Builtin::BI__sync_sub_and_fetch_2:
2608   case Builtin::BI__sync_sub_and_fetch_4:
2609   case Builtin::BI__sync_sub_and_fetch_8:
2610   case Builtin::BI__sync_sub_and_fetch_16:
2611     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
2612                                 llvm::Instruction::Sub);
2613   case Builtin::BI__sync_and_and_fetch_1:
2614   case Builtin::BI__sync_and_and_fetch_2:
2615   case Builtin::BI__sync_and_and_fetch_4:
2616   case Builtin::BI__sync_and_and_fetch_8:
2617   case Builtin::BI__sync_and_and_fetch_16:
2618     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
2619                                 llvm::Instruction::And);
2620   case Builtin::BI__sync_or_and_fetch_1:
2621   case Builtin::BI__sync_or_and_fetch_2:
2622   case Builtin::BI__sync_or_and_fetch_4:
2623   case Builtin::BI__sync_or_and_fetch_8:
2624   case Builtin::BI__sync_or_and_fetch_16:
2625     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
2626                                 llvm::Instruction::Or);
2627   case Builtin::BI__sync_xor_and_fetch_1:
2628   case Builtin::BI__sync_xor_and_fetch_2:
2629   case Builtin::BI__sync_xor_and_fetch_4:
2630   case Builtin::BI__sync_xor_and_fetch_8:
2631   case Builtin::BI__sync_xor_and_fetch_16:
2632     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
2633                                 llvm::Instruction::Xor);
2634   case Builtin::BI__sync_nand_and_fetch_1:
2635   case Builtin::BI__sync_nand_and_fetch_2:
2636   case Builtin::BI__sync_nand_and_fetch_4:
2637   case Builtin::BI__sync_nand_and_fetch_8:
2638   case Builtin::BI__sync_nand_and_fetch_16:
2639     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E,
2640                                 llvm::Instruction::And, true);
2641 
2642   case Builtin::BI__sync_val_compare_and_swap_1:
2643   case Builtin::BI__sync_val_compare_and_swap_2:
2644   case Builtin::BI__sync_val_compare_and_swap_4:
2645   case Builtin::BI__sync_val_compare_and_swap_8:
2646   case Builtin::BI__sync_val_compare_and_swap_16:
2647     return RValue::get(MakeAtomicCmpXchgValue(*this, E, false));
2648 
2649   case Builtin::BI__sync_bool_compare_and_swap_1:
2650   case Builtin::BI__sync_bool_compare_and_swap_2:
2651   case Builtin::BI__sync_bool_compare_and_swap_4:
2652   case Builtin::BI__sync_bool_compare_and_swap_8:
2653   case Builtin::BI__sync_bool_compare_and_swap_16:
2654     return RValue::get(MakeAtomicCmpXchgValue(*this, E, true));
2655 
2656   case Builtin::BI__sync_swap_1:
2657   case Builtin::BI__sync_swap_2:
2658   case Builtin::BI__sync_swap_4:
2659   case Builtin::BI__sync_swap_8:
2660   case Builtin::BI__sync_swap_16:
2661     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
2662 
2663   case Builtin::BI__sync_lock_test_and_set_1:
2664   case Builtin::BI__sync_lock_test_and_set_2:
2665   case Builtin::BI__sync_lock_test_and_set_4:
2666   case Builtin::BI__sync_lock_test_and_set_8:
2667   case Builtin::BI__sync_lock_test_and_set_16:
2668     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
2669 
2670   case Builtin::BI__sync_lock_release_1:
2671   case Builtin::BI__sync_lock_release_2:
2672   case Builtin::BI__sync_lock_release_4:
2673   case Builtin::BI__sync_lock_release_8:
2674   case Builtin::BI__sync_lock_release_16: {
2675     Value *Ptr = EmitScalarExpr(E->getArg(0));
2676     QualType ElTy = E->getArg(0)->getType()->getPointeeType();
2677     CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
2678     llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
2679                                              StoreSize.getQuantity() * 8);
2680     Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
2681     llvm::StoreInst *Store =
2682       Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr,
2683                                  StoreSize);
2684     Store->setAtomic(llvm::AtomicOrdering::Release);
2685     return RValue::get(nullptr);
2686   }
2687 
2688   case Builtin::BI__sync_synchronize: {
2689     // We assume this is supposed to correspond to a C++0x-style
2690     // sequentially-consistent fence (i.e. this is only usable for
2691     // synchronization, not device I/O or anything like that). This intrinsic
2692     // is really badly designed in the sense that in theory, there isn't
2693     // any way to safely use it... but in practice, it mostly works
2694     // to use it with non-atomic loads and stores to get acquire/release
2695     // semantics.
2696     Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent);
2697     return RValue::get(nullptr);
2698   }
2699 
2700   case Builtin::BI__builtin_nontemporal_load:
2701     return RValue::get(EmitNontemporalLoad(*this, E));
2702   case Builtin::BI__builtin_nontemporal_store:
2703     return RValue::get(EmitNontemporalStore(*this, E));
2704   case Builtin::BI__c11_atomic_is_lock_free:
2705   case Builtin::BI__atomic_is_lock_free: {
2706     // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
2707     // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
2708     // _Atomic(T) is always properly-aligned.
2709     const char *LibCallName = "__atomic_is_lock_free";
2710     CallArgList Args;
2711     Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
2712              getContext().getSizeType());
2713     if (BuiltinID == Builtin::BI__atomic_is_lock_free)
2714       Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
2715                getContext().VoidPtrTy);
2716     else
2717       Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
2718                getContext().VoidPtrTy);
2719     const CGFunctionInfo &FuncInfo =
2720         CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args);
2721     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
2722     llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
2723     return EmitCall(FuncInfo, CGCallee::forDirect(Func),
2724                     ReturnValueSlot(), Args);
2725   }
2726 
2727   case Builtin::BI__atomic_test_and_set: {
2728     // Look at the argument type to determine whether this is a volatile
2729     // operation. The parameter type is always volatile.
2730     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
2731     bool Volatile =
2732         PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
2733 
2734     Value *Ptr = EmitScalarExpr(E->getArg(0));
2735     unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
2736     Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
2737     Value *NewVal = Builder.getInt8(1);
2738     Value *Order = EmitScalarExpr(E->getArg(1));
2739     if (isa<llvm::ConstantInt>(Order)) {
2740       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
2741       AtomicRMWInst *Result = nullptr;
2742       switch (ord) {
2743       case 0:  // memory_order_relaxed
2744       default: // invalid order
2745         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
2746                                          llvm::AtomicOrdering::Monotonic);
2747         break;
2748       case 1: // memory_order_consume
2749       case 2: // memory_order_acquire
2750         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
2751                                          llvm::AtomicOrdering::Acquire);
2752         break;
2753       case 3: // memory_order_release
2754         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
2755                                          llvm::AtomicOrdering::Release);
2756         break;
2757       case 4: // memory_order_acq_rel
2758 
2759         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
2760                                          llvm::AtomicOrdering::AcquireRelease);
2761         break;
2762       case 5: // memory_order_seq_cst
2763         Result = Builder.CreateAtomicRMW(
2764             llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
2765             llvm::AtomicOrdering::SequentiallyConsistent);
2766         break;
2767       }
2768       Result->setVolatile(Volatile);
2769       return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
2770     }
2771 
2772     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
2773 
2774     llvm::BasicBlock *BBs[5] = {
2775       createBasicBlock("monotonic", CurFn),
2776       createBasicBlock("acquire", CurFn),
2777       createBasicBlock("release", CurFn),
2778       createBasicBlock("acqrel", CurFn),
2779       createBasicBlock("seqcst", CurFn)
2780     };
2781     llvm::AtomicOrdering Orders[5] = {
2782         llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire,
2783         llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease,
2784         llvm::AtomicOrdering::SequentiallyConsistent};
2785 
2786     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
2787     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
2788 
2789     Builder.SetInsertPoint(ContBB);
2790     PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
2791 
2792     for (unsigned i = 0; i < 5; ++i) {
2793       Builder.SetInsertPoint(BBs[i]);
2794       AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
2795                                                    Ptr, NewVal, Orders[i]);
2796       RMW->setVolatile(Volatile);
2797       Result->addIncoming(RMW, BBs[i]);
2798       Builder.CreateBr(ContBB);
2799     }
2800 
2801     SI->addCase(Builder.getInt32(0), BBs[0]);
2802     SI->addCase(Builder.getInt32(1), BBs[1]);
2803     SI->addCase(Builder.getInt32(2), BBs[1]);
2804     SI->addCase(Builder.getInt32(3), BBs[2]);
2805     SI->addCase(Builder.getInt32(4), BBs[3]);
2806     SI->addCase(Builder.getInt32(5), BBs[4]);
2807 
2808     Builder.SetInsertPoint(ContBB);
2809     return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
2810   }
2811 
2812   case Builtin::BI__atomic_clear: {
2813     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
2814     bool Volatile =
2815         PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
2816 
2817     Address Ptr = EmitPointerWithAlignment(E->getArg(0));
2818     unsigned AddrSpace = Ptr.getPointer()->getType()->getPointerAddressSpace();
2819     Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
2820     Value *NewVal = Builder.getInt8(0);
2821     Value *Order = EmitScalarExpr(E->getArg(1));
2822     if (isa<llvm::ConstantInt>(Order)) {
2823       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
2824       StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
2825       switch (ord) {
2826       case 0:  // memory_order_relaxed
2827       default: // invalid order
2828         Store->setOrdering(llvm::AtomicOrdering::Monotonic);
2829         break;
2830       case 3:  // memory_order_release
2831         Store->setOrdering(llvm::AtomicOrdering::Release);
2832         break;
2833       case 5:  // memory_order_seq_cst
2834         Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent);
2835         break;
2836       }
2837       return RValue::get(nullptr);
2838     }
2839 
2840     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
2841 
2842     llvm::BasicBlock *BBs[3] = {
2843       createBasicBlock("monotonic", CurFn),
2844       createBasicBlock("release", CurFn),
2845       createBasicBlock("seqcst", CurFn)
2846     };
2847     llvm::AtomicOrdering Orders[3] = {
2848         llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release,
2849         llvm::AtomicOrdering::SequentiallyConsistent};
2850 
2851     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
2852     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
2853 
2854     for (unsigned i = 0; i < 3; ++i) {
2855       Builder.SetInsertPoint(BBs[i]);
2856       StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
2857       Store->setOrdering(Orders[i]);
2858       Builder.CreateBr(ContBB);
2859     }
2860 
2861     SI->addCase(Builder.getInt32(0), BBs[0]);
2862     SI->addCase(Builder.getInt32(3), BBs[1]);
2863     SI->addCase(Builder.getInt32(5), BBs[2]);
2864 
2865     Builder.SetInsertPoint(ContBB);
2866     return RValue::get(nullptr);
2867   }
2868 
2869   case Builtin::BI__atomic_thread_fence:
2870   case Builtin::BI__atomic_signal_fence:
2871   case Builtin::BI__c11_atomic_thread_fence:
2872   case Builtin::BI__c11_atomic_signal_fence: {
2873     llvm::SyncScope::ID SSID;
2874     if (BuiltinID == Builtin::BI__atomic_signal_fence ||
2875         BuiltinID == Builtin::BI__c11_atomic_signal_fence)
2876       SSID = llvm::SyncScope::SingleThread;
2877     else
2878       SSID = llvm::SyncScope::System;
2879     Value *Order = EmitScalarExpr(E->getArg(0));
2880     if (isa<llvm::ConstantInt>(Order)) {
2881       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
2882       switch (ord) {
2883       case 0:  // memory_order_relaxed
2884       default: // invalid order
2885         break;
2886       case 1:  // memory_order_consume
2887       case 2:  // memory_order_acquire
2888         Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
2889         break;
2890       case 3:  // memory_order_release
2891         Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
2892         break;
2893       case 4:  // memory_order_acq_rel
2894         Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
2895         break;
2896       case 5:  // memory_order_seq_cst
2897         Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
2898         break;
2899       }
2900       return RValue::get(nullptr);
2901     }
2902 
2903     llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
2904     AcquireBB = createBasicBlock("acquire", CurFn);
2905     ReleaseBB = createBasicBlock("release", CurFn);
2906     AcqRelBB = createBasicBlock("acqrel", CurFn);
2907     SeqCstBB = createBasicBlock("seqcst", CurFn);
2908     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
2909 
2910     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
2911     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
2912 
2913     Builder.SetInsertPoint(AcquireBB);
2914     Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
2915     Builder.CreateBr(ContBB);
2916     SI->addCase(Builder.getInt32(1), AcquireBB);
2917     SI->addCase(Builder.getInt32(2), AcquireBB);
2918 
2919     Builder.SetInsertPoint(ReleaseBB);
2920     Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
2921     Builder.CreateBr(ContBB);
2922     SI->addCase(Builder.getInt32(3), ReleaseBB);
2923 
2924     Builder.SetInsertPoint(AcqRelBB);
2925     Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
2926     Builder.CreateBr(ContBB);
2927     SI->addCase(Builder.getInt32(4), AcqRelBB);
2928 
2929     Builder.SetInsertPoint(SeqCstBB);
2930     Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
2931     Builder.CreateBr(ContBB);
2932     SI->addCase(Builder.getInt32(5), SeqCstBB);
2933 
2934     Builder.SetInsertPoint(ContBB);
2935     return RValue::get(nullptr);
2936   }
2937 
2938   case Builtin::BI__builtin_signbit:
2939   case Builtin::BI__builtin_signbitf:
2940   case Builtin::BI__builtin_signbitl: {
2941     return RValue::get(
2942         Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))),
2943                            ConvertType(E->getType())));
2944   }
2945   case Builtin::BI__annotation: {
2946     // Re-encode each wide string to UTF8 and make an MDString.
2947     SmallVector<Metadata *, 1> Strings;
2948     for (const Expr *Arg : E->arguments()) {
2949       const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts());
2950       assert(Str->getCharByteWidth() == 2);
2951       StringRef WideBytes = Str->getBytes();
2952       std::string StrUtf8;
2953       if (!convertUTF16ToUTF8String(
2954               makeArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) {
2955         CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument");
2956         continue;
2957       }
2958       Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8));
2959     }
2960 
2961     // Build and MDTuple of MDStrings and emit the intrinsic call.
2962     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {});
2963     MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings);
2964     Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple));
2965     return RValue::getIgnored();
2966   }
2967   case Builtin::BI__builtin_annotation: {
2968     llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
2969     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::annotation,
2970                                       AnnVal->getType());
2971 
2972     // Get the annotation string, go through casts. Sema requires this to be a
2973     // non-wide string literal, potentially casted, so the cast<> is safe.
2974     const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
2975     StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
2976     return RValue::get(EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc()));
2977   }
2978   case Builtin::BI__builtin_addcb:
2979   case Builtin::BI__builtin_addcs:
2980   case Builtin::BI__builtin_addc:
2981   case Builtin::BI__builtin_addcl:
2982   case Builtin::BI__builtin_addcll:
2983   case Builtin::BI__builtin_subcb:
2984   case Builtin::BI__builtin_subcs:
2985   case Builtin::BI__builtin_subc:
2986   case Builtin::BI__builtin_subcl:
2987   case Builtin::BI__builtin_subcll: {
2988 
2989     // We translate all of these builtins from expressions of the form:
2990     //   int x = ..., y = ..., carryin = ..., carryout, result;
2991     //   result = __builtin_addc(x, y, carryin, &carryout);
2992     //
2993     // to LLVM IR of the form:
2994     //
2995     //   %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
2996     //   %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
2997     //   %carry1 = extractvalue {i32, i1} %tmp1, 1
2998     //   %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
2999     //                                                       i32 %carryin)
3000     //   %result = extractvalue {i32, i1} %tmp2, 0
3001     //   %carry2 = extractvalue {i32, i1} %tmp2, 1
3002     //   %tmp3 = or i1 %carry1, %carry2
3003     //   %tmp4 = zext i1 %tmp3 to i32
3004     //   store i32 %tmp4, i32* %carryout
3005 
3006     // Scalarize our inputs.
3007     llvm::Value *X = EmitScalarExpr(E->getArg(0));
3008     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
3009     llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
3010     Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3));
3011 
3012     // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
3013     llvm::Intrinsic::ID IntrinsicId;
3014     switch (BuiltinID) {
3015     default: llvm_unreachable("Unknown multiprecision builtin id.");
3016     case Builtin::BI__builtin_addcb:
3017     case Builtin::BI__builtin_addcs:
3018     case Builtin::BI__builtin_addc:
3019     case Builtin::BI__builtin_addcl:
3020     case Builtin::BI__builtin_addcll:
3021       IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
3022       break;
3023     case Builtin::BI__builtin_subcb:
3024     case Builtin::BI__builtin_subcs:
3025     case Builtin::BI__builtin_subc:
3026     case Builtin::BI__builtin_subcl:
3027     case Builtin::BI__builtin_subcll:
3028       IntrinsicId = llvm::Intrinsic::usub_with_overflow;
3029       break;
3030     }
3031 
3032     // Construct our resulting LLVM IR expression.
3033     llvm::Value *Carry1;
3034     llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
3035                                               X, Y, Carry1);
3036     llvm::Value *Carry2;
3037     llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
3038                                               Sum1, Carryin, Carry2);
3039     llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
3040                                                X->getType());
3041     Builder.CreateStore(CarryOut, CarryOutPtr);
3042     return RValue::get(Sum2);
3043   }
3044 
3045   case Builtin::BI__builtin_add_overflow:
3046   case Builtin::BI__builtin_sub_overflow:
3047   case Builtin::BI__builtin_mul_overflow: {
3048     const clang::Expr *LeftArg = E->getArg(0);
3049     const clang::Expr *RightArg = E->getArg(1);
3050     const clang::Expr *ResultArg = E->getArg(2);
3051 
3052     clang::QualType ResultQTy =
3053         ResultArg->getType()->castAs<PointerType>()->getPointeeType();
3054 
3055     WidthAndSignedness LeftInfo =
3056         getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType());
3057     WidthAndSignedness RightInfo =
3058         getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType());
3059     WidthAndSignedness ResultInfo =
3060         getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy);
3061 
3062     // Handle mixed-sign multiplication as a special case, because adding
3063     // runtime or backend support for our generic irgen would be too expensive.
3064     if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo))
3065       return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg,
3066                                           RightInfo, ResultArg, ResultQTy,
3067                                           ResultInfo);
3068 
3069     WidthAndSignedness EncompassingInfo =
3070         EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo});
3071 
3072     llvm::Type *EncompassingLLVMTy =
3073         llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width);
3074 
3075     llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy);
3076 
3077     llvm::Intrinsic::ID IntrinsicId;
3078     switch (BuiltinID) {
3079     default:
3080       llvm_unreachable("Unknown overflow builtin id.");
3081     case Builtin::BI__builtin_add_overflow:
3082       IntrinsicId = EncompassingInfo.Signed
3083                         ? llvm::Intrinsic::sadd_with_overflow
3084                         : llvm::Intrinsic::uadd_with_overflow;
3085       break;
3086     case Builtin::BI__builtin_sub_overflow:
3087       IntrinsicId = EncompassingInfo.Signed
3088                         ? llvm::Intrinsic::ssub_with_overflow
3089                         : llvm::Intrinsic::usub_with_overflow;
3090       break;
3091     case Builtin::BI__builtin_mul_overflow:
3092       IntrinsicId = EncompassingInfo.Signed
3093                         ? llvm::Intrinsic::smul_with_overflow
3094                         : llvm::Intrinsic::umul_with_overflow;
3095       break;
3096     }
3097 
3098     llvm::Value *Left = EmitScalarExpr(LeftArg);
3099     llvm::Value *Right = EmitScalarExpr(RightArg);
3100     Address ResultPtr = EmitPointerWithAlignment(ResultArg);
3101 
3102     // Extend each operand to the encompassing type.
3103     Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed);
3104     Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed);
3105 
3106     // Perform the operation on the extended values.
3107     llvm::Value *Overflow, *Result;
3108     Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow);
3109 
3110     if (EncompassingInfo.Width > ResultInfo.Width) {
3111       // The encompassing type is wider than the result type, so we need to
3112       // truncate it.
3113       llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy);
3114 
3115       // To see if the truncation caused an overflow, we will extend
3116       // the result and then compare it to the original result.
3117       llvm::Value *ResultTruncExt = Builder.CreateIntCast(
3118           ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed);
3119       llvm::Value *TruncationOverflow =
3120           Builder.CreateICmpNE(Result, ResultTruncExt);
3121 
3122       Overflow = Builder.CreateOr(Overflow, TruncationOverflow);
3123       Result = ResultTrunc;
3124     }
3125 
3126     // Finally, store the result using the pointer.
3127     bool isVolatile =
3128       ResultArg->getType()->getPointeeType().isVolatileQualified();
3129     Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile);
3130 
3131     return RValue::get(Overflow);
3132   }
3133 
3134   case Builtin::BI__builtin_uadd_overflow:
3135   case Builtin::BI__builtin_uaddl_overflow:
3136   case Builtin::BI__builtin_uaddll_overflow:
3137   case Builtin::BI__builtin_usub_overflow:
3138   case Builtin::BI__builtin_usubl_overflow:
3139   case Builtin::BI__builtin_usubll_overflow:
3140   case Builtin::BI__builtin_umul_overflow:
3141   case Builtin::BI__builtin_umull_overflow:
3142   case Builtin::BI__builtin_umulll_overflow:
3143   case Builtin::BI__builtin_sadd_overflow:
3144   case Builtin::BI__builtin_saddl_overflow:
3145   case Builtin::BI__builtin_saddll_overflow:
3146   case Builtin::BI__builtin_ssub_overflow:
3147   case Builtin::BI__builtin_ssubl_overflow:
3148   case Builtin::BI__builtin_ssubll_overflow:
3149   case Builtin::BI__builtin_smul_overflow:
3150   case Builtin::BI__builtin_smull_overflow:
3151   case Builtin::BI__builtin_smulll_overflow: {
3152 
3153     // We translate all of these builtins directly to the relevant llvm IR node.
3154 
3155     // Scalarize our inputs.
3156     llvm::Value *X = EmitScalarExpr(E->getArg(0));
3157     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
3158     Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2));
3159 
3160     // Decide which of the overflow intrinsics we are lowering to:
3161     llvm::Intrinsic::ID IntrinsicId;
3162     switch (BuiltinID) {
3163     default: llvm_unreachable("Unknown overflow builtin id.");
3164     case Builtin::BI__builtin_uadd_overflow:
3165     case Builtin::BI__builtin_uaddl_overflow:
3166     case Builtin::BI__builtin_uaddll_overflow:
3167       IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
3168       break;
3169     case Builtin::BI__builtin_usub_overflow:
3170     case Builtin::BI__builtin_usubl_overflow:
3171     case Builtin::BI__builtin_usubll_overflow:
3172       IntrinsicId = llvm::Intrinsic::usub_with_overflow;
3173       break;
3174     case Builtin::BI__builtin_umul_overflow:
3175     case Builtin::BI__builtin_umull_overflow:
3176     case Builtin::BI__builtin_umulll_overflow:
3177       IntrinsicId = llvm::Intrinsic::umul_with_overflow;
3178       break;
3179     case Builtin::BI__builtin_sadd_overflow:
3180     case Builtin::BI__builtin_saddl_overflow:
3181     case Builtin::BI__builtin_saddll_overflow:
3182       IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
3183       break;
3184     case Builtin::BI__builtin_ssub_overflow:
3185     case Builtin::BI__builtin_ssubl_overflow:
3186     case Builtin::BI__builtin_ssubll_overflow:
3187       IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
3188       break;
3189     case Builtin::BI__builtin_smul_overflow:
3190     case Builtin::BI__builtin_smull_overflow:
3191     case Builtin::BI__builtin_smulll_overflow:
3192       IntrinsicId = llvm::Intrinsic::smul_with_overflow;
3193       break;
3194     }
3195 
3196 
3197     llvm::Value *Carry;
3198     llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
3199     Builder.CreateStore(Sum, SumOutPtr);
3200 
3201     return RValue::get(Carry);
3202   }
3203   case Builtin::BI__builtin_addressof:
3204     return RValue::get(EmitLValue(E->getArg(0)).getPointer());
3205   case Builtin::BI__builtin_operator_new:
3206     return EmitBuiltinNewDeleteCall(
3207         E->getCallee()->getType()->castAs<FunctionProtoType>(), E, false);
3208   case Builtin::BI__builtin_operator_delete:
3209     return EmitBuiltinNewDeleteCall(
3210         E->getCallee()->getType()->castAs<FunctionProtoType>(), E, true);
3211 
3212   case Builtin::BI__noop:
3213     // __noop always evaluates to an integer literal zero.
3214     return RValue::get(ConstantInt::get(IntTy, 0));
3215   case Builtin::BI__builtin_call_with_static_chain: {
3216     const CallExpr *Call = cast<CallExpr>(E->getArg(0));
3217     const Expr *Chain = E->getArg(1);
3218     return EmitCall(Call->getCallee()->getType(),
3219                     EmitCallee(Call->getCallee()), Call, ReturnValue,
3220                     EmitScalarExpr(Chain));
3221   }
3222   case Builtin::BI_InterlockedExchange8:
3223   case Builtin::BI_InterlockedExchange16:
3224   case Builtin::BI_InterlockedExchange:
3225   case Builtin::BI_InterlockedExchangePointer:
3226     return RValue::get(
3227         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E));
3228   case Builtin::BI_InterlockedCompareExchangePointer:
3229   case Builtin::BI_InterlockedCompareExchangePointer_nf: {
3230     llvm::Type *RTy;
3231     llvm::IntegerType *IntType =
3232       IntegerType::get(getLLVMContext(),
3233                        getContext().getTypeSize(E->getType()));
3234     llvm::Type *IntPtrType = IntType->getPointerTo();
3235 
3236     llvm::Value *Destination =
3237       Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType);
3238 
3239     llvm::Value *Exchange = EmitScalarExpr(E->getArg(1));
3240     RTy = Exchange->getType();
3241     Exchange = Builder.CreatePtrToInt(Exchange, IntType);
3242 
3243     llvm::Value *Comparand =
3244       Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType);
3245 
3246     auto Ordering =
3247       BuiltinID == Builtin::BI_InterlockedCompareExchangePointer_nf ?
3248       AtomicOrdering::Monotonic : AtomicOrdering::SequentiallyConsistent;
3249 
3250     auto Result = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
3251                                               Ordering, Ordering);
3252     Result->setVolatile(true);
3253 
3254     return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result,
3255                                                                          0),
3256                                               RTy));
3257   }
3258   case Builtin::BI_InterlockedCompareExchange8:
3259   case Builtin::BI_InterlockedCompareExchange16:
3260   case Builtin::BI_InterlockedCompareExchange:
3261   case Builtin::BI_InterlockedCompareExchange64:
3262     return RValue::get(EmitAtomicCmpXchgForMSIntrin(*this, E));
3263   case Builtin::BI_InterlockedIncrement16:
3264   case Builtin::BI_InterlockedIncrement:
3265     return RValue::get(
3266         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E));
3267   case Builtin::BI_InterlockedDecrement16:
3268   case Builtin::BI_InterlockedDecrement:
3269     return RValue::get(
3270         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E));
3271   case Builtin::BI_InterlockedAnd8:
3272   case Builtin::BI_InterlockedAnd16:
3273   case Builtin::BI_InterlockedAnd:
3274     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E));
3275   case Builtin::BI_InterlockedExchangeAdd8:
3276   case Builtin::BI_InterlockedExchangeAdd16:
3277   case Builtin::BI_InterlockedExchangeAdd:
3278     return RValue::get(
3279         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E));
3280   case Builtin::BI_InterlockedExchangeSub8:
3281   case Builtin::BI_InterlockedExchangeSub16:
3282   case Builtin::BI_InterlockedExchangeSub:
3283     return RValue::get(
3284         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E));
3285   case Builtin::BI_InterlockedOr8:
3286   case Builtin::BI_InterlockedOr16:
3287   case Builtin::BI_InterlockedOr:
3288     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E));
3289   case Builtin::BI_InterlockedXor8:
3290   case Builtin::BI_InterlockedXor16:
3291   case Builtin::BI_InterlockedXor:
3292     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E));
3293 
3294   case Builtin::BI_bittest64:
3295   case Builtin::BI_bittest:
3296   case Builtin::BI_bittestandcomplement64:
3297   case Builtin::BI_bittestandcomplement:
3298   case Builtin::BI_bittestandreset64:
3299   case Builtin::BI_bittestandreset:
3300   case Builtin::BI_bittestandset64:
3301   case Builtin::BI_bittestandset:
3302   case Builtin::BI_interlockedbittestandreset:
3303   case Builtin::BI_interlockedbittestandreset64:
3304   case Builtin::BI_interlockedbittestandset64:
3305   case Builtin::BI_interlockedbittestandset:
3306   case Builtin::BI_interlockedbittestandset_acq:
3307   case Builtin::BI_interlockedbittestandset_rel:
3308   case Builtin::BI_interlockedbittestandset_nf:
3309   case Builtin::BI_interlockedbittestandreset_acq:
3310   case Builtin::BI_interlockedbittestandreset_rel:
3311   case Builtin::BI_interlockedbittestandreset_nf:
3312     return RValue::get(EmitBitTestIntrinsic(*this, BuiltinID, E));
3313 
3314   case Builtin::BI__exception_code:
3315   case Builtin::BI_exception_code:
3316     return RValue::get(EmitSEHExceptionCode());
3317   case Builtin::BI__exception_info:
3318   case Builtin::BI_exception_info:
3319     return RValue::get(EmitSEHExceptionInfo());
3320   case Builtin::BI__abnormal_termination:
3321   case Builtin::BI_abnormal_termination:
3322     return RValue::get(EmitSEHAbnormalTermination());
3323   case Builtin::BI_setjmpex:
3324     if (getTarget().getTriple().isOSMSVCRT())
3325       return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
3326     break;
3327   case Builtin::BI_setjmp:
3328     if (getTarget().getTriple().isOSMSVCRT()) {
3329       if (getTarget().getTriple().getArch() == llvm::Triple::x86)
3330         return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp3, E);
3331       else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64)
3332         return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
3333       return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp, E);
3334     }
3335     break;
3336 
3337   case Builtin::BI__GetExceptionInfo: {
3338     if (llvm::GlobalVariable *GV =
3339             CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType()))
3340       return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy));
3341     break;
3342   }
3343 
3344   case Builtin::BI__fastfail:
3345     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E));
3346 
3347   case Builtin::BI__builtin_coro_size: {
3348     auto & Context = getContext();
3349     auto SizeTy = Context.getSizeType();
3350     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3351     Value *F = CGM.getIntrinsic(Intrinsic::coro_size, T);
3352     return RValue::get(Builder.CreateCall(F));
3353   }
3354 
3355   case Builtin::BI__builtin_coro_id:
3356     return EmitCoroutineIntrinsic(E, Intrinsic::coro_id);
3357   case Builtin::BI__builtin_coro_promise:
3358     return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise);
3359   case Builtin::BI__builtin_coro_resume:
3360     return EmitCoroutineIntrinsic(E, Intrinsic::coro_resume);
3361   case Builtin::BI__builtin_coro_frame:
3362     return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame);
3363   case Builtin::BI__builtin_coro_noop:
3364     return EmitCoroutineIntrinsic(E, Intrinsic::coro_noop);
3365   case Builtin::BI__builtin_coro_free:
3366     return EmitCoroutineIntrinsic(E, Intrinsic::coro_free);
3367   case Builtin::BI__builtin_coro_destroy:
3368     return EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy);
3369   case Builtin::BI__builtin_coro_done:
3370     return EmitCoroutineIntrinsic(E, Intrinsic::coro_done);
3371   case Builtin::BI__builtin_coro_alloc:
3372     return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc);
3373   case Builtin::BI__builtin_coro_begin:
3374     return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin);
3375   case Builtin::BI__builtin_coro_end:
3376     return EmitCoroutineIntrinsic(E, Intrinsic::coro_end);
3377   case Builtin::BI__builtin_coro_suspend:
3378     return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend);
3379   case Builtin::BI__builtin_coro_param:
3380     return EmitCoroutineIntrinsic(E, Intrinsic::coro_param);
3381 
3382   // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions
3383   case Builtin::BIread_pipe:
3384   case Builtin::BIwrite_pipe: {
3385     Value *Arg0 = EmitScalarExpr(E->getArg(0)),
3386           *Arg1 = EmitScalarExpr(E->getArg(1));
3387     CGOpenCLRuntime OpenCLRT(CGM);
3388     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
3389     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
3390 
3391     // Type of the generic packet parameter.
3392     unsigned GenericAS =
3393         getContext().getTargetAddressSpace(LangAS::opencl_generic);
3394     llvm::Type *I8PTy = llvm::PointerType::get(
3395         llvm::Type::getInt8Ty(getLLVMContext()), GenericAS);
3396 
3397     // Testing which overloaded version we should generate the call for.
3398     if (2U == E->getNumArgs()) {
3399       const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2"
3400                                                              : "__write_pipe_2";
3401       // Creating a generic function type to be able to call with any builtin or
3402       // user defined type.
3403       llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty};
3404       llvm::FunctionType *FTy = llvm::FunctionType::get(
3405           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3406       Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy);
3407       return RValue::get(
3408           Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3409                              {Arg0, BCast, PacketSize, PacketAlign}));
3410     } else {
3411       assert(4 == E->getNumArgs() &&
3412              "Illegal number of parameters to pipe function");
3413       const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4"
3414                                                              : "__write_pipe_4";
3415 
3416       llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy,
3417                               Int32Ty, Int32Ty};
3418       Value *Arg2 = EmitScalarExpr(E->getArg(2)),
3419             *Arg3 = EmitScalarExpr(E->getArg(3));
3420       llvm::FunctionType *FTy = llvm::FunctionType::get(
3421           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3422       Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy);
3423       // We know the third argument is an integer type, but we may need to cast
3424       // it to i32.
3425       if (Arg2->getType() != Int32Ty)
3426         Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty);
3427       return RValue::get(Builder.CreateCall(
3428           CGM.CreateRuntimeFunction(FTy, Name),
3429           {Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign}));
3430     }
3431   }
3432   // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write
3433   // functions
3434   case Builtin::BIreserve_read_pipe:
3435   case Builtin::BIreserve_write_pipe:
3436   case Builtin::BIwork_group_reserve_read_pipe:
3437   case Builtin::BIwork_group_reserve_write_pipe:
3438   case Builtin::BIsub_group_reserve_read_pipe:
3439   case Builtin::BIsub_group_reserve_write_pipe: {
3440     // Composing the mangled name for the function.
3441     const char *Name;
3442     if (BuiltinID == Builtin::BIreserve_read_pipe)
3443       Name = "__reserve_read_pipe";
3444     else if (BuiltinID == Builtin::BIreserve_write_pipe)
3445       Name = "__reserve_write_pipe";
3446     else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe)
3447       Name = "__work_group_reserve_read_pipe";
3448     else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe)
3449       Name = "__work_group_reserve_write_pipe";
3450     else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe)
3451       Name = "__sub_group_reserve_read_pipe";
3452     else
3453       Name = "__sub_group_reserve_write_pipe";
3454 
3455     Value *Arg0 = EmitScalarExpr(E->getArg(0)),
3456           *Arg1 = EmitScalarExpr(E->getArg(1));
3457     llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy);
3458     CGOpenCLRuntime OpenCLRT(CGM);
3459     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
3460     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
3461 
3462     // Building the generic function prototype.
3463     llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty};
3464     llvm::FunctionType *FTy = llvm::FunctionType::get(
3465         ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3466     // We know the second argument is an integer type, but we may need to cast
3467     // it to i32.
3468     if (Arg1->getType() != Int32Ty)
3469       Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty);
3470     return RValue::get(
3471         Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3472                            {Arg0, Arg1, PacketSize, PacketAlign}));
3473   }
3474   // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write
3475   // functions
3476   case Builtin::BIcommit_read_pipe:
3477   case Builtin::BIcommit_write_pipe:
3478   case Builtin::BIwork_group_commit_read_pipe:
3479   case Builtin::BIwork_group_commit_write_pipe:
3480   case Builtin::BIsub_group_commit_read_pipe:
3481   case Builtin::BIsub_group_commit_write_pipe: {
3482     const char *Name;
3483     if (BuiltinID == Builtin::BIcommit_read_pipe)
3484       Name = "__commit_read_pipe";
3485     else if (BuiltinID == Builtin::BIcommit_write_pipe)
3486       Name = "__commit_write_pipe";
3487     else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe)
3488       Name = "__work_group_commit_read_pipe";
3489     else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe)
3490       Name = "__work_group_commit_write_pipe";
3491     else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe)
3492       Name = "__sub_group_commit_read_pipe";
3493     else
3494       Name = "__sub_group_commit_write_pipe";
3495 
3496     Value *Arg0 = EmitScalarExpr(E->getArg(0)),
3497           *Arg1 = EmitScalarExpr(E->getArg(1));
3498     CGOpenCLRuntime OpenCLRT(CGM);
3499     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
3500     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
3501 
3502     // Building the generic function prototype.
3503     llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty};
3504     llvm::FunctionType *FTy =
3505         llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
3506                                 llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3507 
3508     return RValue::get(
3509         Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3510                            {Arg0, Arg1, PacketSize, PacketAlign}));
3511   }
3512   // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions
3513   case Builtin::BIget_pipe_num_packets:
3514   case Builtin::BIget_pipe_max_packets: {
3515     const char *BaseName;
3516     const PipeType *PipeTy = E->getArg(0)->getType()->getAs<PipeType>();
3517     if (BuiltinID == Builtin::BIget_pipe_num_packets)
3518       BaseName = "__get_pipe_num_packets";
3519     else
3520       BaseName = "__get_pipe_max_packets";
3521     auto Name = std::string(BaseName) +
3522                 std::string(PipeTy->isReadOnly() ? "_ro" : "_wo");
3523 
3524     // Building the generic function prototype.
3525     Value *Arg0 = EmitScalarExpr(E->getArg(0));
3526     CGOpenCLRuntime OpenCLRT(CGM);
3527     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
3528     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
3529     llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty};
3530     llvm::FunctionType *FTy = llvm::FunctionType::get(
3531         Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3532 
3533     return RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3534                                           {Arg0, PacketSize, PacketAlign}));
3535   }
3536 
3537   // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
3538   case Builtin::BIto_global:
3539   case Builtin::BIto_local:
3540   case Builtin::BIto_private: {
3541     auto Arg0 = EmitScalarExpr(E->getArg(0));
3542     auto NewArgT = llvm::PointerType::get(Int8Ty,
3543       CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
3544     auto NewRetT = llvm::PointerType::get(Int8Ty,
3545       CGM.getContext().getTargetAddressSpace(
3546         E->getType()->getPointeeType().getAddressSpace()));
3547     auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false);
3548     llvm::Value *NewArg;
3549     if (Arg0->getType()->getPointerAddressSpace() !=
3550         NewArgT->getPointerAddressSpace())
3551       NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT);
3552     else
3553       NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT);
3554     auto NewName = std::string("__") + E->getDirectCallee()->getName().str();
3555     auto NewCall =
3556         Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg});
3557     return RValue::get(Builder.CreateBitOrPointerCast(NewCall,
3558       ConvertType(E->getType())));
3559   }
3560 
3561   // OpenCL v2.0, s6.13.17 - Enqueue kernel function.
3562   // It contains four different overload formats specified in Table 6.13.17.1.
3563   case Builtin::BIenqueue_kernel: {
3564     StringRef Name; // Generated function call name
3565     unsigned NumArgs = E->getNumArgs();
3566 
3567     llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy);
3568     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
3569         getContext().getTargetAddressSpace(LangAS::opencl_generic));
3570 
3571     llvm::Value *Queue = EmitScalarExpr(E->getArg(0));
3572     llvm::Value *Flags = EmitScalarExpr(E->getArg(1));
3573     LValue NDRangeL = EmitAggExprToLValue(E->getArg(2));
3574     llvm::Value *Range = NDRangeL.getAddress().getPointer();
3575     llvm::Type *RangeTy = NDRangeL.getAddress().getType();
3576 
3577     if (NumArgs == 4) {
3578       // The most basic form of the call with parameters:
3579       // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void)
3580       Name = "__enqueue_kernel_basic";
3581       llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy,
3582                               GenericVoidPtrTy};
3583       llvm::FunctionType *FTy = llvm::FunctionType::get(
3584           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3585 
3586       auto Info =
3587           CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
3588       llvm::Value *Kernel =
3589           Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3590       llvm::Value *Block =
3591           Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3592 
3593       AttrBuilder B;
3594       B.addAttribute(Attribute::ByVal);
3595       llvm::AttributeList ByValAttrSet =
3596           llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B);
3597 
3598       auto RTCall =
3599           Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet),
3600                              {Queue, Flags, Range, Kernel, Block});
3601       RTCall->setAttributes(ByValAttrSet);
3602       return RValue::get(RTCall);
3603     }
3604     assert(NumArgs >= 5 && "Invalid enqueue_kernel signature");
3605 
3606     // Create a temporary array to hold the sizes of local pointer arguments
3607     // for the block. \p First is the position of the first size argument.
3608     auto CreateArrayForSizeVar = [=](unsigned First)
3609         -> std::tuple<llvm::Value *, llvm::Value *, llvm::Value *> {
3610       llvm::APInt ArraySize(32, NumArgs - First);
3611       QualType SizeArrayTy = getContext().getConstantArrayType(
3612           getContext().getSizeType(), ArraySize, ArrayType::Normal,
3613           /*IndexTypeQuals=*/0);
3614       auto Tmp = CreateMemTemp(SizeArrayTy, "block_sizes");
3615       llvm::Value *TmpPtr = Tmp.getPointer();
3616       llvm::Value *TmpSize = EmitLifetimeStart(
3617           CGM.getDataLayout().getTypeAllocSize(Tmp.getElementType()), TmpPtr);
3618       llvm::Value *ElemPtr;
3619       // Each of the following arguments specifies the size of the corresponding
3620       // argument passed to the enqueued block.
3621       auto *Zero = llvm::ConstantInt::get(IntTy, 0);
3622       for (unsigned I = First; I < NumArgs; ++I) {
3623         auto *Index = llvm::ConstantInt::get(IntTy, I - First);
3624         auto *GEP = Builder.CreateGEP(TmpPtr, {Zero, Index});
3625         if (I == First)
3626           ElemPtr = GEP;
3627         auto *V =
3628             Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy);
3629         Builder.CreateAlignedStore(
3630             V, GEP, CGM.getDataLayout().getPrefTypeAlignment(SizeTy));
3631       }
3632       return std::tie(ElemPtr, TmpSize, TmpPtr);
3633     };
3634 
3635     // Could have events and/or varargs.
3636     if (E->getArg(3)->getType()->isBlockPointerType()) {
3637       // No events passed, but has variadic arguments.
3638       Name = "__enqueue_kernel_varargs";
3639       auto Info =
3640           CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
3641       llvm::Value *Kernel =
3642           Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3643       auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3644       llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
3645       std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(4);
3646 
3647       // Create a vector of the arguments, as well as a constant value to
3648       // express to the runtime the number of variadic arguments.
3649       std::vector<llvm::Value *> Args = {
3650           Queue,  Flags, Range,
3651           Kernel, Block, ConstantInt::get(IntTy, NumArgs - 4),
3652           ElemPtr};
3653       std::vector<llvm::Type *> ArgTys = {
3654           QueueTy,          IntTy, RangeTy,           GenericVoidPtrTy,
3655           GenericVoidPtrTy, IntTy, ElemPtr->getType()};
3656 
3657       llvm::FunctionType *FTy = llvm::FunctionType::get(
3658           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3659       auto Call =
3660           RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3661                                          llvm::ArrayRef<llvm::Value *>(Args)));
3662       if (TmpSize)
3663         EmitLifetimeEnd(TmpSize, TmpPtr);
3664       return Call;
3665     }
3666     // Any calls now have event arguments passed.
3667     if (NumArgs >= 7) {
3668       llvm::Type *EventTy = ConvertType(getContext().OCLClkEventTy);
3669       llvm::Type *EventPtrTy = EventTy->getPointerTo(
3670           CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
3671 
3672       llvm::Value *NumEvents =
3673           Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty);
3674       llvm::Value *EventList =
3675           E->getArg(4)->getType()->isArrayType()
3676               ? EmitArrayToPointerDecay(E->getArg(4)).getPointer()
3677               : EmitScalarExpr(E->getArg(4));
3678       llvm::Value *ClkEvent = EmitScalarExpr(E->getArg(5));
3679       // Convert to generic address space.
3680       EventList = Builder.CreatePointerCast(EventList, EventPtrTy);
3681       ClkEvent = ClkEvent->getType()->isIntegerTy()
3682                    ? Builder.CreateBitOrPointerCast(ClkEvent, EventPtrTy)
3683                    : Builder.CreatePointerCast(ClkEvent, EventPtrTy);
3684       auto Info =
3685           CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6));
3686       llvm::Value *Kernel =
3687           Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3688       llvm::Value *Block =
3689           Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3690 
3691       std::vector<llvm::Type *> ArgTys = {
3692           QueueTy,    Int32Ty,    RangeTy,          Int32Ty,
3693           EventPtrTy, EventPtrTy, GenericVoidPtrTy, GenericVoidPtrTy};
3694 
3695       std::vector<llvm::Value *> Args = {Queue,     Flags,    Range,  NumEvents,
3696                                          EventList, ClkEvent, Kernel, Block};
3697 
3698       if (NumArgs == 7) {
3699         // Has events but no variadics.
3700         Name = "__enqueue_kernel_basic_events";
3701         llvm::FunctionType *FTy = llvm::FunctionType::get(
3702             Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3703         return RValue::get(
3704             Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3705                                llvm::ArrayRef<llvm::Value *>(Args)));
3706       }
3707       // Has event info and variadics
3708       // Pass the number of variadics to the runtime function too.
3709       Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7));
3710       ArgTys.push_back(Int32Ty);
3711       Name = "__enqueue_kernel_events_varargs";
3712 
3713       llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
3714       std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(7);
3715       Args.push_back(ElemPtr);
3716       ArgTys.push_back(ElemPtr->getType());
3717 
3718       llvm::FunctionType *FTy = llvm::FunctionType::get(
3719           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
3720       auto Call =
3721           RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
3722                                          llvm::ArrayRef<llvm::Value *>(Args)));
3723       if (TmpSize)
3724         EmitLifetimeEnd(TmpSize, TmpPtr);
3725       return Call;
3726     }
3727     LLVM_FALLTHROUGH;
3728   }
3729   // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block
3730   // parameter.
3731   case Builtin::BIget_kernel_work_group_size: {
3732     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
3733         getContext().getTargetAddressSpace(LangAS::opencl_generic));
3734     auto Info =
3735         CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
3736     Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3737     Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3738     return RValue::get(Builder.CreateCall(
3739         CGM.CreateRuntimeFunction(
3740             llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
3741                                     false),
3742             "__get_kernel_work_group_size_impl"),
3743         {Kernel, Arg}));
3744   }
3745   case Builtin::BIget_kernel_preferred_work_group_size_multiple: {
3746     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
3747         getContext().getTargetAddressSpace(LangAS::opencl_generic));
3748     auto Info =
3749         CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
3750     Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3751     Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3752     return RValue::get(Builder.CreateCall(
3753         CGM.CreateRuntimeFunction(
3754             llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
3755                                     false),
3756             "__get_kernel_preferred_work_group_size_multiple_impl"),
3757         {Kernel, Arg}));
3758   }
3759   case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
3760   case Builtin::BIget_kernel_sub_group_count_for_ndrange: {
3761     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
3762         getContext().getTargetAddressSpace(LangAS::opencl_generic));
3763     LValue NDRangeL = EmitAggExprToLValue(E->getArg(0));
3764     llvm::Value *NDRange = NDRangeL.getAddress().getPointer();
3765     auto Info =
3766         CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1));
3767     Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
3768     Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
3769     const char *Name =
3770         BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange
3771             ? "__get_kernel_max_sub_group_size_for_ndrange_impl"
3772             : "__get_kernel_sub_group_count_for_ndrange_impl";
3773     return RValue::get(Builder.CreateCall(
3774         CGM.CreateRuntimeFunction(
3775             llvm::FunctionType::get(
3776                 IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy},
3777                 false),
3778             Name),
3779         {NDRange, Kernel, Block}));
3780   }
3781 
3782   case Builtin::BI__builtin_store_half:
3783   case Builtin::BI__builtin_store_halff: {
3784     Value *Val = EmitScalarExpr(E->getArg(0));
3785     Address Address = EmitPointerWithAlignment(E->getArg(1));
3786     Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy());
3787     return RValue::get(Builder.CreateStore(HalfVal, Address));
3788   }
3789   case Builtin::BI__builtin_load_half: {
3790     Address Address = EmitPointerWithAlignment(E->getArg(0));
3791     Value *HalfVal = Builder.CreateLoad(Address);
3792     return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy()));
3793   }
3794   case Builtin::BI__builtin_load_halff: {
3795     Address Address = EmitPointerWithAlignment(E->getArg(0));
3796     Value *HalfVal = Builder.CreateLoad(Address);
3797     return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy()));
3798   }
3799   case Builtin::BIprintf:
3800     if (getTarget().getTriple().isNVPTX())
3801       return EmitNVPTXDevicePrintfCallExpr(E, ReturnValue);
3802     break;
3803   case Builtin::BI__builtin_canonicalize:
3804   case Builtin::BI__builtin_canonicalizef:
3805   case Builtin::BI__builtin_canonicalizel:
3806     return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::canonicalize));
3807 
3808   case Builtin::BI__builtin_thread_pointer: {
3809     if (!getContext().getTargetInfo().isTLSSupported())
3810       CGM.ErrorUnsupported(E, "__builtin_thread_pointer");
3811     // Fall through - it's already mapped to the intrinsic by GCCBuiltin.
3812     break;
3813   }
3814   case Builtin::BI__builtin_os_log_format:
3815     return emitBuiltinOSLogFormat(*E);
3816 
3817   case Builtin::BI__xray_customevent: {
3818     if (!ShouldXRayInstrumentFunction())
3819       return RValue::getIgnored();
3820 
3821     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
3822             XRayInstrKind::Custom))
3823       return RValue::getIgnored();
3824 
3825     if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
3826       if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents())
3827         return RValue::getIgnored();
3828 
3829     Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent);
3830     auto FTy = F->getFunctionType();
3831     auto Arg0 = E->getArg(0);
3832     auto Arg0Val = EmitScalarExpr(Arg0);
3833     auto Arg0Ty = Arg0->getType();
3834     auto PTy0 = FTy->getParamType(0);
3835     if (PTy0 != Arg0Val->getType()) {
3836       if (Arg0Ty->isArrayType())
3837         Arg0Val = EmitArrayToPointerDecay(Arg0).getPointer();
3838       else
3839         Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0);
3840     }
3841     auto Arg1 = EmitScalarExpr(E->getArg(1));
3842     auto PTy1 = FTy->getParamType(1);
3843     if (PTy1 != Arg1->getType())
3844       Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1);
3845     return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1}));
3846   }
3847 
3848   case Builtin::BI__xray_typedevent: {
3849     // TODO: There should be a way to always emit events even if the current
3850     // function is not instrumented. Losing events in a stream can cripple
3851     // a trace.
3852     if (!ShouldXRayInstrumentFunction())
3853       return RValue::getIgnored();
3854 
3855     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
3856             XRayInstrKind::Typed))
3857       return RValue::getIgnored();
3858 
3859     if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
3860       if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayTypedEvents())
3861         return RValue::getIgnored();
3862 
3863     Function *F = CGM.getIntrinsic(Intrinsic::xray_typedevent);
3864     auto FTy = F->getFunctionType();
3865     auto Arg0 = EmitScalarExpr(E->getArg(0));
3866     auto PTy0 = FTy->getParamType(0);
3867     if (PTy0 != Arg0->getType())
3868       Arg0 = Builder.CreateTruncOrBitCast(Arg0, PTy0);
3869     auto Arg1 = E->getArg(1);
3870     auto Arg1Val = EmitScalarExpr(Arg1);
3871     auto Arg1Ty = Arg1->getType();
3872     auto PTy1 = FTy->getParamType(1);
3873     if (PTy1 != Arg1Val->getType()) {
3874       if (Arg1Ty->isArrayType())
3875         Arg1Val = EmitArrayToPointerDecay(Arg1).getPointer();
3876       else
3877         Arg1Val = Builder.CreatePointerCast(Arg1Val, PTy1);
3878     }
3879     auto Arg2 = EmitScalarExpr(E->getArg(2));
3880     auto PTy2 = FTy->getParamType(2);
3881     if (PTy2 != Arg2->getType())
3882       Arg2 = Builder.CreateTruncOrBitCast(Arg2, PTy2);
3883     return RValue::get(Builder.CreateCall(F, {Arg0, Arg1Val, Arg2}));
3884   }
3885 
3886   case Builtin::BI__builtin_ms_va_start:
3887   case Builtin::BI__builtin_ms_va_end:
3888     return RValue::get(
3889         EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(),
3890                        BuiltinID == Builtin::BI__builtin_ms_va_start));
3891 
3892   case Builtin::BI__builtin_ms_va_copy: {
3893     // Lower this manually. We can't reliably determine whether or not any
3894     // given va_copy() is for a Win64 va_list from the calling convention
3895     // alone, because it's legal to do this from a System V ABI function.
3896     // With opaque pointer types, we won't have enough information in LLVM
3897     // IR to determine this from the argument types, either. Best to do it
3898     // now, while we have enough information.
3899     Address DestAddr = EmitMSVAListRef(E->getArg(0));
3900     Address SrcAddr = EmitMSVAListRef(E->getArg(1));
3901 
3902     llvm::Type *BPP = Int8PtrPtrTy;
3903 
3904     DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), BPP, "cp"),
3905                        DestAddr.getAlignment());
3906     SrcAddr = Address(Builder.CreateBitCast(SrcAddr.getPointer(), BPP, "ap"),
3907                       SrcAddr.getAlignment());
3908 
3909     Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val");
3910     return RValue::get(Builder.CreateStore(ArgPtr, DestAddr));
3911   }
3912   }
3913 
3914   // If this is an alias for a lib function (e.g. __builtin_sin), emit
3915   // the call using the normal call path, but using the unmangled
3916   // version of the function name.
3917   if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
3918     return emitLibraryCall(*this, FD, E,
3919                            CGM.getBuiltinLibFunction(FD, BuiltinID));
3920 
3921   // If this is a predefined lib function (e.g. malloc), emit the call
3922   // using exactly the normal call path.
3923   if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3924     return emitLibraryCall(*this, FD, E,
3925                       cast<llvm::Constant>(EmitScalarExpr(E->getCallee())));
3926 
3927   // Check that a call to a target specific builtin has the correct target
3928   // features.
3929   // This is down here to avoid non-target specific builtins, however, if
3930   // generic builtins start to require generic target features then we
3931   // can move this up to the beginning of the function.
3932   checkTargetFeatures(E, FD);
3933 
3934   if (unsigned VectorWidth = getContext().BuiltinInfo.getRequiredVectorWidth(BuiltinID))
3935     LargestVectorWidth = std::max(LargestVectorWidth, VectorWidth);
3936 
3937   // See if we have a target specific intrinsic.
3938   const char *Name = getContext().BuiltinInfo.getName(BuiltinID);
3939   Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
3940   StringRef Prefix =
3941       llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch());
3942   if (!Prefix.empty()) {
3943     IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix.data(), Name);
3944     // NOTE we don't need to perform a compatibility flag check here since the
3945     // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the
3946     // MS builtins via ALL_MS_LANGUAGES and are filtered earlier.
3947     if (IntrinsicID == Intrinsic::not_intrinsic)
3948       IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name);
3949   }
3950 
3951   if (IntrinsicID != Intrinsic::not_intrinsic) {
3952     SmallVector<Value*, 16> Args;
3953 
3954     // Find out if any arguments are required to be integer constant
3955     // expressions.
3956     unsigned ICEArguments = 0;
3957     ASTContext::GetBuiltinTypeError Error;
3958     getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
3959     assert(Error == ASTContext::GE_None && "Should not codegen an error");
3960 
3961     Function *F = CGM.getIntrinsic(IntrinsicID);
3962     llvm::FunctionType *FTy = F->getFunctionType();
3963 
3964     for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
3965       Value *ArgValue;
3966       // If this is a normal argument, just emit it as a scalar.
3967       if ((ICEArguments & (1 << i)) == 0) {
3968         ArgValue = EmitScalarExpr(E->getArg(i));
3969       } else {
3970         // If this is required to be a constant, constant fold it so that we
3971         // know that the generated intrinsic gets a ConstantInt.
3972         llvm::APSInt Result;
3973         bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result,getContext());
3974         assert(IsConst && "Constant arg isn't actually constant?");
3975         (void)IsConst;
3976         ArgValue = llvm::ConstantInt::get(getLLVMContext(), Result);
3977       }
3978 
3979       // If the intrinsic arg type is different from the builtin arg type
3980       // we need to do a bit cast.
3981       llvm::Type *PTy = FTy->getParamType(i);
3982       if (PTy != ArgValue->getType()) {
3983         // XXX - vector of pointers?
3984         if (auto *PtrTy = dyn_cast<llvm::PointerType>(PTy)) {
3985           if (PtrTy->getAddressSpace() !=
3986               ArgValue->getType()->getPointerAddressSpace()) {
3987             ArgValue = Builder.CreateAddrSpaceCast(
3988               ArgValue,
3989               ArgValue->getType()->getPointerTo(PtrTy->getAddressSpace()));
3990           }
3991         }
3992 
3993         assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
3994                "Must be able to losslessly bit cast to param");
3995         ArgValue = Builder.CreateBitCast(ArgValue, PTy);
3996       }
3997 
3998       Args.push_back(ArgValue);
3999     }
4000 
4001     Value *V = Builder.CreateCall(F, Args);
4002     QualType BuiltinRetType = E->getType();
4003 
4004     llvm::Type *RetTy = VoidTy;
4005     if (!BuiltinRetType->isVoidType())
4006       RetTy = ConvertType(BuiltinRetType);
4007 
4008     if (RetTy != V->getType()) {
4009       // XXX - vector of pointers?
4010       if (auto *PtrTy = dyn_cast<llvm::PointerType>(RetTy)) {
4011         if (PtrTy->getAddressSpace() != V->getType()->getPointerAddressSpace()) {
4012           V = Builder.CreateAddrSpaceCast(
4013             V, V->getType()->getPointerTo(PtrTy->getAddressSpace()));
4014         }
4015       }
4016 
4017       assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
4018              "Must be able to losslessly bit cast result type");
4019       V = Builder.CreateBitCast(V, RetTy);
4020     }
4021 
4022     return RValue::get(V);
4023   }
4024 
4025   // See if we have a target specific builtin that needs to be lowered.
4026   if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E))
4027     return RValue::get(V);
4028 
4029   ErrorUnsupported(E, "builtin function");
4030 
4031   // Unknown builtin, for now just dump it out and return undef.
4032   return GetUndefRValue(E->getType());
4033 }
4034 
EmitTargetArchBuiltinExpr(CodeGenFunction * CGF,unsigned BuiltinID,const CallExpr * E,llvm::Triple::ArchType Arch)4035 static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF,
4036                                         unsigned BuiltinID, const CallExpr *E,
4037                                         llvm::Triple::ArchType Arch) {
4038   switch (Arch) {
4039   case llvm::Triple::arm:
4040   case llvm::Triple::armeb:
4041   case llvm::Triple::thumb:
4042   case llvm::Triple::thumbeb:
4043     return CGF->EmitARMBuiltinExpr(BuiltinID, E, Arch);
4044   case llvm::Triple::aarch64:
4045   case llvm::Triple::aarch64_be:
4046     return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch);
4047   case llvm::Triple::x86:
4048   case llvm::Triple::x86_64:
4049     return CGF->EmitX86BuiltinExpr(BuiltinID, E);
4050   case llvm::Triple::ppc:
4051   case llvm::Triple::ppc64:
4052   case llvm::Triple::ppc64le:
4053     return CGF->EmitPPCBuiltinExpr(BuiltinID, E);
4054   case llvm::Triple::r600:
4055   case llvm::Triple::amdgcn:
4056     return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E);
4057   case llvm::Triple::systemz:
4058     return CGF->EmitSystemZBuiltinExpr(BuiltinID, E);
4059   case llvm::Triple::nvptx:
4060   case llvm::Triple::nvptx64:
4061     return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E);
4062   case llvm::Triple::wasm32:
4063   case llvm::Triple::wasm64:
4064     return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E);
4065   case llvm::Triple::hexagon:
4066     return CGF->EmitHexagonBuiltinExpr(BuiltinID, E);
4067   default:
4068     return nullptr;
4069   }
4070 }
4071 
EmitTargetBuiltinExpr(unsigned BuiltinID,const CallExpr * E)4072 Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
4073                                               const CallExpr *E) {
4074   if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
4075     assert(getContext().getAuxTargetInfo() && "Missing aux target info");
4076     return EmitTargetArchBuiltinExpr(
4077         this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E,
4078         getContext().getAuxTargetInfo()->getTriple().getArch());
4079   }
4080 
4081   return EmitTargetArchBuiltinExpr(this, BuiltinID, E,
4082                                    getTarget().getTriple().getArch());
4083 }
4084 
GetNeonType(CodeGenFunction * CGF,NeonTypeFlags TypeFlags,bool HasLegalHalfType=true,bool V1Ty=false)4085 static llvm::VectorType *GetNeonType(CodeGenFunction *CGF,
4086                                      NeonTypeFlags TypeFlags,
4087                                      bool HasLegalHalfType=true,
4088                                      bool V1Ty=false) {
4089   int IsQuad = TypeFlags.isQuad();
4090   switch (TypeFlags.getEltType()) {
4091   case NeonTypeFlags::Int8:
4092   case NeonTypeFlags::Poly8:
4093     return llvm::VectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
4094   case NeonTypeFlags::Int16:
4095   case NeonTypeFlags::Poly16:
4096     return llvm::VectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
4097   case NeonTypeFlags::Float16:
4098     if (HasLegalHalfType)
4099       return llvm::VectorType::get(CGF->HalfTy, V1Ty ? 1 : (4 << IsQuad));
4100     else
4101       return llvm::VectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
4102   case NeonTypeFlags::Int32:
4103     return llvm::VectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
4104   case NeonTypeFlags::Int64:
4105   case NeonTypeFlags::Poly64:
4106     return llvm::VectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
4107   case NeonTypeFlags::Poly128:
4108     // FIXME: i128 and f128 doesn't get fully support in Clang and llvm.
4109     // There is a lot of i128 and f128 API missing.
4110     // so we use v16i8 to represent poly128 and get pattern matched.
4111     return llvm::VectorType::get(CGF->Int8Ty, 16);
4112   case NeonTypeFlags::Float32:
4113     return llvm::VectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
4114   case NeonTypeFlags::Float64:
4115     return llvm::VectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
4116   }
4117   llvm_unreachable("Unknown vector element type!");
4118 }
4119 
GetFloatNeonType(CodeGenFunction * CGF,NeonTypeFlags IntTypeFlags)4120 static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF,
4121                                           NeonTypeFlags IntTypeFlags) {
4122   int IsQuad = IntTypeFlags.isQuad();
4123   switch (IntTypeFlags.getEltType()) {
4124   case NeonTypeFlags::Int16:
4125     return llvm::VectorType::get(CGF->HalfTy, (4 << IsQuad));
4126   case NeonTypeFlags::Int32:
4127     return llvm::VectorType::get(CGF->FloatTy, (2 << IsQuad));
4128   case NeonTypeFlags::Int64:
4129     return llvm::VectorType::get(CGF->DoubleTy, (1 << IsQuad));
4130   default:
4131     llvm_unreachable("Type can't be converted to floating-point!");
4132   }
4133 }
4134 
EmitNeonSplat(Value * V,Constant * C)4135 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
4136   unsigned nElts = V->getType()->getVectorNumElements();
4137   Value* SV = llvm::ConstantVector::getSplat(nElts, C);
4138   return Builder.CreateShuffleVector(V, V, SV, "lane");
4139 }
4140 
EmitNeonCall(Function * F,SmallVectorImpl<Value * > & Ops,const char * name,unsigned shift,bool rightshift)4141 Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
4142                                      const char *name,
4143                                      unsigned shift, bool rightshift) {
4144   unsigned j = 0;
4145   for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
4146        ai != ae; ++ai, ++j)
4147     if (shift > 0 && shift == j)
4148       Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
4149     else
4150       Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
4151 
4152   return Builder.CreateCall(F, Ops, name);
4153 }
4154 
EmitNeonShiftVector(Value * V,llvm::Type * Ty,bool neg)4155 Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
4156                                             bool neg) {
4157   int SV = cast<ConstantInt>(V)->getSExtValue();
4158   return ConstantInt::get(Ty, neg ? -SV : SV);
4159 }
4160 
4161 // Right-shift a vector by a constant.
EmitNeonRShiftImm(Value * Vec,Value * Shift,llvm::Type * Ty,bool usgn,const char * name)4162 Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift,
4163                                           llvm::Type *Ty, bool usgn,
4164                                           const char *name) {
4165   llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
4166 
4167   int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue();
4168   int EltSize = VTy->getScalarSizeInBits();
4169 
4170   Vec = Builder.CreateBitCast(Vec, Ty);
4171 
4172   // lshr/ashr are undefined when the shift amount is equal to the vector
4173   // element size.
4174   if (ShiftAmt == EltSize) {
4175     if (usgn) {
4176       // Right-shifting an unsigned value by its size yields 0.
4177       return llvm::ConstantAggregateZero::get(VTy);
4178     } else {
4179       // Right-shifting a signed value by its size is equivalent
4180       // to a shift of size-1.
4181       --ShiftAmt;
4182       Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt);
4183     }
4184   }
4185 
4186   Shift = EmitNeonShiftVector(Shift, Ty, false);
4187   if (usgn)
4188     return Builder.CreateLShr(Vec, Shift, name);
4189   else
4190     return Builder.CreateAShr(Vec, Shift, name);
4191 }
4192 
4193 enum {
4194   AddRetType = (1 << 0),
4195   Add1ArgType = (1 << 1),
4196   Add2ArgTypes = (1 << 2),
4197 
4198   VectorizeRetType = (1 << 3),
4199   VectorizeArgTypes = (1 << 4),
4200 
4201   InventFloatType = (1 << 5),
4202   UnsignedAlts = (1 << 6),
4203 
4204   Use64BitVectors = (1 << 7),
4205   Use128BitVectors = (1 << 8),
4206 
4207   Vectorize1ArgType = Add1ArgType | VectorizeArgTypes,
4208   VectorRet = AddRetType | VectorizeRetType,
4209   VectorRetGetArgs01 =
4210       AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes,
4211   FpCmpzModifiers =
4212       AddRetType | VectorizeRetType | Add1ArgType | InventFloatType
4213 };
4214 
4215 namespace {
4216 struct NeonIntrinsicInfo {
4217   const char *NameHint;
4218   unsigned BuiltinID;
4219   unsigned LLVMIntrinsic;
4220   unsigned AltLLVMIntrinsic;
4221   unsigned TypeModifier;
4222 
operator <__anon692fc7ed0711::NeonIntrinsicInfo4223   bool operator<(unsigned RHSBuiltinID) const {
4224     return BuiltinID < RHSBuiltinID;
4225   }
operator <__anon692fc7ed0711::NeonIntrinsicInfo4226   bool operator<(const NeonIntrinsicInfo &TE) const {
4227     return BuiltinID < TE.BuiltinID;
4228   }
4229 };
4230 } // end anonymous namespace
4231 
4232 #define NEONMAP0(NameBase) \
4233   { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 }
4234 
4235 #define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
4236   { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
4237       Intrinsic::LLVMIntrinsic, 0, TypeModifier }
4238 
4239 #define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \
4240   { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
4241       Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \
4242       TypeModifier }
4243 
4244 static const NeonIntrinsicInfo ARMSIMDIntrinsicMap [] = {
4245   NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
4246   NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
4247   NEONMAP1(vabs_v, arm_neon_vabs, 0),
4248   NEONMAP1(vabsq_v, arm_neon_vabs, 0),
4249   NEONMAP0(vaddhn_v),
4250   NEONMAP1(vaesdq_v, arm_neon_aesd, 0),
4251   NEONMAP1(vaeseq_v, arm_neon_aese, 0),
4252   NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0),
4253   NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0),
4254   NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType),
4255   NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType),
4256   NEONMAP1(vcage_v, arm_neon_vacge, 0),
4257   NEONMAP1(vcageq_v, arm_neon_vacge, 0),
4258   NEONMAP1(vcagt_v, arm_neon_vacgt, 0),
4259   NEONMAP1(vcagtq_v, arm_neon_vacgt, 0),
4260   NEONMAP1(vcale_v, arm_neon_vacge, 0),
4261   NEONMAP1(vcaleq_v, arm_neon_vacge, 0),
4262   NEONMAP1(vcalt_v, arm_neon_vacgt, 0),
4263   NEONMAP1(vcaltq_v, arm_neon_vacgt, 0),
4264   NEONMAP0(vceqz_v),
4265   NEONMAP0(vceqzq_v),
4266   NEONMAP0(vcgez_v),
4267   NEONMAP0(vcgezq_v),
4268   NEONMAP0(vcgtz_v),
4269   NEONMAP0(vcgtzq_v),
4270   NEONMAP0(vclez_v),
4271   NEONMAP0(vclezq_v),
4272   NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType),
4273   NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType),
4274   NEONMAP0(vcltz_v),
4275   NEONMAP0(vcltzq_v),
4276   NEONMAP1(vclz_v, ctlz, Add1ArgType),
4277   NEONMAP1(vclzq_v, ctlz, Add1ArgType),
4278   NEONMAP1(vcnt_v, ctpop, Add1ArgType),
4279   NEONMAP1(vcntq_v, ctpop, Add1ArgType),
4280   NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0),
4281   NEONMAP0(vcvt_f16_v),
4282   NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0),
4283   NEONMAP0(vcvt_f32_v),
4284   NEONMAP2(vcvt_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
4285   NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
4286   NEONMAP1(vcvt_n_s16_v, arm_neon_vcvtfp2fxs, 0),
4287   NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0),
4288   NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0),
4289   NEONMAP1(vcvt_n_u16_v, arm_neon_vcvtfp2fxu, 0),
4290   NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0),
4291   NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0),
4292   NEONMAP0(vcvt_s16_v),
4293   NEONMAP0(vcvt_s32_v),
4294   NEONMAP0(vcvt_s64_v),
4295   NEONMAP0(vcvt_u16_v),
4296   NEONMAP0(vcvt_u32_v),
4297   NEONMAP0(vcvt_u64_v),
4298   NEONMAP1(vcvta_s16_v, arm_neon_vcvtas, 0),
4299   NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0),
4300   NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0),
4301   NEONMAP1(vcvta_u16_v, arm_neon_vcvtau, 0),
4302   NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0),
4303   NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0),
4304   NEONMAP1(vcvtaq_s16_v, arm_neon_vcvtas, 0),
4305   NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0),
4306   NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0),
4307   NEONMAP1(vcvtaq_u16_v, arm_neon_vcvtau, 0),
4308   NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0),
4309   NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0),
4310   NEONMAP1(vcvtm_s16_v, arm_neon_vcvtms, 0),
4311   NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0),
4312   NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0),
4313   NEONMAP1(vcvtm_u16_v, arm_neon_vcvtmu, 0),
4314   NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0),
4315   NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0),
4316   NEONMAP1(vcvtmq_s16_v, arm_neon_vcvtms, 0),
4317   NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0),
4318   NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0),
4319   NEONMAP1(vcvtmq_u16_v, arm_neon_vcvtmu, 0),
4320   NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0),
4321   NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0),
4322   NEONMAP1(vcvtn_s16_v, arm_neon_vcvtns, 0),
4323   NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0),
4324   NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0),
4325   NEONMAP1(vcvtn_u16_v, arm_neon_vcvtnu, 0),
4326   NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0),
4327   NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0),
4328   NEONMAP1(vcvtnq_s16_v, arm_neon_vcvtns, 0),
4329   NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0),
4330   NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0),
4331   NEONMAP1(vcvtnq_u16_v, arm_neon_vcvtnu, 0),
4332   NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0),
4333   NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0),
4334   NEONMAP1(vcvtp_s16_v, arm_neon_vcvtps, 0),
4335   NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0),
4336   NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0),
4337   NEONMAP1(vcvtp_u16_v, arm_neon_vcvtpu, 0),
4338   NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0),
4339   NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0),
4340   NEONMAP1(vcvtpq_s16_v, arm_neon_vcvtps, 0),
4341   NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0),
4342   NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0),
4343   NEONMAP1(vcvtpq_u16_v, arm_neon_vcvtpu, 0),
4344   NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0),
4345   NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0),
4346   NEONMAP0(vcvtq_f16_v),
4347   NEONMAP0(vcvtq_f32_v),
4348   NEONMAP2(vcvtq_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
4349   NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
4350   NEONMAP1(vcvtq_n_s16_v, arm_neon_vcvtfp2fxs, 0),
4351   NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0),
4352   NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0),
4353   NEONMAP1(vcvtq_n_u16_v, arm_neon_vcvtfp2fxu, 0),
4354   NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0),
4355   NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0),
4356   NEONMAP0(vcvtq_s16_v),
4357   NEONMAP0(vcvtq_s32_v),
4358   NEONMAP0(vcvtq_s64_v),
4359   NEONMAP0(vcvtq_u16_v),
4360   NEONMAP0(vcvtq_u32_v),
4361   NEONMAP0(vcvtq_u64_v),
4362   NEONMAP2(vdot_v, arm_neon_udot, arm_neon_sdot, 0),
4363   NEONMAP2(vdotq_v, arm_neon_udot, arm_neon_sdot, 0),
4364   NEONMAP0(vext_v),
4365   NEONMAP0(vextq_v),
4366   NEONMAP0(vfma_v),
4367   NEONMAP0(vfmaq_v),
4368   NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
4369   NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
4370   NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
4371   NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
4372   NEONMAP0(vld1_dup_v),
4373   NEONMAP1(vld1_v, arm_neon_vld1, 0),
4374   NEONMAP1(vld1_x2_v, arm_neon_vld1x2, 0),
4375   NEONMAP1(vld1_x3_v, arm_neon_vld1x3, 0),
4376   NEONMAP1(vld1_x4_v, arm_neon_vld1x4, 0),
4377   NEONMAP0(vld1q_dup_v),
4378   NEONMAP1(vld1q_v, arm_neon_vld1, 0),
4379   NEONMAP1(vld1q_x2_v, arm_neon_vld1x2, 0),
4380   NEONMAP1(vld1q_x3_v, arm_neon_vld1x3, 0),
4381   NEONMAP1(vld1q_x4_v, arm_neon_vld1x4, 0),
4382   NEONMAP1(vld2_dup_v, arm_neon_vld2dup, 0),
4383   NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0),
4384   NEONMAP1(vld2_v, arm_neon_vld2, 0),
4385   NEONMAP1(vld2q_dup_v, arm_neon_vld2dup, 0),
4386   NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0),
4387   NEONMAP1(vld2q_v, arm_neon_vld2, 0),
4388   NEONMAP1(vld3_dup_v, arm_neon_vld3dup, 0),
4389   NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0),
4390   NEONMAP1(vld3_v, arm_neon_vld3, 0),
4391   NEONMAP1(vld3q_dup_v, arm_neon_vld3dup, 0),
4392   NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0),
4393   NEONMAP1(vld3q_v, arm_neon_vld3, 0),
4394   NEONMAP1(vld4_dup_v, arm_neon_vld4dup, 0),
4395   NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0),
4396   NEONMAP1(vld4_v, arm_neon_vld4, 0),
4397   NEONMAP1(vld4q_dup_v, arm_neon_vld4dup, 0),
4398   NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0),
4399   NEONMAP1(vld4q_v, arm_neon_vld4, 0),
4400   NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
4401   NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType),
4402   NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType),
4403   NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
4404   NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
4405   NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType),
4406   NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType),
4407   NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
4408   NEONMAP0(vmovl_v),
4409   NEONMAP0(vmovn_v),
4410   NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType),
4411   NEONMAP0(vmull_v),
4412   NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType),
4413   NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
4414   NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
4415   NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType),
4416   NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
4417   NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
4418   NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType),
4419   NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts),
4420   NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts),
4421   NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType),
4422   NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType),
4423   NEONMAP2(vqadd_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts),
4424   NEONMAP2(vqaddq_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts),
4425   NEONMAP2(vqdmlal_v, arm_neon_vqdmull, arm_neon_vqadds, 0),
4426   NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, arm_neon_vqsubs, 0),
4427   NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType),
4428   NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType),
4429   NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType),
4430   NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts),
4431   NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType),
4432   NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType),
4433   NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType),
4434   NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType),
4435   NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType),
4436   NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
4437   NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
4438   NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
4439   NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
4440   NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
4441   NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
4442   NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0),
4443   NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0),
4444   NEONMAP2(vqsub_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts),
4445   NEONMAP2(vqsubq_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts),
4446   NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType),
4447   NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
4448   NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
4449   NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType),
4450   NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType),
4451   NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
4452   NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
4453   NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType),
4454   NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType),
4455   NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType),
4456   NEONMAP0(vrndi_v),
4457   NEONMAP0(vrndiq_v),
4458   NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType),
4459   NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType),
4460   NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType),
4461   NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType),
4462   NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType),
4463   NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType),
4464   NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType),
4465   NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType),
4466   NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType),
4467   NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
4468   NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
4469   NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
4470   NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
4471   NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
4472   NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
4473   NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType),
4474   NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType),
4475   NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType),
4476   NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0),
4477   NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0),
4478   NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0),
4479   NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0),
4480   NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0),
4481   NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0),
4482   NEONMAP0(vshl_n_v),
4483   NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
4484   NEONMAP0(vshll_n_v),
4485   NEONMAP0(vshlq_n_v),
4486   NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
4487   NEONMAP0(vshr_n_v),
4488   NEONMAP0(vshrn_n_v),
4489   NEONMAP0(vshrq_n_v),
4490   NEONMAP1(vst1_v, arm_neon_vst1, 0),
4491   NEONMAP1(vst1_x2_v, arm_neon_vst1x2, 0),
4492   NEONMAP1(vst1_x3_v, arm_neon_vst1x3, 0),
4493   NEONMAP1(vst1_x4_v, arm_neon_vst1x4, 0),
4494   NEONMAP1(vst1q_v, arm_neon_vst1, 0),
4495   NEONMAP1(vst1q_x2_v, arm_neon_vst1x2, 0),
4496   NEONMAP1(vst1q_x3_v, arm_neon_vst1x3, 0),
4497   NEONMAP1(vst1q_x4_v, arm_neon_vst1x4, 0),
4498   NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0),
4499   NEONMAP1(vst2_v, arm_neon_vst2, 0),
4500   NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0),
4501   NEONMAP1(vst2q_v, arm_neon_vst2, 0),
4502   NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0),
4503   NEONMAP1(vst3_v, arm_neon_vst3, 0),
4504   NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0),
4505   NEONMAP1(vst3q_v, arm_neon_vst3, 0),
4506   NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0),
4507   NEONMAP1(vst4_v, arm_neon_vst4, 0),
4508   NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0),
4509   NEONMAP1(vst4q_v, arm_neon_vst4, 0),
4510   NEONMAP0(vsubhn_v),
4511   NEONMAP0(vtrn_v),
4512   NEONMAP0(vtrnq_v),
4513   NEONMAP0(vtst_v),
4514   NEONMAP0(vtstq_v),
4515   NEONMAP0(vuzp_v),
4516   NEONMAP0(vuzpq_v),
4517   NEONMAP0(vzip_v),
4518   NEONMAP0(vzipq_v)
4519 };
4520 
4521 static const NeonIntrinsicInfo AArch64SIMDIntrinsicMap[] = {
4522   NEONMAP1(vabs_v, aarch64_neon_abs, 0),
4523   NEONMAP1(vabsq_v, aarch64_neon_abs, 0),
4524   NEONMAP0(vaddhn_v),
4525   NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0),
4526   NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0),
4527   NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0),
4528   NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0),
4529   NEONMAP1(vcage_v, aarch64_neon_facge, 0),
4530   NEONMAP1(vcageq_v, aarch64_neon_facge, 0),
4531   NEONMAP1(vcagt_v, aarch64_neon_facgt, 0),
4532   NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0),
4533   NEONMAP1(vcale_v, aarch64_neon_facge, 0),
4534   NEONMAP1(vcaleq_v, aarch64_neon_facge, 0),
4535   NEONMAP1(vcalt_v, aarch64_neon_facgt, 0),
4536   NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0),
4537   NEONMAP0(vceqz_v),
4538   NEONMAP0(vceqzq_v),
4539   NEONMAP0(vcgez_v),
4540   NEONMAP0(vcgezq_v),
4541   NEONMAP0(vcgtz_v),
4542   NEONMAP0(vcgtzq_v),
4543   NEONMAP0(vclez_v),
4544   NEONMAP0(vclezq_v),
4545   NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType),
4546   NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType),
4547   NEONMAP0(vcltz_v),
4548   NEONMAP0(vcltzq_v),
4549   NEONMAP1(vclz_v, ctlz, Add1ArgType),
4550   NEONMAP1(vclzq_v, ctlz, Add1ArgType),
4551   NEONMAP1(vcnt_v, ctpop, Add1ArgType),
4552   NEONMAP1(vcntq_v, ctpop, Add1ArgType),
4553   NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0),
4554   NEONMAP0(vcvt_f16_v),
4555   NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0),
4556   NEONMAP0(vcvt_f32_v),
4557   NEONMAP2(vcvt_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
4558   NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
4559   NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
4560   NEONMAP1(vcvt_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
4561   NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
4562   NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
4563   NEONMAP1(vcvt_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
4564   NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
4565   NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
4566   NEONMAP0(vcvtq_f16_v),
4567   NEONMAP0(vcvtq_f32_v),
4568   NEONMAP2(vcvtq_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
4569   NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
4570   NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
4571   NEONMAP1(vcvtq_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
4572   NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
4573   NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
4574   NEONMAP1(vcvtq_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
4575   NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
4576   NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
4577   NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType),
4578   NEONMAP2(vdot_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
4579   NEONMAP2(vdotq_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
4580   NEONMAP0(vext_v),
4581   NEONMAP0(vextq_v),
4582   NEONMAP0(vfma_v),
4583   NEONMAP0(vfmaq_v),
4584   NEONMAP1(vfmlal_high_v, aarch64_neon_fmlal2, 0),
4585   NEONMAP1(vfmlal_low_v, aarch64_neon_fmlal, 0),
4586   NEONMAP1(vfmlalq_high_v, aarch64_neon_fmlal2, 0),
4587   NEONMAP1(vfmlalq_low_v, aarch64_neon_fmlal, 0),
4588   NEONMAP1(vfmlsl_high_v, aarch64_neon_fmlsl2, 0),
4589   NEONMAP1(vfmlsl_low_v, aarch64_neon_fmlsl, 0),
4590   NEONMAP1(vfmlslq_high_v, aarch64_neon_fmlsl2, 0),
4591   NEONMAP1(vfmlslq_low_v, aarch64_neon_fmlsl, 0),
4592   NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
4593   NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
4594   NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
4595   NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
4596   NEONMAP1(vld1_x2_v, aarch64_neon_ld1x2, 0),
4597   NEONMAP1(vld1_x3_v, aarch64_neon_ld1x3, 0),
4598   NEONMAP1(vld1_x4_v, aarch64_neon_ld1x4, 0),
4599   NEONMAP1(vld1q_x2_v, aarch64_neon_ld1x2, 0),
4600   NEONMAP1(vld1q_x3_v, aarch64_neon_ld1x3, 0),
4601   NEONMAP1(vld1q_x4_v, aarch64_neon_ld1x4, 0),
4602   NEONMAP0(vmovl_v),
4603   NEONMAP0(vmovn_v),
4604   NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType),
4605   NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType),
4606   NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType),
4607   NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
4608   NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
4609   NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType),
4610   NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType),
4611   NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType),
4612   NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
4613   NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
4614   NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0),
4615   NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0),
4616   NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType),
4617   NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType),
4618   NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType),
4619   NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts),
4620   NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType),
4621   NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType),
4622   NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType),
4623   NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType),
4624   NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType),
4625   NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
4626   NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
4627   NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts),
4628   NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
4629   NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts),
4630   NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
4631   NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0),
4632   NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0),
4633   NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
4634   NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
4635   NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType),
4636   NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
4637   NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
4638   NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType),
4639   NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType),
4640   NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
4641   NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
4642   NEONMAP0(vrndi_v),
4643   NEONMAP0(vrndiq_v),
4644   NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
4645   NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
4646   NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
4647   NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
4648   NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
4649   NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
4650   NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType),
4651   NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType),
4652   NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType),
4653   NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0),
4654   NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0),
4655   NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0),
4656   NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0),
4657   NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0),
4658   NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0),
4659   NEONMAP0(vshl_n_v),
4660   NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
4661   NEONMAP0(vshll_n_v),
4662   NEONMAP0(vshlq_n_v),
4663   NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
4664   NEONMAP0(vshr_n_v),
4665   NEONMAP0(vshrn_n_v),
4666   NEONMAP0(vshrq_n_v),
4667   NEONMAP1(vst1_x2_v, aarch64_neon_st1x2, 0),
4668   NEONMAP1(vst1_x3_v, aarch64_neon_st1x3, 0),
4669   NEONMAP1(vst1_x4_v, aarch64_neon_st1x4, 0),
4670   NEONMAP1(vst1q_x2_v, aarch64_neon_st1x2, 0),
4671   NEONMAP1(vst1q_x3_v, aarch64_neon_st1x3, 0),
4672   NEONMAP1(vst1q_x4_v, aarch64_neon_st1x4, 0),
4673   NEONMAP0(vsubhn_v),
4674   NEONMAP0(vtst_v),
4675   NEONMAP0(vtstq_v),
4676 };
4677 
4678 static const NeonIntrinsicInfo AArch64SISDIntrinsicMap[] = {
4679   NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType),
4680   NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType),
4681   NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType),
4682   NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
4683   NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
4684   NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
4685   NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
4686   NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
4687   NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
4688   NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
4689   NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
4690   NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType),
4691   NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
4692   NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType),
4693   NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
4694   NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
4695   NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
4696   NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
4697   NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
4698   NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
4699   NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
4700   NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
4701   NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
4702   NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
4703   NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
4704   NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
4705   NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
4706   NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
4707   NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
4708   NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
4709   NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
4710   NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
4711   NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
4712   NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
4713   NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
4714   NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
4715   NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
4716   NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
4717   NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
4718   NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
4719   NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
4720   NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
4721   NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
4722   NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
4723   NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
4724   NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
4725   NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
4726   NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
4727   NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0),
4728   NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
4729   NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
4730   NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
4731   NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
4732   NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
4733   NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
4734   NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
4735   NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
4736   NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
4737   NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
4738   NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
4739   NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
4740   NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
4741   NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
4742   NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
4743   NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
4744   NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
4745   NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
4746   NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
4747   NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
4748   NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0),
4749   NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType),
4750   NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType),
4751   NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
4752   NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
4753   NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
4754   NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
4755   NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
4756   NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
4757   NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
4758   NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
4759   NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
4760   NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
4761   NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
4762   NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType),
4763   NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
4764   NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType),
4765   NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
4766   NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
4767   NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType),
4768   NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType),
4769   NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
4770   NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
4771   NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType),
4772   NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType),
4773   NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors),
4774   NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType),
4775   NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors),
4776   NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0),
4777   NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType),
4778   NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType),
4779   NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
4780   NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
4781   NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
4782   NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
4783   NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType),
4784   NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
4785   NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
4786   NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
4787   NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType),
4788   NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
4789   NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType),
4790   NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors),
4791   NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType),
4792   NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
4793   NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
4794   NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType),
4795   NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType),
4796   NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
4797   NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
4798   NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType),
4799   NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType),
4800   NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType),
4801   NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType),
4802   NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
4803   NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
4804   NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
4805   NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
4806   NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType),
4807   NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
4808   NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
4809   NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
4810   NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
4811   NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
4812   NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
4813   NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType),
4814   NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType),
4815   NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
4816   NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
4817   NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
4818   NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
4819   NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType),
4820   NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType),
4821   NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType),
4822   NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType),
4823   NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
4824   NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
4825   NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType),
4826   NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType),
4827   NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType),
4828   NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
4829   NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
4830   NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
4831   NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
4832   NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType),
4833   NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
4834   NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
4835   NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
4836   NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
4837   NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType),
4838   NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType),
4839   NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
4840   NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
4841   NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType),
4842   NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType),
4843   NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType),
4844   NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType),
4845   NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType),
4846   NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType),
4847   NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType),
4848   NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType),
4849   NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType),
4850   NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType),
4851   NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType),
4852   NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType),
4853   NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0),
4854   NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0),
4855   NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0),
4856   NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0),
4857   NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType),
4858   NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType),
4859   NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType),
4860   NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType),
4861   NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
4862   NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType),
4863   NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
4864   NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType),
4865   NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType),
4866   NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType),
4867   NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
4868   NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType),
4869   NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
4870   NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType),
4871   // FP16 scalar intrinisics go here.
4872   NEONMAP1(vabdh_f16, aarch64_sisd_fabd, Add1ArgType),
4873   NEONMAP1(vcvtah_s32_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
4874   NEONMAP1(vcvtah_s64_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
4875   NEONMAP1(vcvtah_u32_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
4876   NEONMAP1(vcvtah_u64_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
4877   NEONMAP1(vcvth_n_f16_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
4878   NEONMAP1(vcvth_n_f16_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
4879   NEONMAP1(vcvth_n_f16_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
4880   NEONMAP1(vcvth_n_f16_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
4881   NEONMAP1(vcvth_n_s32_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
4882   NEONMAP1(vcvth_n_s64_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
4883   NEONMAP1(vcvth_n_u32_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
4884   NEONMAP1(vcvth_n_u64_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
4885   NEONMAP1(vcvtmh_s32_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
4886   NEONMAP1(vcvtmh_s64_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
4887   NEONMAP1(vcvtmh_u32_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
4888   NEONMAP1(vcvtmh_u64_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
4889   NEONMAP1(vcvtnh_s32_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
4890   NEONMAP1(vcvtnh_s64_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
4891   NEONMAP1(vcvtnh_u32_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
4892   NEONMAP1(vcvtnh_u64_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
4893   NEONMAP1(vcvtph_s32_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
4894   NEONMAP1(vcvtph_s64_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
4895   NEONMAP1(vcvtph_u32_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
4896   NEONMAP1(vcvtph_u64_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
4897   NEONMAP1(vmulxh_f16, aarch64_neon_fmulx, Add1ArgType),
4898   NEONMAP1(vrecpeh_f16, aarch64_neon_frecpe, Add1ArgType),
4899   NEONMAP1(vrecpxh_f16, aarch64_neon_frecpx, Add1ArgType),
4900   NEONMAP1(vrsqrteh_f16, aarch64_neon_frsqrte, Add1ArgType),
4901   NEONMAP1(vrsqrtsh_f16, aarch64_neon_frsqrts, Add1ArgType),
4902 };
4903 
4904 #undef NEONMAP0
4905 #undef NEONMAP1
4906 #undef NEONMAP2
4907 
4908 static bool NEONSIMDIntrinsicsProvenSorted = false;
4909 
4910 static bool AArch64SIMDIntrinsicsProvenSorted = false;
4911 static bool AArch64SISDIntrinsicsProvenSorted = false;
4912 
4913 
4914 static const NeonIntrinsicInfo *
findNeonIntrinsicInMap(ArrayRef<NeonIntrinsicInfo> IntrinsicMap,unsigned BuiltinID,bool & MapProvenSorted)4915 findNeonIntrinsicInMap(ArrayRef<NeonIntrinsicInfo> IntrinsicMap,
4916                        unsigned BuiltinID, bool &MapProvenSorted) {
4917 
4918 #ifndef NDEBUG
4919   if (!MapProvenSorted) {
4920     assert(std::is_sorted(std::begin(IntrinsicMap), std::end(IntrinsicMap)));
4921     MapProvenSorted = true;
4922   }
4923 #endif
4924 
4925   const NeonIntrinsicInfo *Builtin =
4926       std::lower_bound(IntrinsicMap.begin(), IntrinsicMap.end(), BuiltinID);
4927 
4928   if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID)
4929     return Builtin;
4930 
4931   return nullptr;
4932 }
4933 
LookupNeonLLVMIntrinsic(unsigned IntrinsicID,unsigned Modifier,llvm::Type * ArgType,const CallExpr * E)4934 Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
4935                                                    unsigned Modifier,
4936                                                    llvm::Type *ArgType,
4937                                                    const CallExpr *E) {
4938   int VectorSize = 0;
4939   if (Modifier & Use64BitVectors)
4940     VectorSize = 64;
4941   else if (Modifier & Use128BitVectors)
4942     VectorSize = 128;
4943 
4944   // Return type.
4945   SmallVector<llvm::Type *, 3> Tys;
4946   if (Modifier & AddRetType) {
4947     llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
4948     if (Modifier & VectorizeRetType)
4949       Ty = llvm::VectorType::get(
4950           Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1);
4951 
4952     Tys.push_back(Ty);
4953   }
4954 
4955   // Arguments.
4956   if (Modifier & VectorizeArgTypes) {
4957     int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1;
4958     ArgType = llvm::VectorType::get(ArgType, Elts);
4959   }
4960 
4961   if (Modifier & (Add1ArgType | Add2ArgTypes))
4962     Tys.push_back(ArgType);
4963 
4964   if (Modifier & Add2ArgTypes)
4965     Tys.push_back(ArgType);
4966 
4967   if (Modifier & InventFloatType)
4968     Tys.push_back(FloatTy);
4969 
4970   return CGM.getIntrinsic(IntrinsicID, Tys);
4971 }
4972 
EmitCommonNeonSISDBuiltinExpr(CodeGenFunction & CGF,const NeonIntrinsicInfo & SISDInfo,SmallVectorImpl<Value * > & Ops,const CallExpr * E)4973 static Value *EmitCommonNeonSISDBuiltinExpr(CodeGenFunction &CGF,
4974                                             const NeonIntrinsicInfo &SISDInfo,
4975                                             SmallVectorImpl<Value *> &Ops,
4976                                             const CallExpr *E) {
4977   unsigned BuiltinID = SISDInfo.BuiltinID;
4978   unsigned int Int = SISDInfo.LLVMIntrinsic;
4979   unsigned Modifier = SISDInfo.TypeModifier;
4980   const char *s = SISDInfo.NameHint;
4981 
4982   switch (BuiltinID) {
4983   case NEON::BI__builtin_neon_vcled_s64:
4984   case NEON::BI__builtin_neon_vcled_u64:
4985   case NEON::BI__builtin_neon_vcles_f32:
4986   case NEON::BI__builtin_neon_vcled_f64:
4987   case NEON::BI__builtin_neon_vcltd_s64:
4988   case NEON::BI__builtin_neon_vcltd_u64:
4989   case NEON::BI__builtin_neon_vclts_f32:
4990   case NEON::BI__builtin_neon_vcltd_f64:
4991   case NEON::BI__builtin_neon_vcales_f32:
4992   case NEON::BI__builtin_neon_vcaled_f64:
4993   case NEON::BI__builtin_neon_vcalts_f32:
4994   case NEON::BI__builtin_neon_vcaltd_f64:
4995     // Only one direction of comparisons actually exist, cmle is actually a cmge
4996     // with swapped operands. The table gives us the right intrinsic but we
4997     // still need to do the swap.
4998     std::swap(Ops[0], Ops[1]);
4999     break;
5000   }
5001 
5002   assert(Int && "Generic code assumes a valid intrinsic");
5003 
5004   // Determine the type(s) of this overloaded AArch64 intrinsic.
5005   const Expr *Arg = E->getArg(0);
5006   llvm::Type *ArgTy = CGF.ConvertType(Arg->getType());
5007   Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E);
5008 
5009   int j = 0;
5010   ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0);
5011   for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
5012        ai != ae; ++ai, ++j) {
5013     llvm::Type *ArgTy = ai->getType();
5014     if (Ops[j]->getType()->getPrimitiveSizeInBits() ==
5015              ArgTy->getPrimitiveSizeInBits())
5016       continue;
5017 
5018     assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy());
5019     // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate
5020     // it before inserting.
5021     Ops[j] =
5022         CGF.Builder.CreateTruncOrBitCast(Ops[j], ArgTy->getVectorElementType());
5023     Ops[j] =
5024         CGF.Builder.CreateInsertElement(UndefValue::get(ArgTy), Ops[j], C0);
5025   }
5026 
5027   Value *Result = CGF.EmitNeonCall(F, Ops, s);
5028   llvm::Type *ResultType = CGF.ConvertType(E->getType());
5029   if (ResultType->getPrimitiveSizeInBits() <
5030       Result->getType()->getPrimitiveSizeInBits())
5031     return CGF.Builder.CreateExtractElement(Result, C0);
5032 
5033   return CGF.Builder.CreateBitCast(Result, ResultType, s);
5034 }
5035 
EmitCommonNeonBuiltinExpr(unsigned BuiltinID,unsigned LLVMIntrinsic,unsigned AltLLVMIntrinsic,const char * NameHint,unsigned Modifier,const CallExpr * E,SmallVectorImpl<llvm::Value * > & Ops,Address PtrOp0,Address PtrOp1,llvm::Triple::ArchType Arch)5036 Value *CodeGenFunction::EmitCommonNeonBuiltinExpr(
5037     unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic,
5038     const char *NameHint, unsigned Modifier, const CallExpr *E,
5039     SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1,
5040     llvm::Triple::ArchType Arch) {
5041   // Get the last argument, which specifies the vector type.
5042   llvm::APSInt NeonTypeConst;
5043   const Expr *Arg = E->getArg(E->getNumArgs() - 1);
5044   if (!Arg->isIntegerConstantExpr(NeonTypeConst, getContext()))
5045     return nullptr;
5046 
5047   // Determine the type of this overloaded NEON intrinsic.
5048   NeonTypeFlags Type(NeonTypeConst.getZExtValue());
5049   bool Usgn = Type.isUnsigned();
5050   bool Quad = Type.isQuad();
5051   const bool HasLegalHalfType = getTarget().hasLegalHalfType();
5052 
5053   llvm::VectorType *VTy = GetNeonType(this, Type, HasLegalHalfType);
5054   llvm::Type *Ty = VTy;
5055   if (!Ty)
5056     return nullptr;
5057 
5058   auto getAlignmentValue32 = [&](Address addr) -> Value* {
5059     return Builder.getInt32(addr.getAlignment().getQuantity());
5060   };
5061 
5062   unsigned Int = LLVMIntrinsic;
5063   if ((Modifier & UnsignedAlts) && !Usgn)
5064     Int = AltLLVMIntrinsic;
5065 
5066   switch (BuiltinID) {
5067   default: break;
5068   case NEON::BI__builtin_neon_vabs_v:
5069   case NEON::BI__builtin_neon_vabsq_v:
5070     if (VTy->getElementType()->isFloatingPointTy())
5071       return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs");
5072     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs");
5073   case NEON::BI__builtin_neon_vaddhn_v: {
5074     llvm::VectorType *SrcTy =
5075         llvm::VectorType::getExtendedElementVectorType(VTy);
5076 
5077     // %sum = add <4 x i32> %lhs, %rhs
5078     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
5079     Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
5080     Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn");
5081 
5082     // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
5083     Constant *ShiftAmt =
5084         ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
5085     Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn");
5086 
5087     // %res = trunc <4 x i32> %high to <4 x i16>
5088     return Builder.CreateTrunc(Ops[0], VTy, "vaddhn");
5089   }
5090   case NEON::BI__builtin_neon_vcale_v:
5091   case NEON::BI__builtin_neon_vcaleq_v:
5092   case NEON::BI__builtin_neon_vcalt_v:
5093   case NEON::BI__builtin_neon_vcaltq_v:
5094     std::swap(Ops[0], Ops[1]);
5095     LLVM_FALLTHROUGH;
5096   case NEON::BI__builtin_neon_vcage_v:
5097   case NEON::BI__builtin_neon_vcageq_v:
5098   case NEON::BI__builtin_neon_vcagt_v:
5099   case NEON::BI__builtin_neon_vcagtq_v: {
5100     llvm::Type *Ty;
5101     switch (VTy->getScalarSizeInBits()) {
5102     default: llvm_unreachable("unexpected type");
5103     case 32:
5104       Ty = FloatTy;
5105       break;
5106     case 64:
5107       Ty = DoubleTy;
5108       break;
5109     case 16:
5110       Ty = HalfTy;
5111       break;
5112     }
5113     llvm::Type *VecFlt = llvm::VectorType::get(Ty, VTy->getNumElements());
5114     llvm::Type *Tys[] = { VTy, VecFlt };
5115     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5116     return EmitNeonCall(F, Ops, NameHint);
5117   }
5118   case NEON::BI__builtin_neon_vceqz_v:
5119   case NEON::BI__builtin_neon_vceqzq_v:
5120     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ,
5121                                          ICmpInst::ICMP_EQ, "vceqz");
5122   case NEON::BI__builtin_neon_vcgez_v:
5123   case NEON::BI__builtin_neon_vcgezq_v:
5124     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE,
5125                                          ICmpInst::ICMP_SGE, "vcgez");
5126   case NEON::BI__builtin_neon_vclez_v:
5127   case NEON::BI__builtin_neon_vclezq_v:
5128     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE,
5129                                          ICmpInst::ICMP_SLE, "vclez");
5130   case NEON::BI__builtin_neon_vcgtz_v:
5131   case NEON::BI__builtin_neon_vcgtzq_v:
5132     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT,
5133                                          ICmpInst::ICMP_SGT, "vcgtz");
5134   case NEON::BI__builtin_neon_vcltz_v:
5135   case NEON::BI__builtin_neon_vcltzq_v:
5136     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT,
5137                                          ICmpInst::ICMP_SLT, "vcltz");
5138   case NEON::BI__builtin_neon_vclz_v:
5139   case NEON::BI__builtin_neon_vclzq_v:
5140     // We generate target-independent intrinsic, which needs a second argument
5141     // for whether or not clz of zero is undefined; on ARM it isn't.
5142     Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
5143     break;
5144   case NEON::BI__builtin_neon_vcvt_f32_v:
5145   case NEON::BI__builtin_neon_vcvtq_f32_v:
5146     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5147     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad),
5148                      HasLegalHalfType);
5149     return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
5150                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
5151   case NEON::BI__builtin_neon_vcvt_f16_v:
5152   case NEON::BI__builtin_neon_vcvtq_f16_v:
5153     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5154     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float16, false, Quad),
5155                      HasLegalHalfType);
5156     return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
5157                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
5158   case NEON::BI__builtin_neon_vcvt_n_f16_v:
5159   case NEON::BI__builtin_neon_vcvt_n_f32_v:
5160   case NEON::BI__builtin_neon_vcvt_n_f64_v:
5161   case NEON::BI__builtin_neon_vcvtq_n_f16_v:
5162   case NEON::BI__builtin_neon_vcvtq_n_f32_v:
5163   case NEON::BI__builtin_neon_vcvtq_n_f64_v: {
5164     llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty };
5165     Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
5166     Function *F = CGM.getIntrinsic(Int, Tys);
5167     return EmitNeonCall(F, Ops, "vcvt_n");
5168   }
5169   case NEON::BI__builtin_neon_vcvt_n_s16_v:
5170   case NEON::BI__builtin_neon_vcvt_n_s32_v:
5171   case NEON::BI__builtin_neon_vcvt_n_u16_v:
5172   case NEON::BI__builtin_neon_vcvt_n_u32_v:
5173   case NEON::BI__builtin_neon_vcvt_n_s64_v:
5174   case NEON::BI__builtin_neon_vcvt_n_u64_v:
5175   case NEON::BI__builtin_neon_vcvtq_n_s16_v:
5176   case NEON::BI__builtin_neon_vcvtq_n_s32_v:
5177   case NEON::BI__builtin_neon_vcvtq_n_u16_v:
5178   case NEON::BI__builtin_neon_vcvtq_n_u32_v:
5179   case NEON::BI__builtin_neon_vcvtq_n_s64_v:
5180   case NEON::BI__builtin_neon_vcvtq_n_u64_v: {
5181     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
5182     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5183     return EmitNeonCall(F, Ops, "vcvt_n");
5184   }
5185   case NEON::BI__builtin_neon_vcvt_s32_v:
5186   case NEON::BI__builtin_neon_vcvt_u32_v:
5187   case NEON::BI__builtin_neon_vcvt_s64_v:
5188   case NEON::BI__builtin_neon_vcvt_u64_v:
5189   case NEON::BI__builtin_neon_vcvt_s16_v:
5190   case NEON::BI__builtin_neon_vcvt_u16_v:
5191   case NEON::BI__builtin_neon_vcvtq_s32_v:
5192   case NEON::BI__builtin_neon_vcvtq_u32_v:
5193   case NEON::BI__builtin_neon_vcvtq_s64_v:
5194   case NEON::BI__builtin_neon_vcvtq_u64_v:
5195   case NEON::BI__builtin_neon_vcvtq_s16_v:
5196   case NEON::BI__builtin_neon_vcvtq_u16_v: {
5197     Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
5198     return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
5199                 : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
5200   }
5201   case NEON::BI__builtin_neon_vcvta_s16_v:
5202   case NEON::BI__builtin_neon_vcvta_s32_v:
5203   case NEON::BI__builtin_neon_vcvta_s64_v:
5204   case NEON::BI__builtin_neon_vcvta_u16_v:
5205   case NEON::BI__builtin_neon_vcvta_u32_v:
5206   case NEON::BI__builtin_neon_vcvta_u64_v:
5207   case NEON::BI__builtin_neon_vcvtaq_s16_v:
5208   case NEON::BI__builtin_neon_vcvtaq_s32_v:
5209   case NEON::BI__builtin_neon_vcvtaq_s64_v:
5210   case NEON::BI__builtin_neon_vcvtaq_u16_v:
5211   case NEON::BI__builtin_neon_vcvtaq_u32_v:
5212   case NEON::BI__builtin_neon_vcvtaq_u64_v:
5213   case NEON::BI__builtin_neon_vcvtn_s16_v:
5214   case NEON::BI__builtin_neon_vcvtn_s32_v:
5215   case NEON::BI__builtin_neon_vcvtn_s64_v:
5216   case NEON::BI__builtin_neon_vcvtn_u16_v:
5217   case NEON::BI__builtin_neon_vcvtn_u32_v:
5218   case NEON::BI__builtin_neon_vcvtn_u64_v:
5219   case NEON::BI__builtin_neon_vcvtnq_s16_v:
5220   case NEON::BI__builtin_neon_vcvtnq_s32_v:
5221   case NEON::BI__builtin_neon_vcvtnq_s64_v:
5222   case NEON::BI__builtin_neon_vcvtnq_u16_v:
5223   case NEON::BI__builtin_neon_vcvtnq_u32_v:
5224   case NEON::BI__builtin_neon_vcvtnq_u64_v:
5225   case NEON::BI__builtin_neon_vcvtp_s16_v:
5226   case NEON::BI__builtin_neon_vcvtp_s32_v:
5227   case NEON::BI__builtin_neon_vcvtp_s64_v:
5228   case NEON::BI__builtin_neon_vcvtp_u16_v:
5229   case NEON::BI__builtin_neon_vcvtp_u32_v:
5230   case NEON::BI__builtin_neon_vcvtp_u64_v:
5231   case NEON::BI__builtin_neon_vcvtpq_s16_v:
5232   case NEON::BI__builtin_neon_vcvtpq_s32_v:
5233   case NEON::BI__builtin_neon_vcvtpq_s64_v:
5234   case NEON::BI__builtin_neon_vcvtpq_u16_v:
5235   case NEON::BI__builtin_neon_vcvtpq_u32_v:
5236   case NEON::BI__builtin_neon_vcvtpq_u64_v:
5237   case NEON::BI__builtin_neon_vcvtm_s16_v:
5238   case NEON::BI__builtin_neon_vcvtm_s32_v:
5239   case NEON::BI__builtin_neon_vcvtm_s64_v:
5240   case NEON::BI__builtin_neon_vcvtm_u16_v:
5241   case NEON::BI__builtin_neon_vcvtm_u32_v:
5242   case NEON::BI__builtin_neon_vcvtm_u64_v:
5243   case NEON::BI__builtin_neon_vcvtmq_s16_v:
5244   case NEON::BI__builtin_neon_vcvtmq_s32_v:
5245   case NEON::BI__builtin_neon_vcvtmq_s64_v:
5246   case NEON::BI__builtin_neon_vcvtmq_u16_v:
5247   case NEON::BI__builtin_neon_vcvtmq_u32_v:
5248   case NEON::BI__builtin_neon_vcvtmq_u64_v: {
5249     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
5250     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
5251   }
5252   case NEON::BI__builtin_neon_vext_v:
5253   case NEON::BI__builtin_neon_vextq_v: {
5254     int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
5255     SmallVector<uint32_t, 16> Indices;
5256     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
5257       Indices.push_back(i+CV);
5258 
5259     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5260     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5261     return Builder.CreateShuffleVector(Ops[0], Ops[1], Indices, "vext");
5262   }
5263   case NEON::BI__builtin_neon_vfma_v:
5264   case NEON::BI__builtin_neon_vfmaq_v: {
5265     Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
5266     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5267     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5268     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5269 
5270     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
5271     return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
5272   }
5273   case NEON::BI__builtin_neon_vld1_v:
5274   case NEON::BI__builtin_neon_vld1q_v: {
5275     llvm::Type *Tys[] = {Ty, Int8PtrTy};
5276     Ops.push_back(getAlignmentValue32(PtrOp0));
5277     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1");
5278   }
5279   case NEON::BI__builtin_neon_vld1_x2_v:
5280   case NEON::BI__builtin_neon_vld1q_x2_v:
5281   case NEON::BI__builtin_neon_vld1_x3_v:
5282   case NEON::BI__builtin_neon_vld1q_x3_v:
5283   case NEON::BI__builtin_neon_vld1_x4_v:
5284   case NEON::BI__builtin_neon_vld1q_x4_v: {
5285     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType());
5286     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
5287     llvm::Type *Tys[2] = { VTy, PTy };
5288     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5289     Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN");
5290     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5291     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5292     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
5293   }
5294   case NEON::BI__builtin_neon_vld2_v:
5295   case NEON::BI__builtin_neon_vld2q_v:
5296   case NEON::BI__builtin_neon_vld3_v:
5297   case NEON::BI__builtin_neon_vld3q_v:
5298   case NEON::BI__builtin_neon_vld4_v:
5299   case NEON::BI__builtin_neon_vld4q_v:
5300   case NEON::BI__builtin_neon_vld2_dup_v:
5301   case NEON::BI__builtin_neon_vld2q_dup_v:
5302   case NEON::BI__builtin_neon_vld3_dup_v:
5303   case NEON::BI__builtin_neon_vld3q_dup_v:
5304   case NEON::BI__builtin_neon_vld4_dup_v:
5305   case NEON::BI__builtin_neon_vld4q_dup_v: {
5306     llvm::Type *Tys[] = {Ty, Int8PtrTy};
5307     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5308     Value *Align = getAlignmentValue32(PtrOp1);
5309     Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint);
5310     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5311     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5312     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
5313   }
5314   case NEON::BI__builtin_neon_vld1_dup_v:
5315   case NEON::BI__builtin_neon_vld1q_dup_v: {
5316     Value *V = UndefValue::get(Ty);
5317     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
5318     PtrOp0 = Builder.CreateBitCast(PtrOp0, Ty);
5319     LoadInst *Ld = Builder.CreateLoad(PtrOp0);
5320     llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
5321     Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
5322     return EmitNeonSplat(Ops[0], CI);
5323   }
5324   case NEON::BI__builtin_neon_vld2_lane_v:
5325   case NEON::BI__builtin_neon_vld2q_lane_v:
5326   case NEON::BI__builtin_neon_vld3_lane_v:
5327   case NEON::BI__builtin_neon_vld3q_lane_v:
5328   case NEON::BI__builtin_neon_vld4_lane_v:
5329   case NEON::BI__builtin_neon_vld4q_lane_v: {
5330     llvm::Type *Tys[] = {Ty, Int8PtrTy};
5331     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
5332     for (unsigned I = 2; I < Ops.size() - 1; ++I)
5333       Ops[I] = Builder.CreateBitCast(Ops[I], Ty);
5334     Ops.push_back(getAlignmentValue32(PtrOp1));
5335     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), NameHint);
5336     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5337     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5338     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
5339   }
5340   case NEON::BI__builtin_neon_vmovl_v: {
5341     llvm::Type *DTy =llvm::VectorType::getTruncatedElementVectorType(VTy);
5342     Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
5343     if (Usgn)
5344       return Builder.CreateZExt(Ops[0], Ty, "vmovl");
5345     return Builder.CreateSExt(Ops[0], Ty, "vmovl");
5346   }
5347   case NEON::BI__builtin_neon_vmovn_v: {
5348     llvm::Type *QTy = llvm::VectorType::getExtendedElementVectorType(VTy);
5349     Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
5350     return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
5351   }
5352   case NEON::BI__builtin_neon_vmull_v:
5353     // FIXME: the integer vmull operations could be emitted in terms of pure
5354     // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
5355     // hoisting the exts outside loops. Until global ISel comes along that can
5356     // see through such movement this leads to bad CodeGen. So we need an
5357     // intrinsic for now.
5358     Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
5359     Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
5360     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
5361   case NEON::BI__builtin_neon_vpadal_v:
5362   case NEON::BI__builtin_neon_vpadalq_v: {
5363     // The source operand type has twice as many elements of half the size.
5364     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
5365     llvm::Type *EltTy =
5366       llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
5367     llvm::Type *NarrowTy =
5368       llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
5369     llvm::Type *Tys[2] = { Ty, NarrowTy };
5370     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
5371   }
5372   case NEON::BI__builtin_neon_vpaddl_v:
5373   case NEON::BI__builtin_neon_vpaddlq_v: {
5374     // The source operand type has twice as many elements of half the size.
5375     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
5376     llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
5377     llvm::Type *NarrowTy =
5378       llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
5379     llvm::Type *Tys[2] = { Ty, NarrowTy };
5380     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
5381   }
5382   case NEON::BI__builtin_neon_vqdmlal_v:
5383   case NEON::BI__builtin_neon_vqdmlsl_v: {
5384     SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
5385     Ops[1] =
5386         EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal");
5387     Ops.resize(2);
5388     return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint);
5389   }
5390   case NEON::BI__builtin_neon_vqshl_n_v:
5391   case NEON::BI__builtin_neon_vqshlq_n_v:
5392     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
5393                         1, false);
5394   case NEON::BI__builtin_neon_vqshlu_n_v:
5395   case NEON::BI__builtin_neon_vqshluq_n_v:
5396     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n",
5397                         1, false);
5398   case NEON::BI__builtin_neon_vrecpe_v:
5399   case NEON::BI__builtin_neon_vrecpeq_v:
5400   case NEON::BI__builtin_neon_vrsqrte_v:
5401   case NEON::BI__builtin_neon_vrsqrteq_v:
5402     Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic;
5403     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
5404   case NEON::BI__builtin_neon_vrndi_v:
5405   case NEON::BI__builtin_neon_vrndiq_v:
5406     Int = Intrinsic::nearbyint;
5407     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
5408   case NEON::BI__builtin_neon_vrshr_n_v:
5409   case NEON::BI__builtin_neon_vrshrq_n_v:
5410     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n",
5411                         1, true);
5412   case NEON::BI__builtin_neon_vshl_n_v:
5413   case NEON::BI__builtin_neon_vshlq_n_v:
5414     Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
5415     return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
5416                              "vshl_n");
5417   case NEON::BI__builtin_neon_vshll_n_v: {
5418     llvm::Type *SrcTy = llvm::VectorType::getTruncatedElementVectorType(VTy);
5419     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
5420     if (Usgn)
5421       Ops[0] = Builder.CreateZExt(Ops[0], VTy);
5422     else
5423       Ops[0] = Builder.CreateSExt(Ops[0], VTy);
5424     Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false);
5425     return Builder.CreateShl(Ops[0], Ops[1], "vshll_n");
5426   }
5427   case NEON::BI__builtin_neon_vshrn_n_v: {
5428     llvm::Type *SrcTy = llvm::VectorType::getExtendedElementVectorType(VTy);
5429     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
5430     Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false);
5431     if (Usgn)
5432       Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]);
5433     else
5434       Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]);
5435     return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n");
5436   }
5437   case NEON::BI__builtin_neon_vshr_n_v:
5438   case NEON::BI__builtin_neon_vshrq_n_v:
5439     return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n");
5440   case NEON::BI__builtin_neon_vst1_v:
5441   case NEON::BI__builtin_neon_vst1q_v:
5442   case NEON::BI__builtin_neon_vst2_v:
5443   case NEON::BI__builtin_neon_vst2q_v:
5444   case NEON::BI__builtin_neon_vst3_v:
5445   case NEON::BI__builtin_neon_vst3q_v:
5446   case NEON::BI__builtin_neon_vst4_v:
5447   case NEON::BI__builtin_neon_vst4q_v:
5448   case NEON::BI__builtin_neon_vst2_lane_v:
5449   case NEON::BI__builtin_neon_vst2q_lane_v:
5450   case NEON::BI__builtin_neon_vst3_lane_v:
5451   case NEON::BI__builtin_neon_vst3q_lane_v:
5452   case NEON::BI__builtin_neon_vst4_lane_v:
5453   case NEON::BI__builtin_neon_vst4q_lane_v: {
5454     llvm::Type *Tys[] = {Int8PtrTy, Ty};
5455     Ops.push_back(getAlignmentValue32(PtrOp0));
5456     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "");
5457   }
5458   case NEON::BI__builtin_neon_vst1_x2_v:
5459   case NEON::BI__builtin_neon_vst1q_x2_v:
5460   case NEON::BI__builtin_neon_vst1_x3_v:
5461   case NEON::BI__builtin_neon_vst1q_x3_v:
5462   case NEON::BI__builtin_neon_vst1_x4_v:
5463   case NEON::BI__builtin_neon_vst1q_x4_v: {
5464     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType());
5465     // TODO: Currently in AArch32 mode the pointer operand comes first, whereas
5466     // in AArch64 it comes last. We may want to stick to one or another.
5467     if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be) {
5468       llvm::Type *Tys[2] = { VTy, PTy };
5469       std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
5470       return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
5471     }
5472     llvm::Type *Tys[2] = { PTy, VTy };
5473     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
5474   }
5475   case NEON::BI__builtin_neon_vsubhn_v: {
5476     llvm::VectorType *SrcTy =
5477         llvm::VectorType::getExtendedElementVectorType(VTy);
5478 
5479     // %sum = add <4 x i32> %lhs, %rhs
5480     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
5481     Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
5482     Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn");
5483 
5484     // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
5485     Constant *ShiftAmt =
5486         ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
5487     Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn");
5488 
5489     // %res = trunc <4 x i32> %high to <4 x i16>
5490     return Builder.CreateTrunc(Ops[0], VTy, "vsubhn");
5491   }
5492   case NEON::BI__builtin_neon_vtrn_v:
5493   case NEON::BI__builtin_neon_vtrnq_v: {
5494     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
5495     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5496     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5497     Value *SV = nullptr;
5498 
5499     for (unsigned vi = 0; vi != 2; ++vi) {
5500       SmallVector<uint32_t, 16> Indices;
5501       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
5502         Indices.push_back(i+vi);
5503         Indices.push_back(i+e+vi);
5504       }
5505       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
5506       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
5507       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
5508     }
5509     return SV;
5510   }
5511   case NEON::BI__builtin_neon_vtst_v:
5512   case NEON::BI__builtin_neon_vtstq_v: {
5513     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5514     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5515     Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
5516     Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
5517                                 ConstantAggregateZero::get(Ty));
5518     return Builder.CreateSExt(Ops[0], Ty, "vtst");
5519   }
5520   case NEON::BI__builtin_neon_vuzp_v:
5521   case NEON::BI__builtin_neon_vuzpq_v: {
5522     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
5523     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5524     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5525     Value *SV = nullptr;
5526 
5527     for (unsigned vi = 0; vi != 2; ++vi) {
5528       SmallVector<uint32_t, 16> Indices;
5529       for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
5530         Indices.push_back(2*i+vi);
5531 
5532       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
5533       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
5534       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
5535     }
5536     return SV;
5537   }
5538   case NEON::BI__builtin_neon_vzip_v:
5539   case NEON::BI__builtin_neon_vzipq_v: {
5540     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
5541     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5542     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5543     Value *SV = nullptr;
5544 
5545     for (unsigned vi = 0; vi != 2; ++vi) {
5546       SmallVector<uint32_t, 16> Indices;
5547       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
5548         Indices.push_back((i + vi*e) >> 1);
5549         Indices.push_back(((i + vi*e) >> 1)+e);
5550       }
5551       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
5552       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
5553       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
5554     }
5555     return SV;
5556   }
5557   case NEON::BI__builtin_neon_vdot_v:
5558   case NEON::BI__builtin_neon_vdotq_v: {
5559     llvm::Type *InputTy =
5560         llvm::VectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
5561     llvm::Type *Tys[2] = { Ty, InputTy };
5562     Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
5563     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vdot");
5564   }
5565   case NEON::BI__builtin_neon_vfmlal_low_v:
5566   case NEON::BI__builtin_neon_vfmlalq_low_v: {
5567     llvm::Type *InputTy =
5568         llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
5569     llvm::Type *Tys[2] = { Ty, InputTy };
5570     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_low");
5571   }
5572   case NEON::BI__builtin_neon_vfmlsl_low_v:
5573   case NEON::BI__builtin_neon_vfmlslq_low_v: {
5574     llvm::Type *InputTy =
5575         llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
5576     llvm::Type *Tys[2] = { Ty, InputTy };
5577     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_low");
5578   }
5579   case NEON::BI__builtin_neon_vfmlal_high_v:
5580   case NEON::BI__builtin_neon_vfmlalq_high_v: {
5581     llvm::Type *InputTy =
5582            llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
5583     llvm::Type *Tys[2] = { Ty, InputTy };
5584     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_high");
5585   }
5586   case NEON::BI__builtin_neon_vfmlsl_high_v:
5587   case NEON::BI__builtin_neon_vfmlslq_high_v: {
5588     llvm::Type *InputTy =
5589            llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
5590     llvm::Type *Tys[2] = { Ty, InputTy };
5591     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_high");
5592   }
5593   }
5594 
5595   assert(Int && "Expected valid intrinsic number");
5596 
5597   // Determine the type(s) of this overloaded AArch64 intrinsic.
5598   Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E);
5599 
5600   Value *Result = EmitNeonCall(F, Ops, NameHint);
5601   llvm::Type *ResultType = ConvertType(E->getType());
5602   // AArch64 intrinsic one-element vector type cast to
5603   // scalar type expected by the builtin
5604   return Builder.CreateBitCast(Result, ResultType, NameHint);
5605 }
5606 
EmitAArch64CompareBuiltinExpr(Value * Op,llvm::Type * Ty,const CmpInst::Predicate Fp,const CmpInst::Predicate Ip,const Twine & Name)5607 Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr(
5608     Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp,
5609     const CmpInst::Predicate Ip, const Twine &Name) {
5610   llvm::Type *OTy = Op->getType();
5611 
5612   // FIXME: this is utterly horrific. We should not be looking at previous
5613   // codegen context to find out what needs doing. Unfortunately TableGen
5614   // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32
5615   // (etc).
5616   if (BitCastInst *BI = dyn_cast<BitCastInst>(Op))
5617     OTy = BI->getOperand(0)->getType();
5618 
5619   Op = Builder.CreateBitCast(Op, OTy);
5620   if (OTy->getScalarType()->isFloatingPointTy()) {
5621     Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy));
5622   } else {
5623     Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy));
5624   }
5625   return Builder.CreateSExt(Op, Ty, Name);
5626 }
5627 
packTBLDVectorList(CodeGenFunction & CGF,ArrayRef<Value * > Ops,Value * ExtOp,Value * IndexOp,llvm::Type * ResTy,unsigned IntID,const char * Name)5628 static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
5629                                  Value *ExtOp, Value *IndexOp,
5630                                  llvm::Type *ResTy, unsigned IntID,
5631                                  const char *Name) {
5632   SmallVector<Value *, 2> TblOps;
5633   if (ExtOp)
5634     TblOps.push_back(ExtOp);
5635 
5636   // Build a vector containing sequential number like (0, 1, 2, ..., 15)
5637   SmallVector<uint32_t, 16> Indices;
5638   llvm::VectorType *TblTy = cast<llvm::VectorType>(Ops[0]->getType());
5639   for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) {
5640     Indices.push_back(2*i);
5641     Indices.push_back(2*i+1);
5642   }
5643 
5644   int PairPos = 0, End = Ops.size() - 1;
5645   while (PairPos < End) {
5646     TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
5647                                                      Ops[PairPos+1], Indices,
5648                                                      Name));
5649     PairPos += 2;
5650   }
5651 
5652   // If there's an odd number of 64-bit lookup table, fill the high 64-bit
5653   // of the 128-bit lookup table with zero.
5654   if (PairPos == End) {
5655     Value *ZeroTbl = ConstantAggregateZero::get(TblTy);
5656     TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
5657                                                      ZeroTbl, Indices, Name));
5658   }
5659 
5660   Function *TblF;
5661   TblOps.push_back(IndexOp);
5662   TblF = CGF.CGM.getIntrinsic(IntID, ResTy);
5663 
5664   return CGF.EmitNeonCall(TblF, TblOps, Name);
5665 }
5666 
GetValueForARMHint(unsigned BuiltinID)5667 Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) {
5668   unsigned Value;
5669   switch (BuiltinID) {
5670   default:
5671     return nullptr;
5672   case ARM::BI__builtin_arm_nop:
5673     Value = 0;
5674     break;
5675   case ARM::BI__builtin_arm_yield:
5676   case ARM::BI__yield:
5677     Value = 1;
5678     break;
5679   case ARM::BI__builtin_arm_wfe:
5680   case ARM::BI__wfe:
5681     Value = 2;
5682     break;
5683   case ARM::BI__builtin_arm_wfi:
5684   case ARM::BI__wfi:
5685     Value = 3;
5686     break;
5687   case ARM::BI__builtin_arm_sev:
5688   case ARM::BI__sev:
5689     Value = 4;
5690     break;
5691   case ARM::BI__builtin_arm_sevl:
5692   case ARM::BI__sevl:
5693     Value = 5;
5694     break;
5695   }
5696 
5697   return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
5698                             llvm::ConstantInt::get(Int32Ty, Value));
5699 }
5700 
5701 // Generates the IR for the read/write special register builtin,
5702 // ValueType is the type of the value that is to be written or read,
5703 // RegisterType is the type of the register being written to or read from.
EmitSpecialRegisterBuiltin(CodeGenFunction & CGF,const CallExpr * E,llvm::Type * RegisterType,llvm::Type * ValueType,bool IsRead,StringRef SysReg="")5704 static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF,
5705                                          const CallExpr *E,
5706                                          llvm::Type *RegisterType,
5707                                          llvm::Type *ValueType,
5708                                          bool IsRead,
5709                                          StringRef SysReg = "") {
5710   // write and register intrinsics only support 32 and 64 bit operations.
5711   assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64))
5712           && "Unsupported size for register.");
5713 
5714   CodeGen::CGBuilderTy &Builder = CGF.Builder;
5715   CodeGen::CodeGenModule &CGM = CGF.CGM;
5716   LLVMContext &Context = CGM.getLLVMContext();
5717 
5718   if (SysReg.empty()) {
5719     const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts();
5720     SysReg = cast<clang::StringLiteral>(SysRegStrExpr)->getString();
5721   }
5722 
5723   llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) };
5724   llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
5725   llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
5726 
5727   llvm::Type *Types[] = { RegisterType };
5728 
5729   bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32);
5730   assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64))
5731             && "Can't fit 64-bit value in 32-bit register");
5732 
5733   if (IsRead) {
5734     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
5735     llvm::Value *Call = Builder.CreateCall(F, Metadata);
5736 
5737     if (MixedTypes)
5738       // Read into 64 bit register and then truncate result to 32 bit.
5739       return Builder.CreateTrunc(Call, ValueType);
5740 
5741     if (ValueType->isPointerTy())
5742       // Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*).
5743       return Builder.CreateIntToPtr(Call, ValueType);
5744 
5745     return Call;
5746   }
5747 
5748   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
5749   llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1));
5750   if (MixedTypes) {
5751     // Extend 32 bit write value to 64 bit to pass to write.
5752     ArgValue = Builder.CreateZExt(ArgValue, RegisterType);
5753     return Builder.CreateCall(F, { Metadata, ArgValue });
5754   }
5755 
5756   if (ValueType->isPointerTy()) {
5757     // Have VoidPtrTy ArgValue but want to return an i32/i64.
5758     ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType);
5759     return Builder.CreateCall(F, { Metadata, ArgValue });
5760   }
5761 
5762   return Builder.CreateCall(F, { Metadata, ArgValue });
5763 }
5764 
5765 /// Return true if BuiltinID is an overloaded Neon intrinsic with an extra
5766 /// argument that specifies the vector type.
HasExtraNeonArgument(unsigned BuiltinID)5767 static bool HasExtraNeonArgument(unsigned BuiltinID) {
5768   switch (BuiltinID) {
5769   default: break;
5770   case NEON::BI__builtin_neon_vget_lane_i8:
5771   case NEON::BI__builtin_neon_vget_lane_i16:
5772   case NEON::BI__builtin_neon_vget_lane_i32:
5773   case NEON::BI__builtin_neon_vget_lane_i64:
5774   case NEON::BI__builtin_neon_vget_lane_f32:
5775   case NEON::BI__builtin_neon_vgetq_lane_i8:
5776   case NEON::BI__builtin_neon_vgetq_lane_i16:
5777   case NEON::BI__builtin_neon_vgetq_lane_i32:
5778   case NEON::BI__builtin_neon_vgetq_lane_i64:
5779   case NEON::BI__builtin_neon_vgetq_lane_f32:
5780   case NEON::BI__builtin_neon_vset_lane_i8:
5781   case NEON::BI__builtin_neon_vset_lane_i16:
5782   case NEON::BI__builtin_neon_vset_lane_i32:
5783   case NEON::BI__builtin_neon_vset_lane_i64:
5784   case NEON::BI__builtin_neon_vset_lane_f32:
5785   case NEON::BI__builtin_neon_vsetq_lane_i8:
5786   case NEON::BI__builtin_neon_vsetq_lane_i16:
5787   case NEON::BI__builtin_neon_vsetq_lane_i32:
5788   case NEON::BI__builtin_neon_vsetq_lane_i64:
5789   case NEON::BI__builtin_neon_vsetq_lane_f32:
5790   case NEON::BI__builtin_neon_vsha1h_u32:
5791   case NEON::BI__builtin_neon_vsha1cq_u32:
5792   case NEON::BI__builtin_neon_vsha1pq_u32:
5793   case NEON::BI__builtin_neon_vsha1mq_u32:
5794   case clang::ARM::BI_MoveToCoprocessor:
5795   case clang::ARM::BI_MoveToCoprocessor2:
5796     return false;
5797   }
5798   return true;
5799 }
5800 
EmitISOVolatileLoad(const CallExpr * E)5801 Value *CodeGenFunction::EmitISOVolatileLoad(const CallExpr *E) {
5802   Value *Ptr = EmitScalarExpr(E->getArg(0));
5803   QualType ElTy = E->getArg(0)->getType()->getPointeeType();
5804   CharUnits LoadSize = getContext().getTypeSizeInChars(ElTy);
5805   llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
5806                                            LoadSize.getQuantity() * 8);
5807   Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
5808   llvm::LoadInst *Load =
5809     Builder.CreateAlignedLoad(Ptr, LoadSize);
5810   Load->setVolatile(true);
5811   return Load;
5812 }
5813 
EmitISOVolatileStore(const CallExpr * E)5814 Value *CodeGenFunction::EmitISOVolatileStore(const CallExpr *E) {
5815   Value *Ptr = EmitScalarExpr(E->getArg(0));
5816   Value *Value = EmitScalarExpr(E->getArg(1));
5817   QualType ElTy = E->getArg(0)->getType()->getPointeeType();
5818   CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
5819   llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
5820                                            StoreSize.getQuantity() * 8);
5821   Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
5822   llvm::StoreInst *Store =
5823     Builder.CreateAlignedStore(Value, Ptr,
5824                                StoreSize);
5825   Store->setVolatile(true);
5826   return Store;
5827 }
5828 
EmitARMBuiltinExpr(unsigned BuiltinID,const CallExpr * E,llvm::Triple::ArchType Arch)5829 Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
5830                                            const CallExpr *E,
5831                                            llvm::Triple::ArchType Arch) {
5832   if (auto Hint = GetValueForARMHint(BuiltinID))
5833     return Hint;
5834 
5835   if (BuiltinID == ARM::BI__emit) {
5836     bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb;
5837     llvm::FunctionType *FTy =
5838         llvm::FunctionType::get(VoidTy, /*Variadic=*/false);
5839 
5840     Expr::EvalResult Result;
5841     if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
5842       llvm_unreachable("Sema will ensure that the parameter is constant");
5843 
5844     llvm::APSInt Value = Result.Val.getInt();
5845     uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue();
5846 
5847     llvm::InlineAsm *Emit =
5848         IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "",
5849                                  /*SideEffects=*/true)
5850                 : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "",
5851                                  /*SideEffects=*/true);
5852 
5853     return Builder.CreateCall(Emit);
5854   }
5855 
5856   if (BuiltinID == ARM::BI__builtin_arm_dbg) {
5857     Value *Option = EmitScalarExpr(E->getArg(0));
5858     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option);
5859   }
5860 
5861   if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
5862     Value *Address = EmitScalarExpr(E->getArg(0));
5863     Value *RW      = EmitScalarExpr(E->getArg(1));
5864     Value *IsData  = EmitScalarExpr(E->getArg(2));
5865 
5866     // Locality is not supported on ARM target
5867     Value *Locality = llvm::ConstantInt::get(Int32Ty, 3);
5868 
5869     Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
5870     return Builder.CreateCall(F, {Address, RW, Locality, IsData});
5871   }
5872 
5873   if (BuiltinID == ARM::BI__builtin_arm_rbit) {
5874     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
5875     return Builder.CreateCall(
5876         CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
5877   }
5878 
5879   if (BuiltinID == ARM::BI__clear_cache) {
5880     assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
5881     const FunctionDecl *FD = E->getDirectCallee();
5882     Value *Ops[2];
5883     for (unsigned i = 0; i < 2; i++)
5884       Ops[i] = EmitScalarExpr(E->getArg(i));
5885     llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
5886     llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
5887     StringRef Name = FD->getName();
5888     return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
5889   }
5890 
5891   if (BuiltinID == ARM::BI__builtin_arm_mcrr ||
5892       BuiltinID == ARM::BI__builtin_arm_mcrr2) {
5893     Function *F;
5894 
5895     switch (BuiltinID) {
5896     default: llvm_unreachable("unexpected builtin");
5897     case ARM::BI__builtin_arm_mcrr:
5898       F = CGM.getIntrinsic(Intrinsic::arm_mcrr);
5899       break;
5900     case ARM::BI__builtin_arm_mcrr2:
5901       F = CGM.getIntrinsic(Intrinsic::arm_mcrr2);
5902       break;
5903     }
5904 
5905     // MCRR{2} instruction has 5 operands but
5906     // the intrinsic has 4 because Rt and Rt2
5907     // are represented as a single unsigned 64
5908     // bit integer in the intrinsic definition
5909     // but internally it's represented as 2 32
5910     // bit integers.
5911 
5912     Value *Coproc = EmitScalarExpr(E->getArg(0));
5913     Value *Opc1 = EmitScalarExpr(E->getArg(1));
5914     Value *RtAndRt2 = EmitScalarExpr(E->getArg(2));
5915     Value *CRm = EmitScalarExpr(E->getArg(3));
5916 
5917     Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
5918     Value *Rt = Builder.CreateTruncOrBitCast(RtAndRt2, Int32Ty);
5919     Value *Rt2 = Builder.CreateLShr(RtAndRt2, C1);
5920     Rt2 = Builder.CreateTruncOrBitCast(Rt2, Int32Ty);
5921 
5922     return Builder.CreateCall(F, {Coproc, Opc1, Rt, Rt2, CRm});
5923   }
5924 
5925   if (BuiltinID == ARM::BI__builtin_arm_mrrc ||
5926       BuiltinID == ARM::BI__builtin_arm_mrrc2) {
5927     Function *F;
5928 
5929     switch (BuiltinID) {
5930     default: llvm_unreachable("unexpected builtin");
5931     case ARM::BI__builtin_arm_mrrc:
5932       F = CGM.getIntrinsic(Intrinsic::arm_mrrc);
5933       break;
5934     case ARM::BI__builtin_arm_mrrc2:
5935       F = CGM.getIntrinsic(Intrinsic::arm_mrrc2);
5936       break;
5937     }
5938 
5939     Value *Coproc = EmitScalarExpr(E->getArg(0));
5940     Value *Opc1 = EmitScalarExpr(E->getArg(1));
5941     Value *CRm  = EmitScalarExpr(E->getArg(2));
5942     Value *RtAndRt2 = Builder.CreateCall(F, {Coproc, Opc1, CRm});
5943 
5944     // Returns an unsigned 64 bit integer, represented
5945     // as two 32 bit integers.
5946 
5947     Value *Rt = Builder.CreateExtractValue(RtAndRt2, 1);
5948     Value *Rt1 = Builder.CreateExtractValue(RtAndRt2, 0);
5949     Rt = Builder.CreateZExt(Rt, Int64Ty);
5950     Rt1 = Builder.CreateZExt(Rt1, Int64Ty);
5951 
5952     Value *ShiftCast = llvm::ConstantInt::get(Int64Ty, 32);
5953     RtAndRt2 = Builder.CreateShl(Rt, ShiftCast, "shl", true);
5954     RtAndRt2 = Builder.CreateOr(RtAndRt2, Rt1);
5955 
5956     return Builder.CreateBitCast(RtAndRt2, ConvertType(E->getType()));
5957   }
5958 
5959   if (BuiltinID == ARM::BI__builtin_arm_ldrexd ||
5960       ((BuiltinID == ARM::BI__builtin_arm_ldrex ||
5961         BuiltinID == ARM::BI__builtin_arm_ldaex) &&
5962        getContext().getTypeSize(E->getType()) == 64) ||
5963       BuiltinID == ARM::BI__ldrexd) {
5964     Function *F;
5965 
5966     switch (BuiltinID) {
5967     default: llvm_unreachable("unexpected builtin");
5968     case ARM::BI__builtin_arm_ldaex:
5969       F = CGM.getIntrinsic(Intrinsic::arm_ldaexd);
5970       break;
5971     case ARM::BI__builtin_arm_ldrexd:
5972     case ARM::BI__builtin_arm_ldrex:
5973     case ARM::BI__ldrexd:
5974       F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
5975       break;
5976     }
5977 
5978     Value *LdPtr = EmitScalarExpr(E->getArg(0));
5979     Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
5980                                     "ldrexd");
5981 
5982     Value *Val0 = Builder.CreateExtractValue(Val, 1);
5983     Value *Val1 = Builder.CreateExtractValue(Val, 0);
5984     Val0 = Builder.CreateZExt(Val0, Int64Ty);
5985     Val1 = Builder.CreateZExt(Val1, Int64Ty);
5986 
5987     Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
5988     Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
5989     Val = Builder.CreateOr(Val, Val1);
5990     return Builder.CreateBitCast(Val, ConvertType(E->getType()));
5991   }
5992 
5993   if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
5994       BuiltinID == ARM::BI__builtin_arm_ldaex) {
5995     Value *LoadAddr = EmitScalarExpr(E->getArg(0));
5996 
5997     QualType Ty = E->getType();
5998     llvm::Type *RealResTy = ConvertType(Ty);
5999     llvm::Type *PtrTy = llvm::IntegerType::get(
6000         getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
6001     LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
6002 
6003     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_ldaex
6004                                        ? Intrinsic::arm_ldaex
6005                                        : Intrinsic::arm_ldrex,
6006                                    PtrTy);
6007     Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex");
6008 
6009     if (RealResTy->isPointerTy())
6010       return Builder.CreateIntToPtr(Val, RealResTy);
6011     else {
6012       llvm::Type *IntResTy = llvm::IntegerType::get(
6013           getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
6014       Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
6015       return Builder.CreateBitCast(Val, RealResTy);
6016     }
6017   }
6018 
6019   if (BuiltinID == ARM::BI__builtin_arm_strexd ||
6020       ((BuiltinID == ARM::BI__builtin_arm_stlex ||
6021         BuiltinID == ARM::BI__builtin_arm_strex) &&
6022        getContext().getTypeSize(E->getArg(0)->getType()) == 64)) {
6023     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
6024                                        ? Intrinsic::arm_stlexd
6025                                        : Intrinsic::arm_strexd);
6026     llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty);
6027 
6028     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
6029     Value *Val = EmitScalarExpr(E->getArg(0));
6030     Builder.CreateStore(Val, Tmp);
6031 
6032     Address LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
6033     Val = Builder.CreateLoad(LdPtr);
6034 
6035     Value *Arg0 = Builder.CreateExtractValue(Val, 0);
6036     Value *Arg1 = Builder.CreateExtractValue(Val, 1);
6037     Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy);
6038     return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd");
6039   }
6040 
6041   if (BuiltinID == ARM::BI__builtin_arm_strex ||
6042       BuiltinID == ARM::BI__builtin_arm_stlex) {
6043     Value *StoreVal = EmitScalarExpr(E->getArg(0));
6044     Value *StoreAddr = EmitScalarExpr(E->getArg(1));
6045 
6046     QualType Ty = E->getArg(0)->getType();
6047     llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
6048                                                  getContext().getTypeSize(Ty));
6049     StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
6050 
6051     if (StoreVal->getType()->isPointerTy())
6052       StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty);
6053     else {
6054       llvm::Type *IntTy = llvm::IntegerType::get(
6055           getLLVMContext(),
6056           CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
6057       StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
6058       StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty);
6059     }
6060 
6061     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
6062                                        ? Intrinsic::arm_stlex
6063                                        : Intrinsic::arm_strex,
6064                                    StoreAddr->getType());
6065     return Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex");
6066   }
6067 
6068   switch (BuiltinID) {
6069   case ARM::BI__iso_volatile_load8:
6070   case ARM::BI__iso_volatile_load16:
6071   case ARM::BI__iso_volatile_load32:
6072   case ARM::BI__iso_volatile_load64:
6073     return EmitISOVolatileLoad(E);
6074   case ARM::BI__iso_volatile_store8:
6075   case ARM::BI__iso_volatile_store16:
6076   case ARM::BI__iso_volatile_store32:
6077   case ARM::BI__iso_volatile_store64:
6078     return EmitISOVolatileStore(E);
6079   }
6080 
6081   if (BuiltinID == ARM::BI__builtin_arm_clrex) {
6082     Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex);
6083     return Builder.CreateCall(F);
6084   }
6085 
6086   // CRC32
6087   Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
6088   switch (BuiltinID) {
6089   case ARM::BI__builtin_arm_crc32b:
6090     CRCIntrinsicID = Intrinsic::arm_crc32b; break;
6091   case ARM::BI__builtin_arm_crc32cb:
6092     CRCIntrinsicID = Intrinsic::arm_crc32cb; break;
6093   case ARM::BI__builtin_arm_crc32h:
6094     CRCIntrinsicID = Intrinsic::arm_crc32h; break;
6095   case ARM::BI__builtin_arm_crc32ch:
6096     CRCIntrinsicID = Intrinsic::arm_crc32ch; break;
6097   case ARM::BI__builtin_arm_crc32w:
6098   case ARM::BI__builtin_arm_crc32d:
6099     CRCIntrinsicID = Intrinsic::arm_crc32w; break;
6100   case ARM::BI__builtin_arm_crc32cw:
6101   case ARM::BI__builtin_arm_crc32cd:
6102     CRCIntrinsicID = Intrinsic::arm_crc32cw; break;
6103   }
6104 
6105   if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
6106     Value *Arg0 = EmitScalarExpr(E->getArg(0));
6107     Value *Arg1 = EmitScalarExpr(E->getArg(1));
6108 
6109     // crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w
6110     // intrinsics, hence we need different codegen for these cases.
6111     if (BuiltinID == ARM::BI__builtin_arm_crc32d ||
6112         BuiltinID == ARM::BI__builtin_arm_crc32cd) {
6113       Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
6114       Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty);
6115       Value *Arg1b = Builder.CreateLShr(Arg1, C1);
6116       Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty);
6117 
6118       Function *F = CGM.getIntrinsic(CRCIntrinsicID);
6119       Value *Res = Builder.CreateCall(F, {Arg0, Arg1a});
6120       return Builder.CreateCall(F, {Res, Arg1b});
6121     } else {
6122       Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty);
6123 
6124       Function *F = CGM.getIntrinsic(CRCIntrinsicID);
6125       return Builder.CreateCall(F, {Arg0, Arg1});
6126     }
6127   }
6128 
6129   if (BuiltinID == ARM::BI__builtin_arm_rsr ||
6130       BuiltinID == ARM::BI__builtin_arm_rsr64 ||
6131       BuiltinID == ARM::BI__builtin_arm_rsrp ||
6132       BuiltinID == ARM::BI__builtin_arm_wsr ||
6133       BuiltinID == ARM::BI__builtin_arm_wsr64 ||
6134       BuiltinID == ARM::BI__builtin_arm_wsrp) {
6135 
6136     bool IsRead = BuiltinID == ARM::BI__builtin_arm_rsr ||
6137                   BuiltinID == ARM::BI__builtin_arm_rsr64 ||
6138                   BuiltinID == ARM::BI__builtin_arm_rsrp;
6139 
6140     bool IsPointerBuiltin = BuiltinID == ARM::BI__builtin_arm_rsrp ||
6141                             BuiltinID == ARM::BI__builtin_arm_wsrp;
6142 
6143     bool Is64Bit = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
6144                    BuiltinID == ARM::BI__builtin_arm_wsr64;
6145 
6146     llvm::Type *ValueType;
6147     llvm::Type *RegisterType;
6148     if (IsPointerBuiltin) {
6149       ValueType = VoidPtrTy;
6150       RegisterType = Int32Ty;
6151     } else if (Is64Bit) {
6152       ValueType = RegisterType = Int64Ty;
6153     } else {
6154       ValueType = RegisterType = Int32Ty;
6155     }
6156 
6157     return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, IsRead);
6158   }
6159 
6160   // Find out if any arguments are required to be integer constant
6161   // expressions.
6162   unsigned ICEArguments = 0;
6163   ASTContext::GetBuiltinTypeError Error;
6164   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
6165   assert(Error == ASTContext::GE_None && "Should not codegen an error");
6166 
6167   auto getAlignmentValue32 = [&](Address addr) -> Value* {
6168     return Builder.getInt32(addr.getAlignment().getQuantity());
6169   };
6170 
6171   Address PtrOp0 = Address::invalid();
6172   Address PtrOp1 = Address::invalid();
6173   SmallVector<Value*, 4> Ops;
6174   bool HasExtraArg = HasExtraNeonArgument(BuiltinID);
6175   unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0);
6176   for (unsigned i = 0, e = NumArgs; i != e; i++) {
6177     if (i == 0) {
6178       switch (BuiltinID) {
6179       case NEON::BI__builtin_neon_vld1_v:
6180       case NEON::BI__builtin_neon_vld1q_v:
6181       case NEON::BI__builtin_neon_vld1q_lane_v:
6182       case NEON::BI__builtin_neon_vld1_lane_v:
6183       case NEON::BI__builtin_neon_vld1_dup_v:
6184       case NEON::BI__builtin_neon_vld1q_dup_v:
6185       case NEON::BI__builtin_neon_vst1_v:
6186       case NEON::BI__builtin_neon_vst1q_v:
6187       case NEON::BI__builtin_neon_vst1q_lane_v:
6188       case NEON::BI__builtin_neon_vst1_lane_v:
6189       case NEON::BI__builtin_neon_vst2_v:
6190       case NEON::BI__builtin_neon_vst2q_v:
6191       case NEON::BI__builtin_neon_vst2_lane_v:
6192       case NEON::BI__builtin_neon_vst2q_lane_v:
6193       case NEON::BI__builtin_neon_vst3_v:
6194       case NEON::BI__builtin_neon_vst3q_v:
6195       case NEON::BI__builtin_neon_vst3_lane_v:
6196       case NEON::BI__builtin_neon_vst3q_lane_v:
6197       case NEON::BI__builtin_neon_vst4_v:
6198       case NEON::BI__builtin_neon_vst4q_v:
6199       case NEON::BI__builtin_neon_vst4_lane_v:
6200       case NEON::BI__builtin_neon_vst4q_lane_v:
6201         // Get the alignment for the argument in addition to the value;
6202         // we'll use it later.
6203         PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
6204         Ops.push_back(PtrOp0.getPointer());
6205         continue;
6206       }
6207     }
6208     if (i == 1) {
6209       switch (BuiltinID) {
6210       case NEON::BI__builtin_neon_vld2_v:
6211       case NEON::BI__builtin_neon_vld2q_v:
6212       case NEON::BI__builtin_neon_vld3_v:
6213       case NEON::BI__builtin_neon_vld3q_v:
6214       case NEON::BI__builtin_neon_vld4_v:
6215       case NEON::BI__builtin_neon_vld4q_v:
6216       case NEON::BI__builtin_neon_vld2_lane_v:
6217       case NEON::BI__builtin_neon_vld2q_lane_v:
6218       case NEON::BI__builtin_neon_vld3_lane_v:
6219       case NEON::BI__builtin_neon_vld3q_lane_v:
6220       case NEON::BI__builtin_neon_vld4_lane_v:
6221       case NEON::BI__builtin_neon_vld4q_lane_v:
6222       case NEON::BI__builtin_neon_vld2_dup_v:
6223       case NEON::BI__builtin_neon_vld2q_dup_v:
6224       case NEON::BI__builtin_neon_vld3_dup_v:
6225       case NEON::BI__builtin_neon_vld3q_dup_v:
6226       case NEON::BI__builtin_neon_vld4_dup_v:
6227       case NEON::BI__builtin_neon_vld4q_dup_v:
6228         // Get the alignment for the argument in addition to the value;
6229         // we'll use it later.
6230         PtrOp1 = EmitPointerWithAlignment(E->getArg(1));
6231         Ops.push_back(PtrOp1.getPointer());
6232         continue;
6233       }
6234     }
6235 
6236     if ((ICEArguments & (1 << i)) == 0) {
6237       Ops.push_back(EmitScalarExpr(E->getArg(i)));
6238     } else {
6239       // If this is required to be a constant, constant fold it so that we know
6240       // that the generated intrinsic gets a ConstantInt.
6241       llvm::APSInt Result;
6242       bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
6243       assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
6244       Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
6245     }
6246   }
6247 
6248   switch (BuiltinID) {
6249   default: break;
6250 
6251   case NEON::BI__builtin_neon_vget_lane_i8:
6252   case NEON::BI__builtin_neon_vget_lane_i16:
6253   case NEON::BI__builtin_neon_vget_lane_i32:
6254   case NEON::BI__builtin_neon_vget_lane_i64:
6255   case NEON::BI__builtin_neon_vget_lane_f32:
6256   case NEON::BI__builtin_neon_vgetq_lane_i8:
6257   case NEON::BI__builtin_neon_vgetq_lane_i16:
6258   case NEON::BI__builtin_neon_vgetq_lane_i32:
6259   case NEON::BI__builtin_neon_vgetq_lane_i64:
6260   case NEON::BI__builtin_neon_vgetq_lane_f32:
6261     return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane");
6262 
6263   case NEON::BI__builtin_neon_vrndns_f32: {
6264     Value *Arg = EmitScalarExpr(E->getArg(0));
6265     llvm::Type *Tys[] = {Arg->getType()};
6266     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vrintn, Tys);
6267     return Builder.CreateCall(F, {Arg}, "vrndn"); }
6268 
6269   case NEON::BI__builtin_neon_vset_lane_i8:
6270   case NEON::BI__builtin_neon_vset_lane_i16:
6271   case NEON::BI__builtin_neon_vset_lane_i32:
6272   case NEON::BI__builtin_neon_vset_lane_i64:
6273   case NEON::BI__builtin_neon_vset_lane_f32:
6274   case NEON::BI__builtin_neon_vsetq_lane_i8:
6275   case NEON::BI__builtin_neon_vsetq_lane_i16:
6276   case NEON::BI__builtin_neon_vsetq_lane_i32:
6277   case NEON::BI__builtin_neon_vsetq_lane_i64:
6278   case NEON::BI__builtin_neon_vsetq_lane_f32:
6279     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
6280 
6281   case NEON::BI__builtin_neon_vsha1h_u32:
6282     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops,
6283                         "vsha1h");
6284   case NEON::BI__builtin_neon_vsha1cq_u32:
6285     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops,
6286                         "vsha1h");
6287   case NEON::BI__builtin_neon_vsha1pq_u32:
6288     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops,
6289                         "vsha1h");
6290   case NEON::BI__builtin_neon_vsha1mq_u32:
6291     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops,
6292                         "vsha1h");
6293 
6294   // The ARM _MoveToCoprocessor builtins put the input register value as
6295   // the first argument, but the LLVM intrinsic expects it as the third one.
6296   case ARM::BI_MoveToCoprocessor:
6297   case ARM::BI_MoveToCoprocessor2: {
6298     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI_MoveToCoprocessor ?
6299                                    Intrinsic::arm_mcr : Intrinsic::arm_mcr2);
6300     return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0],
6301                                   Ops[3], Ops[4], Ops[5]});
6302   }
6303   case ARM::BI_BitScanForward:
6304   case ARM::BI_BitScanForward64:
6305     return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E);
6306   case ARM::BI_BitScanReverse:
6307   case ARM::BI_BitScanReverse64:
6308     return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E);
6309 
6310   case ARM::BI_InterlockedAnd64:
6311     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E);
6312   case ARM::BI_InterlockedExchange64:
6313     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E);
6314   case ARM::BI_InterlockedExchangeAdd64:
6315     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E);
6316   case ARM::BI_InterlockedExchangeSub64:
6317     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E);
6318   case ARM::BI_InterlockedOr64:
6319     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E);
6320   case ARM::BI_InterlockedXor64:
6321     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E);
6322   case ARM::BI_InterlockedDecrement64:
6323     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E);
6324   case ARM::BI_InterlockedIncrement64:
6325     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E);
6326   case ARM::BI_InterlockedExchangeAdd8_acq:
6327   case ARM::BI_InterlockedExchangeAdd16_acq:
6328   case ARM::BI_InterlockedExchangeAdd_acq:
6329   case ARM::BI_InterlockedExchangeAdd64_acq:
6330     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_acq, E);
6331   case ARM::BI_InterlockedExchangeAdd8_rel:
6332   case ARM::BI_InterlockedExchangeAdd16_rel:
6333   case ARM::BI_InterlockedExchangeAdd_rel:
6334   case ARM::BI_InterlockedExchangeAdd64_rel:
6335     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_rel, E);
6336   case ARM::BI_InterlockedExchangeAdd8_nf:
6337   case ARM::BI_InterlockedExchangeAdd16_nf:
6338   case ARM::BI_InterlockedExchangeAdd_nf:
6339   case ARM::BI_InterlockedExchangeAdd64_nf:
6340     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_nf, E);
6341   case ARM::BI_InterlockedExchange8_acq:
6342   case ARM::BI_InterlockedExchange16_acq:
6343   case ARM::BI_InterlockedExchange_acq:
6344   case ARM::BI_InterlockedExchange64_acq:
6345     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_acq, E);
6346   case ARM::BI_InterlockedExchange8_rel:
6347   case ARM::BI_InterlockedExchange16_rel:
6348   case ARM::BI_InterlockedExchange_rel:
6349   case ARM::BI_InterlockedExchange64_rel:
6350     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_rel, E);
6351   case ARM::BI_InterlockedExchange8_nf:
6352   case ARM::BI_InterlockedExchange16_nf:
6353   case ARM::BI_InterlockedExchange_nf:
6354   case ARM::BI_InterlockedExchange64_nf:
6355     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_nf, E);
6356   case ARM::BI_InterlockedCompareExchange8_acq:
6357   case ARM::BI_InterlockedCompareExchange16_acq:
6358   case ARM::BI_InterlockedCompareExchange_acq:
6359   case ARM::BI_InterlockedCompareExchange64_acq:
6360     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_acq, E);
6361   case ARM::BI_InterlockedCompareExchange8_rel:
6362   case ARM::BI_InterlockedCompareExchange16_rel:
6363   case ARM::BI_InterlockedCompareExchange_rel:
6364   case ARM::BI_InterlockedCompareExchange64_rel:
6365     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_rel, E);
6366   case ARM::BI_InterlockedCompareExchange8_nf:
6367   case ARM::BI_InterlockedCompareExchange16_nf:
6368   case ARM::BI_InterlockedCompareExchange_nf:
6369   case ARM::BI_InterlockedCompareExchange64_nf:
6370     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_nf, E);
6371   case ARM::BI_InterlockedOr8_acq:
6372   case ARM::BI_InterlockedOr16_acq:
6373   case ARM::BI_InterlockedOr_acq:
6374   case ARM::BI_InterlockedOr64_acq:
6375     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_acq, E);
6376   case ARM::BI_InterlockedOr8_rel:
6377   case ARM::BI_InterlockedOr16_rel:
6378   case ARM::BI_InterlockedOr_rel:
6379   case ARM::BI_InterlockedOr64_rel:
6380     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_rel, E);
6381   case ARM::BI_InterlockedOr8_nf:
6382   case ARM::BI_InterlockedOr16_nf:
6383   case ARM::BI_InterlockedOr_nf:
6384   case ARM::BI_InterlockedOr64_nf:
6385     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_nf, E);
6386   case ARM::BI_InterlockedXor8_acq:
6387   case ARM::BI_InterlockedXor16_acq:
6388   case ARM::BI_InterlockedXor_acq:
6389   case ARM::BI_InterlockedXor64_acq:
6390     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_acq, E);
6391   case ARM::BI_InterlockedXor8_rel:
6392   case ARM::BI_InterlockedXor16_rel:
6393   case ARM::BI_InterlockedXor_rel:
6394   case ARM::BI_InterlockedXor64_rel:
6395     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_rel, E);
6396   case ARM::BI_InterlockedXor8_nf:
6397   case ARM::BI_InterlockedXor16_nf:
6398   case ARM::BI_InterlockedXor_nf:
6399   case ARM::BI_InterlockedXor64_nf:
6400     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_nf, E);
6401   case ARM::BI_InterlockedAnd8_acq:
6402   case ARM::BI_InterlockedAnd16_acq:
6403   case ARM::BI_InterlockedAnd_acq:
6404   case ARM::BI_InterlockedAnd64_acq:
6405     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_acq, E);
6406   case ARM::BI_InterlockedAnd8_rel:
6407   case ARM::BI_InterlockedAnd16_rel:
6408   case ARM::BI_InterlockedAnd_rel:
6409   case ARM::BI_InterlockedAnd64_rel:
6410     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_rel, E);
6411   case ARM::BI_InterlockedAnd8_nf:
6412   case ARM::BI_InterlockedAnd16_nf:
6413   case ARM::BI_InterlockedAnd_nf:
6414   case ARM::BI_InterlockedAnd64_nf:
6415     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_nf, E);
6416   case ARM::BI_InterlockedIncrement16_acq:
6417   case ARM::BI_InterlockedIncrement_acq:
6418   case ARM::BI_InterlockedIncrement64_acq:
6419     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_acq, E);
6420   case ARM::BI_InterlockedIncrement16_rel:
6421   case ARM::BI_InterlockedIncrement_rel:
6422   case ARM::BI_InterlockedIncrement64_rel:
6423     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_rel, E);
6424   case ARM::BI_InterlockedIncrement16_nf:
6425   case ARM::BI_InterlockedIncrement_nf:
6426   case ARM::BI_InterlockedIncrement64_nf:
6427     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_nf, E);
6428   case ARM::BI_InterlockedDecrement16_acq:
6429   case ARM::BI_InterlockedDecrement_acq:
6430   case ARM::BI_InterlockedDecrement64_acq:
6431     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_acq, E);
6432   case ARM::BI_InterlockedDecrement16_rel:
6433   case ARM::BI_InterlockedDecrement_rel:
6434   case ARM::BI_InterlockedDecrement64_rel:
6435     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_rel, E);
6436   case ARM::BI_InterlockedDecrement16_nf:
6437   case ARM::BI_InterlockedDecrement_nf:
6438   case ARM::BI_InterlockedDecrement64_nf:
6439     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_nf, E);
6440   }
6441 
6442   // Get the last argument, which specifies the vector type.
6443   assert(HasExtraArg);
6444   llvm::APSInt Result;
6445   const Expr *Arg = E->getArg(E->getNumArgs()-1);
6446   if (!Arg->isIntegerConstantExpr(Result, getContext()))
6447     return nullptr;
6448 
6449   if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
6450       BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
6451     // Determine the overloaded type of this builtin.
6452     llvm::Type *Ty;
6453     if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
6454       Ty = FloatTy;
6455     else
6456       Ty = DoubleTy;
6457 
6458     // Determine whether this is an unsigned conversion or not.
6459     bool usgn = Result.getZExtValue() == 1;
6460     unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
6461 
6462     // Call the appropriate intrinsic.
6463     Function *F = CGM.getIntrinsic(Int, Ty);
6464     return Builder.CreateCall(F, Ops, "vcvtr");
6465   }
6466 
6467   // Determine the type of this overloaded NEON intrinsic.
6468   NeonTypeFlags Type(Result.getZExtValue());
6469   bool usgn = Type.isUnsigned();
6470   bool rightShift = false;
6471 
6472   llvm::VectorType *VTy = GetNeonType(this, Type,
6473                                       getTarget().hasLegalHalfType());
6474   llvm::Type *Ty = VTy;
6475   if (!Ty)
6476     return nullptr;
6477 
6478   // Many NEON builtins have identical semantics and uses in ARM and
6479   // AArch64. Emit these in a single function.
6480   auto IntrinsicMap = makeArrayRef(ARMSIMDIntrinsicMap);
6481   const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap(
6482       IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted);
6483   if (Builtin)
6484     return EmitCommonNeonBuiltinExpr(
6485         Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
6486         Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1, Arch);
6487 
6488   unsigned Int;
6489   switch (BuiltinID) {
6490   default: return nullptr;
6491   case NEON::BI__builtin_neon_vld1q_lane_v:
6492     // Handle 64-bit integer elements as a special case.  Use shuffles of
6493     // one-element vectors to avoid poor code for i64 in the backend.
6494     if (VTy->getElementType()->isIntegerTy(64)) {
6495       // Extract the other lane.
6496       Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6497       uint32_t Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
6498       Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
6499       Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
6500       // Load the value as a one-element vector.
6501       Ty = llvm::VectorType::get(VTy->getElementType(), 1);
6502       llvm::Type *Tys[] = {Ty, Int8PtrTy};
6503       Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys);
6504       Value *Align = getAlignmentValue32(PtrOp0);
6505       Value *Ld = Builder.CreateCall(F, {Ops[0], Align});
6506       // Combine them.
6507       uint32_t Indices[] = {1 - Lane, Lane};
6508       SV = llvm::ConstantDataVector::get(getLLVMContext(), Indices);
6509       return Builder.CreateShuffleVector(Ops[1], Ld, SV, "vld1q_lane");
6510     }
6511     LLVM_FALLTHROUGH;
6512   case NEON::BI__builtin_neon_vld1_lane_v: {
6513     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6514     PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType());
6515     Value *Ld = Builder.CreateLoad(PtrOp0);
6516     return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
6517   }
6518   case NEON::BI__builtin_neon_vqrshrn_n_v:
6519     Int =
6520       usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
6521     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
6522                         1, true);
6523   case NEON::BI__builtin_neon_vqrshrun_n_v:
6524     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
6525                         Ops, "vqrshrun_n", 1, true);
6526   case NEON::BI__builtin_neon_vqshrn_n_v:
6527     Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
6528     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
6529                         1, true);
6530   case NEON::BI__builtin_neon_vqshrun_n_v:
6531     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
6532                         Ops, "vqshrun_n", 1, true);
6533   case NEON::BI__builtin_neon_vrecpe_v:
6534   case NEON::BI__builtin_neon_vrecpeq_v:
6535     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
6536                         Ops, "vrecpe");
6537   case NEON::BI__builtin_neon_vrshrn_n_v:
6538     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
6539                         Ops, "vrshrn_n", 1, true);
6540   case NEON::BI__builtin_neon_vrsra_n_v:
6541   case NEON::BI__builtin_neon_vrsraq_n_v:
6542     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6543     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6544     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
6545     Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
6546     Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]});
6547     return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
6548   case NEON::BI__builtin_neon_vsri_n_v:
6549   case NEON::BI__builtin_neon_vsriq_n_v:
6550     rightShift = true;
6551     LLVM_FALLTHROUGH;
6552   case NEON::BI__builtin_neon_vsli_n_v:
6553   case NEON::BI__builtin_neon_vsliq_n_v:
6554     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
6555     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
6556                         Ops, "vsli_n");
6557   case NEON::BI__builtin_neon_vsra_n_v:
6558   case NEON::BI__builtin_neon_vsraq_n_v:
6559     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6560     Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
6561     return Builder.CreateAdd(Ops[0], Ops[1]);
6562   case NEON::BI__builtin_neon_vst1q_lane_v:
6563     // Handle 64-bit integer elements as a special case.  Use a shuffle to get
6564     // a one-element vector and avoid poor code for i64 in the backend.
6565     if (VTy->getElementType()->isIntegerTy(64)) {
6566       Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6567       Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
6568       Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
6569       Ops[2] = getAlignmentValue32(PtrOp0);
6570       llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()};
6571       return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
6572                                                  Tys), Ops);
6573     }
6574     LLVM_FALLTHROUGH;
6575   case NEON::BI__builtin_neon_vst1_lane_v: {
6576     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6577     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
6578     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
6579     auto St = Builder.CreateStore(Ops[1], Builder.CreateBitCast(PtrOp0, Ty));
6580     return St;
6581   }
6582   case NEON::BI__builtin_neon_vtbl1_v:
6583     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
6584                         Ops, "vtbl1");
6585   case NEON::BI__builtin_neon_vtbl2_v:
6586     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
6587                         Ops, "vtbl2");
6588   case NEON::BI__builtin_neon_vtbl3_v:
6589     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
6590                         Ops, "vtbl3");
6591   case NEON::BI__builtin_neon_vtbl4_v:
6592     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
6593                         Ops, "vtbl4");
6594   case NEON::BI__builtin_neon_vtbx1_v:
6595     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
6596                         Ops, "vtbx1");
6597   case NEON::BI__builtin_neon_vtbx2_v:
6598     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
6599                         Ops, "vtbx2");
6600   case NEON::BI__builtin_neon_vtbx3_v:
6601     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
6602                         Ops, "vtbx3");
6603   case NEON::BI__builtin_neon_vtbx4_v:
6604     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
6605                         Ops, "vtbx4");
6606   }
6607 }
6608 
EmitAArch64TblBuiltinExpr(CodeGenFunction & CGF,unsigned BuiltinID,const CallExpr * E,SmallVectorImpl<Value * > & Ops,llvm::Triple::ArchType Arch)6609 static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID,
6610                                       const CallExpr *E,
6611                                       SmallVectorImpl<Value *> &Ops,
6612                                       llvm::Triple::ArchType Arch) {
6613   unsigned int Int = 0;
6614   const char *s = nullptr;
6615 
6616   switch (BuiltinID) {
6617   default:
6618     return nullptr;
6619   case NEON::BI__builtin_neon_vtbl1_v:
6620   case NEON::BI__builtin_neon_vqtbl1_v:
6621   case NEON::BI__builtin_neon_vqtbl1q_v:
6622   case NEON::BI__builtin_neon_vtbl2_v:
6623   case NEON::BI__builtin_neon_vqtbl2_v:
6624   case NEON::BI__builtin_neon_vqtbl2q_v:
6625   case NEON::BI__builtin_neon_vtbl3_v:
6626   case NEON::BI__builtin_neon_vqtbl3_v:
6627   case NEON::BI__builtin_neon_vqtbl3q_v:
6628   case NEON::BI__builtin_neon_vtbl4_v:
6629   case NEON::BI__builtin_neon_vqtbl4_v:
6630   case NEON::BI__builtin_neon_vqtbl4q_v:
6631     break;
6632   case NEON::BI__builtin_neon_vtbx1_v:
6633   case NEON::BI__builtin_neon_vqtbx1_v:
6634   case NEON::BI__builtin_neon_vqtbx1q_v:
6635   case NEON::BI__builtin_neon_vtbx2_v:
6636   case NEON::BI__builtin_neon_vqtbx2_v:
6637   case NEON::BI__builtin_neon_vqtbx2q_v:
6638   case NEON::BI__builtin_neon_vtbx3_v:
6639   case NEON::BI__builtin_neon_vqtbx3_v:
6640   case NEON::BI__builtin_neon_vqtbx3q_v:
6641   case NEON::BI__builtin_neon_vtbx4_v:
6642   case NEON::BI__builtin_neon_vqtbx4_v:
6643   case NEON::BI__builtin_neon_vqtbx4q_v:
6644     break;
6645   }
6646 
6647   assert(E->getNumArgs() >= 3);
6648 
6649   // Get the last argument, which specifies the vector type.
6650   llvm::APSInt Result;
6651   const Expr *Arg = E->getArg(E->getNumArgs() - 1);
6652   if (!Arg->isIntegerConstantExpr(Result, CGF.getContext()))
6653     return nullptr;
6654 
6655   // Determine the type of this overloaded NEON intrinsic.
6656   NeonTypeFlags Type(Result.getZExtValue());
6657   llvm::VectorType *Ty = GetNeonType(&CGF, Type);
6658   if (!Ty)
6659     return nullptr;
6660 
6661   CodeGen::CGBuilderTy &Builder = CGF.Builder;
6662 
6663   // AArch64 scalar builtins are not overloaded, they do not have an extra
6664   // argument that specifies the vector type, need to handle each case.
6665   switch (BuiltinID) {
6666   case NEON::BI__builtin_neon_vtbl1_v: {
6667     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 1), nullptr,
6668                               Ops[1], Ty, Intrinsic::aarch64_neon_tbl1,
6669                               "vtbl1");
6670   }
6671   case NEON::BI__builtin_neon_vtbl2_v: {
6672     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 2), nullptr,
6673                               Ops[2], Ty, Intrinsic::aarch64_neon_tbl1,
6674                               "vtbl1");
6675   }
6676   case NEON::BI__builtin_neon_vtbl3_v: {
6677     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 3), nullptr,
6678                               Ops[3], Ty, Intrinsic::aarch64_neon_tbl2,
6679                               "vtbl2");
6680   }
6681   case NEON::BI__builtin_neon_vtbl4_v: {
6682     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 4), nullptr,
6683                               Ops[4], Ty, Intrinsic::aarch64_neon_tbl2,
6684                               "vtbl2");
6685   }
6686   case NEON::BI__builtin_neon_vtbx1_v: {
6687     Value *TblRes =
6688         packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 1), nullptr, Ops[2],
6689                            Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1");
6690 
6691     llvm::Constant *EightV = ConstantInt::get(Ty, 8);
6692     Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV);
6693     CmpRes = Builder.CreateSExt(CmpRes, Ty);
6694 
6695     Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
6696     Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
6697     return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
6698   }
6699   case NEON::BI__builtin_neon_vtbx2_v: {
6700     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 2), Ops[0],
6701                               Ops[3], Ty, Intrinsic::aarch64_neon_tbx1,
6702                               "vtbx1");
6703   }
6704   case NEON::BI__builtin_neon_vtbx3_v: {
6705     Value *TblRes =
6706         packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 3), nullptr, Ops[4],
6707                            Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2");
6708 
6709     llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24);
6710     Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4],
6711                                            TwentyFourV);
6712     CmpRes = Builder.CreateSExt(CmpRes, Ty);
6713 
6714     Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
6715     Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
6716     return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
6717   }
6718   case NEON::BI__builtin_neon_vtbx4_v: {
6719     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 4), Ops[0],
6720                               Ops[5], Ty, Intrinsic::aarch64_neon_tbx2,
6721                               "vtbx2");
6722   }
6723   case NEON::BI__builtin_neon_vqtbl1_v:
6724   case NEON::BI__builtin_neon_vqtbl1q_v:
6725     Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break;
6726   case NEON::BI__builtin_neon_vqtbl2_v:
6727   case NEON::BI__builtin_neon_vqtbl2q_v: {
6728     Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break;
6729   case NEON::BI__builtin_neon_vqtbl3_v:
6730   case NEON::BI__builtin_neon_vqtbl3q_v:
6731     Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break;
6732   case NEON::BI__builtin_neon_vqtbl4_v:
6733   case NEON::BI__builtin_neon_vqtbl4q_v:
6734     Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break;
6735   case NEON::BI__builtin_neon_vqtbx1_v:
6736   case NEON::BI__builtin_neon_vqtbx1q_v:
6737     Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break;
6738   case NEON::BI__builtin_neon_vqtbx2_v:
6739   case NEON::BI__builtin_neon_vqtbx2q_v:
6740     Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break;
6741   case NEON::BI__builtin_neon_vqtbx3_v:
6742   case NEON::BI__builtin_neon_vqtbx3q_v:
6743     Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break;
6744   case NEON::BI__builtin_neon_vqtbx4_v:
6745   case NEON::BI__builtin_neon_vqtbx4q_v:
6746     Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break;
6747   }
6748   }
6749 
6750   if (!Int)
6751     return nullptr;
6752 
6753   Function *F = CGF.CGM.getIntrinsic(Int, Ty);
6754   return CGF.EmitNeonCall(F, Ops, s);
6755 }
6756 
vectorWrapScalar16(Value * Op)6757 Value *CodeGenFunction::vectorWrapScalar16(Value *Op) {
6758   llvm::Type *VTy = llvm::VectorType::get(Int16Ty, 4);
6759   Op = Builder.CreateBitCast(Op, Int16Ty);
6760   Value *V = UndefValue::get(VTy);
6761   llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
6762   Op = Builder.CreateInsertElement(V, Op, CI);
6763   return Op;
6764 }
6765 
EmitAArch64BuiltinExpr(unsigned BuiltinID,const CallExpr * E,llvm::Triple::ArchType Arch)6766 Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
6767                                                const CallExpr *E,
6768                                                llvm::Triple::ArchType Arch) {
6769   unsigned HintID = static_cast<unsigned>(-1);
6770   switch (BuiltinID) {
6771   default: break;
6772   case AArch64::BI__builtin_arm_nop:
6773     HintID = 0;
6774     break;
6775   case AArch64::BI__builtin_arm_yield:
6776   case AArch64::BI__yield:
6777     HintID = 1;
6778     break;
6779   case AArch64::BI__builtin_arm_wfe:
6780   case AArch64::BI__wfe:
6781     HintID = 2;
6782     break;
6783   case AArch64::BI__builtin_arm_wfi:
6784   case AArch64::BI__wfi:
6785     HintID = 3;
6786     break;
6787   case AArch64::BI__builtin_arm_sev:
6788   case AArch64::BI__sev:
6789     HintID = 4;
6790     break;
6791   case AArch64::BI__builtin_arm_sevl:
6792   case AArch64::BI__sevl:
6793     HintID = 5;
6794     break;
6795   }
6796 
6797   if (HintID != static_cast<unsigned>(-1)) {
6798     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint);
6799     return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID));
6800   }
6801 
6802   if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
6803     Value *Address         = EmitScalarExpr(E->getArg(0));
6804     Value *RW              = EmitScalarExpr(E->getArg(1));
6805     Value *CacheLevel      = EmitScalarExpr(E->getArg(2));
6806     Value *RetentionPolicy = EmitScalarExpr(E->getArg(3));
6807     Value *IsData          = EmitScalarExpr(E->getArg(4));
6808 
6809     Value *Locality = nullptr;
6810     if (cast<llvm::ConstantInt>(RetentionPolicy)->isZero()) {
6811       // Temporal fetch, needs to convert cache level to locality.
6812       Locality = llvm::ConstantInt::get(Int32Ty,
6813         -cast<llvm::ConstantInt>(CacheLevel)->getValue() + 3);
6814     } else {
6815       // Streaming fetch.
6816       Locality = llvm::ConstantInt::get(Int32Ty, 0);
6817     }
6818 
6819     // FIXME: We need AArch64 specific LLVM intrinsic if we want to specify
6820     // PLDL3STRM or PLDL2STRM.
6821     Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
6822     return Builder.CreateCall(F, {Address, RW, Locality, IsData});
6823   }
6824 
6825   if (BuiltinID == AArch64::BI__builtin_arm_rbit) {
6826     assert((getContext().getTypeSize(E->getType()) == 32) &&
6827            "rbit of unusual size!");
6828     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
6829     return Builder.CreateCall(
6830         CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
6831   }
6832   if (BuiltinID == AArch64::BI__builtin_arm_rbit64) {
6833     assert((getContext().getTypeSize(E->getType()) == 64) &&
6834            "rbit of unusual size!");
6835     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
6836     return Builder.CreateCall(
6837         CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
6838   }
6839 
6840   if (BuiltinID == AArch64::BI__clear_cache) {
6841     assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
6842     const FunctionDecl *FD = E->getDirectCallee();
6843     Value *Ops[2];
6844     for (unsigned i = 0; i < 2; i++)
6845       Ops[i] = EmitScalarExpr(E->getArg(i));
6846     llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
6847     llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
6848     StringRef Name = FD->getName();
6849     return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
6850   }
6851 
6852   if ((BuiltinID == AArch64::BI__builtin_arm_ldrex ||
6853       BuiltinID == AArch64::BI__builtin_arm_ldaex) &&
6854       getContext().getTypeSize(E->getType()) == 128) {
6855     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
6856                                        ? Intrinsic::aarch64_ldaxp
6857                                        : Intrinsic::aarch64_ldxp);
6858 
6859     Value *LdPtr = EmitScalarExpr(E->getArg(0));
6860     Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
6861                                     "ldxp");
6862 
6863     Value *Val0 = Builder.CreateExtractValue(Val, 1);
6864     Value *Val1 = Builder.CreateExtractValue(Val, 0);
6865     llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
6866     Val0 = Builder.CreateZExt(Val0, Int128Ty);
6867     Val1 = Builder.CreateZExt(Val1, Int128Ty);
6868 
6869     Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64);
6870     Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
6871     Val = Builder.CreateOr(Val, Val1);
6872     return Builder.CreateBitCast(Val, ConvertType(E->getType()));
6873   } else if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
6874              BuiltinID == AArch64::BI__builtin_arm_ldaex) {
6875     Value *LoadAddr = EmitScalarExpr(E->getArg(0));
6876 
6877     QualType Ty = E->getType();
6878     llvm::Type *RealResTy = ConvertType(Ty);
6879     llvm::Type *PtrTy = llvm::IntegerType::get(
6880         getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
6881     LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
6882 
6883     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
6884                                        ? Intrinsic::aarch64_ldaxr
6885                                        : Intrinsic::aarch64_ldxr,
6886                                    PtrTy);
6887     Value *Val = Builder.CreateCall(F, LoadAddr, "ldxr");
6888 
6889     if (RealResTy->isPointerTy())
6890       return Builder.CreateIntToPtr(Val, RealResTy);
6891 
6892     llvm::Type *IntResTy = llvm::IntegerType::get(
6893         getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
6894     Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
6895     return Builder.CreateBitCast(Val, RealResTy);
6896   }
6897 
6898   if ((BuiltinID == AArch64::BI__builtin_arm_strex ||
6899        BuiltinID == AArch64::BI__builtin_arm_stlex) &&
6900       getContext().getTypeSize(E->getArg(0)->getType()) == 128) {
6901     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
6902                                        ? Intrinsic::aarch64_stlxp
6903                                        : Intrinsic::aarch64_stxp);
6904     llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty);
6905 
6906     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
6907     EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true);
6908 
6909     Tmp = Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(STy));
6910     llvm::Value *Val = Builder.CreateLoad(Tmp);
6911 
6912     Value *Arg0 = Builder.CreateExtractValue(Val, 0);
6913     Value *Arg1 = Builder.CreateExtractValue(Val, 1);
6914     Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)),
6915                                          Int8PtrTy);
6916     return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp");
6917   }
6918 
6919   if (BuiltinID == AArch64::BI__builtin_arm_strex ||
6920       BuiltinID == AArch64::BI__builtin_arm_stlex) {
6921     Value *StoreVal = EmitScalarExpr(E->getArg(0));
6922     Value *StoreAddr = EmitScalarExpr(E->getArg(1));
6923 
6924     QualType Ty = E->getArg(0)->getType();
6925     llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
6926                                                  getContext().getTypeSize(Ty));
6927     StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
6928 
6929     if (StoreVal->getType()->isPointerTy())
6930       StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty);
6931     else {
6932       llvm::Type *IntTy = llvm::IntegerType::get(
6933           getLLVMContext(),
6934           CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
6935       StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
6936       StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty);
6937     }
6938 
6939     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
6940                                        ? Intrinsic::aarch64_stlxr
6941                                        : Intrinsic::aarch64_stxr,
6942                                    StoreAddr->getType());
6943     return Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr");
6944   }
6945 
6946   if (BuiltinID == AArch64::BI__getReg) {
6947     Expr::EvalResult Result;
6948     if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
6949       llvm_unreachable("Sema will ensure that the parameter is constant");
6950 
6951     llvm::APSInt Value = Result.Val.getInt();
6952     LLVMContext &Context = CGM.getLLVMContext();
6953     std::string Reg = Value == 31 ? "sp" : "x" + Value.toString(10);
6954 
6955     llvm::Metadata *Ops[] = {llvm::MDString::get(Context, Reg)};
6956     llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
6957     llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
6958 
6959     llvm::Value *F =
6960         CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty});
6961     return Builder.CreateCall(F, Metadata);
6962   }
6963 
6964   if (BuiltinID == AArch64::BI__builtin_arm_clrex) {
6965     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex);
6966     return Builder.CreateCall(F);
6967   }
6968 
6969   if (BuiltinID == AArch64::BI_ReadWriteBarrier)
6970     return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
6971                                llvm::SyncScope::SingleThread);
6972 
6973   // CRC32
6974   Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
6975   switch (BuiltinID) {
6976   case AArch64::BI__builtin_arm_crc32b:
6977     CRCIntrinsicID = Intrinsic::aarch64_crc32b; break;
6978   case AArch64::BI__builtin_arm_crc32cb:
6979     CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break;
6980   case AArch64::BI__builtin_arm_crc32h:
6981     CRCIntrinsicID = Intrinsic::aarch64_crc32h; break;
6982   case AArch64::BI__builtin_arm_crc32ch:
6983     CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break;
6984   case AArch64::BI__builtin_arm_crc32w:
6985     CRCIntrinsicID = Intrinsic::aarch64_crc32w; break;
6986   case AArch64::BI__builtin_arm_crc32cw:
6987     CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break;
6988   case AArch64::BI__builtin_arm_crc32d:
6989     CRCIntrinsicID = Intrinsic::aarch64_crc32x; break;
6990   case AArch64::BI__builtin_arm_crc32cd:
6991     CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break;
6992   }
6993 
6994   if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
6995     Value *Arg0 = EmitScalarExpr(E->getArg(0));
6996     Value *Arg1 = EmitScalarExpr(E->getArg(1));
6997     Function *F = CGM.getIntrinsic(CRCIntrinsicID);
6998 
6999     llvm::Type *DataTy = F->getFunctionType()->getParamType(1);
7000     Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy);
7001 
7002     return Builder.CreateCall(F, {Arg0, Arg1});
7003   }
7004 
7005   if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
7006       BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
7007       BuiltinID == AArch64::BI__builtin_arm_rsrp ||
7008       BuiltinID == AArch64::BI__builtin_arm_wsr ||
7009       BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
7010       BuiltinID == AArch64::BI__builtin_arm_wsrp) {
7011 
7012     bool IsRead = BuiltinID == AArch64::BI__builtin_arm_rsr ||
7013                   BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
7014                   BuiltinID == AArch64::BI__builtin_arm_rsrp;
7015 
7016     bool IsPointerBuiltin = BuiltinID == AArch64::BI__builtin_arm_rsrp ||
7017                             BuiltinID == AArch64::BI__builtin_arm_wsrp;
7018 
7019     bool Is64Bit = BuiltinID != AArch64::BI__builtin_arm_rsr &&
7020                    BuiltinID != AArch64::BI__builtin_arm_wsr;
7021 
7022     llvm::Type *ValueType;
7023     llvm::Type *RegisterType = Int64Ty;
7024     if (IsPointerBuiltin) {
7025       ValueType = VoidPtrTy;
7026     } else if (Is64Bit) {
7027       ValueType = Int64Ty;
7028     } else {
7029       ValueType = Int32Ty;
7030     }
7031 
7032     return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, IsRead);
7033   }
7034 
7035   if (BuiltinID == AArch64::BI_ReadStatusReg ||
7036       BuiltinID == AArch64::BI_WriteStatusReg) {
7037     LLVMContext &Context = CGM.getLLVMContext();
7038 
7039     unsigned SysReg =
7040       E->getArg(0)->EvaluateKnownConstInt(getContext()).getZExtValue();
7041 
7042     std::string SysRegStr;
7043     llvm::raw_string_ostream(SysRegStr) <<
7044                        ((1 << 1) | ((SysReg >> 14) & 1))  << ":" <<
7045                        ((SysReg >> 11) & 7)               << ":" <<
7046                        ((SysReg >> 7)  & 15)              << ":" <<
7047                        ((SysReg >> 3)  & 15)              << ":" <<
7048                        ( SysReg        & 7);
7049 
7050     llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysRegStr) };
7051     llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
7052     llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
7053 
7054     llvm::Type *RegisterType = Int64Ty;
7055     llvm::Type *Types[] = { RegisterType };
7056 
7057     if (BuiltinID == AArch64::BI_ReadStatusReg) {
7058       llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
7059 
7060       return Builder.CreateCall(F, Metadata);
7061     }
7062 
7063     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
7064     llvm::Value *ArgValue = EmitScalarExpr(E->getArg(1));
7065 
7066     return Builder.CreateCall(F, { Metadata, ArgValue });
7067   }
7068 
7069   if (BuiltinID == AArch64::BI_AddressOfReturnAddress) {
7070     llvm::Value *F = CGM.getIntrinsic(Intrinsic::addressofreturnaddress);
7071     return Builder.CreateCall(F);
7072   }
7073 
7074   // Find out if any arguments are required to be integer constant
7075   // expressions.
7076   unsigned ICEArguments = 0;
7077   ASTContext::GetBuiltinTypeError Error;
7078   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
7079   assert(Error == ASTContext::GE_None && "Should not codegen an error");
7080 
7081   llvm::SmallVector<Value*, 4> Ops;
7082   for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
7083     if ((ICEArguments & (1 << i)) == 0) {
7084       Ops.push_back(EmitScalarExpr(E->getArg(i)));
7085     } else {
7086       // If this is required to be a constant, constant fold it so that we know
7087       // that the generated intrinsic gets a ConstantInt.
7088       llvm::APSInt Result;
7089       bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
7090       assert(IsConst && "Constant arg isn't actually constant?");
7091       (void)IsConst;
7092       Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
7093     }
7094   }
7095 
7096   auto SISDMap = makeArrayRef(AArch64SISDIntrinsicMap);
7097   const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap(
7098       SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted);
7099 
7100   if (Builtin) {
7101     Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1)));
7102     Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E);
7103     assert(Result && "SISD intrinsic should have been handled");
7104     return Result;
7105   }
7106 
7107   llvm::APSInt Result;
7108   const Expr *Arg = E->getArg(E->getNumArgs()-1);
7109   NeonTypeFlags Type(0);
7110   if (Arg->isIntegerConstantExpr(Result, getContext()))
7111     // Determine the type of this overloaded NEON intrinsic.
7112     Type = NeonTypeFlags(Result.getZExtValue());
7113 
7114   bool usgn = Type.isUnsigned();
7115   bool quad = Type.isQuad();
7116 
7117   // Handle non-overloaded intrinsics first.
7118   switch (BuiltinID) {
7119   default: break;
7120   case NEON::BI__builtin_neon_vabsh_f16:
7121     Ops.push_back(EmitScalarExpr(E->getArg(0)));
7122     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, HalfTy), Ops, "vabs");
7123   case NEON::BI__builtin_neon_vldrq_p128: {
7124     llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
7125     llvm::Type *Int128PTy = llvm::PointerType::get(Int128Ty, 0);
7126     Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy);
7127     return Builder.CreateAlignedLoad(Int128Ty, Ptr,
7128                                      CharUnits::fromQuantity(16));
7129   }
7130   case NEON::BI__builtin_neon_vstrq_p128: {
7131     llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128);
7132     Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy);
7133     return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr);
7134   }
7135   case NEON::BI__builtin_neon_vcvts_u32_f32:
7136   case NEON::BI__builtin_neon_vcvtd_u64_f64:
7137     usgn = true;
7138     LLVM_FALLTHROUGH;
7139   case NEON::BI__builtin_neon_vcvts_s32_f32:
7140   case NEON::BI__builtin_neon_vcvtd_s64_f64: {
7141     Ops.push_back(EmitScalarExpr(E->getArg(0)));
7142     bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
7143     llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
7144     llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
7145     Ops[0] = Builder.CreateBitCast(Ops[0], FTy);
7146     if (usgn)
7147       return Builder.CreateFPToUI(Ops[0], InTy);
7148     return Builder.CreateFPToSI(Ops[0], InTy);
7149   }
7150   case NEON::BI__builtin_neon_vcvts_f32_u32:
7151   case NEON::BI__builtin_neon_vcvtd_f64_u64:
7152     usgn = true;
7153     LLVM_FALLTHROUGH;
7154   case NEON::BI__builtin_neon_vcvts_f32_s32:
7155   case NEON::BI__builtin_neon_vcvtd_f64_s64: {
7156     Ops.push_back(EmitScalarExpr(E->getArg(0)));
7157     bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
7158     llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
7159     llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
7160     Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
7161     if (usgn)
7162       return Builder.CreateUIToFP(Ops[0], FTy);
7163     return Builder.CreateSIToFP(Ops[0], FTy);
7164   }
7165   case NEON::BI__builtin_neon_vcvth_f16_u16:
7166   case NEON::BI__builtin_neon_vcvth_f16_u32:
7167   case NEON::BI__builtin_neon_vcvth_f16_u64:
7168     usgn = true;
7169     LLVM_FALLTHROUGH;
7170   case NEON::BI__builtin_neon_vcvth_f16_s16:
7171   case NEON::BI__builtin_neon_vcvth_f16_s32:
7172   case NEON::BI__builtin_neon_vcvth_f16_s64: {
7173     Ops.push_back(EmitScalarExpr(E->getArg(0)));
7174     llvm::Type *FTy = HalfTy;
7175     llvm::Type *InTy;
7176     if (Ops[0]->getType()->getPrimitiveSizeInBits() == 64)
7177       InTy = Int64Ty;
7178     else if (Ops[0]->getType()->getPrimitiveSizeInBits() == 32)
7179       InTy = Int32Ty;
7180     else
7181       InTy = Int16Ty;
7182     Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
7183     if (usgn)
7184       return Builder.CreateUIToFP(Ops[0], FTy);
7185     return Builder.CreateSIToFP(Ops[0], FTy);
7186   }
7187   case NEON::BI__builtin_neon_vcvth_u16_f16:
7188     usgn = true;
7189     LLVM_FALLTHROUGH;
7190   case NEON::BI__builtin_neon_vcvth_s16_f16: {
7191     Ops.push_back(EmitScalarExpr(E->getArg(0)));
7192     Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
7193     if (usgn)
7194       return Builder.CreateFPToUI(Ops[0], Int16Ty);
7195     return Builder.CreateFPToSI(Ops[0], Int16Ty);
7196   }
7197   case NEON::BI__builtin_neon_vcvth_u32_f16:
7198     usgn = true;
7199     LLVM_FALLTHROUGH;
7200   case NEON::BI__builtin_neon_vcvth_s32_f16: {
7201     Ops.push_back(EmitScalarExpr(E->getArg(0)));
7202     Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
7203     if (usgn)
7204       return Builder.CreateFPToUI(Ops[0], Int32Ty);
7205     return Builder.CreateFPToSI(Ops[0], Int32Ty);
7206   }
7207   case NEON::BI__builtin_neon_vcvth_u64_f16:
7208     usgn = true;
7209     LLVM_FALLTHROUGH;
7210   case NEON::BI__builtin_neon_vcvth_s64_f16: {
7211     Ops.push_back(EmitScalarExpr(E->getArg(0)));
7212     Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
7213     if (usgn)
7214       return Builder.CreateFPToUI(Ops[0], Int64Ty);
7215     return Builder.CreateFPToSI(Ops[0], Int64Ty);
7216   }
7217   case NEON::BI__builtin_neon_vcvtah_u16_f16:
7218   case NEON::BI__builtin_neon_vcvtmh_u16_f16:
7219   case NEON::BI__builtin_neon_vcvtnh_u16_f16:
7220   case NEON::BI__builtin_neon_vcvtph_u16_f16:
7221   case NEON::BI__builtin_neon_vcvtah_s16_f16:
7222   case NEON::BI__builtin_neon_vcvtmh_s16_f16:
7223   case NEON::BI__builtin_neon_vcvtnh_s16_f16:
7224   case NEON::BI__builtin_neon_vcvtph_s16_f16: {
7225     unsigned Int;
7226     llvm::Type* InTy = Int32Ty;
7227     llvm::Type* FTy  = HalfTy;
7228     llvm::Type *Tys[2] = {InTy, FTy};
7229     Ops.push_back(EmitScalarExpr(E->getArg(0)));
7230     switch (BuiltinID) {
7231     default: llvm_unreachable("missing builtin ID in switch!");
7232     case NEON::BI__builtin_neon_vcvtah_u16_f16:
7233       Int = Intrinsic::aarch64_neon_fcvtau; break;
7234     case NEON::BI__builtin_neon_vcvtmh_u16_f16:
7235       Int = Intrinsic::aarch64_neon_fcvtmu; break;
7236     case NEON::BI__builtin_neon_vcvtnh_u16_f16:
7237       Int = Intrinsic::aarch64_neon_fcvtnu; break;
7238     case NEON::BI__builtin_neon_vcvtph_u16_f16:
7239       Int = Intrinsic::aarch64_neon_fcvtpu; break;
7240     case NEON::BI__builtin_neon_vcvtah_s16_f16:
7241       Int = Intrinsic::aarch64_neon_fcvtas; break;
7242     case NEON::BI__builtin_neon_vcvtmh_s16_f16:
7243       Int = Intrinsic::aarch64_neon_fcvtms; break;
7244     case NEON::BI__builtin_neon_vcvtnh_s16_f16:
7245       Int = Intrinsic::aarch64_neon_fcvtns; break;
7246     case NEON::BI__builtin_neon_vcvtph_s16_f16:
7247       Int = Intrinsic::aarch64_neon_fcvtps; break;
7248     }
7249     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvt");
7250     return Builder.CreateTrunc(Ops[0], Int16Ty);
7251   }
7252   case NEON::BI__builtin_neon_vcaleh_f16:
7253   case NEON::BI__builtin_neon_vcalth_f16:
7254   case NEON::BI__builtin_neon_vcageh_f16:
7255   case NEON::BI__builtin_neon_vcagth_f16: {
7256     unsigned Int;
7257     llvm::Type* InTy = Int32Ty;
7258     llvm::Type* FTy  = HalfTy;
7259     llvm::Type *Tys[2] = {InTy, FTy};
7260     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7261     switch (BuiltinID) {
7262     default: llvm_unreachable("missing builtin ID in switch!");
7263     case NEON::BI__builtin_neon_vcageh_f16:
7264       Int = Intrinsic::aarch64_neon_facge; break;
7265     case NEON::BI__builtin_neon_vcagth_f16:
7266       Int = Intrinsic::aarch64_neon_facgt; break;
7267     case NEON::BI__builtin_neon_vcaleh_f16:
7268       Int = Intrinsic::aarch64_neon_facge; std::swap(Ops[0], Ops[1]); break;
7269     case NEON::BI__builtin_neon_vcalth_f16:
7270       Int = Intrinsic::aarch64_neon_facgt; std::swap(Ops[0], Ops[1]); break;
7271     }
7272     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "facg");
7273     return Builder.CreateTrunc(Ops[0], Int16Ty);
7274   }
7275   case NEON::BI__builtin_neon_vcvth_n_s16_f16:
7276   case NEON::BI__builtin_neon_vcvth_n_u16_f16: {
7277     unsigned Int;
7278     llvm::Type* InTy = Int32Ty;
7279     llvm::Type* FTy  = HalfTy;
7280     llvm::Type *Tys[2] = {InTy, FTy};
7281     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7282     switch (BuiltinID) {
7283     default: llvm_unreachable("missing builtin ID in switch!");
7284     case NEON::BI__builtin_neon_vcvth_n_s16_f16:
7285       Int = Intrinsic::aarch64_neon_vcvtfp2fxs; break;
7286     case NEON::BI__builtin_neon_vcvth_n_u16_f16:
7287       Int = Intrinsic::aarch64_neon_vcvtfp2fxu; break;
7288     }
7289     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
7290     return Builder.CreateTrunc(Ops[0], Int16Ty);
7291   }
7292   case NEON::BI__builtin_neon_vcvth_n_f16_s16:
7293   case NEON::BI__builtin_neon_vcvth_n_f16_u16: {
7294     unsigned Int;
7295     llvm::Type* FTy  = HalfTy;
7296     llvm::Type* InTy = Int32Ty;
7297     llvm::Type *Tys[2] = {FTy, InTy};
7298     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7299     switch (BuiltinID) {
7300     default: llvm_unreachable("missing builtin ID in switch!");
7301     case NEON::BI__builtin_neon_vcvth_n_f16_s16:
7302       Int = Intrinsic::aarch64_neon_vcvtfxs2fp;
7303       Ops[0] = Builder.CreateSExt(Ops[0], InTy, "sext");
7304       break;
7305     case NEON::BI__builtin_neon_vcvth_n_f16_u16:
7306       Int = Intrinsic::aarch64_neon_vcvtfxu2fp;
7307       Ops[0] = Builder.CreateZExt(Ops[0], InTy);
7308       break;
7309     }
7310     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
7311   }
7312   case NEON::BI__builtin_neon_vpaddd_s64: {
7313     llvm::Type *Ty = llvm::VectorType::get(Int64Ty, 2);
7314     Value *Vec = EmitScalarExpr(E->getArg(0));
7315     // The vector is v2f64, so make sure it's bitcast to that.
7316     Vec = Builder.CreateBitCast(Vec, Ty, "v2i64");
7317     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
7318     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
7319     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
7320     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
7321     // Pairwise addition of a v2f64 into a scalar f64.
7322     return Builder.CreateAdd(Op0, Op1, "vpaddd");
7323   }
7324   case NEON::BI__builtin_neon_vpaddd_f64: {
7325     llvm::Type *Ty =
7326       llvm::VectorType::get(DoubleTy, 2);
7327     Value *Vec = EmitScalarExpr(E->getArg(0));
7328     // The vector is v2f64, so make sure it's bitcast to that.
7329     Vec = Builder.CreateBitCast(Vec, Ty, "v2f64");
7330     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
7331     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
7332     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
7333     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
7334     // Pairwise addition of a v2f64 into a scalar f64.
7335     return Builder.CreateFAdd(Op0, Op1, "vpaddd");
7336   }
7337   case NEON::BI__builtin_neon_vpadds_f32: {
7338     llvm::Type *Ty =
7339       llvm::VectorType::get(FloatTy, 2);
7340     Value *Vec = EmitScalarExpr(E->getArg(0));
7341     // The vector is v2f32, so make sure it's bitcast to that.
7342     Vec = Builder.CreateBitCast(Vec, Ty, "v2f32");
7343     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
7344     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
7345     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
7346     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
7347     // Pairwise addition of a v2f32 into a scalar f32.
7348     return Builder.CreateFAdd(Op0, Op1, "vpaddd");
7349   }
7350   case NEON::BI__builtin_neon_vceqzd_s64:
7351   case NEON::BI__builtin_neon_vceqzd_f64:
7352   case NEON::BI__builtin_neon_vceqzs_f32:
7353   case NEON::BI__builtin_neon_vceqzh_f16:
7354     Ops.push_back(EmitScalarExpr(E->getArg(0)));
7355     return EmitAArch64CompareBuiltinExpr(
7356         Ops[0], ConvertType(E->getCallReturnType(getContext())),
7357         ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz");
7358   case NEON::BI__builtin_neon_vcgezd_s64:
7359   case NEON::BI__builtin_neon_vcgezd_f64:
7360   case NEON::BI__builtin_neon_vcgezs_f32:
7361   case NEON::BI__builtin_neon_vcgezh_f16:
7362     Ops.push_back(EmitScalarExpr(E->getArg(0)));
7363     return EmitAArch64CompareBuiltinExpr(
7364         Ops[0], ConvertType(E->getCallReturnType(getContext())),
7365         ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez");
7366   case NEON::BI__builtin_neon_vclezd_s64:
7367   case NEON::BI__builtin_neon_vclezd_f64:
7368   case NEON::BI__builtin_neon_vclezs_f32:
7369   case NEON::BI__builtin_neon_vclezh_f16:
7370     Ops.push_back(EmitScalarExpr(E->getArg(0)));
7371     return EmitAArch64CompareBuiltinExpr(
7372         Ops[0], ConvertType(E->getCallReturnType(getContext())),
7373         ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez");
7374   case NEON::BI__builtin_neon_vcgtzd_s64:
7375   case NEON::BI__builtin_neon_vcgtzd_f64:
7376   case NEON::BI__builtin_neon_vcgtzs_f32:
7377   case NEON::BI__builtin_neon_vcgtzh_f16:
7378     Ops.push_back(EmitScalarExpr(E->getArg(0)));
7379     return EmitAArch64CompareBuiltinExpr(
7380         Ops[0], ConvertType(E->getCallReturnType(getContext())),
7381         ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz");
7382   case NEON::BI__builtin_neon_vcltzd_s64:
7383   case NEON::BI__builtin_neon_vcltzd_f64:
7384   case NEON::BI__builtin_neon_vcltzs_f32:
7385   case NEON::BI__builtin_neon_vcltzh_f16:
7386     Ops.push_back(EmitScalarExpr(E->getArg(0)));
7387     return EmitAArch64CompareBuiltinExpr(
7388         Ops[0], ConvertType(E->getCallReturnType(getContext())),
7389         ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz");
7390 
7391   case NEON::BI__builtin_neon_vceqzd_u64: {
7392     Ops.push_back(EmitScalarExpr(E->getArg(0)));
7393     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
7394     Ops[0] =
7395         Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty));
7396     return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd");
7397   }
7398   case NEON::BI__builtin_neon_vceqd_f64:
7399   case NEON::BI__builtin_neon_vcled_f64:
7400   case NEON::BI__builtin_neon_vcltd_f64:
7401   case NEON::BI__builtin_neon_vcged_f64:
7402   case NEON::BI__builtin_neon_vcgtd_f64: {
7403     llvm::CmpInst::Predicate P;
7404     switch (BuiltinID) {
7405     default: llvm_unreachable("missing builtin ID in switch!");
7406     case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break;
7407     case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break;
7408     case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break;
7409     case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break;
7410     case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break;
7411     }
7412     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7413     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
7414     Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
7415     Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
7416     return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd");
7417   }
7418   case NEON::BI__builtin_neon_vceqs_f32:
7419   case NEON::BI__builtin_neon_vcles_f32:
7420   case NEON::BI__builtin_neon_vclts_f32:
7421   case NEON::BI__builtin_neon_vcges_f32:
7422   case NEON::BI__builtin_neon_vcgts_f32: {
7423     llvm::CmpInst::Predicate P;
7424     switch (BuiltinID) {
7425     default: llvm_unreachable("missing builtin ID in switch!");
7426     case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break;
7427     case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break;
7428     case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break;
7429     case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break;
7430     case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break;
7431     }
7432     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7433     Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
7434     Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy);
7435     Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
7436     return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd");
7437   }
7438   case NEON::BI__builtin_neon_vceqh_f16:
7439   case NEON::BI__builtin_neon_vcleh_f16:
7440   case NEON::BI__builtin_neon_vclth_f16:
7441   case NEON::BI__builtin_neon_vcgeh_f16:
7442   case NEON::BI__builtin_neon_vcgth_f16: {
7443     llvm::CmpInst::Predicate P;
7444     switch (BuiltinID) {
7445     default: llvm_unreachable("missing builtin ID in switch!");
7446     case NEON::BI__builtin_neon_vceqh_f16: P = llvm::FCmpInst::FCMP_OEQ; break;
7447     case NEON::BI__builtin_neon_vcleh_f16: P = llvm::FCmpInst::FCMP_OLE; break;
7448     case NEON::BI__builtin_neon_vclth_f16: P = llvm::FCmpInst::FCMP_OLT; break;
7449     case NEON::BI__builtin_neon_vcgeh_f16: P = llvm::FCmpInst::FCMP_OGE; break;
7450     case NEON::BI__builtin_neon_vcgth_f16: P = llvm::FCmpInst::FCMP_OGT; break;
7451     }
7452     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7453     Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
7454     Ops[1] = Builder.CreateBitCast(Ops[1], HalfTy);
7455     Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
7456     return Builder.CreateSExt(Ops[0], Int16Ty, "vcmpd");
7457   }
7458   case NEON::BI__builtin_neon_vceqd_s64:
7459   case NEON::BI__builtin_neon_vceqd_u64:
7460   case NEON::BI__builtin_neon_vcgtd_s64:
7461   case NEON::BI__builtin_neon_vcgtd_u64:
7462   case NEON::BI__builtin_neon_vcltd_s64:
7463   case NEON::BI__builtin_neon_vcltd_u64:
7464   case NEON::BI__builtin_neon_vcged_u64:
7465   case NEON::BI__builtin_neon_vcged_s64:
7466   case NEON::BI__builtin_neon_vcled_u64:
7467   case NEON::BI__builtin_neon_vcled_s64: {
7468     llvm::CmpInst::Predicate P;
7469     switch (BuiltinID) {
7470     default: llvm_unreachable("missing builtin ID in switch!");
7471     case NEON::BI__builtin_neon_vceqd_s64:
7472     case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break;
7473     case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break;
7474     case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break;
7475     case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break;
7476     case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break;
7477     case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break;
7478     case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break;
7479     case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break;
7480     case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break;
7481     }
7482     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7483     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
7484     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
7485     Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]);
7486     return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd");
7487   }
7488   case NEON::BI__builtin_neon_vtstd_s64:
7489   case NEON::BI__builtin_neon_vtstd_u64: {
7490     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7491     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
7492     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
7493     Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
7494     Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
7495                                 llvm::Constant::getNullValue(Int64Ty));
7496     return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd");
7497   }
7498   case NEON::BI__builtin_neon_vset_lane_i8:
7499   case NEON::BI__builtin_neon_vset_lane_i16:
7500   case NEON::BI__builtin_neon_vset_lane_i32:
7501   case NEON::BI__builtin_neon_vset_lane_i64:
7502   case NEON::BI__builtin_neon_vset_lane_f32:
7503   case NEON::BI__builtin_neon_vsetq_lane_i8:
7504   case NEON::BI__builtin_neon_vsetq_lane_i16:
7505   case NEON::BI__builtin_neon_vsetq_lane_i32:
7506   case NEON::BI__builtin_neon_vsetq_lane_i64:
7507   case NEON::BI__builtin_neon_vsetq_lane_f32:
7508     Ops.push_back(EmitScalarExpr(E->getArg(2)));
7509     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
7510   case NEON::BI__builtin_neon_vset_lane_f64:
7511     // The vector type needs a cast for the v1f64 variant.
7512     Ops[1] = Builder.CreateBitCast(Ops[1],
7513                                    llvm::VectorType::get(DoubleTy, 1));
7514     Ops.push_back(EmitScalarExpr(E->getArg(2)));
7515     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
7516   case NEON::BI__builtin_neon_vsetq_lane_f64:
7517     // The vector type needs a cast for the v2f64 variant.
7518     Ops[1] = Builder.CreateBitCast(Ops[1],
7519         llvm::VectorType::get(DoubleTy, 2));
7520     Ops.push_back(EmitScalarExpr(E->getArg(2)));
7521     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
7522 
7523   case NEON::BI__builtin_neon_vget_lane_i8:
7524   case NEON::BI__builtin_neon_vdupb_lane_i8:
7525     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int8Ty, 8));
7526     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7527                                         "vget_lane");
7528   case NEON::BI__builtin_neon_vgetq_lane_i8:
7529   case NEON::BI__builtin_neon_vdupb_laneq_i8:
7530     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int8Ty, 16));
7531     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7532                                         "vgetq_lane");
7533   case NEON::BI__builtin_neon_vget_lane_i16:
7534   case NEON::BI__builtin_neon_vduph_lane_i16:
7535     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int16Ty, 4));
7536     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7537                                         "vget_lane");
7538   case NEON::BI__builtin_neon_vgetq_lane_i16:
7539   case NEON::BI__builtin_neon_vduph_laneq_i16:
7540     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int16Ty, 8));
7541     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7542                                         "vgetq_lane");
7543   case NEON::BI__builtin_neon_vget_lane_i32:
7544   case NEON::BI__builtin_neon_vdups_lane_i32:
7545     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 2));
7546     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7547                                         "vget_lane");
7548   case NEON::BI__builtin_neon_vdups_lane_f32:
7549     Ops[0] = Builder.CreateBitCast(Ops[0],
7550         llvm::VectorType::get(FloatTy, 2));
7551     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7552                                         "vdups_lane");
7553   case NEON::BI__builtin_neon_vgetq_lane_i32:
7554   case NEON::BI__builtin_neon_vdups_laneq_i32:
7555     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4));
7556     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7557                                         "vgetq_lane");
7558   case NEON::BI__builtin_neon_vget_lane_i64:
7559   case NEON::BI__builtin_neon_vdupd_lane_i64:
7560     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 1));
7561     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7562                                         "vget_lane");
7563   case NEON::BI__builtin_neon_vdupd_lane_f64:
7564     Ops[0] = Builder.CreateBitCast(Ops[0],
7565         llvm::VectorType::get(DoubleTy, 1));
7566     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7567                                         "vdupd_lane");
7568   case NEON::BI__builtin_neon_vgetq_lane_i64:
7569   case NEON::BI__builtin_neon_vdupd_laneq_i64:
7570     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
7571     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7572                                         "vgetq_lane");
7573   case NEON::BI__builtin_neon_vget_lane_f32:
7574     Ops[0] = Builder.CreateBitCast(Ops[0],
7575         llvm::VectorType::get(FloatTy, 2));
7576     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7577                                         "vget_lane");
7578   case NEON::BI__builtin_neon_vget_lane_f64:
7579     Ops[0] = Builder.CreateBitCast(Ops[0],
7580         llvm::VectorType::get(DoubleTy, 1));
7581     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7582                                         "vget_lane");
7583   case NEON::BI__builtin_neon_vgetq_lane_f32:
7584   case NEON::BI__builtin_neon_vdups_laneq_f32:
7585     Ops[0] = Builder.CreateBitCast(Ops[0],
7586         llvm::VectorType::get(FloatTy, 4));
7587     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7588                                         "vgetq_lane");
7589   case NEON::BI__builtin_neon_vgetq_lane_f64:
7590   case NEON::BI__builtin_neon_vdupd_laneq_f64:
7591     Ops[0] = Builder.CreateBitCast(Ops[0],
7592         llvm::VectorType::get(DoubleTy, 2));
7593     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
7594                                         "vgetq_lane");
7595   case NEON::BI__builtin_neon_vaddh_f16:
7596     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7597     return Builder.CreateFAdd(Ops[0], Ops[1], "vaddh");
7598   case NEON::BI__builtin_neon_vsubh_f16:
7599     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7600     return Builder.CreateFSub(Ops[0], Ops[1], "vsubh");
7601   case NEON::BI__builtin_neon_vmulh_f16:
7602     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7603     return Builder.CreateFMul(Ops[0], Ops[1], "vmulh");
7604   case NEON::BI__builtin_neon_vdivh_f16:
7605     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7606     return Builder.CreateFDiv(Ops[0], Ops[1], "vdivh");
7607   case NEON::BI__builtin_neon_vfmah_f16: {
7608     Value *F = CGM.getIntrinsic(Intrinsic::fma, HalfTy);
7609     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
7610     return Builder.CreateCall(F,
7611       {EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), Ops[0]});
7612   }
7613   case NEON::BI__builtin_neon_vfmsh_f16: {
7614     Value *F = CGM.getIntrinsic(Intrinsic::fma, HalfTy);
7615     Value *Zero = llvm::ConstantFP::getZeroValueForNegation(HalfTy);
7616     Value* Sub = Builder.CreateFSub(Zero, EmitScalarExpr(E->getArg(1)), "vsubh");
7617     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
7618     return Builder.CreateCall(F, {Sub, EmitScalarExpr(E->getArg(2)), Ops[0]});
7619   }
7620   case NEON::BI__builtin_neon_vaddd_s64:
7621   case NEON::BI__builtin_neon_vaddd_u64:
7622     return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd");
7623   case NEON::BI__builtin_neon_vsubd_s64:
7624   case NEON::BI__builtin_neon_vsubd_u64:
7625     return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd");
7626   case NEON::BI__builtin_neon_vqdmlalh_s16:
7627   case NEON::BI__builtin_neon_vqdmlslh_s16: {
7628     SmallVector<Value *, 2> ProductOps;
7629     ProductOps.push_back(vectorWrapScalar16(Ops[1]));
7630     ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2))));
7631     llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4);
7632     Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
7633                           ProductOps, "vqdmlXl");
7634     Constant *CI = ConstantInt::get(SizeTy, 0);
7635     Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
7636 
7637     unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16
7638                                         ? Intrinsic::aarch64_neon_sqadd
7639                                         : Intrinsic::aarch64_neon_sqsub;
7640     return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl");
7641   }
7642   case NEON::BI__builtin_neon_vqshlud_n_s64: {
7643     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7644     Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
7645     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty),
7646                         Ops, "vqshlu_n");
7647   }
7648   case NEON::BI__builtin_neon_vqshld_n_u64:
7649   case NEON::BI__builtin_neon_vqshld_n_s64: {
7650     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64
7651                                    ? Intrinsic::aarch64_neon_uqshl
7652                                    : Intrinsic::aarch64_neon_sqshl;
7653     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7654     Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
7655     return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n");
7656   }
7657   case NEON::BI__builtin_neon_vrshrd_n_u64:
7658   case NEON::BI__builtin_neon_vrshrd_n_s64: {
7659     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64
7660                                    ? Intrinsic::aarch64_neon_urshl
7661                                    : Intrinsic::aarch64_neon_srshl;
7662     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7663     int SV = cast<ConstantInt>(Ops[1])->getSExtValue();
7664     Ops[1] = ConstantInt::get(Int64Ty, -SV);
7665     return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n");
7666   }
7667   case NEON::BI__builtin_neon_vrsrad_n_u64:
7668   case NEON::BI__builtin_neon_vrsrad_n_s64: {
7669     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64
7670                                    ? Intrinsic::aarch64_neon_urshl
7671                                    : Intrinsic::aarch64_neon_srshl;
7672     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
7673     Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2))));
7674     Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty),
7675                                 {Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)});
7676     return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty));
7677   }
7678   case NEON::BI__builtin_neon_vshld_n_s64:
7679   case NEON::BI__builtin_neon_vshld_n_u64: {
7680     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
7681     return Builder.CreateShl(
7682         Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n");
7683   }
7684   case NEON::BI__builtin_neon_vshrd_n_s64: {
7685     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
7686     return Builder.CreateAShr(
7687         Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
7688                                                    Amt->getZExtValue())),
7689         "shrd_n");
7690   }
7691   case NEON::BI__builtin_neon_vshrd_n_u64: {
7692     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
7693     uint64_t ShiftAmt = Amt->getZExtValue();
7694     // Right-shifting an unsigned value by its size yields 0.
7695     if (ShiftAmt == 64)
7696       return ConstantInt::get(Int64Ty, 0);
7697     return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt),
7698                               "shrd_n");
7699   }
7700   case NEON::BI__builtin_neon_vsrad_n_s64: {
7701     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
7702     Ops[1] = Builder.CreateAShr(
7703         Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
7704                                                    Amt->getZExtValue())),
7705         "shrd_n");
7706     return Builder.CreateAdd(Ops[0], Ops[1]);
7707   }
7708   case NEON::BI__builtin_neon_vsrad_n_u64: {
7709     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
7710     uint64_t ShiftAmt = Amt->getZExtValue();
7711     // Right-shifting an unsigned value by its size yields 0.
7712     // As Op + 0 = Op, return Ops[0] directly.
7713     if (ShiftAmt == 64)
7714       return Ops[0];
7715     Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt),
7716                                 "shrd_n");
7717     return Builder.CreateAdd(Ops[0], Ops[1]);
7718   }
7719   case NEON::BI__builtin_neon_vqdmlalh_lane_s16:
7720   case NEON::BI__builtin_neon_vqdmlalh_laneq_s16:
7721   case NEON::BI__builtin_neon_vqdmlslh_lane_s16:
7722   case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: {
7723     Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
7724                                           "lane");
7725     SmallVector<Value *, 2> ProductOps;
7726     ProductOps.push_back(vectorWrapScalar16(Ops[1]));
7727     ProductOps.push_back(vectorWrapScalar16(Ops[2]));
7728     llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4);
7729     Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
7730                           ProductOps, "vqdmlXl");
7731     Constant *CI = ConstantInt::get(SizeTy, 0);
7732     Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
7733     Ops.pop_back();
7734 
7735     unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 ||
7736                        BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16)
7737                           ? Intrinsic::aarch64_neon_sqadd
7738                           : Intrinsic::aarch64_neon_sqsub;
7739     return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl");
7740   }
7741   case NEON::BI__builtin_neon_vqdmlals_s32:
7742   case NEON::BI__builtin_neon_vqdmlsls_s32: {
7743     SmallVector<Value *, 2> ProductOps;
7744     ProductOps.push_back(Ops[1]);
7745     ProductOps.push_back(EmitScalarExpr(E->getArg(2)));
7746     Ops[1] =
7747         EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
7748                      ProductOps, "vqdmlXl");
7749 
7750     unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32
7751                                         ? Intrinsic::aarch64_neon_sqadd
7752                                         : Intrinsic::aarch64_neon_sqsub;
7753     return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl");
7754   }
7755   case NEON::BI__builtin_neon_vqdmlals_lane_s32:
7756   case NEON::BI__builtin_neon_vqdmlals_laneq_s32:
7757   case NEON::BI__builtin_neon_vqdmlsls_lane_s32:
7758   case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: {
7759     Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
7760                                           "lane");
7761     SmallVector<Value *, 2> ProductOps;
7762     ProductOps.push_back(Ops[1]);
7763     ProductOps.push_back(Ops[2]);
7764     Ops[1] =
7765         EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
7766                      ProductOps, "vqdmlXl");
7767     Ops.pop_back();
7768 
7769     unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 ||
7770                        BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32)
7771                           ? Intrinsic::aarch64_neon_sqadd
7772                           : Intrinsic::aarch64_neon_sqsub;
7773     return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl");
7774   }
7775   }
7776 
7777   llvm::VectorType *VTy = GetNeonType(this, Type);
7778   llvm::Type *Ty = VTy;
7779   if (!Ty)
7780     return nullptr;
7781 
7782   // Not all intrinsics handled by the common case work for AArch64 yet, so only
7783   // defer to common code if it's been added to our special map.
7784   Builtin = findNeonIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID,
7785                                    AArch64SIMDIntrinsicsProvenSorted);
7786 
7787   if (Builtin)
7788     return EmitCommonNeonBuiltinExpr(
7789         Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
7790         Builtin->NameHint, Builtin->TypeModifier, E, Ops,
7791         /*never use addresses*/ Address::invalid(), Address::invalid(), Arch);
7792 
7793   if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops, Arch))
7794     return V;
7795 
7796   unsigned Int;
7797   switch (BuiltinID) {
7798   default: return nullptr;
7799   case NEON::BI__builtin_neon_vbsl_v:
7800   case NEON::BI__builtin_neon_vbslq_v: {
7801     llvm::Type *BitTy = llvm::VectorType::getInteger(VTy);
7802     Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl");
7803     Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl");
7804     Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl");
7805 
7806     Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl");
7807     Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl");
7808     Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl");
7809     return Builder.CreateBitCast(Ops[0], Ty);
7810   }
7811   case NEON::BI__builtin_neon_vfma_lane_v:
7812   case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types
7813     // The ARM builtins (and instructions) have the addend as the first
7814     // operand, but the 'fma' intrinsics have it last. Swap it around here.
7815     Value *Addend = Ops[0];
7816     Value *Multiplicand = Ops[1];
7817     Value *LaneSource = Ops[2];
7818     Ops[0] = Multiplicand;
7819     Ops[1] = LaneSource;
7820     Ops[2] = Addend;
7821 
7822     // Now adjust things to handle the lane access.
7823     llvm::Type *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v ?
7824       llvm::VectorType::get(VTy->getElementType(), VTy->getNumElements() / 2) :
7825       VTy;
7826     llvm::Constant *cst = cast<Constant>(Ops[3]);
7827     Value *SV = llvm::ConstantVector::getSplat(VTy->getNumElements(), cst);
7828     Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy);
7829     Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane");
7830 
7831     Ops.pop_back();
7832     Int = Intrinsic::fma;
7833     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla");
7834   }
7835   case NEON::BI__builtin_neon_vfma_laneq_v: {
7836     llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
7837     // v1f64 fma should be mapped to Neon scalar f64 fma
7838     if (VTy && VTy->getElementType() == DoubleTy) {
7839       Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
7840       Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
7841       llvm::Type *VTy = GetNeonType(this,
7842         NeonTypeFlags(NeonTypeFlags::Float64, false, true));
7843       Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
7844       Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
7845       Value *F = CGM.getIntrinsic(Intrinsic::fma, DoubleTy);
7846       Value *Result = Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
7847       return Builder.CreateBitCast(Result, Ty);
7848     }
7849     Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
7850     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7851     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7852 
7853     llvm::Type *STy = llvm::VectorType::get(VTy->getElementType(),
7854                                             VTy->getNumElements() * 2);
7855     Ops[2] = Builder.CreateBitCast(Ops[2], STy);
7856     Value* SV = llvm::ConstantVector::getSplat(VTy->getNumElements(),
7857                                                cast<ConstantInt>(Ops[3]));
7858     Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
7859 
7860     return Builder.CreateCall(F, {Ops[2], Ops[1], Ops[0]});
7861   }
7862   case NEON::BI__builtin_neon_vfmaq_laneq_v: {
7863     Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
7864     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7865     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7866 
7867     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
7868     Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
7869     return Builder.CreateCall(F, {Ops[2], Ops[1], Ops[0]});
7870   }
7871   case NEON::BI__builtin_neon_vfmah_lane_f16:
7872   case NEON::BI__builtin_neon_vfmas_lane_f32:
7873   case NEON::BI__builtin_neon_vfmah_laneq_f16:
7874   case NEON::BI__builtin_neon_vfmas_laneq_f32:
7875   case NEON::BI__builtin_neon_vfmad_lane_f64:
7876   case NEON::BI__builtin_neon_vfmad_laneq_f64: {
7877     Ops.push_back(EmitScalarExpr(E->getArg(3)));
7878     llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
7879     Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
7880     Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
7881     return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
7882   }
7883   case NEON::BI__builtin_neon_vmull_v:
7884     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
7885     Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull;
7886     if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull;
7887     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
7888   case NEON::BI__builtin_neon_vmax_v:
7889   case NEON::BI__builtin_neon_vmaxq_v:
7890     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
7891     Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax;
7892     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax;
7893     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
7894   case NEON::BI__builtin_neon_vmaxh_f16: {
7895     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7896     Int = Intrinsic::aarch64_neon_fmax;
7897     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmax");
7898   }
7899   case NEON::BI__builtin_neon_vmin_v:
7900   case NEON::BI__builtin_neon_vminq_v:
7901     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
7902     Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin;
7903     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin;
7904     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
7905   case NEON::BI__builtin_neon_vminh_f16: {
7906     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7907     Int = Intrinsic::aarch64_neon_fmin;
7908     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmin");
7909   }
7910   case NEON::BI__builtin_neon_vabd_v:
7911   case NEON::BI__builtin_neon_vabdq_v:
7912     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
7913     Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd;
7914     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd;
7915     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
7916   case NEON::BI__builtin_neon_vpadal_v:
7917   case NEON::BI__builtin_neon_vpadalq_v: {
7918     unsigned ArgElts = VTy->getNumElements();
7919     llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType());
7920     unsigned BitWidth = EltTy->getBitWidth();
7921     llvm::Type *ArgTy = llvm::VectorType::get(
7922         llvm::IntegerType::get(getLLVMContext(), BitWidth/2), 2*ArgElts);
7923     llvm::Type* Tys[2] = { VTy, ArgTy };
7924     Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp;
7925     SmallVector<llvm::Value*, 1> TmpOps;
7926     TmpOps.push_back(Ops[1]);
7927     Function *F = CGM.getIntrinsic(Int, Tys);
7928     llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal");
7929     llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType());
7930     return Builder.CreateAdd(tmp, addend);
7931   }
7932   case NEON::BI__builtin_neon_vpmin_v:
7933   case NEON::BI__builtin_neon_vpminq_v:
7934     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
7935     Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp;
7936     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp;
7937     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
7938   case NEON::BI__builtin_neon_vpmax_v:
7939   case NEON::BI__builtin_neon_vpmaxq_v:
7940     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
7941     Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp;
7942     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp;
7943     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
7944   case NEON::BI__builtin_neon_vminnm_v:
7945   case NEON::BI__builtin_neon_vminnmq_v:
7946     Int = Intrinsic::aarch64_neon_fminnm;
7947     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm");
7948   case NEON::BI__builtin_neon_vminnmh_f16:
7949     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7950     Int = Intrinsic::aarch64_neon_fminnm;
7951     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vminnm");
7952   case NEON::BI__builtin_neon_vmaxnm_v:
7953   case NEON::BI__builtin_neon_vmaxnmq_v:
7954     Int = Intrinsic::aarch64_neon_fmaxnm;
7955     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm");
7956   case NEON::BI__builtin_neon_vmaxnmh_f16:
7957     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7958     Int = Intrinsic::aarch64_neon_fmaxnm;
7959     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmaxnm");
7960   case NEON::BI__builtin_neon_vrecpss_f32: {
7961     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7962     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy),
7963                         Ops, "vrecps");
7964   }
7965   case NEON::BI__builtin_neon_vrecpsd_f64:
7966     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7967     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy),
7968                         Ops, "vrecps");
7969   case NEON::BI__builtin_neon_vrecpsh_f16:
7970     Ops.push_back(EmitScalarExpr(E->getArg(1)));
7971     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, HalfTy),
7972                         Ops, "vrecps");
7973   case NEON::BI__builtin_neon_vqshrun_n_v:
7974     Int = Intrinsic::aarch64_neon_sqshrun;
7975     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n");
7976   case NEON::BI__builtin_neon_vqrshrun_n_v:
7977     Int = Intrinsic::aarch64_neon_sqrshrun;
7978     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n");
7979   case NEON::BI__builtin_neon_vqshrn_n_v:
7980     Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn;
7981     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n");
7982   case NEON::BI__builtin_neon_vrshrn_n_v:
7983     Int = Intrinsic::aarch64_neon_rshrn;
7984     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n");
7985   case NEON::BI__builtin_neon_vqrshrn_n_v:
7986     Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn;
7987     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n");
7988   case NEON::BI__builtin_neon_vrndah_f16: {
7989     Ops.push_back(EmitScalarExpr(E->getArg(0)));
7990     Int = Intrinsic::round;
7991     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrnda");
7992   }
7993   case NEON::BI__builtin_neon_vrnda_v:
7994   case NEON::BI__builtin_neon_vrndaq_v: {
7995     Int = Intrinsic::round;
7996     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda");
7997   }
7998   case NEON::BI__builtin_neon_vrndih_f16: {
7999     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8000     Int = Intrinsic::nearbyint;
8001     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndi");
8002   }
8003   case NEON::BI__builtin_neon_vrndmh_f16: {
8004     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8005     Int = Intrinsic::floor;
8006     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndm");
8007   }
8008   case NEON::BI__builtin_neon_vrndm_v:
8009   case NEON::BI__builtin_neon_vrndmq_v: {
8010     Int = Intrinsic::floor;
8011     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm");
8012   }
8013   case NEON::BI__builtin_neon_vrndnh_f16: {
8014     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8015     Int = Intrinsic::aarch64_neon_frintn;
8016     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndn");
8017   }
8018   case NEON::BI__builtin_neon_vrndn_v:
8019   case NEON::BI__builtin_neon_vrndnq_v: {
8020     Int = Intrinsic::aarch64_neon_frintn;
8021     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn");
8022   }
8023   case NEON::BI__builtin_neon_vrndns_f32: {
8024     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8025     Int = Intrinsic::aarch64_neon_frintn;
8026     return EmitNeonCall(CGM.getIntrinsic(Int, FloatTy), Ops, "vrndn");
8027   }
8028   case NEON::BI__builtin_neon_vrndph_f16: {
8029     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8030     Int = Intrinsic::ceil;
8031     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndp");
8032   }
8033   case NEON::BI__builtin_neon_vrndp_v:
8034   case NEON::BI__builtin_neon_vrndpq_v: {
8035     Int = Intrinsic::ceil;
8036     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp");
8037   }
8038   case NEON::BI__builtin_neon_vrndxh_f16: {
8039     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8040     Int = Intrinsic::rint;
8041     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndx");
8042   }
8043   case NEON::BI__builtin_neon_vrndx_v:
8044   case NEON::BI__builtin_neon_vrndxq_v: {
8045     Int = Intrinsic::rint;
8046     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx");
8047   }
8048   case NEON::BI__builtin_neon_vrndh_f16: {
8049     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8050     Int = Intrinsic::trunc;
8051     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndz");
8052   }
8053   case NEON::BI__builtin_neon_vrnd_v:
8054   case NEON::BI__builtin_neon_vrndq_v: {
8055     Int = Intrinsic::trunc;
8056     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz");
8057   }
8058   case NEON::BI__builtin_neon_vcvt_f64_v:
8059   case NEON::BI__builtin_neon_vcvtq_f64_v:
8060     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8061     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
8062     return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
8063                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
8064   case NEON::BI__builtin_neon_vcvt_f64_f32: {
8065     assert(Type.getEltType() == NeonTypeFlags::Float64 && quad &&
8066            "unexpected vcvt_f64_f32 builtin");
8067     NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false);
8068     Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
8069 
8070     return Builder.CreateFPExt(Ops[0], Ty, "vcvt");
8071   }
8072   case NEON::BI__builtin_neon_vcvt_f32_f64: {
8073     assert(Type.getEltType() == NeonTypeFlags::Float32 &&
8074            "unexpected vcvt_f32_f64 builtin");
8075     NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true);
8076     Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
8077 
8078     return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt");
8079   }
8080   case NEON::BI__builtin_neon_vcvt_s32_v:
8081   case NEON::BI__builtin_neon_vcvt_u32_v:
8082   case NEON::BI__builtin_neon_vcvt_s64_v:
8083   case NEON::BI__builtin_neon_vcvt_u64_v:
8084   case NEON::BI__builtin_neon_vcvt_s16_v:
8085   case NEON::BI__builtin_neon_vcvt_u16_v:
8086   case NEON::BI__builtin_neon_vcvtq_s32_v:
8087   case NEON::BI__builtin_neon_vcvtq_u32_v:
8088   case NEON::BI__builtin_neon_vcvtq_s64_v:
8089   case NEON::BI__builtin_neon_vcvtq_u64_v:
8090   case NEON::BI__builtin_neon_vcvtq_s16_v:
8091   case NEON::BI__builtin_neon_vcvtq_u16_v: {
8092     Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
8093     if (usgn)
8094       return Builder.CreateFPToUI(Ops[0], Ty);
8095     return Builder.CreateFPToSI(Ops[0], Ty);
8096   }
8097   case NEON::BI__builtin_neon_vcvta_s16_v:
8098   case NEON::BI__builtin_neon_vcvta_u16_v:
8099   case NEON::BI__builtin_neon_vcvta_s32_v:
8100   case NEON::BI__builtin_neon_vcvtaq_s16_v:
8101   case NEON::BI__builtin_neon_vcvtaq_s32_v:
8102   case NEON::BI__builtin_neon_vcvta_u32_v:
8103   case NEON::BI__builtin_neon_vcvtaq_u16_v:
8104   case NEON::BI__builtin_neon_vcvtaq_u32_v:
8105   case NEON::BI__builtin_neon_vcvta_s64_v:
8106   case NEON::BI__builtin_neon_vcvtaq_s64_v:
8107   case NEON::BI__builtin_neon_vcvta_u64_v:
8108   case NEON::BI__builtin_neon_vcvtaq_u64_v: {
8109     Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas;
8110     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
8111     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta");
8112   }
8113   case NEON::BI__builtin_neon_vcvtm_s16_v:
8114   case NEON::BI__builtin_neon_vcvtm_s32_v:
8115   case NEON::BI__builtin_neon_vcvtmq_s16_v:
8116   case NEON::BI__builtin_neon_vcvtmq_s32_v:
8117   case NEON::BI__builtin_neon_vcvtm_u16_v:
8118   case NEON::BI__builtin_neon_vcvtm_u32_v:
8119   case NEON::BI__builtin_neon_vcvtmq_u16_v:
8120   case NEON::BI__builtin_neon_vcvtmq_u32_v:
8121   case NEON::BI__builtin_neon_vcvtm_s64_v:
8122   case NEON::BI__builtin_neon_vcvtmq_s64_v:
8123   case NEON::BI__builtin_neon_vcvtm_u64_v:
8124   case NEON::BI__builtin_neon_vcvtmq_u64_v: {
8125     Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms;
8126     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
8127     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm");
8128   }
8129   case NEON::BI__builtin_neon_vcvtn_s16_v:
8130   case NEON::BI__builtin_neon_vcvtn_s32_v:
8131   case NEON::BI__builtin_neon_vcvtnq_s16_v:
8132   case NEON::BI__builtin_neon_vcvtnq_s32_v:
8133   case NEON::BI__builtin_neon_vcvtn_u16_v:
8134   case NEON::BI__builtin_neon_vcvtn_u32_v:
8135   case NEON::BI__builtin_neon_vcvtnq_u16_v:
8136   case NEON::BI__builtin_neon_vcvtnq_u32_v:
8137   case NEON::BI__builtin_neon_vcvtn_s64_v:
8138   case NEON::BI__builtin_neon_vcvtnq_s64_v:
8139   case NEON::BI__builtin_neon_vcvtn_u64_v:
8140   case NEON::BI__builtin_neon_vcvtnq_u64_v: {
8141     Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns;
8142     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
8143     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn");
8144   }
8145   case NEON::BI__builtin_neon_vcvtp_s16_v:
8146   case NEON::BI__builtin_neon_vcvtp_s32_v:
8147   case NEON::BI__builtin_neon_vcvtpq_s16_v:
8148   case NEON::BI__builtin_neon_vcvtpq_s32_v:
8149   case NEON::BI__builtin_neon_vcvtp_u16_v:
8150   case NEON::BI__builtin_neon_vcvtp_u32_v:
8151   case NEON::BI__builtin_neon_vcvtpq_u16_v:
8152   case NEON::BI__builtin_neon_vcvtpq_u32_v:
8153   case NEON::BI__builtin_neon_vcvtp_s64_v:
8154   case NEON::BI__builtin_neon_vcvtpq_s64_v:
8155   case NEON::BI__builtin_neon_vcvtp_u64_v:
8156   case NEON::BI__builtin_neon_vcvtpq_u64_v: {
8157     Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps;
8158     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
8159     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp");
8160   }
8161   case NEON::BI__builtin_neon_vmulx_v:
8162   case NEON::BI__builtin_neon_vmulxq_v: {
8163     Int = Intrinsic::aarch64_neon_fmulx;
8164     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
8165   }
8166   case NEON::BI__builtin_neon_vmulxh_lane_f16:
8167   case NEON::BI__builtin_neon_vmulxh_laneq_f16: {
8168     // vmulx_lane should be mapped to Neon scalar mulx after
8169     // extracting the scalar element
8170     Ops.push_back(EmitScalarExpr(E->getArg(2)));
8171     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
8172     Ops.pop_back();
8173     Int = Intrinsic::aarch64_neon_fmulx;
8174     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmulx");
8175   }
8176   case NEON::BI__builtin_neon_vmul_lane_v:
8177   case NEON::BI__builtin_neon_vmul_laneq_v: {
8178     // v1f64 vmul_lane should be mapped to Neon scalar mul lane
8179     bool Quad = false;
8180     if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v)
8181       Quad = true;
8182     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
8183     llvm::Type *VTy = GetNeonType(this,
8184       NeonTypeFlags(NeonTypeFlags::Float64, false, Quad));
8185     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
8186     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
8187     Value *Result = Builder.CreateFMul(Ops[0], Ops[1]);
8188     return Builder.CreateBitCast(Result, Ty);
8189   }
8190   case NEON::BI__builtin_neon_vnegd_s64:
8191     return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd");
8192   case NEON::BI__builtin_neon_vnegh_f16:
8193     return Builder.CreateFNeg(EmitScalarExpr(E->getArg(0)), "vnegh");
8194   case NEON::BI__builtin_neon_vpmaxnm_v:
8195   case NEON::BI__builtin_neon_vpmaxnmq_v: {
8196     Int = Intrinsic::aarch64_neon_fmaxnmp;
8197     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm");
8198   }
8199   case NEON::BI__builtin_neon_vpminnm_v:
8200   case NEON::BI__builtin_neon_vpminnmq_v: {
8201     Int = Intrinsic::aarch64_neon_fminnmp;
8202     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm");
8203   }
8204   case NEON::BI__builtin_neon_vsqrth_f16: {
8205     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8206     Int = Intrinsic::sqrt;
8207     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vsqrt");
8208   }
8209   case NEON::BI__builtin_neon_vsqrt_v:
8210   case NEON::BI__builtin_neon_vsqrtq_v: {
8211     Int = Intrinsic::sqrt;
8212     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8213     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt");
8214   }
8215   case NEON::BI__builtin_neon_vrbit_v:
8216   case NEON::BI__builtin_neon_vrbitq_v: {
8217     Int = Intrinsic::aarch64_neon_rbit;
8218     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit");
8219   }
8220   case NEON::BI__builtin_neon_vaddv_u8:
8221     // FIXME: These are handled by the AArch64 scalar code.
8222     usgn = true;
8223     LLVM_FALLTHROUGH;
8224   case NEON::BI__builtin_neon_vaddv_s8: {
8225     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
8226     Ty = Int32Ty;
8227     VTy = llvm::VectorType::get(Int8Ty, 8);
8228     llvm::Type *Tys[2] = { Ty, VTy };
8229     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8230     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
8231     return Builder.CreateTrunc(Ops[0], Int8Ty);
8232   }
8233   case NEON::BI__builtin_neon_vaddv_u16:
8234     usgn = true;
8235     LLVM_FALLTHROUGH;
8236   case NEON::BI__builtin_neon_vaddv_s16: {
8237     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
8238     Ty = Int32Ty;
8239     VTy = llvm::VectorType::get(Int16Ty, 4);
8240     llvm::Type *Tys[2] = { Ty, VTy };
8241     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8242     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
8243     return Builder.CreateTrunc(Ops[0], Int16Ty);
8244   }
8245   case NEON::BI__builtin_neon_vaddvq_u8:
8246     usgn = true;
8247     LLVM_FALLTHROUGH;
8248   case NEON::BI__builtin_neon_vaddvq_s8: {
8249     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
8250     Ty = Int32Ty;
8251     VTy = llvm::VectorType::get(Int8Ty, 16);
8252     llvm::Type *Tys[2] = { Ty, VTy };
8253     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8254     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
8255     return Builder.CreateTrunc(Ops[0], Int8Ty);
8256   }
8257   case NEON::BI__builtin_neon_vaddvq_u16:
8258     usgn = true;
8259     LLVM_FALLTHROUGH;
8260   case NEON::BI__builtin_neon_vaddvq_s16: {
8261     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
8262     Ty = Int32Ty;
8263     VTy = llvm::VectorType::get(Int16Ty, 8);
8264     llvm::Type *Tys[2] = { Ty, VTy };
8265     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8266     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
8267     return Builder.CreateTrunc(Ops[0], Int16Ty);
8268   }
8269   case NEON::BI__builtin_neon_vmaxv_u8: {
8270     Int = Intrinsic::aarch64_neon_umaxv;
8271     Ty = Int32Ty;
8272     VTy = llvm::VectorType::get(Int8Ty, 8);
8273     llvm::Type *Tys[2] = { Ty, VTy };
8274     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8275     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8276     return Builder.CreateTrunc(Ops[0], Int8Ty);
8277   }
8278   case NEON::BI__builtin_neon_vmaxv_u16: {
8279     Int = Intrinsic::aarch64_neon_umaxv;
8280     Ty = Int32Ty;
8281     VTy = llvm::VectorType::get(Int16Ty, 4);
8282     llvm::Type *Tys[2] = { Ty, VTy };
8283     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8284     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8285     return Builder.CreateTrunc(Ops[0], Int16Ty);
8286   }
8287   case NEON::BI__builtin_neon_vmaxvq_u8: {
8288     Int = Intrinsic::aarch64_neon_umaxv;
8289     Ty = Int32Ty;
8290     VTy = llvm::VectorType::get(Int8Ty, 16);
8291     llvm::Type *Tys[2] = { Ty, VTy };
8292     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8293     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8294     return Builder.CreateTrunc(Ops[0], Int8Ty);
8295   }
8296   case NEON::BI__builtin_neon_vmaxvq_u16: {
8297     Int = Intrinsic::aarch64_neon_umaxv;
8298     Ty = Int32Ty;
8299     VTy = llvm::VectorType::get(Int16Ty, 8);
8300     llvm::Type *Tys[2] = { Ty, VTy };
8301     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8302     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8303     return Builder.CreateTrunc(Ops[0], Int16Ty);
8304   }
8305   case NEON::BI__builtin_neon_vmaxv_s8: {
8306     Int = Intrinsic::aarch64_neon_smaxv;
8307     Ty = Int32Ty;
8308     VTy = llvm::VectorType::get(Int8Ty, 8);
8309     llvm::Type *Tys[2] = { Ty, VTy };
8310     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8311     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8312     return Builder.CreateTrunc(Ops[0], Int8Ty);
8313   }
8314   case NEON::BI__builtin_neon_vmaxv_s16: {
8315     Int = Intrinsic::aarch64_neon_smaxv;
8316     Ty = Int32Ty;
8317     VTy = llvm::VectorType::get(Int16Ty, 4);
8318     llvm::Type *Tys[2] = { Ty, VTy };
8319     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8320     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8321     return Builder.CreateTrunc(Ops[0], Int16Ty);
8322   }
8323   case NEON::BI__builtin_neon_vmaxvq_s8: {
8324     Int = Intrinsic::aarch64_neon_smaxv;
8325     Ty = Int32Ty;
8326     VTy = llvm::VectorType::get(Int8Ty, 16);
8327     llvm::Type *Tys[2] = { Ty, VTy };
8328     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8329     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8330     return Builder.CreateTrunc(Ops[0], Int8Ty);
8331   }
8332   case NEON::BI__builtin_neon_vmaxvq_s16: {
8333     Int = Intrinsic::aarch64_neon_smaxv;
8334     Ty = Int32Ty;
8335     VTy = llvm::VectorType::get(Int16Ty, 8);
8336     llvm::Type *Tys[2] = { Ty, VTy };
8337     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8338     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8339     return Builder.CreateTrunc(Ops[0], Int16Ty);
8340   }
8341   case NEON::BI__builtin_neon_vmaxv_f16: {
8342     Int = Intrinsic::aarch64_neon_fmaxv;
8343     Ty = HalfTy;
8344     VTy = llvm::VectorType::get(HalfTy, 4);
8345     llvm::Type *Tys[2] = { Ty, VTy };
8346     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8347     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8348     return Builder.CreateTrunc(Ops[0], HalfTy);
8349   }
8350   case NEON::BI__builtin_neon_vmaxvq_f16: {
8351     Int = Intrinsic::aarch64_neon_fmaxv;
8352     Ty = HalfTy;
8353     VTy = llvm::VectorType::get(HalfTy, 8);
8354     llvm::Type *Tys[2] = { Ty, VTy };
8355     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8356     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
8357     return Builder.CreateTrunc(Ops[0], HalfTy);
8358   }
8359   case NEON::BI__builtin_neon_vminv_u8: {
8360     Int = Intrinsic::aarch64_neon_uminv;
8361     Ty = Int32Ty;
8362     VTy = llvm::VectorType::get(Int8Ty, 8);
8363     llvm::Type *Tys[2] = { Ty, VTy };
8364     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8365     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8366     return Builder.CreateTrunc(Ops[0], Int8Ty);
8367   }
8368   case NEON::BI__builtin_neon_vminv_u16: {
8369     Int = Intrinsic::aarch64_neon_uminv;
8370     Ty = Int32Ty;
8371     VTy = llvm::VectorType::get(Int16Ty, 4);
8372     llvm::Type *Tys[2] = { Ty, VTy };
8373     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8374     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8375     return Builder.CreateTrunc(Ops[0], Int16Ty);
8376   }
8377   case NEON::BI__builtin_neon_vminvq_u8: {
8378     Int = Intrinsic::aarch64_neon_uminv;
8379     Ty = Int32Ty;
8380     VTy = llvm::VectorType::get(Int8Ty, 16);
8381     llvm::Type *Tys[2] = { Ty, VTy };
8382     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8383     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8384     return Builder.CreateTrunc(Ops[0], Int8Ty);
8385   }
8386   case NEON::BI__builtin_neon_vminvq_u16: {
8387     Int = Intrinsic::aarch64_neon_uminv;
8388     Ty = Int32Ty;
8389     VTy = llvm::VectorType::get(Int16Ty, 8);
8390     llvm::Type *Tys[2] = { Ty, VTy };
8391     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8392     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8393     return Builder.CreateTrunc(Ops[0], Int16Ty);
8394   }
8395   case NEON::BI__builtin_neon_vminv_s8: {
8396     Int = Intrinsic::aarch64_neon_sminv;
8397     Ty = Int32Ty;
8398     VTy = llvm::VectorType::get(Int8Ty, 8);
8399     llvm::Type *Tys[2] = { Ty, VTy };
8400     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8401     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8402     return Builder.CreateTrunc(Ops[0], Int8Ty);
8403   }
8404   case NEON::BI__builtin_neon_vminv_s16: {
8405     Int = Intrinsic::aarch64_neon_sminv;
8406     Ty = Int32Ty;
8407     VTy = llvm::VectorType::get(Int16Ty, 4);
8408     llvm::Type *Tys[2] = { Ty, VTy };
8409     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8410     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8411     return Builder.CreateTrunc(Ops[0], Int16Ty);
8412   }
8413   case NEON::BI__builtin_neon_vminvq_s8: {
8414     Int = Intrinsic::aarch64_neon_sminv;
8415     Ty = Int32Ty;
8416     VTy = llvm::VectorType::get(Int8Ty, 16);
8417     llvm::Type *Tys[2] = { Ty, VTy };
8418     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8419     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8420     return Builder.CreateTrunc(Ops[0], Int8Ty);
8421   }
8422   case NEON::BI__builtin_neon_vminvq_s16: {
8423     Int = Intrinsic::aarch64_neon_sminv;
8424     Ty = Int32Ty;
8425     VTy = llvm::VectorType::get(Int16Ty, 8);
8426     llvm::Type *Tys[2] = { Ty, VTy };
8427     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8428     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8429     return Builder.CreateTrunc(Ops[0], Int16Ty);
8430   }
8431   case NEON::BI__builtin_neon_vminv_f16: {
8432     Int = Intrinsic::aarch64_neon_fminv;
8433     Ty = HalfTy;
8434     VTy = llvm::VectorType::get(HalfTy, 4);
8435     llvm::Type *Tys[2] = { Ty, VTy };
8436     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8437     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8438     return Builder.CreateTrunc(Ops[0], HalfTy);
8439   }
8440   case NEON::BI__builtin_neon_vminvq_f16: {
8441     Int = Intrinsic::aarch64_neon_fminv;
8442     Ty = HalfTy;
8443     VTy = llvm::VectorType::get(HalfTy, 8);
8444     llvm::Type *Tys[2] = { Ty, VTy };
8445     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8446     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
8447     return Builder.CreateTrunc(Ops[0], HalfTy);
8448   }
8449   case NEON::BI__builtin_neon_vmaxnmv_f16: {
8450     Int = Intrinsic::aarch64_neon_fmaxnmv;
8451     Ty = HalfTy;
8452     VTy = llvm::VectorType::get(HalfTy, 4);
8453     llvm::Type *Tys[2] = { Ty, VTy };
8454     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8455     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
8456     return Builder.CreateTrunc(Ops[0], HalfTy);
8457   }
8458   case NEON::BI__builtin_neon_vmaxnmvq_f16: {
8459     Int = Intrinsic::aarch64_neon_fmaxnmv;
8460     Ty = HalfTy;
8461     VTy = llvm::VectorType::get(HalfTy, 8);
8462     llvm::Type *Tys[2] = { Ty, VTy };
8463     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8464     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
8465     return Builder.CreateTrunc(Ops[0], HalfTy);
8466   }
8467   case NEON::BI__builtin_neon_vminnmv_f16: {
8468     Int = Intrinsic::aarch64_neon_fminnmv;
8469     Ty = HalfTy;
8470     VTy = llvm::VectorType::get(HalfTy, 4);
8471     llvm::Type *Tys[2] = { Ty, VTy };
8472     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8473     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
8474     return Builder.CreateTrunc(Ops[0], HalfTy);
8475   }
8476   case NEON::BI__builtin_neon_vminnmvq_f16: {
8477     Int = Intrinsic::aarch64_neon_fminnmv;
8478     Ty = HalfTy;
8479     VTy = llvm::VectorType::get(HalfTy, 8);
8480     llvm::Type *Tys[2] = { Ty, VTy };
8481     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8482     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
8483     return Builder.CreateTrunc(Ops[0], HalfTy);
8484   }
8485   case NEON::BI__builtin_neon_vmul_n_f64: {
8486     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
8487     Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy);
8488     return Builder.CreateFMul(Ops[0], RHS);
8489   }
8490   case NEON::BI__builtin_neon_vaddlv_u8: {
8491     Int = Intrinsic::aarch64_neon_uaddlv;
8492     Ty = Int32Ty;
8493     VTy = llvm::VectorType::get(Int8Ty, 8);
8494     llvm::Type *Tys[2] = { Ty, VTy };
8495     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8496     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
8497     return Builder.CreateTrunc(Ops[0], Int16Ty);
8498   }
8499   case NEON::BI__builtin_neon_vaddlv_u16: {
8500     Int = Intrinsic::aarch64_neon_uaddlv;
8501     Ty = Int32Ty;
8502     VTy = llvm::VectorType::get(Int16Ty, 4);
8503     llvm::Type *Tys[2] = { Ty, VTy };
8504     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8505     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
8506   }
8507   case NEON::BI__builtin_neon_vaddlvq_u8: {
8508     Int = Intrinsic::aarch64_neon_uaddlv;
8509     Ty = Int32Ty;
8510     VTy = llvm::VectorType::get(Int8Ty, 16);
8511     llvm::Type *Tys[2] = { Ty, VTy };
8512     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8513     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
8514     return Builder.CreateTrunc(Ops[0], Int16Ty);
8515   }
8516   case NEON::BI__builtin_neon_vaddlvq_u16: {
8517     Int = Intrinsic::aarch64_neon_uaddlv;
8518     Ty = Int32Ty;
8519     VTy = llvm::VectorType::get(Int16Ty, 8);
8520     llvm::Type *Tys[2] = { Ty, VTy };
8521     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8522     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
8523   }
8524   case NEON::BI__builtin_neon_vaddlv_s8: {
8525     Int = Intrinsic::aarch64_neon_saddlv;
8526     Ty = Int32Ty;
8527     VTy = llvm::VectorType::get(Int8Ty, 8);
8528     llvm::Type *Tys[2] = { Ty, VTy };
8529     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8530     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
8531     return Builder.CreateTrunc(Ops[0], Int16Ty);
8532   }
8533   case NEON::BI__builtin_neon_vaddlv_s16: {
8534     Int = Intrinsic::aarch64_neon_saddlv;
8535     Ty = Int32Ty;
8536     VTy = llvm::VectorType::get(Int16Ty, 4);
8537     llvm::Type *Tys[2] = { Ty, VTy };
8538     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8539     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
8540   }
8541   case NEON::BI__builtin_neon_vaddlvq_s8: {
8542     Int = Intrinsic::aarch64_neon_saddlv;
8543     Ty = Int32Ty;
8544     VTy = llvm::VectorType::get(Int8Ty, 16);
8545     llvm::Type *Tys[2] = { Ty, VTy };
8546     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8547     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
8548     return Builder.CreateTrunc(Ops[0], Int16Ty);
8549   }
8550   case NEON::BI__builtin_neon_vaddlvq_s16: {
8551     Int = Intrinsic::aarch64_neon_saddlv;
8552     Ty = Int32Ty;
8553     VTy = llvm::VectorType::get(Int16Ty, 8);
8554     llvm::Type *Tys[2] = { Ty, VTy };
8555     Ops.push_back(EmitScalarExpr(E->getArg(0)));
8556     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
8557   }
8558   case NEON::BI__builtin_neon_vsri_n_v:
8559   case NEON::BI__builtin_neon_vsriq_n_v: {
8560     Int = Intrinsic::aarch64_neon_vsri;
8561     llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
8562     return EmitNeonCall(Intrin, Ops, "vsri_n");
8563   }
8564   case NEON::BI__builtin_neon_vsli_n_v:
8565   case NEON::BI__builtin_neon_vsliq_n_v: {
8566     Int = Intrinsic::aarch64_neon_vsli;
8567     llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
8568     return EmitNeonCall(Intrin, Ops, "vsli_n");
8569   }
8570   case NEON::BI__builtin_neon_vsra_n_v:
8571   case NEON::BI__builtin_neon_vsraq_n_v:
8572     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8573     Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
8574     return Builder.CreateAdd(Ops[0], Ops[1]);
8575   case NEON::BI__builtin_neon_vrsra_n_v:
8576   case NEON::BI__builtin_neon_vrsraq_n_v: {
8577     Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl;
8578     SmallVector<llvm::Value*,2> TmpOps;
8579     TmpOps.push_back(Ops[1]);
8580     TmpOps.push_back(Ops[2]);
8581     Function* F = CGM.getIntrinsic(Int, Ty);
8582     llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true);
8583     Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
8584     return Builder.CreateAdd(Ops[0], tmp);
8585   }
8586   case NEON::BI__builtin_neon_vld1_v:
8587   case NEON::BI__builtin_neon_vld1q_v: {
8588     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
8589     auto Alignment = CharUnits::fromQuantity(
8590         BuiltinID == NEON::BI__builtin_neon_vld1_v ? 8 : 16);
8591     return Builder.CreateAlignedLoad(VTy, Ops[0], Alignment);
8592   }
8593   case NEON::BI__builtin_neon_vst1_v:
8594   case NEON::BI__builtin_neon_vst1q_v:
8595     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
8596     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
8597     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
8598   case NEON::BI__builtin_neon_vld1_lane_v:
8599   case NEON::BI__builtin_neon_vld1q_lane_v: {
8600     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8601     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
8602     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8603     auto Alignment = CharUnits::fromQuantity(
8604         BuiltinID == NEON::BI__builtin_neon_vld1_lane_v ? 8 : 16);
8605     Ops[0] =
8606         Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], Alignment);
8607     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
8608   }
8609   case NEON::BI__builtin_neon_vld1_dup_v:
8610   case NEON::BI__builtin_neon_vld1q_dup_v: {
8611     Value *V = UndefValue::get(Ty);
8612     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
8613     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8614     auto Alignment = CharUnits::fromQuantity(
8615         BuiltinID == NEON::BI__builtin_neon_vld1_dup_v ? 8 : 16);
8616     Ops[0] =
8617         Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], Alignment);
8618     llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
8619     Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
8620     return EmitNeonSplat(Ops[0], CI);
8621   }
8622   case NEON::BI__builtin_neon_vst1_lane_v:
8623   case NEON::BI__builtin_neon_vst1q_lane_v:
8624     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8625     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
8626     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
8627     return Builder.CreateDefaultAlignedStore(Ops[1],
8628                                              Builder.CreateBitCast(Ops[0], Ty));
8629   case NEON::BI__builtin_neon_vld2_v:
8630   case NEON::BI__builtin_neon_vld2q_v: {
8631     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
8632     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
8633     llvm::Type *Tys[2] = { VTy, PTy };
8634     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys);
8635     Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
8636     Ops[0] = Builder.CreateBitCast(Ops[0],
8637                 llvm::PointerType::getUnqual(Ops[1]->getType()));
8638     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
8639   }
8640   case NEON::BI__builtin_neon_vld3_v:
8641   case NEON::BI__builtin_neon_vld3q_v: {
8642     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
8643     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
8644     llvm::Type *Tys[2] = { VTy, PTy };
8645     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys);
8646     Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
8647     Ops[0] = Builder.CreateBitCast(Ops[0],
8648                 llvm::PointerType::getUnqual(Ops[1]->getType()));
8649     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
8650   }
8651   case NEON::BI__builtin_neon_vld4_v:
8652   case NEON::BI__builtin_neon_vld4q_v: {
8653     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
8654     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
8655     llvm::Type *Tys[2] = { VTy, PTy };
8656     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys);
8657     Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
8658     Ops[0] = Builder.CreateBitCast(Ops[0],
8659                 llvm::PointerType::getUnqual(Ops[1]->getType()));
8660     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
8661   }
8662   case NEON::BI__builtin_neon_vld2_dup_v:
8663   case NEON::BI__builtin_neon_vld2q_dup_v: {
8664     llvm::Type *PTy =
8665       llvm::PointerType::getUnqual(VTy->getElementType());
8666     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
8667     llvm::Type *Tys[2] = { VTy, PTy };
8668     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys);
8669     Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
8670     Ops[0] = Builder.CreateBitCast(Ops[0],
8671                 llvm::PointerType::getUnqual(Ops[1]->getType()));
8672     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
8673   }
8674   case NEON::BI__builtin_neon_vld3_dup_v:
8675   case NEON::BI__builtin_neon_vld3q_dup_v: {
8676     llvm::Type *PTy =
8677       llvm::PointerType::getUnqual(VTy->getElementType());
8678     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
8679     llvm::Type *Tys[2] = { VTy, PTy };
8680     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys);
8681     Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
8682     Ops[0] = Builder.CreateBitCast(Ops[0],
8683                 llvm::PointerType::getUnqual(Ops[1]->getType()));
8684     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
8685   }
8686   case NEON::BI__builtin_neon_vld4_dup_v:
8687   case NEON::BI__builtin_neon_vld4q_dup_v: {
8688     llvm::Type *PTy =
8689       llvm::PointerType::getUnqual(VTy->getElementType());
8690     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
8691     llvm::Type *Tys[2] = { VTy, PTy };
8692     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys);
8693     Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
8694     Ops[0] = Builder.CreateBitCast(Ops[0],
8695                 llvm::PointerType::getUnqual(Ops[1]->getType()));
8696     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
8697   }
8698   case NEON::BI__builtin_neon_vld2_lane_v:
8699   case NEON::BI__builtin_neon_vld2q_lane_v: {
8700     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
8701     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys);
8702     Ops.push_back(Ops[1]);
8703     Ops.erase(Ops.begin()+1);
8704     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8705     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
8706     Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
8707     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane");
8708     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
8709     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8710     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
8711   }
8712   case NEON::BI__builtin_neon_vld3_lane_v:
8713   case NEON::BI__builtin_neon_vld3q_lane_v: {
8714     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
8715     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys);
8716     Ops.push_back(Ops[1]);
8717     Ops.erase(Ops.begin()+1);
8718     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8719     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
8720     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
8721     Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
8722     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
8723     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
8724     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8725     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
8726   }
8727   case NEON::BI__builtin_neon_vld4_lane_v:
8728   case NEON::BI__builtin_neon_vld4q_lane_v: {
8729     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
8730     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys);
8731     Ops.push_back(Ops[1]);
8732     Ops.erase(Ops.begin()+1);
8733     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8734     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
8735     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
8736     Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
8737     Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty);
8738     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld4_lane");
8739     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
8740     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8741     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
8742   }
8743   case NEON::BI__builtin_neon_vst2_v:
8744   case NEON::BI__builtin_neon_vst2q_v: {
8745     Ops.push_back(Ops[0]);
8746     Ops.erase(Ops.begin());
8747     llvm::Type *Tys[2] = { VTy, Ops[2]->getType() };
8748     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys),
8749                         Ops, "");
8750   }
8751   case NEON::BI__builtin_neon_vst2_lane_v:
8752   case NEON::BI__builtin_neon_vst2q_lane_v: {
8753     Ops.push_back(Ops[0]);
8754     Ops.erase(Ops.begin());
8755     Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
8756     llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
8757     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys),
8758                         Ops, "");
8759   }
8760   case NEON::BI__builtin_neon_vst3_v:
8761   case NEON::BI__builtin_neon_vst3q_v: {
8762     Ops.push_back(Ops[0]);
8763     Ops.erase(Ops.begin());
8764     llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
8765     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys),
8766                         Ops, "");
8767   }
8768   case NEON::BI__builtin_neon_vst3_lane_v:
8769   case NEON::BI__builtin_neon_vst3q_lane_v: {
8770     Ops.push_back(Ops[0]);
8771     Ops.erase(Ops.begin());
8772     Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
8773     llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
8774     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys),
8775                         Ops, "");
8776   }
8777   case NEON::BI__builtin_neon_vst4_v:
8778   case NEON::BI__builtin_neon_vst4q_v: {
8779     Ops.push_back(Ops[0]);
8780     Ops.erase(Ops.begin());
8781     llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
8782     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys),
8783                         Ops, "");
8784   }
8785   case NEON::BI__builtin_neon_vst4_lane_v:
8786   case NEON::BI__builtin_neon_vst4q_lane_v: {
8787     Ops.push_back(Ops[0]);
8788     Ops.erase(Ops.begin());
8789     Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
8790     llvm::Type *Tys[2] = { VTy, Ops[5]->getType() };
8791     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys),
8792                         Ops, "");
8793   }
8794   case NEON::BI__builtin_neon_vtrn_v:
8795   case NEON::BI__builtin_neon_vtrnq_v: {
8796     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
8797     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8798     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
8799     Value *SV = nullptr;
8800 
8801     for (unsigned vi = 0; vi != 2; ++vi) {
8802       SmallVector<uint32_t, 16> Indices;
8803       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
8804         Indices.push_back(i+vi);
8805         Indices.push_back(i+e+vi);
8806       }
8807       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
8808       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
8809       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
8810     }
8811     return SV;
8812   }
8813   case NEON::BI__builtin_neon_vuzp_v:
8814   case NEON::BI__builtin_neon_vuzpq_v: {
8815     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
8816     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8817     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
8818     Value *SV = nullptr;
8819 
8820     for (unsigned vi = 0; vi != 2; ++vi) {
8821       SmallVector<uint32_t, 16> Indices;
8822       for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
8823         Indices.push_back(2*i+vi);
8824 
8825       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
8826       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
8827       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
8828     }
8829     return SV;
8830   }
8831   case NEON::BI__builtin_neon_vzip_v:
8832   case NEON::BI__builtin_neon_vzipq_v: {
8833     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
8834     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8835     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
8836     Value *SV = nullptr;
8837 
8838     for (unsigned vi = 0; vi != 2; ++vi) {
8839       SmallVector<uint32_t, 16> Indices;
8840       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
8841         Indices.push_back((i + vi*e) >> 1);
8842         Indices.push_back(((i + vi*e) >> 1)+e);
8843       }
8844       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
8845       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
8846       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
8847     }
8848     return SV;
8849   }
8850   case NEON::BI__builtin_neon_vqtbl1q_v: {
8851     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty),
8852                         Ops, "vtbl1");
8853   }
8854   case NEON::BI__builtin_neon_vqtbl2q_v: {
8855     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty),
8856                         Ops, "vtbl2");
8857   }
8858   case NEON::BI__builtin_neon_vqtbl3q_v: {
8859     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty),
8860                         Ops, "vtbl3");
8861   }
8862   case NEON::BI__builtin_neon_vqtbl4q_v: {
8863     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty),
8864                         Ops, "vtbl4");
8865   }
8866   case NEON::BI__builtin_neon_vqtbx1q_v: {
8867     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty),
8868                         Ops, "vtbx1");
8869   }
8870   case NEON::BI__builtin_neon_vqtbx2q_v: {
8871     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty),
8872                         Ops, "vtbx2");
8873   }
8874   case NEON::BI__builtin_neon_vqtbx3q_v: {
8875     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty),
8876                         Ops, "vtbx3");
8877   }
8878   case NEON::BI__builtin_neon_vqtbx4q_v: {
8879     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty),
8880                         Ops, "vtbx4");
8881   }
8882   case NEON::BI__builtin_neon_vsqadd_v:
8883   case NEON::BI__builtin_neon_vsqaddq_v: {
8884     Int = Intrinsic::aarch64_neon_usqadd;
8885     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd");
8886   }
8887   case NEON::BI__builtin_neon_vuqadd_v:
8888   case NEON::BI__builtin_neon_vuqaddq_v: {
8889     Int = Intrinsic::aarch64_neon_suqadd;
8890     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd");
8891   }
8892   case AArch64::BI__iso_volatile_load8:
8893   case AArch64::BI__iso_volatile_load16:
8894   case AArch64::BI__iso_volatile_load32:
8895   case AArch64::BI__iso_volatile_load64:
8896     return EmitISOVolatileLoad(E);
8897   case AArch64::BI__iso_volatile_store8:
8898   case AArch64::BI__iso_volatile_store16:
8899   case AArch64::BI__iso_volatile_store32:
8900   case AArch64::BI__iso_volatile_store64:
8901     return EmitISOVolatileStore(E);
8902   case AArch64::BI_BitScanForward:
8903   case AArch64::BI_BitScanForward64:
8904     return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E);
8905   case AArch64::BI_BitScanReverse:
8906   case AArch64::BI_BitScanReverse64:
8907     return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E);
8908   case AArch64::BI_InterlockedAnd64:
8909     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E);
8910   case AArch64::BI_InterlockedExchange64:
8911     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E);
8912   case AArch64::BI_InterlockedExchangeAdd64:
8913     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E);
8914   case AArch64::BI_InterlockedExchangeSub64:
8915     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E);
8916   case AArch64::BI_InterlockedOr64:
8917     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E);
8918   case AArch64::BI_InterlockedXor64:
8919     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E);
8920   case AArch64::BI_InterlockedDecrement64:
8921     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E);
8922   case AArch64::BI_InterlockedIncrement64:
8923     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E);
8924   case AArch64::BI_InterlockedExchangeAdd8_acq:
8925   case AArch64::BI_InterlockedExchangeAdd16_acq:
8926   case AArch64::BI_InterlockedExchangeAdd_acq:
8927   case AArch64::BI_InterlockedExchangeAdd64_acq:
8928     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_acq, E);
8929   case AArch64::BI_InterlockedExchangeAdd8_rel:
8930   case AArch64::BI_InterlockedExchangeAdd16_rel:
8931   case AArch64::BI_InterlockedExchangeAdd_rel:
8932   case AArch64::BI_InterlockedExchangeAdd64_rel:
8933     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_rel, E);
8934   case AArch64::BI_InterlockedExchangeAdd8_nf:
8935   case AArch64::BI_InterlockedExchangeAdd16_nf:
8936   case AArch64::BI_InterlockedExchangeAdd_nf:
8937   case AArch64::BI_InterlockedExchangeAdd64_nf:
8938     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_nf, E);
8939   case AArch64::BI_InterlockedExchange8_acq:
8940   case AArch64::BI_InterlockedExchange16_acq:
8941   case AArch64::BI_InterlockedExchange_acq:
8942   case AArch64::BI_InterlockedExchange64_acq:
8943     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_acq, E);
8944   case AArch64::BI_InterlockedExchange8_rel:
8945   case AArch64::BI_InterlockedExchange16_rel:
8946   case AArch64::BI_InterlockedExchange_rel:
8947   case AArch64::BI_InterlockedExchange64_rel:
8948     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_rel, E);
8949   case AArch64::BI_InterlockedExchange8_nf:
8950   case AArch64::BI_InterlockedExchange16_nf:
8951   case AArch64::BI_InterlockedExchange_nf:
8952   case AArch64::BI_InterlockedExchange64_nf:
8953     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_nf, E);
8954   case AArch64::BI_InterlockedCompareExchange8_acq:
8955   case AArch64::BI_InterlockedCompareExchange16_acq:
8956   case AArch64::BI_InterlockedCompareExchange_acq:
8957   case AArch64::BI_InterlockedCompareExchange64_acq:
8958     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_acq, E);
8959   case AArch64::BI_InterlockedCompareExchange8_rel:
8960   case AArch64::BI_InterlockedCompareExchange16_rel:
8961   case AArch64::BI_InterlockedCompareExchange_rel:
8962   case AArch64::BI_InterlockedCompareExchange64_rel:
8963     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_rel, E);
8964   case AArch64::BI_InterlockedCompareExchange8_nf:
8965   case AArch64::BI_InterlockedCompareExchange16_nf:
8966   case AArch64::BI_InterlockedCompareExchange_nf:
8967   case AArch64::BI_InterlockedCompareExchange64_nf:
8968     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_nf, E);
8969   case AArch64::BI_InterlockedOr8_acq:
8970   case AArch64::BI_InterlockedOr16_acq:
8971   case AArch64::BI_InterlockedOr_acq:
8972   case AArch64::BI_InterlockedOr64_acq:
8973     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_acq, E);
8974   case AArch64::BI_InterlockedOr8_rel:
8975   case AArch64::BI_InterlockedOr16_rel:
8976   case AArch64::BI_InterlockedOr_rel:
8977   case AArch64::BI_InterlockedOr64_rel:
8978     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_rel, E);
8979   case AArch64::BI_InterlockedOr8_nf:
8980   case AArch64::BI_InterlockedOr16_nf:
8981   case AArch64::BI_InterlockedOr_nf:
8982   case AArch64::BI_InterlockedOr64_nf:
8983     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_nf, E);
8984   case AArch64::BI_InterlockedXor8_acq:
8985   case AArch64::BI_InterlockedXor16_acq:
8986   case AArch64::BI_InterlockedXor_acq:
8987   case AArch64::BI_InterlockedXor64_acq:
8988     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_acq, E);
8989   case AArch64::BI_InterlockedXor8_rel:
8990   case AArch64::BI_InterlockedXor16_rel:
8991   case AArch64::BI_InterlockedXor_rel:
8992   case AArch64::BI_InterlockedXor64_rel:
8993     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_rel, E);
8994   case AArch64::BI_InterlockedXor8_nf:
8995   case AArch64::BI_InterlockedXor16_nf:
8996   case AArch64::BI_InterlockedXor_nf:
8997   case AArch64::BI_InterlockedXor64_nf:
8998     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_nf, E);
8999   case AArch64::BI_InterlockedAnd8_acq:
9000   case AArch64::BI_InterlockedAnd16_acq:
9001   case AArch64::BI_InterlockedAnd_acq:
9002   case AArch64::BI_InterlockedAnd64_acq:
9003     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_acq, E);
9004   case AArch64::BI_InterlockedAnd8_rel:
9005   case AArch64::BI_InterlockedAnd16_rel:
9006   case AArch64::BI_InterlockedAnd_rel:
9007   case AArch64::BI_InterlockedAnd64_rel:
9008     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_rel, E);
9009   case AArch64::BI_InterlockedAnd8_nf:
9010   case AArch64::BI_InterlockedAnd16_nf:
9011   case AArch64::BI_InterlockedAnd_nf:
9012   case AArch64::BI_InterlockedAnd64_nf:
9013     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_nf, E);
9014   case AArch64::BI_InterlockedIncrement16_acq:
9015   case AArch64::BI_InterlockedIncrement_acq:
9016   case AArch64::BI_InterlockedIncrement64_acq:
9017     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_acq, E);
9018   case AArch64::BI_InterlockedIncrement16_rel:
9019   case AArch64::BI_InterlockedIncrement_rel:
9020   case AArch64::BI_InterlockedIncrement64_rel:
9021     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_rel, E);
9022   case AArch64::BI_InterlockedIncrement16_nf:
9023   case AArch64::BI_InterlockedIncrement_nf:
9024   case AArch64::BI_InterlockedIncrement64_nf:
9025     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_nf, E);
9026   case AArch64::BI_InterlockedDecrement16_acq:
9027   case AArch64::BI_InterlockedDecrement_acq:
9028   case AArch64::BI_InterlockedDecrement64_acq:
9029     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_acq, E);
9030   case AArch64::BI_InterlockedDecrement16_rel:
9031   case AArch64::BI_InterlockedDecrement_rel:
9032   case AArch64::BI_InterlockedDecrement64_rel:
9033     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_rel, E);
9034   case AArch64::BI_InterlockedDecrement16_nf:
9035   case AArch64::BI_InterlockedDecrement_nf:
9036   case AArch64::BI_InterlockedDecrement64_nf:
9037     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_nf, E);
9038 
9039   case AArch64::BI_InterlockedAdd: {
9040     Value *Arg0 = EmitScalarExpr(E->getArg(0));
9041     Value *Arg1 = EmitScalarExpr(E->getArg(1));
9042     AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
9043       AtomicRMWInst::Add, Arg0, Arg1,
9044       llvm::AtomicOrdering::SequentiallyConsistent);
9045     return Builder.CreateAdd(RMWI, Arg1);
9046   }
9047   }
9048 }
9049 
9050 llvm::Value *CodeGenFunction::
BuildVector(ArrayRef<llvm::Value * > Ops)9051 BuildVector(ArrayRef<llvm::Value*> Ops) {
9052   assert((Ops.size() & (Ops.size() - 1)) == 0 &&
9053          "Not a power-of-two sized vector!");
9054   bool AllConstants = true;
9055   for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
9056     AllConstants &= isa<Constant>(Ops[i]);
9057 
9058   // If this is a constant vector, create a ConstantVector.
9059   if (AllConstants) {
9060     SmallVector<llvm::Constant*, 16> CstOps;
9061     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
9062       CstOps.push_back(cast<Constant>(Ops[i]));
9063     return llvm::ConstantVector::get(CstOps);
9064   }
9065 
9066   // Otherwise, insertelement the values to build the vector.
9067   Value *Result =
9068     llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), Ops.size()));
9069 
9070   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
9071     Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i));
9072 
9073   return Result;
9074 }
9075 
9076 // Convert the mask from an integer type to a vector of i1.
getMaskVecValue(CodeGenFunction & CGF,Value * Mask,unsigned NumElts)9077 static Value *getMaskVecValue(CodeGenFunction &CGF, Value *Mask,
9078                               unsigned NumElts) {
9079 
9080   llvm::VectorType *MaskTy = llvm::VectorType::get(CGF.Builder.getInt1Ty(),
9081                          cast<IntegerType>(Mask->getType())->getBitWidth());
9082   Value *MaskVec = CGF.Builder.CreateBitCast(Mask, MaskTy);
9083 
9084   // If we have less than 8 elements, then the starting mask was an i8 and
9085   // we need to extract down to the right number of elements.
9086   if (NumElts < 8) {
9087     uint32_t Indices[4];
9088     for (unsigned i = 0; i != NumElts; ++i)
9089       Indices[i] = i;
9090     MaskVec = CGF.Builder.CreateShuffleVector(MaskVec, MaskVec,
9091                                              makeArrayRef(Indices, NumElts),
9092                                              "extract");
9093   }
9094   return MaskVec;
9095 }
9096 
EmitX86MaskedStore(CodeGenFunction & CGF,ArrayRef<Value * > Ops,unsigned Align)9097 static Value *EmitX86MaskedStore(CodeGenFunction &CGF,
9098                                  ArrayRef<Value *> Ops,
9099                                  unsigned Align) {
9100   // Cast the pointer to right type.
9101   Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
9102                                llvm::PointerType::getUnqual(Ops[1]->getType()));
9103 
9104   Value *MaskVec = getMaskVecValue(CGF, Ops[2],
9105                                    Ops[1]->getType()->getVectorNumElements());
9106 
9107   return CGF.Builder.CreateMaskedStore(Ops[1], Ptr, Align, MaskVec);
9108 }
9109 
EmitX86MaskedLoad(CodeGenFunction & CGF,ArrayRef<Value * > Ops,unsigned Align)9110 static Value *EmitX86MaskedLoad(CodeGenFunction &CGF,
9111                                 ArrayRef<Value *> Ops, unsigned Align) {
9112   // Cast the pointer to right type.
9113   Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
9114                                llvm::PointerType::getUnqual(Ops[1]->getType()));
9115 
9116   Value *MaskVec = getMaskVecValue(CGF, Ops[2],
9117                                    Ops[1]->getType()->getVectorNumElements());
9118 
9119   return CGF.Builder.CreateMaskedLoad(Ptr, Align, MaskVec, Ops[1]);
9120 }
9121 
EmitX86ExpandLoad(CodeGenFunction & CGF,ArrayRef<Value * > Ops)9122 static Value *EmitX86ExpandLoad(CodeGenFunction &CGF,
9123                                 ArrayRef<Value *> Ops) {
9124   llvm::Type *ResultTy = Ops[1]->getType();
9125   llvm::Type *PtrTy = ResultTy->getVectorElementType();
9126 
9127   // Cast the pointer to element type.
9128   Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
9129                                          llvm::PointerType::getUnqual(PtrTy));
9130 
9131   Value *MaskVec = getMaskVecValue(CGF, Ops[2],
9132                                    ResultTy->getVectorNumElements());
9133 
9134   llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_expandload,
9135                                            ResultTy);
9136   return CGF.Builder.CreateCall(F, { Ptr, MaskVec, Ops[1] });
9137 }
9138 
EmitX86CompressStore(CodeGenFunction & CGF,ArrayRef<Value * > Ops)9139 static Value *EmitX86CompressStore(CodeGenFunction &CGF,
9140                                    ArrayRef<Value *> Ops) {
9141   llvm::Type *ResultTy = Ops[1]->getType();
9142   llvm::Type *PtrTy = ResultTy->getVectorElementType();
9143 
9144   // Cast the pointer to element type.
9145   Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
9146                                          llvm::PointerType::getUnqual(PtrTy));
9147 
9148   Value *MaskVec = getMaskVecValue(CGF, Ops[2],
9149                                    ResultTy->getVectorNumElements());
9150 
9151   llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_compressstore,
9152                                            ResultTy);
9153   return CGF.Builder.CreateCall(F, { Ops[1], Ptr, MaskVec });
9154 }
9155 
EmitX86MaskLogic(CodeGenFunction & CGF,Instruction::BinaryOps Opc,ArrayRef<Value * > Ops,bool InvertLHS=false)9156 static Value *EmitX86MaskLogic(CodeGenFunction &CGF, Instruction::BinaryOps Opc,
9157                               ArrayRef<Value *> Ops,
9158                               bool InvertLHS = false) {
9159   unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
9160   Value *LHS = getMaskVecValue(CGF, Ops[0], NumElts);
9161   Value *RHS = getMaskVecValue(CGF, Ops[1], NumElts);
9162 
9163   if (InvertLHS)
9164     LHS = CGF.Builder.CreateNot(LHS);
9165 
9166   return CGF.Builder.CreateBitCast(CGF.Builder.CreateBinOp(Opc, LHS, RHS),
9167                                    Ops[0]->getType());
9168 }
9169 
EmitX86FunnelShift(CodeGenFunction & CGF,Value * Op0,Value * Op1,Value * Amt,bool IsRight)9170 static Value *EmitX86FunnelShift(CodeGenFunction &CGF, Value *Op0, Value *Op1,
9171                                  Value *Amt, bool IsRight) {
9172   llvm::Type *Ty = Op0->getType();
9173 
9174   // Amount may be scalar immediate, in which case create a splat vector.
9175   // Funnel shifts amounts are treated as modulo and types are all power-of-2 so
9176   // we only care about the lowest log2 bits anyway.
9177   if (Amt->getType() != Ty) {
9178     unsigned NumElts = Ty->getVectorNumElements();
9179     Amt = CGF.Builder.CreateIntCast(Amt, Ty->getScalarType(), false);
9180     Amt = CGF.Builder.CreateVectorSplat(NumElts, Amt);
9181   }
9182 
9183   unsigned IID = IsRight ? Intrinsic::fshr : Intrinsic::fshl;
9184   Value *F = CGF.CGM.getIntrinsic(IID, Ty);
9185   return CGF.Builder.CreateCall(F, {Op0, Op1, Amt});
9186 }
9187 
EmitX86Select(CodeGenFunction & CGF,Value * Mask,Value * Op0,Value * Op1)9188 static Value *EmitX86Select(CodeGenFunction &CGF,
9189                             Value *Mask, Value *Op0, Value *Op1) {
9190 
9191   // If the mask is all ones just return first argument.
9192   if (const auto *C = dyn_cast<Constant>(Mask))
9193     if (C->isAllOnesValue())
9194       return Op0;
9195 
9196   Mask = getMaskVecValue(CGF, Mask, Op0->getType()->getVectorNumElements());
9197 
9198   return CGF.Builder.CreateSelect(Mask, Op0, Op1);
9199 }
9200 
EmitX86ScalarSelect(CodeGenFunction & CGF,Value * Mask,Value * Op0,Value * Op1)9201 static Value *EmitX86ScalarSelect(CodeGenFunction &CGF,
9202                                   Value *Mask, Value *Op0, Value *Op1) {
9203   // If the mask is all ones just return first argument.
9204   if (const auto *C = dyn_cast<Constant>(Mask))
9205     if (C->isAllOnesValue())
9206       return Op0;
9207 
9208   llvm::VectorType *MaskTy =
9209     llvm::VectorType::get(CGF.Builder.getInt1Ty(),
9210                           Mask->getType()->getIntegerBitWidth());
9211   Mask = CGF.Builder.CreateBitCast(Mask, MaskTy);
9212   Mask = CGF.Builder.CreateExtractElement(Mask, (uint64_t)0);
9213   return CGF.Builder.CreateSelect(Mask, Op0, Op1);
9214 }
9215 
EmitX86MaskedCompareResult(CodeGenFunction & CGF,Value * Cmp,unsigned NumElts,Value * MaskIn)9216 static Value *EmitX86MaskedCompareResult(CodeGenFunction &CGF, Value *Cmp,
9217                                          unsigned NumElts, Value *MaskIn) {
9218   if (MaskIn) {
9219     const auto *C = dyn_cast<Constant>(MaskIn);
9220     if (!C || !C->isAllOnesValue())
9221       Cmp = CGF.Builder.CreateAnd(Cmp, getMaskVecValue(CGF, MaskIn, NumElts));
9222   }
9223 
9224   if (NumElts < 8) {
9225     uint32_t Indices[8];
9226     for (unsigned i = 0; i != NumElts; ++i)
9227       Indices[i] = i;
9228     for (unsigned i = NumElts; i != 8; ++i)
9229       Indices[i] = i % NumElts + NumElts;
9230     Cmp = CGF.Builder.CreateShuffleVector(
9231         Cmp, llvm::Constant::getNullValue(Cmp->getType()), Indices);
9232   }
9233 
9234   return CGF.Builder.CreateBitCast(Cmp,
9235                                    IntegerType::get(CGF.getLLVMContext(),
9236                                                     std::max(NumElts, 8U)));
9237 }
9238 
EmitX86MaskedCompare(CodeGenFunction & CGF,unsigned CC,bool Signed,ArrayRef<Value * > Ops)9239 static Value *EmitX86MaskedCompare(CodeGenFunction &CGF, unsigned CC,
9240                                    bool Signed, ArrayRef<Value *> Ops) {
9241   assert((Ops.size() == 2 || Ops.size() == 4) &&
9242          "Unexpected number of arguments");
9243   unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
9244   Value *Cmp;
9245 
9246   if (CC == 3) {
9247     Cmp = Constant::getNullValue(
9248                        llvm::VectorType::get(CGF.Builder.getInt1Ty(), NumElts));
9249   } else if (CC == 7) {
9250     Cmp = Constant::getAllOnesValue(
9251                        llvm::VectorType::get(CGF.Builder.getInt1Ty(), NumElts));
9252   } else {
9253     ICmpInst::Predicate Pred;
9254     switch (CC) {
9255     default: llvm_unreachable("Unknown condition code");
9256     case 0: Pred = ICmpInst::ICMP_EQ;  break;
9257     case 1: Pred = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break;
9258     case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break;
9259     case 4: Pred = ICmpInst::ICMP_NE;  break;
9260     case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break;
9261     case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break;
9262     }
9263     Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
9264   }
9265 
9266   Value *MaskIn = nullptr;
9267   if (Ops.size() == 4)
9268     MaskIn = Ops[3];
9269 
9270   return EmitX86MaskedCompareResult(CGF, Cmp, NumElts, MaskIn);
9271 }
9272 
EmitX86ConvertToMask(CodeGenFunction & CGF,Value * In)9273 static Value *EmitX86ConvertToMask(CodeGenFunction &CGF, Value *In) {
9274   Value *Zero = Constant::getNullValue(In->getType());
9275   return EmitX86MaskedCompare(CGF, 1, true, { In, Zero });
9276 }
9277 
EmitX86Abs(CodeGenFunction & CGF,ArrayRef<Value * > Ops)9278 static Value *EmitX86Abs(CodeGenFunction &CGF, ArrayRef<Value *> Ops) {
9279 
9280   llvm::Type *Ty = Ops[0]->getType();
9281   Value *Zero = llvm::Constant::getNullValue(Ty);
9282   Value *Sub = CGF.Builder.CreateSub(Zero, Ops[0]);
9283   Value *Cmp = CGF.Builder.CreateICmp(ICmpInst::ICMP_SGT, Ops[0], Zero);
9284   Value *Res = CGF.Builder.CreateSelect(Cmp, Ops[0], Sub);
9285   return Res;
9286 }
9287 
EmitX86MinMax(CodeGenFunction & CGF,ICmpInst::Predicate Pred,ArrayRef<Value * > Ops)9288 static Value *EmitX86MinMax(CodeGenFunction &CGF, ICmpInst::Predicate Pred,
9289                             ArrayRef<Value *> Ops) {
9290   Value *Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
9291   Value *Res = CGF.Builder.CreateSelect(Cmp, Ops[0], Ops[1]);
9292 
9293   assert(Ops.size() == 2);
9294   return Res;
9295 }
9296 
9297 // Lowers X86 FMA intrinsics to IR.
EmitX86FMAExpr(CodeGenFunction & CGF,ArrayRef<Value * > Ops,unsigned BuiltinID,bool IsAddSub)9298 static Value *EmitX86FMAExpr(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
9299                              unsigned BuiltinID, bool IsAddSub) {
9300 
9301   bool Subtract = false;
9302   Intrinsic::ID IID = Intrinsic::not_intrinsic;
9303   switch (BuiltinID) {
9304   default: break;
9305   case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
9306     Subtract = true;
9307     LLVM_FALLTHROUGH;
9308   case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
9309   case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
9310   case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
9311     IID = llvm::Intrinsic::x86_avx512_vfmadd_ps_512; break;
9312   case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
9313     Subtract = true;
9314     LLVM_FALLTHROUGH;
9315   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
9316   case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
9317   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
9318     IID = llvm::Intrinsic::x86_avx512_vfmadd_pd_512; break;
9319   case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
9320     Subtract = true;
9321     LLVM_FALLTHROUGH;
9322   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
9323   case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
9324   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
9325     IID = llvm::Intrinsic::x86_avx512_vfmaddsub_ps_512;
9326     break;
9327   case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
9328     Subtract = true;
9329     LLVM_FALLTHROUGH;
9330   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
9331   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
9332   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
9333     IID = llvm::Intrinsic::x86_avx512_vfmaddsub_pd_512;
9334     break;
9335   }
9336 
9337   Value *A = Ops[0];
9338   Value *B = Ops[1];
9339   Value *C = Ops[2];
9340 
9341   if (Subtract)
9342     C = CGF.Builder.CreateFNeg(C);
9343 
9344   Value *Res;
9345 
9346   // Only handle in case of _MM_FROUND_CUR_DIRECTION/4 (no rounding).
9347   if (IID != Intrinsic::not_intrinsic &&
9348       cast<llvm::ConstantInt>(Ops.back())->getZExtValue() != (uint64_t)4) {
9349     Function *Intr = CGF.CGM.getIntrinsic(IID);
9350     Res = CGF.Builder.CreateCall(Intr, {A, B, C, Ops.back() });
9351   } else {
9352     llvm::Type *Ty = A->getType();
9353     Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ty);
9354     Res = CGF.Builder.CreateCall(FMA, {A, B, C} );
9355 
9356     if (IsAddSub) {
9357       // Negate even elts in C using a mask.
9358       unsigned NumElts = Ty->getVectorNumElements();
9359       SmallVector<uint32_t, 16> Indices(NumElts);
9360       for (unsigned i = 0; i != NumElts; ++i)
9361         Indices[i] = i + (i % 2) * NumElts;
9362 
9363       Value *NegC = CGF.Builder.CreateFNeg(C);
9364       Value *FMSub = CGF.Builder.CreateCall(FMA, {A, B, NegC} );
9365       Res = CGF.Builder.CreateShuffleVector(FMSub, Res, Indices);
9366     }
9367   }
9368 
9369   // Handle any required masking.
9370   Value *MaskFalseVal = nullptr;
9371   switch (BuiltinID) {
9372   case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
9373   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
9374   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
9375   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
9376     MaskFalseVal = Ops[0];
9377     break;
9378   case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
9379   case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
9380   case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
9381   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
9382     MaskFalseVal = Constant::getNullValue(Ops[0]->getType());
9383     break;
9384   case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
9385   case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
9386   case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
9387   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
9388   case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
9389   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
9390   case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
9391   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
9392     MaskFalseVal = Ops[2];
9393     break;
9394   }
9395 
9396   if (MaskFalseVal)
9397     return EmitX86Select(CGF, Ops[3], Res, MaskFalseVal);
9398 
9399   return Res;
9400 }
9401 
9402 static Value *
EmitScalarFMAExpr(CodeGenFunction & CGF,MutableArrayRef<Value * > Ops,Value * Upper,bool ZeroMask=false,unsigned PTIdx=0,bool NegAcc=false)9403 EmitScalarFMAExpr(CodeGenFunction &CGF, MutableArrayRef<Value *> Ops,
9404                   Value *Upper, bool ZeroMask = false, unsigned PTIdx = 0,
9405                   bool NegAcc = false) {
9406   unsigned Rnd = 4;
9407   if (Ops.size() > 4)
9408     Rnd = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
9409 
9410   if (NegAcc)
9411     Ops[2] = CGF.Builder.CreateFNeg(Ops[2]);
9412 
9413   Ops[0] = CGF.Builder.CreateExtractElement(Ops[0], (uint64_t)0);
9414   Ops[1] = CGF.Builder.CreateExtractElement(Ops[1], (uint64_t)0);
9415   Ops[2] = CGF.Builder.CreateExtractElement(Ops[2], (uint64_t)0);
9416   Value *Res;
9417   if (Rnd != 4) {
9418     Intrinsic::ID IID = Ops[0]->getType()->getPrimitiveSizeInBits() == 32 ?
9419                         Intrinsic::x86_avx512_vfmadd_f32 :
9420                         Intrinsic::x86_avx512_vfmadd_f64;
9421     Res = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
9422                                  {Ops[0], Ops[1], Ops[2], Ops[4]});
9423   } else {
9424     Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ops[0]->getType());
9425     Res = CGF.Builder.CreateCall(FMA, Ops.slice(0, 3));
9426   }
9427   // If we have more than 3 arguments, we need to do masking.
9428   if (Ops.size() > 3) {
9429     Value *PassThru = ZeroMask ? Constant::getNullValue(Res->getType())
9430                                : Ops[PTIdx];
9431 
9432     // If we negated the accumulator and the its the PassThru value we need to
9433     // bypass the negate. Conveniently Upper should be the same thing in this
9434     // case.
9435     if (NegAcc && PTIdx == 2)
9436       PassThru = CGF.Builder.CreateExtractElement(Upper, (uint64_t)0);
9437 
9438     Res = EmitX86ScalarSelect(CGF, Ops[3], Res, PassThru);
9439   }
9440   return CGF.Builder.CreateInsertElement(Upper, Res, (uint64_t)0);
9441 }
9442 
EmitX86Muldq(CodeGenFunction & CGF,bool IsSigned,ArrayRef<Value * > Ops)9443 static Value *EmitX86Muldq(CodeGenFunction &CGF, bool IsSigned,
9444                            ArrayRef<Value *> Ops) {
9445   llvm::Type *Ty = Ops[0]->getType();
9446   // Arguments have a vXi32 type so cast to vXi64.
9447   Ty = llvm::VectorType::get(CGF.Int64Ty,
9448                              Ty->getPrimitiveSizeInBits() / 64);
9449   Value *LHS = CGF.Builder.CreateBitCast(Ops[0], Ty);
9450   Value *RHS = CGF.Builder.CreateBitCast(Ops[1], Ty);
9451 
9452   if (IsSigned) {
9453     // Shift left then arithmetic shift right.
9454     Constant *ShiftAmt = ConstantInt::get(Ty, 32);
9455     LHS = CGF.Builder.CreateShl(LHS, ShiftAmt);
9456     LHS = CGF.Builder.CreateAShr(LHS, ShiftAmt);
9457     RHS = CGF.Builder.CreateShl(RHS, ShiftAmt);
9458     RHS = CGF.Builder.CreateAShr(RHS, ShiftAmt);
9459   } else {
9460     // Clear the upper bits.
9461     Constant *Mask = ConstantInt::get(Ty, 0xffffffff);
9462     LHS = CGF.Builder.CreateAnd(LHS, Mask);
9463     RHS = CGF.Builder.CreateAnd(RHS, Mask);
9464   }
9465 
9466   return CGF.Builder.CreateMul(LHS, RHS);
9467 }
9468 
9469 // Emit a masked pternlog intrinsic. This only exists because the header has to
9470 // use a macro and we aren't able to pass the input argument to a pternlog
9471 // builtin and a select builtin without evaluating it twice.
EmitX86Ternlog(CodeGenFunction & CGF,bool ZeroMask,ArrayRef<Value * > Ops)9472 static Value *EmitX86Ternlog(CodeGenFunction &CGF, bool ZeroMask,
9473                              ArrayRef<Value *> Ops) {
9474   llvm::Type *Ty = Ops[0]->getType();
9475 
9476   unsigned VecWidth = Ty->getPrimitiveSizeInBits();
9477   unsigned EltWidth = Ty->getScalarSizeInBits();
9478   Intrinsic::ID IID;
9479   if (VecWidth == 128 && EltWidth == 32)
9480     IID = Intrinsic::x86_avx512_pternlog_d_128;
9481   else if (VecWidth == 256 && EltWidth == 32)
9482     IID = Intrinsic::x86_avx512_pternlog_d_256;
9483   else if (VecWidth == 512 && EltWidth == 32)
9484     IID = Intrinsic::x86_avx512_pternlog_d_512;
9485   else if (VecWidth == 128 && EltWidth == 64)
9486     IID = Intrinsic::x86_avx512_pternlog_q_128;
9487   else if (VecWidth == 256 && EltWidth == 64)
9488     IID = Intrinsic::x86_avx512_pternlog_q_256;
9489   else if (VecWidth == 512 && EltWidth == 64)
9490     IID = Intrinsic::x86_avx512_pternlog_q_512;
9491   else
9492     llvm_unreachable("Unexpected intrinsic");
9493 
9494   Value *Ternlog = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
9495                                           Ops.drop_back());
9496   Value *PassThru = ZeroMask ? ConstantAggregateZero::get(Ty) : Ops[0];
9497   return EmitX86Select(CGF, Ops[4], Ternlog, PassThru);
9498 }
9499 
EmitX86SExtMask(CodeGenFunction & CGF,Value * Op,llvm::Type * DstTy)9500 static Value *EmitX86SExtMask(CodeGenFunction &CGF, Value *Op,
9501                               llvm::Type *DstTy) {
9502   unsigned NumberOfElements = DstTy->getVectorNumElements();
9503   Value *Mask = getMaskVecValue(CGF, Op, NumberOfElements);
9504   return CGF.Builder.CreateSExt(Mask, DstTy, "vpmovm2");
9505 }
9506 
9507 // Emit addition or subtraction with signed/unsigned saturation.
EmitX86AddSubSatExpr(CodeGenFunction & CGF,ArrayRef<Value * > Ops,bool IsSigned,bool IsAddition)9508 static Value *EmitX86AddSubSatExpr(CodeGenFunction &CGF,
9509                                    ArrayRef<Value *> Ops, bool IsSigned,
9510                                    bool IsAddition) {
9511   Intrinsic::ID IID =
9512       IsSigned ? (IsAddition ? Intrinsic::sadd_sat : Intrinsic::ssub_sat)
9513                : (IsAddition ? Intrinsic::uadd_sat : Intrinsic::usub_sat);
9514   llvm::Function *F = CGF.CGM.getIntrinsic(IID, Ops[0]->getType());
9515   return CGF.Builder.CreateCall(F, {Ops[0], Ops[1]});
9516 }
9517 
EmitX86CpuIs(const CallExpr * E)9518 Value *CodeGenFunction::EmitX86CpuIs(const CallExpr *E) {
9519   const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts();
9520   StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString();
9521   return EmitX86CpuIs(CPUStr);
9522 }
9523 
EmitX86CpuIs(StringRef CPUStr)9524 Value *CodeGenFunction::EmitX86CpuIs(StringRef CPUStr) {
9525 
9526   llvm::Type *Int32Ty = Builder.getInt32Ty();
9527 
9528   // Matching the struct layout from the compiler-rt/libgcc structure that is
9529   // filled in:
9530   // unsigned int __cpu_vendor;
9531   // unsigned int __cpu_type;
9532   // unsigned int __cpu_subtype;
9533   // unsigned int __cpu_features[1];
9534   llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
9535                                           llvm::ArrayType::get(Int32Ty, 1));
9536 
9537   // Grab the global __cpu_model.
9538   llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
9539   cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
9540 
9541   // Calculate the index needed to access the correct field based on the
9542   // range. Also adjust the expected value.
9543   unsigned Index;
9544   unsigned Value;
9545   std::tie(Index, Value) = StringSwitch<std::pair<unsigned, unsigned>>(CPUStr)
9546 #define X86_VENDOR(ENUM, STRING)                                               \
9547   .Case(STRING, {0u, static_cast<unsigned>(llvm::X86::ENUM)})
9548 #define X86_CPU_TYPE_COMPAT_WITH_ALIAS(ARCHNAME, ENUM, STR, ALIAS)             \
9549   .Cases(STR, ALIAS, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
9550 #define X86_CPU_TYPE_COMPAT(ARCHNAME, ENUM, STR)                               \
9551   .Case(STR, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
9552 #define X86_CPU_SUBTYPE_COMPAT(ARCHNAME, ENUM, STR)                            \
9553   .Case(STR, {2u, static_cast<unsigned>(llvm::X86::ENUM)})
9554 #include "llvm/Support/X86TargetParser.def"
9555                                .Default({0, 0});
9556   assert(Value != 0 && "Invalid CPUStr passed to CpuIs");
9557 
9558   // Grab the appropriate field from __cpu_model.
9559   llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0),
9560                          ConstantInt::get(Int32Ty, Index)};
9561   llvm::Value *CpuValue = Builder.CreateGEP(STy, CpuModel, Idxs);
9562   CpuValue = Builder.CreateAlignedLoad(CpuValue, CharUnits::fromQuantity(4));
9563 
9564   // Check the value of the field against the requested value.
9565   return Builder.CreateICmpEQ(CpuValue,
9566                                   llvm::ConstantInt::get(Int32Ty, Value));
9567 }
9568 
EmitX86CpuSupports(const CallExpr * E)9569 Value *CodeGenFunction::EmitX86CpuSupports(const CallExpr *E) {
9570   const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts();
9571   StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString();
9572   return EmitX86CpuSupports(FeatureStr);
9573 }
9574 
9575 uint64_t
GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs)9576 CodeGenFunction::GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs) {
9577   // Processor features and mapping to processor feature value.
9578   uint64_t FeaturesMask = 0;
9579   for (const StringRef &FeatureStr : FeatureStrs) {
9580     unsigned Feature =
9581         StringSwitch<unsigned>(FeatureStr)
9582 #define X86_FEATURE_COMPAT(VAL, ENUM, STR) .Case(STR, VAL)
9583 #include "llvm/Support/X86TargetParser.def"
9584         ;
9585     FeaturesMask |= (1ULL << Feature);
9586   }
9587   return FeaturesMask;
9588 }
9589 
EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs)9590 Value *CodeGenFunction::EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs) {
9591   return EmitX86CpuSupports(GetX86CpuSupportsMask(FeatureStrs));
9592 }
9593 
EmitX86CpuSupports(uint64_t FeaturesMask)9594 llvm::Value *CodeGenFunction::EmitX86CpuSupports(uint64_t FeaturesMask) {
9595   uint32_t Features1 = Lo_32(FeaturesMask);
9596   uint32_t Features2 = Hi_32(FeaturesMask);
9597 
9598   Value *Result = Builder.getTrue();
9599 
9600   if (Features1 != 0) {
9601     // Matching the struct layout from the compiler-rt/libgcc structure that is
9602     // filled in:
9603     // unsigned int __cpu_vendor;
9604     // unsigned int __cpu_type;
9605     // unsigned int __cpu_subtype;
9606     // unsigned int __cpu_features[1];
9607     llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
9608                                             llvm::ArrayType::get(Int32Ty, 1));
9609 
9610     // Grab the global __cpu_model.
9611     llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
9612     cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
9613 
9614     // Grab the first (0th) element from the field __cpu_features off of the
9615     // global in the struct STy.
9616     Value *Idxs[] = {Builder.getInt32(0), Builder.getInt32(3),
9617                      Builder.getInt32(0)};
9618     Value *CpuFeatures = Builder.CreateGEP(STy, CpuModel, Idxs);
9619     Value *Features =
9620         Builder.CreateAlignedLoad(CpuFeatures, CharUnits::fromQuantity(4));
9621 
9622     // Check the value of the bit corresponding to the feature requested.
9623     Value *Mask = Builder.getInt32(Features1);
9624     Value *Bitset = Builder.CreateAnd(Features, Mask);
9625     Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
9626     Result = Builder.CreateAnd(Result, Cmp);
9627   }
9628 
9629   if (Features2 != 0) {
9630     llvm::Constant *CpuFeatures2 = CGM.CreateRuntimeVariable(Int32Ty,
9631                                                              "__cpu_features2");
9632     cast<llvm::GlobalValue>(CpuFeatures2)->setDSOLocal(true);
9633 
9634     Value *Features =
9635         Builder.CreateAlignedLoad(CpuFeatures2, CharUnits::fromQuantity(4));
9636 
9637     // Check the value of the bit corresponding to the feature requested.
9638     Value *Mask = Builder.getInt32(Features2);
9639     Value *Bitset = Builder.CreateAnd(Features, Mask);
9640     Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
9641     Result = Builder.CreateAnd(Result, Cmp);
9642   }
9643 
9644   return Result;
9645 }
9646 
EmitX86CpuInit()9647 Value *CodeGenFunction::EmitX86CpuInit() {
9648   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy,
9649                                                     /*Variadic*/ false);
9650   llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, "__cpu_indicator_init");
9651   cast<llvm::GlobalValue>(Func)->setDSOLocal(true);
9652   cast<llvm::GlobalValue>(Func)->setDLLStorageClass(
9653       llvm::GlobalValue::DefaultStorageClass);
9654   return Builder.CreateCall(Func);
9655 }
9656 
EmitX86BuiltinExpr(unsigned BuiltinID,const CallExpr * E)9657 Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
9658                                            const CallExpr *E) {
9659   if (BuiltinID == X86::BI__builtin_cpu_is)
9660     return EmitX86CpuIs(E);
9661   if (BuiltinID == X86::BI__builtin_cpu_supports)
9662     return EmitX86CpuSupports(E);
9663   if (BuiltinID == X86::BI__builtin_cpu_init)
9664     return EmitX86CpuInit();
9665 
9666   SmallVector<Value*, 4> Ops;
9667 
9668   // Find out if any arguments are required to be integer constant expressions.
9669   unsigned ICEArguments = 0;
9670   ASTContext::GetBuiltinTypeError Error;
9671   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
9672   assert(Error == ASTContext::GE_None && "Should not codegen an error");
9673 
9674   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
9675     // If this is a normal argument, just emit it as a scalar.
9676     if ((ICEArguments & (1 << i)) == 0) {
9677       Ops.push_back(EmitScalarExpr(E->getArg(i)));
9678       continue;
9679     }
9680 
9681     // If this is required to be a constant, constant fold it so that we know
9682     // that the generated intrinsic gets a ConstantInt.
9683     llvm::APSInt Result;
9684     bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
9685     assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
9686     Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
9687   }
9688 
9689   // These exist so that the builtin that takes an immediate can be bounds
9690   // checked by clang to avoid passing bad immediates to the backend. Since
9691   // AVX has a larger immediate than SSE we would need separate builtins to
9692   // do the different bounds checking. Rather than create a clang specific
9693   // SSE only builtin, this implements eight separate builtins to match gcc
9694   // implementation.
9695   auto getCmpIntrinsicCall = [this, &Ops](Intrinsic::ID ID, unsigned Imm) {
9696     Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm));
9697     llvm::Function *F = CGM.getIntrinsic(ID);
9698     return Builder.CreateCall(F, Ops);
9699   };
9700 
9701   // For the vector forms of FP comparisons, translate the builtins directly to
9702   // IR.
9703   // TODO: The builtins could be removed if the SSE header files used vector
9704   // extension comparisons directly (vector ordered/unordered may need
9705   // additional support via __builtin_isnan()).
9706   auto getVectorFCmpIR = [this, &Ops](CmpInst::Predicate Pred) {
9707     Value *Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
9708     llvm::VectorType *FPVecTy = cast<llvm::VectorType>(Ops[0]->getType());
9709     llvm::VectorType *IntVecTy = llvm::VectorType::getInteger(FPVecTy);
9710     Value *Sext = Builder.CreateSExt(Cmp, IntVecTy);
9711     return Builder.CreateBitCast(Sext, FPVecTy);
9712   };
9713 
9714   switch (BuiltinID) {
9715   default: return nullptr;
9716   case X86::BI_mm_prefetch: {
9717     Value *Address = Ops[0];
9718     ConstantInt *C = cast<ConstantInt>(Ops[1]);
9719     Value *RW = ConstantInt::get(Int32Ty, (C->getZExtValue() >> 2) & 0x1);
9720     Value *Locality = ConstantInt::get(Int32Ty, C->getZExtValue() & 0x3);
9721     Value *Data = ConstantInt::get(Int32Ty, 1);
9722     Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
9723     return Builder.CreateCall(F, {Address, RW, Locality, Data});
9724   }
9725   case X86::BI_mm_clflush: {
9726     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_clflush),
9727                               Ops[0]);
9728   }
9729   case X86::BI_mm_lfence: {
9730     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_lfence));
9731   }
9732   case X86::BI_mm_mfence: {
9733     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_mfence));
9734   }
9735   case X86::BI_mm_sfence: {
9736     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_sfence));
9737   }
9738   case X86::BI_mm_pause: {
9739     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_pause));
9740   }
9741   case X86::BI__rdtsc: {
9742     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtsc));
9743   }
9744   case X86::BI__builtin_ia32_rdtscp: {
9745     Value *Call = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtscp));
9746     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
9747                                       Ops[0]);
9748     return Builder.CreateExtractValue(Call, 0);
9749   }
9750   case X86::BI__builtin_ia32_lzcnt_u16:
9751   case X86::BI__builtin_ia32_lzcnt_u32:
9752   case X86::BI__builtin_ia32_lzcnt_u64: {
9753     Value *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
9754     return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
9755   }
9756   case X86::BI__builtin_ia32_tzcnt_u16:
9757   case X86::BI__builtin_ia32_tzcnt_u32:
9758   case X86::BI__builtin_ia32_tzcnt_u64: {
9759     Value *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType());
9760     return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
9761   }
9762   case X86::BI__builtin_ia32_undef128:
9763   case X86::BI__builtin_ia32_undef256:
9764   case X86::BI__builtin_ia32_undef512:
9765     // The x86 definition of "undef" is not the same as the LLVM definition
9766     // (PR32176). We leave optimizing away an unnecessary zero constant to the
9767     // IR optimizer and backend.
9768     // TODO: If we had a "freeze" IR instruction to generate a fixed undef
9769     // value, we should use that here instead of a zero.
9770     return llvm::Constant::getNullValue(ConvertType(E->getType()));
9771   case X86::BI__builtin_ia32_vec_init_v8qi:
9772   case X86::BI__builtin_ia32_vec_init_v4hi:
9773   case X86::BI__builtin_ia32_vec_init_v2si:
9774     return Builder.CreateBitCast(BuildVector(Ops),
9775                                  llvm::Type::getX86_MMXTy(getLLVMContext()));
9776   case X86::BI__builtin_ia32_vec_ext_v2si:
9777   case X86::BI__builtin_ia32_vec_ext_v16qi:
9778   case X86::BI__builtin_ia32_vec_ext_v8hi:
9779   case X86::BI__builtin_ia32_vec_ext_v4si:
9780   case X86::BI__builtin_ia32_vec_ext_v4sf:
9781   case X86::BI__builtin_ia32_vec_ext_v2di:
9782   case X86::BI__builtin_ia32_vec_ext_v32qi:
9783   case X86::BI__builtin_ia32_vec_ext_v16hi:
9784   case X86::BI__builtin_ia32_vec_ext_v8si:
9785   case X86::BI__builtin_ia32_vec_ext_v4di: {
9786     unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
9787     uint64_t Index = cast<ConstantInt>(Ops[1])->getZExtValue();
9788     Index &= NumElts - 1;
9789     // These builtins exist so we can ensure the index is an ICE and in range.
9790     // Otherwise we could just do this in the header file.
9791     return Builder.CreateExtractElement(Ops[0], Index);
9792   }
9793   case X86::BI__builtin_ia32_vec_set_v16qi:
9794   case X86::BI__builtin_ia32_vec_set_v8hi:
9795   case X86::BI__builtin_ia32_vec_set_v4si:
9796   case X86::BI__builtin_ia32_vec_set_v2di:
9797   case X86::BI__builtin_ia32_vec_set_v32qi:
9798   case X86::BI__builtin_ia32_vec_set_v16hi:
9799   case X86::BI__builtin_ia32_vec_set_v8si:
9800   case X86::BI__builtin_ia32_vec_set_v4di: {
9801     unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
9802     unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
9803     Index &= NumElts - 1;
9804     // These builtins exist so we can ensure the index is an ICE and in range.
9805     // Otherwise we could just do this in the header file.
9806     return Builder.CreateInsertElement(Ops[0], Ops[1], Index);
9807   }
9808   case X86::BI_mm_setcsr:
9809   case X86::BI__builtin_ia32_ldmxcsr: {
9810     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
9811     Builder.CreateStore(Ops[0], Tmp);
9812     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
9813                           Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
9814   }
9815   case X86::BI_mm_getcsr:
9816   case X86::BI__builtin_ia32_stmxcsr: {
9817     Address Tmp = CreateMemTemp(E->getType());
9818     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
9819                        Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
9820     return Builder.CreateLoad(Tmp, "stmxcsr");
9821   }
9822   case X86::BI__builtin_ia32_xsave:
9823   case X86::BI__builtin_ia32_xsave64:
9824   case X86::BI__builtin_ia32_xrstor:
9825   case X86::BI__builtin_ia32_xrstor64:
9826   case X86::BI__builtin_ia32_xsaveopt:
9827   case X86::BI__builtin_ia32_xsaveopt64:
9828   case X86::BI__builtin_ia32_xrstors:
9829   case X86::BI__builtin_ia32_xrstors64:
9830   case X86::BI__builtin_ia32_xsavec:
9831   case X86::BI__builtin_ia32_xsavec64:
9832   case X86::BI__builtin_ia32_xsaves:
9833   case X86::BI__builtin_ia32_xsaves64: {
9834     Intrinsic::ID ID;
9835 #define INTRINSIC_X86_XSAVE_ID(NAME) \
9836     case X86::BI__builtin_ia32_##NAME: \
9837       ID = Intrinsic::x86_##NAME; \
9838       break
9839     switch (BuiltinID) {
9840     default: llvm_unreachable("Unsupported intrinsic!");
9841     INTRINSIC_X86_XSAVE_ID(xsave);
9842     INTRINSIC_X86_XSAVE_ID(xsave64);
9843     INTRINSIC_X86_XSAVE_ID(xrstor);
9844     INTRINSIC_X86_XSAVE_ID(xrstor64);
9845     INTRINSIC_X86_XSAVE_ID(xsaveopt);
9846     INTRINSIC_X86_XSAVE_ID(xsaveopt64);
9847     INTRINSIC_X86_XSAVE_ID(xrstors);
9848     INTRINSIC_X86_XSAVE_ID(xrstors64);
9849     INTRINSIC_X86_XSAVE_ID(xsavec);
9850     INTRINSIC_X86_XSAVE_ID(xsavec64);
9851     INTRINSIC_X86_XSAVE_ID(xsaves);
9852     INTRINSIC_X86_XSAVE_ID(xsaves64);
9853     }
9854 #undef INTRINSIC_X86_XSAVE_ID
9855     Value *Mhi = Builder.CreateTrunc(
9856       Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty);
9857     Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty);
9858     Ops[1] = Mhi;
9859     Ops.push_back(Mlo);
9860     return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
9861   }
9862   case X86::BI__builtin_ia32_storedqudi128_mask:
9863   case X86::BI__builtin_ia32_storedqusi128_mask:
9864   case X86::BI__builtin_ia32_storedquhi128_mask:
9865   case X86::BI__builtin_ia32_storedquqi128_mask:
9866   case X86::BI__builtin_ia32_storeupd128_mask:
9867   case X86::BI__builtin_ia32_storeups128_mask:
9868   case X86::BI__builtin_ia32_storedqudi256_mask:
9869   case X86::BI__builtin_ia32_storedqusi256_mask:
9870   case X86::BI__builtin_ia32_storedquhi256_mask:
9871   case X86::BI__builtin_ia32_storedquqi256_mask:
9872   case X86::BI__builtin_ia32_storeupd256_mask:
9873   case X86::BI__builtin_ia32_storeups256_mask:
9874   case X86::BI__builtin_ia32_storedqudi512_mask:
9875   case X86::BI__builtin_ia32_storedqusi512_mask:
9876   case X86::BI__builtin_ia32_storedquhi512_mask:
9877   case X86::BI__builtin_ia32_storedquqi512_mask:
9878   case X86::BI__builtin_ia32_storeupd512_mask:
9879   case X86::BI__builtin_ia32_storeups512_mask:
9880     return EmitX86MaskedStore(*this, Ops, 1);
9881 
9882   case X86::BI__builtin_ia32_storess128_mask:
9883   case X86::BI__builtin_ia32_storesd128_mask: {
9884     return EmitX86MaskedStore(*this, Ops, 1);
9885   }
9886   case X86::BI__builtin_ia32_vpopcntb_128:
9887   case X86::BI__builtin_ia32_vpopcntd_128:
9888   case X86::BI__builtin_ia32_vpopcntq_128:
9889   case X86::BI__builtin_ia32_vpopcntw_128:
9890   case X86::BI__builtin_ia32_vpopcntb_256:
9891   case X86::BI__builtin_ia32_vpopcntd_256:
9892   case X86::BI__builtin_ia32_vpopcntq_256:
9893   case X86::BI__builtin_ia32_vpopcntw_256:
9894   case X86::BI__builtin_ia32_vpopcntb_512:
9895   case X86::BI__builtin_ia32_vpopcntd_512:
9896   case X86::BI__builtin_ia32_vpopcntq_512:
9897   case X86::BI__builtin_ia32_vpopcntw_512: {
9898     llvm::Type *ResultType = ConvertType(E->getType());
9899     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
9900     return Builder.CreateCall(F, Ops);
9901   }
9902   case X86::BI__builtin_ia32_cvtmask2b128:
9903   case X86::BI__builtin_ia32_cvtmask2b256:
9904   case X86::BI__builtin_ia32_cvtmask2b512:
9905   case X86::BI__builtin_ia32_cvtmask2w128:
9906   case X86::BI__builtin_ia32_cvtmask2w256:
9907   case X86::BI__builtin_ia32_cvtmask2w512:
9908   case X86::BI__builtin_ia32_cvtmask2d128:
9909   case X86::BI__builtin_ia32_cvtmask2d256:
9910   case X86::BI__builtin_ia32_cvtmask2d512:
9911   case X86::BI__builtin_ia32_cvtmask2q128:
9912   case X86::BI__builtin_ia32_cvtmask2q256:
9913   case X86::BI__builtin_ia32_cvtmask2q512:
9914     return EmitX86SExtMask(*this, Ops[0], ConvertType(E->getType()));
9915 
9916   case X86::BI__builtin_ia32_cvtb2mask128:
9917   case X86::BI__builtin_ia32_cvtb2mask256:
9918   case X86::BI__builtin_ia32_cvtb2mask512:
9919   case X86::BI__builtin_ia32_cvtw2mask128:
9920   case X86::BI__builtin_ia32_cvtw2mask256:
9921   case X86::BI__builtin_ia32_cvtw2mask512:
9922   case X86::BI__builtin_ia32_cvtd2mask128:
9923   case X86::BI__builtin_ia32_cvtd2mask256:
9924   case X86::BI__builtin_ia32_cvtd2mask512:
9925   case X86::BI__builtin_ia32_cvtq2mask128:
9926   case X86::BI__builtin_ia32_cvtq2mask256:
9927   case X86::BI__builtin_ia32_cvtq2mask512:
9928     return EmitX86ConvertToMask(*this, Ops[0]);
9929 
9930   case X86::BI__builtin_ia32_vfmaddss3:
9931   case X86::BI__builtin_ia32_vfmaddsd3:
9932   case X86::BI__builtin_ia32_vfmaddss3_mask:
9933   case X86::BI__builtin_ia32_vfmaddsd3_mask:
9934     return EmitScalarFMAExpr(*this, Ops, Ops[0]);
9935   case X86::BI__builtin_ia32_vfmaddss:
9936   case X86::BI__builtin_ia32_vfmaddsd:
9937     return EmitScalarFMAExpr(*this, Ops,
9938                              Constant::getNullValue(Ops[0]->getType()));
9939   case X86::BI__builtin_ia32_vfmaddss3_maskz:
9940   case X86::BI__builtin_ia32_vfmaddsd3_maskz:
9941     return EmitScalarFMAExpr(*this, Ops, Ops[0], /*ZeroMask*/true);
9942   case X86::BI__builtin_ia32_vfmaddss3_mask3:
9943   case X86::BI__builtin_ia32_vfmaddsd3_mask3:
9944     return EmitScalarFMAExpr(*this, Ops, Ops[2], /*ZeroMask*/false, 2);
9945   case X86::BI__builtin_ia32_vfmsubss3_mask3:
9946   case X86::BI__builtin_ia32_vfmsubsd3_mask3:
9947     return EmitScalarFMAExpr(*this, Ops, Ops[2], /*ZeroMask*/false, 2,
9948                              /*NegAcc*/true);
9949   case X86::BI__builtin_ia32_vfmaddps:
9950   case X86::BI__builtin_ia32_vfmaddpd:
9951   case X86::BI__builtin_ia32_vfmaddps256:
9952   case X86::BI__builtin_ia32_vfmaddpd256:
9953   case X86::BI__builtin_ia32_vfmaddps512_mask:
9954   case X86::BI__builtin_ia32_vfmaddps512_maskz:
9955   case X86::BI__builtin_ia32_vfmaddps512_mask3:
9956   case X86::BI__builtin_ia32_vfmsubps512_mask3:
9957   case X86::BI__builtin_ia32_vfmaddpd512_mask:
9958   case X86::BI__builtin_ia32_vfmaddpd512_maskz:
9959   case X86::BI__builtin_ia32_vfmaddpd512_mask3:
9960   case X86::BI__builtin_ia32_vfmsubpd512_mask3:
9961     return EmitX86FMAExpr(*this, Ops, BuiltinID, /*IsAddSub*/false);
9962   case X86::BI__builtin_ia32_vfmaddsubps:
9963   case X86::BI__builtin_ia32_vfmaddsubpd:
9964   case X86::BI__builtin_ia32_vfmaddsubps256:
9965   case X86::BI__builtin_ia32_vfmaddsubpd256:
9966   case X86::BI__builtin_ia32_vfmaddsubps512_mask:
9967   case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
9968   case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
9969   case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
9970   case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
9971   case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
9972   case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
9973   case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
9974     return EmitX86FMAExpr(*this, Ops, BuiltinID, /*IsAddSub*/true);
9975 
9976   case X86::BI__builtin_ia32_movdqa32store128_mask:
9977   case X86::BI__builtin_ia32_movdqa64store128_mask:
9978   case X86::BI__builtin_ia32_storeaps128_mask:
9979   case X86::BI__builtin_ia32_storeapd128_mask:
9980   case X86::BI__builtin_ia32_movdqa32store256_mask:
9981   case X86::BI__builtin_ia32_movdqa64store256_mask:
9982   case X86::BI__builtin_ia32_storeaps256_mask:
9983   case X86::BI__builtin_ia32_storeapd256_mask:
9984   case X86::BI__builtin_ia32_movdqa32store512_mask:
9985   case X86::BI__builtin_ia32_movdqa64store512_mask:
9986   case X86::BI__builtin_ia32_storeaps512_mask:
9987   case X86::BI__builtin_ia32_storeapd512_mask: {
9988     unsigned Align =
9989       getContext().getTypeAlignInChars(E->getArg(1)->getType()).getQuantity();
9990     return EmitX86MaskedStore(*this, Ops, Align);
9991   }
9992   case X86::BI__builtin_ia32_loadups128_mask:
9993   case X86::BI__builtin_ia32_loadups256_mask:
9994   case X86::BI__builtin_ia32_loadups512_mask:
9995   case X86::BI__builtin_ia32_loadupd128_mask:
9996   case X86::BI__builtin_ia32_loadupd256_mask:
9997   case X86::BI__builtin_ia32_loadupd512_mask:
9998   case X86::BI__builtin_ia32_loaddquqi128_mask:
9999   case X86::BI__builtin_ia32_loaddquqi256_mask:
10000   case X86::BI__builtin_ia32_loaddquqi512_mask:
10001   case X86::BI__builtin_ia32_loaddquhi128_mask:
10002   case X86::BI__builtin_ia32_loaddquhi256_mask:
10003   case X86::BI__builtin_ia32_loaddquhi512_mask:
10004   case X86::BI__builtin_ia32_loaddqusi128_mask:
10005   case X86::BI__builtin_ia32_loaddqusi256_mask:
10006   case X86::BI__builtin_ia32_loaddqusi512_mask:
10007   case X86::BI__builtin_ia32_loaddqudi128_mask:
10008   case X86::BI__builtin_ia32_loaddqudi256_mask:
10009   case X86::BI__builtin_ia32_loaddqudi512_mask:
10010     return EmitX86MaskedLoad(*this, Ops, 1);
10011 
10012   case X86::BI__builtin_ia32_loadss128_mask:
10013   case X86::BI__builtin_ia32_loadsd128_mask:
10014     return EmitX86MaskedLoad(*this, Ops, 1);
10015 
10016   case X86::BI__builtin_ia32_loadaps128_mask:
10017   case X86::BI__builtin_ia32_loadaps256_mask:
10018   case X86::BI__builtin_ia32_loadaps512_mask:
10019   case X86::BI__builtin_ia32_loadapd128_mask:
10020   case X86::BI__builtin_ia32_loadapd256_mask:
10021   case X86::BI__builtin_ia32_loadapd512_mask:
10022   case X86::BI__builtin_ia32_movdqa32load128_mask:
10023   case X86::BI__builtin_ia32_movdqa32load256_mask:
10024   case X86::BI__builtin_ia32_movdqa32load512_mask:
10025   case X86::BI__builtin_ia32_movdqa64load128_mask:
10026   case X86::BI__builtin_ia32_movdqa64load256_mask:
10027   case X86::BI__builtin_ia32_movdqa64load512_mask: {
10028     unsigned Align =
10029       getContext().getTypeAlignInChars(E->getArg(1)->getType()).getQuantity();
10030     return EmitX86MaskedLoad(*this, Ops, Align);
10031   }
10032 
10033   case X86::BI__builtin_ia32_expandloaddf128_mask:
10034   case X86::BI__builtin_ia32_expandloaddf256_mask:
10035   case X86::BI__builtin_ia32_expandloaddf512_mask:
10036   case X86::BI__builtin_ia32_expandloadsf128_mask:
10037   case X86::BI__builtin_ia32_expandloadsf256_mask:
10038   case X86::BI__builtin_ia32_expandloadsf512_mask:
10039   case X86::BI__builtin_ia32_expandloaddi128_mask:
10040   case X86::BI__builtin_ia32_expandloaddi256_mask:
10041   case X86::BI__builtin_ia32_expandloaddi512_mask:
10042   case X86::BI__builtin_ia32_expandloadsi128_mask:
10043   case X86::BI__builtin_ia32_expandloadsi256_mask:
10044   case X86::BI__builtin_ia32_expandloadsi512_mask:
10045   case X86::BI__builtin_ia32_expandloadhi128_mask:
10046   case X86::BI__builtin_ia32_expandloadhi256_mask:
10047   case X86::BI__builtin_ia32_expandloadhi512_mask:
10048   case X86::BI__builtin_ia32_expandloadqi128_mask:
10049   case X86::BI__builtin_ia32_expandloadqi256_mask:
10050   case X86::BI__builtin_ia32_expandloadqi512_mask:
10051     return EmitX86ExpandLoad(*this, Ops);
10052 
10053   case X86::BI__builtin_ia32_compressstoredf128_mask:
10054   case X86::BI__builtin_ia32_compressstoredf256_mask:
10055   case X86::BI__builtin_ia32_compressstoredf512_mask:
10056   case X86::BI__builtin_ia32_compressstoresf128_mask:
10057   case X86::BI__builtin_ia32_compressstoresf256_mask:
10058   case X86::BI__builtin_ia32_compressstoresf512_mask:
10059   case X86::BI__builtin_ia32_compressstoredi128_mask:
10060   case X86::BI__builtin_ia32_compressstoredi256_mask:
10061   case X86::BI__builtin_ia32_compressstoredi512_mask:
10062   case X86::BI__builtin_ia32_compressstoresi128_mask:
10063   case X86::BI__builtin_ia32_compressstoresi256_mask:
10064   case X86::BI__builtin_ia32_compressstoresi512_mask:
10065   case X86::BI__builtin_ia32_compressstorehi128_mask:
10066   case X86::BI__builtin_ia32_compressstorehi256_mask:
10067   case X86::BI__builtin_ia32_compressstorehi512_mask:
10068   case X86::BI__builtin_ia32_compressstoreqi128_mask:
10069   case X86::BI__builtin_ia32_compressstoreqi256_mask:
10070   case X86::BI__builtin_ia32_compressstoreqi512_mask:
10071     return EmitX86CompressStore(*this, Ops);
10072 
10073   case X86::BI__builtin_ia32_storehps:
10074   case X86::BI__builtin_ia32_storelps: {
10075     llvm::Type *PtrTy = llvm::PointerType::getUnqual(Int64Ty);
10076     llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2);
10077 
10078     // cast val v2i64
10079     Ops[1] = Builder.CreateBitCast(Ops[1], VecTy, "cast");
10080 
10081     // extract (0, 1)
10082     unsigned Index = BuiltinID == X86::BI__builtin_ia32_storelps ? 0 : 1;
10083     Ops[1] = Builder.CreateExtractElement(Ops[1], Index, "extract");
10084 
10085     // cast pointer to i64 & store
10086     Ops[0] = Builder.CreateBitCast(Ops[0], PtrTy);
10087     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
10088   }
10089   case X86::BI__builtin_ia32_vextractf128_pd256:
10090   case X86::BI__builtin_ia32_vextractf128_ps256:
10091   case X86::BI__builtin_ia32_vextractf128_si256:
10092   case X86::BI__builtin_ia32_extract128i256:
10093   case X86::BI__builtin_ia32_extractf64x4_mask:
10094   case X86::BI__builtin_ia32_extractf32x4_mask:
10095   case X86::BI__builtin_ia32_extracti64x4_mask:
10096   case X86::BI__builtin_ia32_extracti32x4_mask:
10097   case X86::BI__builtin_ia32_extractf32x8_mask:
10098   case X86::BI__builtin_ia32_extracti32x8_mask:
10099   case X86::BI__builtin_ia32_extractf32x4_256_mask:
10100   case X86::BI__builtin_ia32_extracti32x4_256_mask:
10101   case X86::BI__builtin_ia32_extractf64x2_256_mask:
10102   case X86::BI__builtin_ia32_extracti64x2_256_mask:
10103   case X86::BI__builtin_ia32_extractf64x2_512_mask:
10104   case X86::BI__builtin_ia32_extracti64x2_512_mask: {
10105     llvm::Type *DstTy = ConvertType(E->getType());
10106     unsigned NumElts = DstTy->getVectorNumElements();
10107     unsigned SrcNumElts = Ops[0]->getType()->getVectorNumElements();
10108     unsigned SubVectors = SrcNumElts / NumElts;
10109     unsigned Index = cast<ConstantInt>(Ops[1])->getZExtValue();
10110     assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
10111     Index &= SubVectors - 1; // Remove any extra bits.
10112     Index *= NumElts;
10113 
10114     uint32_t Indices[16];
10115     for (unsigned i = 0; i != NumElts; ++i)
10116       Indices[i] = i + Index;
10117 
10118     Value *Res = Builder.CreateShuffleVector(Ops[0],
10119                                              UndefValue::get(Ops[0]->getType()),
10120                                              makeArrayRef(Indices, NumElts),
10121                                              "extract");
10122 
10123     if (Ops.size() == 4)
10124       Res = EmitX86Select(*this, Ops[3], Res, Ops[2]);
10125 
10126     return Res;
10127   }
10128   case X86::BI__builtin_ia32_vinsertf128_pd256:
10129   case X86::BI__builtin_ia32_vinsertf128_ps256:
10130   case X86::BI__builtin_ia32_vinsertf128_si256:
10131   case X86::BI__builtin_ia32_insert128i256:
10132   case X86::BI__builtin_ia32_insertf64x4:
10133   case X86::BI__builtin_ia32_insertf32x4:
10134   case X86::BI__builtin_ia32_inserti64x4:
10135   case X86::BI__builtin_ia32_inserti32x4:
10136   case X86::BI__builtin_ia32_insertf32x8:
10137   case X86::BI__builtin_ia32_inserti32x8:
10138   case X86::BI__builtin_ia32_insertf32x4_256:
10139   case X86::BI__builtin_ia32_inserti32x4_256:
10140   case X86::BI__builtin_ia32_insertf64x2_256:
10141   case X86::BI__builtin_ia32_inserti64x2_256:
10142   case X86::BI__builtin_ia32_insertf64x2_512:
10143   case X86::BI__builtin_ia32_inserti64x2_512: {
10144     unsigned DstNumElts = Ops[0]->getType()->getVectorNumElements();
10145     unsigned SrcNumElts = Ops[1]->getType()->getVectorNumElements();
10146     unsigned SubVectors = DstNumElts / SrcNumElts;
10147     unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
10148     assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
10149     Index &= SubVectors - 1; // Remove any extra bits.
10150     Index *= SrcNumElts;
10151 
10152     uint32_t Indices[16];
10153     for (unsigned i = 0; i != DstNumElts; ++i)
10154       Indices[i] = (i >= SrcNumElts) ? SrcNumElts + (i % SrcNumElts) : i;
10155 
10156     Value *Op1 = Builder.CreateShuffleVector(Ops[1],
10157                                              UndefValue::get(Ops[1]->getType()),
10158                                              makeArrayRef(Indices, DstNumElts),
10159                                              "widen");
10160 
10161     for (unsigned i = 0; i != DstNumElts; ++i) {
10162       if (i >= Index && i < (Index + SrcNumElts))
10163         Indices[i] = (i - Index) + DstNumElts;
10164       else
10165         Indices[i] = i;
10166     }
10167 
10168     return Builder.CreateShuffleVector(Ops[0], Op1,
10169                                        makeArrayRef(Indices, DstNumElts),
10170                                        "insert");
10171   }
10172   case X86::BI__builtin_ia32_pmovqd512_mask:
10173   case X86::BI__builtin_ia32_pmovwb512_mask: {
10174     Value *Res = Builder.CreateTrunc(Ops[0], Ops[1]->getType());
10175     return EmitX86Select(*this, Ops[2], Res, Ops[1]);
10176   }
10177   case X86::BI__builtin_ia32_pmovdb512_mask:
10178   case X86::BI__builtin_ia32_pmovdw512_mask:
10179   case X86::BI__builtin_ia32_pmovqw512_mask: {
10180     if (const auto *C = dyn_cast<Constant>(Ops[2]))
10181       if (C->isAllOnesValue())
10182         return Builder.CreateTrunc(Ops[0], Ops[1]->getType());
10183 
10184     Intrinsic::ID IID;
10185     switch (BuiltinID) {
10186     default: llvm_unreachable("Unsupported intrinsic!");
10187     case X86::BI__builtin_ia32_pmovdb512_mask:
10188       IID = Intrinsic::x86_avx512_mask_pmov_db_512;
10189       break;
10190     case X86::BI__builtin_ia32_pmovdw512_mask:
10191       IID = Intrinsic::x86_avx512_mask_pmov_dw_512;
10192       break;
10193     case X86::BI__builtin_ia32_pmovqw512_mask:
10194       IID = Intrinsic::x86_avx512_mask_pmov_qw_512;
10195       break;
10196     }
10197 
10198     Function *Intr = CGM.getIntrinsic(IID);
10199     return Builder.CreateCall(Intr, Ops);
10200   }
10201   case X86::BI__builtin_ia32_pblendw128:
10202   case X86::BI__builtin_ia32_blendpd:
10203   case X86::BI__builtin_ia32_blendps:
10204   case X86::BI__builtin_ia32_blendpd256:
10205   case X86::BI__builtin_ia32_blendps256:
10206   case X86::BI__builtin_ia32_pblendw256:
10207   case X86::BI__builtin_ia32_pblendd128:
10208   case X86::BI__builtin_ia32_pblendd256: {
10209     unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
10210     unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
10211 
10212     uint32_t Indices[16];
10213     // If there are more than 8 elements, the immediate is used twice so make
10214     // sure we handle that.
10215     for (unsigned i = 0; i != NumElts; ++i)
10216       Indices[i] = ((Imm >> (i % 8)) & 0x1) ? NumElts + i : i;
10217 
10218     return Builder.CreateShuffleVector(Ops[0], Ops[1],
10219                                        makeArrayRef(Indices, NumElts),
10220                                        "blend");
10221   }
10222   case X86::BI__builtin_ia32_pshuflw:
10223   case X86::BI__builtin_ia32_pshuflw256:
10224   case X86::BI__builtin_ia32_pshuflw512: {
10225     uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
10226     llvm::Type *Ty = Ops[0]->getType();
10227     unsigned NumElts = Ty->getVectorNumElements();
10228 
10229     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
10230     Imm = (Imm & 0xff) * 0x01010101;
10231 
10232     uint32_t Indices[32];
10233     for (unsigned l = 0; l != NumElts; l += 8) {
10234       for (unsigned i = 0; i != 4; ++i) {
10235         Indices[l + i] = l + (Imm & 3);
10236         Imm >>= 2;
10237       }
10238       for (unsigned i = 4; i != 8; ++i)
10239         Indices[l + i] = l + i;
10240     }
10241 
10242     return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
10243                                        makeArrayRef(Indices, NumElts),
10244                                        "pshuflw");
10245   }
10246   case X86::BI__builtin_ia32_pshufhw:
10247   case X86::BI__builtin_ia32_pshufhw256:
10248   case X86::BI__builtin_ia32_pshufhw512: {
10249     uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
10250     llvm::Type *Ty = Ops[0]->getType();
10251     unsigned NumElts = Ty->getVectorNumElements();
10252 
10253     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
10254     Imm = (Imm & 0xff) * 0x01010101;
10255 
10256     uint32_t Indices[32];
10257     for (unsigned l = 0; l != NumElts; l += 8) {
10258       for (unsigned i = 0; i != 4; ++i)
10259         Indices[l + i] = l + i;
10260       for (unsigned i = 4; i != 8; ++i) {
10261         Indices[l + i] = l + 4 + (Imm & 3);
10262         Imm >>= 2;
10263       }
10264     }
10265 
10266     return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
10267                                        makeArrayRef(Indices, NumElts),
10268                                        "pshufhw");
10269   }
10270   case X86::BI__builtin_ia32_pshufd:
10271   case X86::BI__builtin_ia32_pshufd256:
10272   case X86::BI__builtin_ia32_pshufd512:
10273   case X86::BI__builtin_ia32_vpermilpd:
10274   case X86::BI__builtin_ia32_vpermilps:
10275   case X86::BI__builtin_ia32_vpermilpd256:
10276   case X86::BI__builtin_ia32_vpermilps256:
10277   case X86::BI__builtin_ia32_vpermilpd512:
10278   case X86::BI__builtin_ia32_vpermilps512: {
10279     uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
10280     llvm::Type *Ty = Ops[0]->getType();
10281     unsigned NumElts = Ty->getVectorNumElements();
10282     unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
10283     unsigned NumLaneElts = NumElts / NumLanes;
10284 
10285     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
10286     Imm = (Imm & 0xff) * 0x01010101;
10287 
10288     uint32_t Indices[16];
10289     for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
10290       for (unsigned i = 0; i != NumLaneElts; ++i) {
10291         Indices[i + l] = (Imm % NumLaneElts) + l;
10292         Imm /= NumLaneElts;
10293       }
10294     }
10295 
10296     return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
10297                                        makeArrayRef(Indices, NumElts),
10298                                        "permil");
10299   }
10300   case X86::BI__builtin_ia32_shufpd:
10301   case X86::BI__builtin_ia32_shufpd256:
10302   case X86::BI__builtin_ia32_shufpd512:
10303   case X86::BI__builtin_ia32_shufps:
10304   case X86::BI__builtin_ia32_shufps256:
10305   case X86::BI__builtin_ia32_shufps512: {
10306     uint32_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
10307     llvm::Type *Ty = Ops[0]->getType();
10308     unsigned NumElts = Ty->getVectorNumElements();
10309     unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
10310     unsigned NumLaneElts = NumElts / NumLanes;
10311 
10312     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
10313     Imm = (Imm & 0xff) * 0x01010101;
10314 
10315     uint32_t Indices[16];
10316     for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
10317       for (unsigned i = 0; i != NumLaneElts; ++i) {
10318         unsigned Index = Imm % NumLaneElts;
10319         Imm /= NumLaneElts;
10320         if (i >= (NumLaneElts / 2))
10321           Index += NumElts;
10322         Indices[l + i] = l + Index;
10323       }
10324     }
10325 
10326     return Builder.CreateShuffleVector(Ops[0], Ops[1],
10327                                        makeArrayRef(Indices, NumElts),
10328                                        "shufp");
10329   }
10330   case X86::BI__builtin_ia32_permdi256:
10331   case X86::BI__builtin_ia32_permdf256:
10332   case X86::BI__builtin_ia32_permdi512:
10333   case X86::BI__builtin_ia32_permdf512: {
10334     unsigned Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
10335     llvm::Type *Ty = Ops[0]->getType();
10336     unsigned NumElts = Ty->getVectorNumElements();
10337 
10338     // These intrinsics operate on 256-bit lanes of four 64-bit elements.
10339     uint32_t Indices[8];
10340     for (unsigned l = 0; l != NumElts; l += 4)
10341       for (unsigned i = 0; i != 4; ++i)
10342         Indices[l + i] = l + ((Imm >> (2 * i)) & 0x3);
10343 
10344     return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
10345                                        makeArrayRef(Indices, NumElts),
10346                                        "perm");
10347   }
10348   case X86::BI__builtin_ia32_palignr128:
10349   case X86::BI__builtin_ia32_palignr256:
10350   case X86::BI__builtin_ia32_palignr512: {
10351     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
10352 
10353     unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
10354     assert(NumElts % 16 == 0);
10355 
10356     // If palignr is shifting the pair of vectors more than the size of two
10357     // lanes, emit zero.
10358     if (ShiftVal >= 32)
10359       return llvm::Constant::getNullValue(ConvertType(E->getType()));
10360 
10361     // If palignr is shifting the pair of input vectors more than one lane,
10362     // but less than two lanes, convert to shifting in zeroes.
10363     if (ShiftVal > 16) {
10364       ShiftVal -= 16;
10365       Ops[1] = Ops[0];
10366       Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType());
10367     }
10368 
10369     uint32_t Indices[64];
10370     // 256-bit palignr operates on 128-bit lanes so we need to handle that
10371     for (unsigned l = 0; l != NumElts; l += 16) {
10372       for (unsigned i = 0; i != 16; ++i) {
10373         unsigned Idx = ShiftVal + i;
10374         if (Idx >= 16)
10375           Idx += NumElts - 16; // End of lane, switch operand.
10376         Indices[l + i] = Idx + l;
10377       }
10378     }
10379 
10380     return Builder.CreateShuffleVector(Ops[1], Ops[0],
10381                                        makeArrayRef(Indices, NumElts),
10382                                        "palignr");
10383   }
10384   case X86::BI__builtin_ia32_alignd128:
10385   case X86::BI__builtin_ia32_alignd256:
10386   case X86::BI__builtin_ia32_alignd512:
10387   case X86::BI__builtin_ia32_alignq128:
10388   case X86::BI__builtin_ia32_alignq256:
10389   case X86::BI__builtin_ia32_alignq512: {
10390     unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
10391     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
10392 
10393     // Mask the shift amount to width of two vectors.
10394     ShiftVal &= (2 * NumElts) - 1;
10395 
10396     uint32_t Indices[16];
10397     for (unsigned i = 0; i != NumElts; ++i)
10398       Indices[i] = i + ShiftVal;
10399 
10400     return Builder.CreateShuffleVector(Ops[1], Ops[0],
10401                                        makeArrayRef(Indices, NumElts),
10402                                        "valign");
10403   }
10404   case X86::BI__builtin_ia32_shuf_f32x4_256:
10405   case X86::BI__builtin_ia32_shuf_f64x2_256:
10406   case X86::BI__builtin_ia32_shuf_i32x4_256:
10407   case X86::BI__builtin_ia32_shuf_i64x2_256:
10408   case X86::BI__builtin_ia32_shuf_f32x4:
10409   case X86::BI__builtin_ia32_shuf_f64x2:
10410   case X86::BI__builtin_ia32_shuf_i32x4:
10411   case X86::BI__builtin_ia32_shuf_i64x2: {
10412     unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
10413     llvm::Type *Ty = Ops[0]->getType();
10414     unsigned NumElts = Ty->getVectorNumElements();
10415     unsigned NumLanes = Ty->getPrimitiveSizeInBits() == 512 ? 4 : 2;
10416     unsigned NumLaneElts = NumElts / NumLanes;
10417 
10418     uint32_t Indices[16];
10419     for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
10420       unsigned Index = (Imm % NumLanes) * NumLaneElts;
10421       Imm /= NumLanes; // Discard the bits we just used.
10422       if (l >= (NumElts / 2))
10423         Index += NumElts; // Switch to other source.
10424       for (unsigned i = 0; i != NumLaneElts; ++i) {
10425         Indices[l + i] = Index + i;
10426       }
10427     }
10428 
10429     return Builder.CreateShuffleVector(Ops[0], Ops[1],
10430                                        makeArrayRef(Indices, NumElts),
10431                                        "shuf");
10432   }
10433 
10434   case X86::BI__builtin_ia32_vperm2f128_pd256:
10435   case X86::BI__builtin_ia32_vperm2f128_ps256:
10436   case X86::BI__builtin_ia32_vperm2f128_si256:
10437   case X86::BI__builtin_ia32_permti256: {
10438     unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
10439     unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
10440 
10441     // This takes a very simple approach since there are two lanes and a
10442     // shuffle can have 2 inputs. So we reserve the first input for the first
10443     // lane and the second input for the second lane. This may result in
10444     // duplicate sources, but this can be dealt with in the backend.
10445 
10446     Value *OutOps[2];
10447     uint32_t Indices[8];
10448     for (unsigned l = 0; l != 2; ++l) {
10449       // Determine the source for this lane.
10450       if (Imm & (1 << ((l * 4) + 3)))
10451         OutOps[l] = llvm::ConstantAggregateZero::get(Ops[0]->getType());
10452       else if (Imm & (1 << ((l * 4) + 1)))
10453         OutOps[l] = Ops[1];
10454       else
10455         OutOps[l] = Ops[0];
10456 
10457       for (unsigned i = 0; i != NumElts/2; ++i) {
10458         // Start with ith element of the source for this lane.
10459         unsigned Idx = (l * NumElts) + i;
10460         // If bit 0 of the immediate half is set, switch to the high half of
10461         // the source.
10462         if (Imm & (1 << (l * 4)))
10463           Idx += NumElts/2;
10464         Indices[(l * (NumElts/2)) + i] = Idx;
10465       }
10466     }
10467 
10468     return Builder.CreateShuffleVector(OutOps[0], OutOps[1],
10469                                        makeArrayRef(Indices, NumElts),
10470                                        "vperm");
10471   }
10472 
10473   case X86::BI__builtin_ia32_pslldqi128_byteshift:
10474   case X86::BI__builtin_ia32_pslldqi256_byteshift:
10475   case X86::BI__builtin_ia32_pslldqi512_byteshift: {
10476     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
10477     llvm::Type *ResultType = Ops[0]->getType();
10478     // Builtin type is vXi64 so multiply by 8 to get bytes.
10479     unsigned NumElts = ResultType->getVectorNumElements() * 8;
10480 
10481     // If pslldq is shifting the vector more than 15 bytes, emit zero.
10482     if (ShiftVal >= 16)
10483       return llvm::Constant::getNullValue(ResultType);
10484 
10485     uint32_t Indices[64];
10486     // 256/512-bit pslldq operates on 128-bit lanes so we need to handle that
10487     for (unsigned l = 0; l != NumElts; l += 16) {
10488       for (unsigned i = 0; i != 16; ++i) {
10489         unsigned Idx = NumElts + i - ShiftVal;
10490         if (Idx < NumElts) Idx -= NumElts - 16; // end of lane, switch operand.
10491         Indices[l + i] = Idx + l;
10492       }
10493     }
10494 
10495     llvm::Type *VecTy = llvm::VectorType::get(Int8Ty, NumElts);
10496     Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
10497     Value *Zero = llvm::Constant::getNullValue(VecTy);
10498     Value *SV = Builder.CreateShuffleVector(Zero, Cast,
10499                                             makeArrayRef(Indices, NumElts),
10500                                             "pslldq");
10501     return Builder.CreateBitCast(SV, Ops[0]->getType(), "cast");
10502   }
10503   case X86::BI__builtin_ia32_psrldqi128_byteshift:
10504   case X86::BI__builtin_ia32_psrldqi256_byteshift:
10505   case X86::BI__builtin_ia32_psrldqi512_byteshift: {
10506     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
10507     llvm::Type *ResultType = Ops[0]->getType();
10508     // Builtin type is vXi64 so multiply by 8 to get bytes.
10509     unsigned NumElts = ResultType->getVectorNumElements() * 8;
10510 
10511     // If psrldq is shifting the vector more than 15 bytes, emit zero.
10512     if (ShiftVal >= 16)
10513       return llvm::Constant::getNullValue(ResultType);
10514 
10515     uint32_t Indices[64];
10516     // 256/512-bit psrldq operates on 128-bit lanes so we need to handle that
10517     for (unsigned l = 0; l != NumElts; l += 16) {
10518       for (unsigned i = 0; i != 16; ++i) {
10519         unsigned Idx = i + ShiftVal;
10520         if (Idx >= 16) Idx += NumElts - 16; // end of lane, switch operand.
10521         Indices[l + i] = Idx + l;
10522       }
10523     }
10524 
10525     llvm::Type *VecTy = llvm::VectorType::get(Int8Ty, NumElts);
10526     Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
10527     Value *Zero = llvm::Constant::getNullValue(VecTy);
10528     Value *SV = Builder.CreateShuffleVector(Cast, Zero,
10529                                             makeArrayRef(Indices, NumElts),
10530                                             "psrldq");
10531     return Builder.CreateBitCast(SV, ResultType, "cast");
10532   }
10533   case X86::BI__builtin_ia32_kshiftliqi:
10534   case X86::BI__builtin_ia32_kshiftlihi:
10535   case X86::BI__builtin_ia32_kshiftlisi:
10536   case X86::BI__builtin_ia32_kshiftlidi: {
10537     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
10538     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
10539 
10540     if (ShiftVal >= NumElts)
10541       return llvm::Constant::getNullValue(Ops[0]->getType());
10542 
10543     Value *In = getMaskVecValue(*this, Ops[0], NumElts);
10544 
10545     uint32_t Indices[64];
10546     for (unsigned i = 0; i != NumElts; ++i)
10547       Indices[i] = NumElts + i - ShiftVal;
10548 
10549     Value *Zero = llvm::Constant::getNullValue(In->getType());
10550     Value *SV = Builder.CreateShuffleVector(Zero, In,
10551                                             makeArrayRef(Indices, NumElts),
10552                                             "kshiftl");
10553     return Builder.CreateBitCast(SV, Ops[0]->getType());
10554   }
10555   case X86::BI__builtin_ia32_kshiftriqi:
10556   case X86::BI__builtin_ia32_kshiftrihi:
10557   case X86::BI__builtin_ia32_kshiftrisi:
10558   case X86::BI__builtin_ia32_kshiftridi: {
10559     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
10560     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
10561 
10562     if (ShiftVal >= NumElts)
10563       return llvm::Constant::getNullValue(Ops[0]->getType());
10564 
10565     Value *In = getMaskVecValue(*this, Ops[0], NumElts);
10566 
10567     uint32_t Indices[64];
10568     for (unsigned i = 0; i != NumElts; ++i)
10569       Indices[i] = i + ShiftVal;
10570 
10571     Value *Zero = llvm::Constant::getNullValue(In->getType());
10572     Value *SV = Builder.CreateShuffleVector(In, Zero,
10573                                             makeArrayRef(Indices, NumElts),
10574                                             "kshiftr");
10575     return Builder.CreateBitCast(SV, Ops[0]->getType());
10576   }
10577   case X86::BI__builtin_ia32_movnti:
10578   case X86::BI__builtin_ia32_movnti64:
10579   case X86::BI__builtin_ia32_movntsd:
10580   case X86::BI__builtin_ia32_movntss: {
10581     llvm::MDNode *Node = llvm::MDNode::get(
10582         getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
10583 
10584     Value *Ptr = Ops[0];
10585     Value *Src = Ops[1];
10586 
10587     // Extract the 0'th element of the source vector.
10588     if (BuiltinID == X86::BI__builtin_ia32_movntsd ||
10589         BuiltinID == X86::BI__builtin_ia32_movntss)
10590       Src = Builder.CreateExtractElement(Src, (uint64_t)0, "extract");
10591 
10592     // Convert the type of the pointer to a pointer to the stored type.
10593     Value *BC = Builder.CreateBitCast(
10594         Ptr, llvm::PointerType::getUnqual(Src->getType()), "cast");
10595 
10596     // Unaligned nontemporal store of the scalar value.
10597     StoreInst *SI = Builder.CreateDefaultAlignedStore(Src, BC);
10598     SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
10599     SI->setAlignment(1);
10600     return SI;
10601   }
10602   // Rotate is a special case of funnel shift - 1st 2 args are the same.
10603   case X86::BI__builtin_ia32_vprotb:
10604   case X86::BI__builtin_ia32_vprotw:
10605   case X86::BI__builtin_ia32_vprotd:
10606   case X86::BI__builtin_ia32_vprotq:
10607   case X86::BI__builtin_ia32_vprotbi:
10608   case X86::BI__builtin_ia32_vprotwi:
10609   case X86::BI__builtin_ia32_vprotdi:
10610   case X86::BI__builtin_ia32_vprotqi:
10611   case X86::BI__builtin_ia32_prold128:
10612   case X86::BI__builtin_ia32_prold256:
10613   case X86::BI__builtin_ia32_prold512:
10614   case X86::BI__builtin_ia32_prolq128:
10615   case X86::BI__builtin_ia32_prolq256:
10616   case X86::BI__builtin_ia32_prolq512:
10617   case X86::BI__builtin_ia32_prolvd128:
10618   case X86::BI__builtin_ia32_prolvd256:
10619   case X86::BI__builtin_ia32_prolvd512:
10620   case X86::BI__builtin_ia32_prolvq128:
10621   case X86::BI__builtin_ia32_prolvq256:
10622   case X86::BI__builtin_ia32_prolvq512:
10623     return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], false);
10624   case X86::BI__builtin_ia32_prord128:
10625   case X86::BI__builtin_ia32_prord256:
10626   case X86::BI__builtin_ia32_prord512:
10627   case X86::BI__builtin_ia32_prorq128:
10628   case X86::BI__builtin_ia32_prorq256:
10629   case X86::BI__builtin_ia32_prorq512:
10630   case X86::BI__builtin_ia32_prorvd128:
10631   case X86::BI__builtin_ia32_prorvd256:
10632   case X86::BI__builtin_ia32_prorvd512:
10633   case X86::BI__builtin_ia32_prorvq128:
10634   case X86::BI__builtin_ia32_prorvq256:
10635   case X86::BI__builtin_ia32_prorvq512:
10636     return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], true);
10637   case X86::BI__builtin_ia32_selectb_128:
10638   case X86::BI__builtin_ia32_selectb_256:
10639   case X86::BI__builtin_ia32_selectb_512:
10640   case X86::BI__builtin_ia32_selectw_128:
10641   case X86::BI__builtin_ia32_selectw_256:
10642   case X86::BI__builtin_ia32_selectw_512:
10643   case X86::BI__builtin_ia32_selectd_128:
10644   case X86::BI__builtin_ia32_selectd_256:
10645   case X86::BI__builtin_ia32_selectd_512:
10646   case X86::BI__builtin_ia32_selectq_128:
10647   case X86::BI__builtin_ia32_selectq_256:
10648   case X86::BI__builtin_ia32_selectq_512:
10649   case X86::BI__builtin_ia32_selectps_128:
10650   case X86::BI__builtin_ia32_selectps_256:
10651   case X86::BI__builtin_ia32_selectps_512:
10652   case X86::BI__builtin_ia32_selectpd_128:
10653   case X86::BI__builtin_ia32_selectpd_256:
10654   case X86::BI__builtin_ia32_selectpd_512:
10655     return EmitX86Select(*this, Ops[0], Ops[1], Ops[2]);
10656   case X86::BI__builtin_ia32_selectss_128:
10657   case X86::BI__builtin_ia32_selectsd_128: {
10658     Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
10659     Value *B = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
10660     A = EmitX86ScalarSelect(*this, Ops[0], A, B);
10661     return Builder.CreateInsertElement(Ops[1], A, (uint64_t)0);
10662   }
10663   case X86::BI__builtin_ia32_cmpb128_mask:
10664   case X86::BI__builtin_ia32_cmpb256_mask:
10665   case X86::BI__builtin_ia32_cmpb512_mask:
10666   case X86::BI__builtin_ia32_cmpw128_mask:
10667   case X86::BI__builtin_ia32_cmpw256_mask:
10668   case X86::BI__builtin_ia32_cmpw512_mask:
10669   case X86::BI__builtin_ia32_cmpd128_mask:
10670   case X86::BI__builtin_ia32_cmpd256_mask:
10671   case X86::BI__builtin_ia32_cmpd512_mask:
10672   case X86::BI__builtin_ia32_cmpq128_mask:
10673   case X86::BI__builtin_ia32_cmpq256_mask:
10674   case X86::BI__builtin_ia32_cmpq512_mask: {
10675     unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
10676     return EmitX86MaskedCompare(*this, CC, true, Ops);
10677   }
10678   case X86::BI__builtin_ia32_ucmpb128_mask:
10679   case X86::BI__builtin_ia32_ucmpb256_mask:
10680   case X86::BI__builtin_ia32_ucmpb512_mask:
10681   case X86::BI__builtin_ia32_ucmpw128_mask:
10682   case X86::BI__builtin_ia32_ucmpw256_mask:
10683   case X86::BI__builtin_ia32_ucmpw512_mask:
10684   case X86::BI__builtin_ia32_ucmpd128_mask:
10685   case X86::BI__builtin_ia32_ucmpd256_mask:
10686   case X86::BI__builtin_ia32_ucmpd512_mask:
10687   case X86::BI__builtin_ia32_ucmpq128_mask:
10688   case X86::BI__builtin_ia32_ucmpq256_mask:
10689   case X86::BI__builtin_ia32_ucmpq512_mask: {
10690     unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
10691     return EmitX86MaskedCompare(*this, CC, false, Ops);
10692   }
10693 
10694   case X86::BI__builtin_ia32_kortestcqi:
10695   case X86::BI__builtin_ia32_kortestchi:
10696   case X86::BI__builtin_ia32_kortestcsi:
10697   case X86::BI__builtin_ia32_kortestcdi: {
10698     Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
10699     Value *C = llvm::Constant::getAllOnesValue(Ops[0]->getType());
10700     Value *Cmp = Builder.CreateICmpEQ(Or, C);
10701     return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
10702   }
10703   case X86::BI__builtin_ia32_kortestzqi:
10704   case X86::BI__builtin_ia32_kortestzhi:
10705   case X86::BI__builtin_ia32_kortestzsi:
10706   case X86::BI__builtin_ia32_kortestzdi: {
10707     Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
10708     Value *C = llvm::Constant::getNullValue(Ops[0]->getType());
10709     Value *Cmp = Builder.CreateICmpEQ(Or, C);
10710     return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
10711   }
10712 
10713   case X86::BI__builtin_ia32_ktestcqi:
10714   case X86::BI__builtin_ia32_ktestzqi:
10715   case X86::BI__builtin_ia32_ktestchi:
10716   case X86::BI__builtin_ia32_ktestzhi:
10717   case X86::BI__builtin_ia32_ktestcsi:
10718   case X86::BI__builtin_ia32_ktestzsi:
10719   case X86::BI__builtin_ia32_ktestcdi:
10720   case X86::BI__builtin_ia32_ktestzdi: {
10721     Intrinsic::ID IID;
10722     switch (BuiltinID) {
10723     default: llvm_unreachable("Unsupported intrinsic!");
10724     case X86::BI__builtin_ia32_ktestcqi:
10725       IID = Intrinsic::x86_avx512_ktestc_b;
10726       break;
10727     case X86::BI__builtin_ia32_ktestzqi:
10728       IID = Intrinsic::x86_avx512_ktestz_b;
10729       break;
10730     case X86::BI__builtin_ia32_ktestchi:
10731       IID = Intrinsic::x86_avx512_ktestc_w;
10732       break;
10733     case X86::BI__builtin_ia32_ktestzhi:
10734       IID = Intrinsic::x86_avx512_ktestz_w;
10735       break;
10736     case X86::BI__builtin_ia32_ktestcsi:
10737       IID = Intrinsic::x86_avx512_ktestc_d;
10738       break;
10739     case X86::BI__builtin_ia32_ktestzsi:
10740       IID = Intrinsic::x86_avx512_ktestz_d;
10741       break;
10742     case X86::BI__builtin_ia32_ktestcdi:
10743       IID = Intrinsic::x86_avx512_ktestc_q;
10744       break;
10745     case X86::BI__builtin_ia32_ktestzdi:
10746       IID = Intrinsic::x86_avx512_ktestz_q;
10747       break;
10748     }
10749 
10750     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
10751     Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
10752     Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
10753     Function *Intr = CGM.getIntrinsic(IID);
10754     return Builder.CreateCall(Intr, {LHS, RHS});
10755   }
10756 
10757   case X86::BI__builtin_ia32_kaddqi:
10758   case X86::BI__builtin_ia32_kaddhi:
10759   case X86::BI__builtin_ia32_kaddsi:
10760   case X86::BI__builtin_ia32_kadddi: {
10761     Intrinsic::ID IID;
10762     switch (BuiltinID) {
10763     default: llvm_unreachable("Unsupported intrinsic!");
10764     case X86::BI__builtin_ia32_kaddqi:
10765       IID = Intrinsic::x86_avx512_kadd_b;
10766       break;
10767     case X86::BI__builtin_ia32_kaddhi:
10768       IID = Intrinsic::x86_avx512_kadd_w;
10769       break;
10770     case X86::BI__builtin_ia32_kaddsi:
10771       IID = Intrinsic::x86_avx512_kadd_d;
10772       break;
10773     case X86::BI__builtin_ia32_kadddi:
10774       IID = Intrinsic::x86_avx512_kadd_q;
10775       break;
10776     }
10777 
10778     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
10779     Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
10780     Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
10781     Function *Intr = CGM.getIntrinsic(IID);
10782     Value *Res = Builder.CreateCall(Intr, {LHS, RHS});
10783     return Builder.CreateBitCast(Res, Ops[0]->getType());
10784   }
10785   case X86::BI__builtin_ia32_kandqi:
10786   case X86::BI__builtin_ia32_kandhi:
10787   case X86::BI__builtin_ia32_kandsi:
10788   case X86::BI__builtin_ia32_kanddi:
10789     return EmitX86MaskLogic(*this, Instruction::And, Ops);
10790   case X86::BI__builtin_ia32_kandnqi:
10791   case X86::BI__builtin_ia32_kandnhi:
10792   case X86::BI__builtin_ia32_kandnsi:
10793   case X86::BI__builtin_ia32_kandndi:
10794     return EmitX86MaskLogic(*this, Instruction::And, Ops, true);
10795   case X86::BI__builtin_ia32_korqi:
10796   case X86::BI__builtin_ia32_korhi:
10797   case X86::BI__builtin_ia32_korsi:
10798   case X86::BI__builtin_ia32_kordi:
10799     return EmitX86MaskLogic(*this, Instruction::Or, Ops);
10800   case X86::BI__builtin_ia32_kxnorqi:
10801   case X86::BI__builtin_ia32_kxnorhi:
10802   case X86::BI__builtin_ia32_kxnorsi:
10803   case X86::BI__builtin_ia32_kxnordi:
10804     return EmitX86MaskLogic(*this, Instruction::Xor, Ops, true);
10805   case X86::BI__builtin_ia32_kxorqi:
10806   case X86::BI__builtin_ia32_kxorhi:
10807   case X86::BI__builtin_ia32_kxorsi:
10808   case X86::BI__builtin_ia32_kxordi:
10809     return EmitX86MaskLogic(*this, Instruction::Xor,  Ops);
10810   case X86::BI__builtin_ia32_knotqi:
10811   case X86::BI__builtin_ia32_knothi:
10812   case X86::BI__builtin_ia32_knotsi:
10813   case X86::BI__builtin_ia32_knotdi: {
10814     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
10815     Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
10816     return Builder.CreateBitCast(Builder.CreateNot(Res),
10817                                  Ops[0]->getType());
10818   }
10819   case X86::BI__builtin_ia32_kmovb:
10820   case X86::BI__builtin_ia32_kmovw:
10821   case X86::BI__builtin_ia32_kmovd:
10822   case X86::BI__builtin_ia32_kmovq: {
10823     // Bitcast to vXi1 type and then back to integer. This gets the mask
10824     // register type into the IR, but might be optimized out depending on
10825     // what's around it.
10826     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
10827     Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
10828     return Builder.CreateBitCast(Res, Ops[0]->getType());
10829   }
10830 
10831   case X86::BI__builtin_ia32_kunpckdi:
10832   case X86::BI__builtin_ia32_kunpcksi:
10833   case X86::BI__builtin_ia32_kunpckhi: {
10834     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
10835     Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
10836     Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
10837     uint32_t Indices[64];
10838     for (unsigned i = 0; i != NumElts; ++i)
10839       Indices[i] = i;
10840 
10841     // First extract half of each vector. This gives better codegen than
10842     // doing it in a single shuffle.
10843     LHS = Builder.CreateShuffleVector(LHS, LHS,
10844                                       makeArrayRef(Indices, NumElts / 2));
10845     RHS = Builder.CreateShuffleVector(RHS, RHS,
10846                                       makeArrayRef(Indices, NumElts / 2));
10847     // Concat the vectors.
10848     // NOTE: Operands are swapped to match the intrinsic definition.
10849     Value *Res = Builder.CreateShuffleVector(RHS, LHS,
10850                                              makeArrayRef(Indices, NumElts));
10851     return Builder.CreateBitCast(Res, Ops[0]->getType());
10852   }
10853 
10854   case X86::BI__builtin_ia32_vplzcntd_128:
10855   case X86::BI__builtin_ia32_vplzcntd_256:
10856   case X86::BI__builtin_ia32_vplzcntd_512:
10857   case X86::BI__builtin_ia32_vplzcntq_128:
10858   case X86::BI__builtin_ia32_vplzcntq_256:
10859   case X86::BI__builtin_ia32_vplzcntq_512: {
10860     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
10861     return Builder.CreateCall(F, {Ops[0],Builder.getInt1(false)});
10862   }
10863   case X86::BI__builtin_ia32_sqrtss:
10864   case X86::BI__builtin_ia32_sqrtsd: {
10865     Value *A = Builder.CreateExtractElement(Ops[0], (uint64_t)0);
10866     Function *F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
10867     A = Builder.CreateCall(F, {A});
10868     return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
10869   }
10870   case X86::BI__builtin_ia32_sqrtsd_round_mask:
10871   case X86::BI__builtin_ia32_sqrtss_round_mask: {
10872     unsigned CC = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
10873     // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
10874     // otherwise keep the intrinsic.
10875     if (CC != 4) {
10876       Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtsd_round_mask ?
10877                           Intrinsic::x86_avx512_mask_sqrt_sd :
10878                           Intrinsic::x86_avx512_mask_sqrt_ss;
10879       return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
10880     }
10881     Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
10882     Function *F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
10883     A = Builder.CreateCall(F, A);
10884     Value *Src = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
10885     A = EmitX86ScalarSelect(*this, Ops[3], A, Src);
10886     return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
10887   }
10888   case X86::BI__builtin_ia32_sqrtpd256:
10889   case X86::BI__builtin_ia32_sqrtpd:
10890   case X86::BI__builtin_ia32_sqrtps256:
10891   case X86::BI__builtin_ia32_sqrtps:
10892   case X86::BI__builtin_ia32_sqrtps512:
10893   case X86::BI__builtin_ia32_sqrtpd512: {
10894     if (Ops.size() == 2) {
10895       unsigned CC = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
10896       // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
10897       // otherwise keep the intrinsic.
10898       if (CC != 4) {
10899         Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtps512 ?
10900                             Intrinsic::x86_avx512_sqrt_ps_512 :
10901                             Intrinsic::x86_avx512_sqrt_pd_512;
10902         return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
10903       }
10904     }
10905     Function *F = CGM.getIntrinsic(Intrinsic::sqrt, Ops[0]->getType());
10906     return Builder.CreateCall(F, Ops[0]);
10907   }
10908   case X86::BI__builtin_ia32_pabsb128:
10909   case X86::BI__builtin_ia32_pabsw128:
10910   case X86::BI__builtin_ia32_pabsd128:
10911   case X86::BI__builtin_ia32_pabsb256:
10912   case X86::BI__builtin_ia32_pabsw256:
10913   case X86::BI__builtin_ia32_pabsd256:
10914   case X86::BI__builtin_ia32_pabsq128:
10915   case X86::BI__builtin_ia32_pabsq256:
10916   case X86::BI__builtin_ia32_pabsb512:
10917   case X86::BI__builtin_ia32_pabsw512:
10918   case X86::BI__builtin_ia32_pabsd512:
10919   case X86::BI__builtin_ia32_pabsq512:
10920     return EmitX86Abs(*this, Ops);
10921 
10922   case X86::BI__builtin_ia32_pmaxsb128:
10923   case X86::BI__builtin_ia32_pmaxsw128:
10924   case X86::BI__builtin_ia32_pmaxsd128:
10925   case X86::BI__builtin_ia32_pmaxsq128:
10926   case X86::BI__builtin_ia32_pmaxsb256:
10927   case X86::BI__builtin_ia32_pmaxsw256:
10928   case X86::BI__builtin_ia32_pmaxsd256:
10929   case X86::BI__builtin_ia32_pmaxsq256:
10930   case X86::BI__builtin_ia32_pmaxsb512:
10931   case X86::BI__builtin_ia32_pmaxsw512:
10932   case X86::BI__builtin_ia32_pmaxsd512:
10933   case X86::BI__builtin_ia32_pmaxsq512:
10934     return EmitX86MinMax(*this, ICmpInst::ICMP_SGT, Ops);
10935   case X86::BI__builtin_ia32_pmaxub128:
10936   case X86::BI__builtin_ia32_pmaxuw128:
10937   case X86::BI__builtin_ia32_pmaxud128:
10938   case X86::BI__builtin_ia32_pmaxuq128:
10939   case X86::BI__builtin_ia32_pmaxub256:
10940   case X86::BI__builtin_ia32_pmaxuw256:
10941   case X86::BI__builtin_ia32_pmaxud256:
10942   case X86::BI__builtin_ia32_pmaxuq256:
10943   case X86::BI__builtin_ia32_pmaxub512:
10944   case X86::BI__builtin_ia32_pmaxuw512:
10945   case X86::BI__builtin_ia32_pmaxud512:
10946   case X86::BI__builtin_ia32_pmaxuq512:
10947     return EmitX86MinMax(*this, ICmpInst::ICMP_UGT, Ops);
10948   case X86::BI__builtin_ia32_pminsb128:
10949   case X86::BI__builtin_ia32_pminsw128:
10950   case X86::BI__builtin_ia32_pminsd128:
10951   case X86::BI__builtin_ia32_pminsq128:
10952   case X86::BI__builtin_ia32_pminsb256:
10953   case X86::BI__builtin_ia32_pminsw256:
10954   case X86::BI__builtin_ia32_pminsd256:
10955   case X86::BI__builtin_ia32_pminsq256:
10956   case X86::BI__builtin_ia32_pminsb512:
10957   case X86::BI__builtin_ia32_pminsw512:
10958   case X86::BI__builtin_ia32_pminsd512:
10959   case X86::BI__builtin_ia32_pminsq512:
10960     return EmitX86MinMax(*this, ICmpInst::ICMP_SLT, Ops);
10961   case X86::BI__builtin_ia32_pminub128:
10962   case X86::BI__builtin_ia32_pminuw128:
10963   case X86::BI__builtin_ia32_pminud128:
10964   case X86::BI__builtin_ia32_pminuq128:
10965   case X86::BI__builtin_ia32_pminub256:
10966   case X86::BI__builtin_ia32_pminuw256:
10967   case X86::BI__builtin_ia32_pminud256:
10968   case X86::BI__builtin_ia32_pminuq256:
10969   case X86::BI__builtin_ia32_pminub512:
10970   case X86::BI__builtin_ia32_pminuw512:
10971   case X86::BI__builtin_ia32_pminud512:
10972   case X86::BI__builtin_ia32_pminuq512:
10973     return EmitX86MinMax(*this, ICmpInst::ICMP_ULT, Ops);
10974 
10975   case X86::BI__builtin_ia32_pmuludq128:
10976   case X86::BI__builtin_ia32_pmuludq256:
10977   case X86::BI__builtin_ia32_pmuludq512:
10978     return EmitX86Muldq(*this, /*IsSigned*/false, Ops);
10979 
10980   case X86::BI__builtin_ia32_pmuldq128:
10981   case X86::BI__builtin_ia32_pmuldq256:
10982   case X86::BI__builtin_ia32_pmuldq512:
10983     return EmitX86Muldq(*this, /*IsSigned*/true, Ops);
10984 
10985   case X86::BI__builtin_ia32_pternlogd512_mask:
10986   case X86::BI__builtin_ia32_pternlogq512_mask:
10987   case X86::BI__builtin_ia32_pternlogd128_mask:
10988   case X86::BI__builtin_ia32_pternlogd256_mask:
10989   case X86::BI__builtin_ia32_pternlogq128_mask:
10990   case X86::BI__builtin_ia32_pternlogq256_mask:
10991     return EmitX86Ternlog(*this, /*ZeroMask*/false, Ops);
10992 
10993   case X86::BI__builtin_ia32_pternlogd512_maskz:
10994   case X86::BI__builtin_ia32_pternlogq512_maskz:
10995   case X86::BI__builtin_ia32_pternlogd128_maskz:
10996   case X86::BI__builtin_ia32_pternlogd256_maskz:
10997   case X86::BI__builtin_ia32_pternlogq128_maskz:
10998   case X86::BI__builtin_ia32_pternlogq256_maskz:
10999     return EmitX86Ternlog(*this, /*ZeroMask*/true, Ops);
11000 
11001   case X86::BI__builtin_ia32_vpshldd128:
11002   case X86::BI__builtin_ia32_vpshldd256:
11003   case X86::BI__builtin_ia32_vpshldd512:
11004   case X86::BI__builtin_ia32_vpshldq128:
11005   case X86::BI__builtin_ia32_vpshldq256:
11006   case X86::BI__builtin_ia32_vpshldq512:
11007   case X86::BI__builtin_ia32_vpshldw128:
11008   case X86::BI__builtin_ia32_vpshldw256:
11009   case X86::BI__builtin_ia32_vpshldw512:
11010     return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
11011 
11012   case X86::BI__builtin_ia32_vpshrdd128:
11013   case X86::BI__builtin_ia32_vpshrdd256:
11014   case X86::BI__builtin_ia32_vpshrdd512:
11015   case X86::BI__builtin_ia32_vpshrdq128:
11016   case X86::BI__builtin_ia32_vpshrdq256:
11017   case X86::BI__builtin_ia32_vpshrdq512:
11018   case X86::BI__builtin_ia32_vpshrdw128:
11019   case X86::BI__builtin_ia32_vpshrdw256:
11020   case X86::BI__builtin_ia32_vpshrdw512:
11021     // Ops 0 and 1 are swapped.
11022     return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
11023 
11024   case X86::BI__builtin_ia32_vpshldvd128:
11025   case X86::BI__builtin_ia32_vpshldvd256:
11026   case X86::BI__builtin_ia32_vpshldvd512:
11027   case X86::BI__builtin_ia32_vpshldvq128:
11028   case X86::BI__builtin_ia32_vpshldvq256:
11029   case X86::BI__builtin_ia32_vpshldvq512:
11030   case X86::BI__builtin_ia32_vpshldvw128:
11031   case X86::BI__builtin_ia32_vpshldvw256:
11032   case X86::BI__builtin_ia32_vpshldvw512:
11033     return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
11034 
11035   case X86::BI__builtin_ia32_vpshrdvd128:
11036   case X86::BI__builtin_ia32_vpshrdvd256:
11037   case X86::BI__builtin_ia32_vpshrdvd512:
11038   case X86::BI__builtin_ia32_vpshrdvq128:
11039   case X86::BI__builtin_ia32_vpshrdvq256:
11040   case X86::BI__builtin_ia32_vpshrdvq512:
11041   case X86::BI__builtin_ia32_vpshrdvw128:
11042   case X86::BI__builtin_ia32_vpshrdvw256:
11043   case X86::BI__builtin_ia32_vpshrdvw512:
11044     // Ops 0 and 1 are swapped.
11045     return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
11046 
11047   // 3DNow!
11048   case X86::BI__builtin_ia32_pswapdsf:
11049   case X86::BI__builtin_ia32_pswapdsi: {
11050     llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext());
11051     Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast");
11052     llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_3dnowa_pswapd);
11053     return Builder.CreateCall(F, Ops, "pswapd");
11054   }
11055   case X86::BI__builtin_ia32_rdrand16_step:
11056   case X86::BI__builtin_ia32_rdrand32_step:
11057   case X86::BI__builtin_ia32_rdrand64_step:
11058   case X86::BI__builtin_ia32_rdseed16_step:
11059   case X86::BI__builtin_ia32_rdseed32_step:
11060   case X86::BI__builtin_ia32_rdseed64_step: {
11061     Intrinsic::ID ID;
11062     switch (BuiltinID) {
11063     default: llvm_unreachable("Unsupported intrinsic!");
11064     case X86::BI__builtin_ia32_rdrand16_step:
11065       ID = Intrinsic::x86_rdrand_16;
11066       break;
11067     case X86::BI__builtin_ia32_rdrand32_step:
11068       ID = Intrinsic::x86_rdrand_32;
11069       break;
11070     case X86::BI__builtin_ia32_rdrand64_step:
11071       ID = Intrinsic::x86_rdrand_64;
11072       break;
11073     case X86::BI__builtin_ia32_rdseed16_step:
11074       ID = Intrinsic::x86_rdseed_16;
11075       break;
11076     case X86::BI__builtin_ia32_rdseed32_step:
11077       ID = Intrinsic::x86_rdseed_32;
11078       break;
11079     case X86::BI__builtin_ia32_rdseed64_step:
11080       ID = Intrinsic::x86_rdseed_64;
11081       break;
11082     }
11083 
11084     Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
11085     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0),
11086                                       Ops[0]);
11087     return Builder.CreateExtractValue(Call, 1);
11088   }
11089   case X86::BI__builtin_ia32_addcarryx_u32:
11090   case X86::BI__builtin_ia32_addcarryx_u64:
11091   case X86::BI__builtin_ia32_subborrow_u32:
11092   case X86::BI__builtin_ia32_subborrow_u64: {
11093     Intrinsic::ID IID;
11094     switch (BuiltinID) {
11095     default: llvm_unreachable("Unsupported intrinsic!");
11096     case X86::BI__builtin_ia32_addcarryx_u32:
11097       IID = Intrinsic::x86_addcarry_32;
11098       break;
11099     case X86::BI__builtin_ia32_addcarryx_u64:
11100       IID = Intrinsic::x86_addcarry_64;
11101       break;
11102     case X86::BI__builtin_ia32_subborrow_u32:
11103       IID = Intrinsic::x86_subborrow_32;
11104       break;
11105     case X86::BI__builtin_ia32_subborrow_u64:
11106       IID = Intrinsic::x86_subborrow_64;
11107       break;
11108     }
11109 
11110     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID),
11111                                      { Ops[0], Ops[1], Ops[2] });
11112     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
11113                                       Ops[3]);
11114     return Builder.CreateExtractValue(Call, 0);
11115   }
11116 
11117   case X86::BI__builtin_ia32_fpclassps128_mask:
11118   case X86::BI__builtin_ia32_fpclassps256_mask:
11119   case X86::BI__builtin_ia32_fpclassps512_mask:
11120   case X86::BI__builtin_ia32_fpclasspd128_mask:
11121   case X86::BI__builtin_ia32_fpclasspd256_mask:
11122   case X86::BI__builtin_ia32_fpclasspd512_mask: {
11123     unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
11124     Value *MaskIn = Ops[2];
11125     Ops.erase(&Ops[2]);
11126 
11127     Intrinsic::ID ID;
11128     switch (BuiltinID) {
11129     default: llvm_unreachable("Unsupported intrinsic!");
11130     case X86::BI__builtin_ia32_fpclassps128_mask:
11131       ID = Intrinsic::x86_avx512_fpclass_ps_128;
11132       break;
11133     case X86::BI__builtin_ia32_fpclassps256_mask:
11134       ID = Intrinsic::x86_avx512_fpclass_ps_256;
11135       break;
11136     case X86::BI__builtin_ia32_fpclassps512_mask:
11137       ID = Intrinsic::x86_avx512_fpclass_ps_512;
11138       break;
11139     case X86::BI__builtin_ia32_fpclasspd128_mask:
11140       ID = Intrinsic::x86_avx512_fpclass_pd_128;
11141       break;
11142     case X86::BI__builtin_ia32_fpclasspd256_mask:
11143       ID = Intrinsic::x86_avx512_fpclass_pd_256;
11144       break;
11145     case X86::BI__builtin_ia32_fpclasspd512_mask:
11146       ID = Intrinsic::x86_avx512_fpclass_pd_512;
11147       break;
11148     }
11149 
11150     Value *Fpclass = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
11151     return EmitX86MaskedCompareResult(*this, Fpclass, NumElts, MaskIn);
11152   }
11153 
11154   case X86::BI__builtin_ia32_vpmultishiftqb128:
11155   case X86::BI__builtin_ia32_vpmultishiftqb256:
11156   case X86::BI__builtin_ia32_vpmultishiftqb512: {
11157     Intrinsic::ID ID;
11158     switch (BuiltinID) {
11159     default: llvm_unreachable("Unsupported intrinsic!");
11160     case X86::BI__builtin_ia32_vpmultishiftqb128:
11161       ID = Intrinsic::x86_avx512_pmultishift_qb_128;
11162       break;
11163     case X86::BI__builtin_ia32_vpmultishiftqb256:
11164       ID = Intrinsic::x86_avx512_pmultishift_qb_256;
11165       break;
11166     case X86::BI__builtin_ia32_vpmultishiftqb512:
11167       ID = Intrinsic::x86_avx512_pmultishift_qb_512;
11168       break;
11169     }
11170 
11171     return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
11172   }
11173 
11174   case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
11175   case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
11176   case X86::BI__builtin_ia32_vpshufbitqmb512_mask: {
11177     unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
11178     Value *MaskIn = Ops[2];
11179     Ops.erase(&Ops[2]);
11180 
11181     Intrinsic::ID ID;
11182     switch (BuiltinID) {
11183     default: llvm_unreachable("Unsupported intrinsic!");
11184     case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
11185       ID = Intrinsic::x86_avx512_vpshufbitqmb_128;
11186       break;
11187     case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
11188       ID = Intrinsic::x86_avx512_vpshufbitqmb_256;
11189       break;
11190     case X86::BI__builtin_ia32_vpshufbitqmb512_mask:
11191       ID = Intrinsic::x86_avx512_vpshufbitqmb_512;
11192       break;
11193     }
11194 
11195     Value *Shufbit = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
11196     return EmitX86MaskedCompareResult(*this, Shufbit, NumElts, MaskIn);
11197   }
11198 
11199   // packed comparison intrinsics
11200   case X86::BI__builtin_ia32_cmpeqps:
11201   case X86::BI__builtin_ia32_cmpeqpd:
11202     return getVectorFCmpIR(CmpInst::FCMP_OEQ);
11203   case X86::BI__builtin_ia32_cmpltps:
11204   case X86::BI__builtin_ia32_cmpltpd:
11205     return getVectorFCmpIR(CmpInst::FCMP_OLT);
11206   case X86::BI__builtin_ia32_cmpleps:
11207   case X86::BI__builtin_ia32_cmplepd:
11208     return getVectorFCmpIR(CmpInst::FCMP_OLE);
11209   case X86::BI__builtin_ia32_cmpunordps:
11210   case X86::BI__builtin_ia32_cmpunordpd:
11211     return getVectorFCmpIR(CmpInst::FCMP_UNO);
11212   case X86::BI__builtin_ia32_cmpneqps:
11213   case X86::BI__builtin_ia32_cmpneqpd:
11214     return getVectorFCmpIR(CmpInst::FCMP_UNE);
11215   case X86::BI__builtin_ia32_cmpnltps:
11216   case X86::BI__builtin_ia32_cmpnltpd:
11217     return getVectorFCmpIR(CmpInst::FCMP_UGE);
11218   case X86::BI__builtin_ia32_cmpnleps:
11219   case X86::BI__builtin_ia32_cmpnlepd:
11220     return getVectorFCmpIR(CmpInst::FCMP_UGT);
11221   case X86::BI__builtin_ia32_cmpordps:
11222   case X86::BI__builtin_ia32_cmpordpd:
11223     return getVectorFCmpIR(CmpInst::FCMP_ORD);
11224   case X86::BI__builtin_ia32_cmpps:
11225   case X86::BI__builtin_ia32_cmpps256:
11226   case X86::BI__builtin_ia32_cmppd:
11227   case X86::BI__builtin_ia32_cmppd256:
11228   case X86::BI__builtin_ia32_cmpps128_mask:
11229   case X86::BI__builtin_ia32_cmpps256_mask:
11230   case X86::BI__builtin_ia32_cmpps512_mask:
11231   case X86::BI__builtin_ia32_cmppd128_mask:
11232   case X86::BI__builtin_ia32_cmppd256_mask:
11233   case X86::BI__builtin_ia32_cmppd512_mask: {
11234     // Lowering vector comparisons to fcmp instructions, while
11235     // ignoring signalling behaviour requested
11236     // ignoring rounding mode requested
11237     // This is is only possible as long as FENV_ACCESS is not implemented.
11238     // See also: https://reviews.llvm.org/D45616
11239 
11240     // The third argument is the comparison condition, and integer in the
11241     // range [0, 31]
11242     unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x1f;
11243 
11244     // Lowering to IR fcmp instruction.
11245     // Ignoring requested signaling behaviour,
11246     // e.g. both _CMP_GT_OS & _CMP_GT_OQ are translated to FCMP_OGT.
11247     FCmpInst::Predicate Pred;
11248     switch (CC) {
11249     case 0x00: Pred = FCmpInst::FCMP_OEQ;   break;
11250     case 0x01: Pred = FCmpInst::FCMP_OLT;   break;
11251     case 0x02: Pred = FCmpInst::FCMP_OLE;   break;
11252     case 0x03: Pred = FCmpInst::FCMP_UNO;   break;
11253     case 0x04: Pred = FCmpInst::FCMP_UNE;   break;
11254     case 0x05: Pred = FCmpInst::FCMP_UGE;   break;
11255     case 0x06: Pred = FCmpInst::FCMP_UGT;   break;
11256     case 0x07: Pred = FCmpInst::FCMP_ORD;   break;
11257     case 0x08: Pred = FCmpInst::FCMP_UEQ;   break;
11258     case 0x09: Pred = FCmpInst::FCMP_ULT;   break;
11259     case 0x0a: Pred = FCmpInst::FCMP_ULE;   break;
11260     case 0x0b: Pred = FCmpInst::FCMP_FALSE; break;
11261     case 0x0c: Pred = FCmpInst::FCMP_ONE;   break;
11262     case 0x0d: Pred = FCmpInst::FCMP_OGE;   break;
11263     case 0x0e: Pred = FCmpInst::FCMP_OGT;   break;
11264     case 0x0f: Pred = FCmpInst::FCMP_TRUE;  break;
11265     case 0x10: Pred = FCmpInst::FCMP_OEQ;   break;
11266     case 0x11: Pred = FCmpInst::FCMP_OLT;   break;
11267     case 0x12: Pred = FCmpInst::FCMP_OLE;   break;
11268     case 0x13: Pred = FCmpInst::FCMP_UNO;   break;
11269     case 0x14: Pred = FCmpInst::FCMP_UNE;   break;
11270     case 0x15: Pred = FCmpInst::FCMP_UGE;   break;
11271     case 0x16: Pred = FCmpInst::FCMP_UGT;   break;
11272     case 0x17: Pred = FCmpInst::FCMP_ORD;   break;
11273     case 0x18: Pred = FCmpInst::FCMP_UEQ;   break;
11274     case 0x19: Pred = FCmpInst::FCMP_ULT;   break;
11275     case 0x1a: Pred = FCmpInst::FCMP_ULE;   break;
11276     case 0x1b: Pred = FCmpInst::FCMP_FALSE; break;
11277     case 0x1c: Pred = FCmpInst::FCMP_ONE;   break;
11278     case 0x1d: Pred = FCmpInst::FCMP_OGE;   break;
11279     case 0x1e: Pred = FCmpInst::FCMP_OGT;   break;
11280     case 0x1f: Pred = FCmpInst::FCMP_TRUE;  break;
11281     default: llvm_unreachable("Unhandled CC");
11282     }
11283 
11284     // Builtins without the _mask suffix return a vector of integers
11285     // of the same width as the input vectors
11286     switch (BuiltinID) {
11287     case X86::BI__builtin_ia32_cmpps512_mask:
11288     case X86::BI__builtin_ia32_cmppd512_mask:
11289     case X86::BI__builtin_ia32_cmpps128_mask:
11290     case X86::BI__builtin_ia32_cmpps256_mask:
11291     case X86::BI__builtin_ia32_cmppd128_mask:
11292     case X86::BI__builtin_ia32_cmppd256_mask: {
11293       unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
11294       Value *Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
11295       return EmitX86MaskedCompareResult(*this, Cmp, NumElts, Ops[3]);
11296     }
11297     default:
11298       return getVectorFCmpIR(Pred);
11299     }
11300   }
11301 
11302   // SSE scalar comparison intrinsics
11303   case X86::BI__builtin_ia32_cmpeqss:
11304     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 0);
11305   case X86::BI__builtin_ia32_cmpltss:
11306     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 1);
11307   case X86::BI__builtin_ia32_cmpless:
11308     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 2);
11309   case X86::BI__builtin_ia32_cmpunordss:
11310     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 3);
11311   case X86::BI__builtin_ia32_cmpneqss:
11312     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 4);
11313   case X86::BI__builtin_ia32_cmpnltss:
11314     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 5);
11315   case X86::BI__builtin_ia32_cmpnless:
11316     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 6);
11317   case X86::BI__builtin_ia32_cmpordss:
11318     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 7);
11319   case X86::BI__builtin_ia32_cmpeqsd:
11320     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 0);
11321   case X86::BI__builtin_ia32_cmpltsd:
11322     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 1);
11323   case X86::BI__builtin_ia32_cmplesd:
11324     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 2);
11325   case X86::BI__builtin_ia32_cmpunordsd:
11326     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 3);
11327   case X86::BI__builtin_ia32_cmpneqsd:
11328     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 4);
11329   case X86::BI__builtin_ia32_cmpnltsd:
11330     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 5);
11331   case X86::BI__builtin_ia32_cmpnlesd:
11332     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 6);
11333   case X86::BI__builtin_ia32_cmpordsd:
11334     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 7);
11335 
11336   case X86::BI__emul:
11337   case X86::BI__emulu: {
11338     llvm::Type *Int64Ty = llvm::IntegerType::get(getLLVMContext(), 64);
11339     bool isSigned = (BuiltinID == X86::BI__emul);
11340     Value *LHS = Builder.CreateIntCast(Ops[0], Int64Ty, isSigned);
11341     Value *RHS = Builder.CreateIntCast(Ops[1], Int64Ty, isSigned);
11342     return Builder.CreateMul(LHS, RHS, "", !isSigned, isSigned);
11343   }
11344   case X86::BI__mulh:
11345   case X86::BI__umulh:
11346   case X86::BI_mul128:
11347   case X86::BI_umul128: {
11348     llvm::Type *ResType = ConvertType(E->getType());
11349     llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
11350 
11351     bool IsSigned = (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI_mul128);
11352     Value *LHS = Builder.CreateIntCast(Ops[0], Int128Ty, IsSigned);
11353     Value *RHS = Builder.CreateIntCast(Ops[1], Int128Ty, IsSigned);
11354 
11355     Value *MulResult, *HigherBits;
11356     if (IsSigned) {
11357       MulResult = Builder.CreateNSWMul(LHS, RHS);
11358       HigherBits = Builder.CreateAShr(MulResult, 64);
11359     } else {
11360       MulResult = Builder.CreateNUWMul(LHS, RHS);
11361       HigherBits = Builder.CreateLShr(MulResult, 64);
11362     }
11363     HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
11364 
11365     if (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI__umulh)
11366       return HigherBits;
11367 
11368     Address HighBitsAddress = EmitPointerWithAlignment(E->getArg(2));
11369     Builder.CreateStore(HigherBits, HighBitsAddress);
11370     return Builder.CreateIntCast(MulResult, ResType, IsSigned);
11371   }
11372 
11373   case X86::BI__faststorefence: {
11374     return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
11375                                llvm::SyncScope::System);
11376   }
11377   case X86::BI__shiftleft128:
11378   case X86::BI__shiftright128: {
11379     // FIXME: Once fshl/fshr no longer add an unneeded and and cmov, do this:
11380     // llvm::Function *F = CGM.getIntrinsic(
11381     //   BuiltinID == X86::BI__shiftleft128 ? Intrinsic::fshl : Intrinsic::fshr,
11382     //   Int64Ty);
11383     // Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
11384     // return Builder.CreateCall(F, Ops);
11385     llvm::Type *Int128Ty = Builder.getInt128Ty();
11386     Value *Val = Builder.CreateOr(
11387         Builder.CreateShl(Builder.CreateZExt(Ops[1], Int128Ty), 64),
11388         Builder.CreateZExt(Ops[0], Int128Ty));
11389     Value *Amt = Builder.CreateAnd(Builder.CreateZExt(Ops[2], Int128Ty),
11390                                    llvm::ConstantInt::get(Int128Ty, 0x3f));
11391     Value *Res;
11392     if (BuiltinID == X86::BI__shiftleft128)
11393       Res = Builder.CreateLShr(Builder.CreateShl(Val, Amt), 64);
11394     else
11395       Res = Builder.CreateLShr(Val, Amt);
11396     return Builder.CreateTrunc(Res, Int64Ty);
11397   }
11398   case X86::BI_ReadWriteBarrier:
11399   case X86::BI_ReadBarrier:
11400   case X86::BI_WriteBarrier: {
11401     return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
11402                                llvm::SyncScope::SingleThread);
11403   }
11404   case X86::BI_BitScanForward:
11405   case X86::BI_BitScanForward64:
11406     return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E);
11407   case X86::BI_BitScanReverse:
11408   case X86::BI_BitScanReverse64:
11409     return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E);
11410 
11411   case X86::BI_InterlockedAnd64:
11412     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E);
11413   case X86::BI_InterlockedExchange64:
11414     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E);
11415   case X86::BI_InterlockedExchangeAdd64:
11416     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E);
11417   case X86::BI_InterlockedExchangeSub64:
11418     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E);
11419   case X86::BI_InterlockedOr64:
11420     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E);
11421   case X86::BI_InterlockedXor64:
11422     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E);
11423   case X86::BI_InterlockedDecrement64:
11424     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E);
11425   case X86::BI_InterlockedIncrement64:
11426     return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E);
11427   case X86::BI_InterlockedCompareExchange128: {
11428     // InterlockedCompareExchange128 doesn't directly refer to 128bit ints,
11429     // instead it takes pointers to 64bit ints for Destination and
11430     // ComparandResult, and exchange is taken as two 64bit ints (high & low).
11431     // The previous value is written to ComparandResult, and success is
11432     // returned.
11433 
11434     llvm::Type *Int128Ty = Builder.getInt128Ty();
11435     llvm::Type *Int128PtrTy = Int128Ty->getPointerTo();
11436 
11437     Value *Destination =
11438         Builder.CreateBitCast(Ops[0], Int128PtrTy);
11439     Value *ExchangeHigh128 = Builder.CreateZExt(Ops[1], Int128Ty);
11440     Value *ExchangeLow128 = Builder.CreateZExt(Ops[2], Int128Ty);
11441     Address ComparandResult(Builder.CreateBitCast(Ops[3], Int128PtrTy),
11442                             getContext().toCharUnitsFromBits(128));
11443 
11444     Value *Exchange = Builder.CreateOr(
11445         Builder.CreateShl(ExchangeHigh128, 64, "", false, false),
11446         ExchangeLow128);
11447 
11448     Value *Comparand = Builder.CreateLoad(ComparandResult);
11449 
11450     AtomicCmpXchgInst *CXI =
11451         Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
11452                                     AtomicOrdering::SequentiallyConsistent,
11453                                     AtomicOrdering::SequentiallyConsistent);
11454     CXI->setVolatile(true);
11455 
11456     // Write the result back to the inout pointer.
11457     Builder.CreateStore(Builder.CreateExtractValue(CXI, 0), ComparandResult);
11458 
11459     // Get the success boolean and zero extend it to i8.
11460     Value *Success = Builder.CreateExtractValue(CXI, 1);
11461     return Builder.CreateZExt(Success, ConvertType(E->getType()));
11462   }
11463 
11464   case X86::BI_AddressOfReturnAddress: {
11465     Value *F = CGM.getIntrinsic(Intrinsic::addressofreturnaddress);
11466     return Builder.CreateCall(F);
11467   }
11468   case X86::BI__stosb: {
11469     // We treat __stosb as a volatile memset - it may not generate "rep stosb"
11470     // instruction, but it will create a memset that won't be optimized away.
11471     return Builder.CreateMemSet(Ops[0], Ops[1], Ops[2], 1, true);
11472   }
11473   case X86::BI__ud2:
11474     // llvm.trap makes a ud2a instruction on x86.
11475     return EmitTrapCall(Intrinsic::trap);
11476   case X86::BI__int2c: {
11477     // This syscall signals a driver assertion failure in x86 NT kernels.
11478     llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
11479     llvm::InlineAsm *IA =
11480         llvm::InlineAsm::get(FTy, "int $$0x2c", "", /*SideEffects=*/true);
11481     llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
11482         getLLVMContext(), llvm::AttributeList::FunctionIndex,
11483         llvm::Attribute::NoReturn);
11484     CallSite CS = Builder.CreateCall(IA);
11485     CS.setAttributes(NoReturnAttr);
11486     return CS.getInstruction();
11487   }
11488   case X86::BI__readfsbyte:
11489   case X86::BI__readfsword:
11490   case X86::BI__readfsdword:
11491   case X86::BI__readfsqword: {
11492     llvm::Type *IntTy = ConvertType(E->getType());
11493     Value *Ptr =
11494         Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 257));
11495     LoadInst *Load = Builder.CreateAlignedLoad(
11496         IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
11497     Load->setVolatile(true);
11498     return Load;
11499   }
11500   case X86::BI__readgsbyte:
11501   case X86::BI__readgsword:
11502   case X86::BI__readgsdword:
11503   case X86::BI__readgsqword: {
11504     llvm::Type *IntTy = ConvertType(E->getType());
11505     Value *Ptr =
11506         Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 256));
11507     LoadInst *Load = Builder.CreateAlignedLoad(
11508         IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
11509     Load->setVolatile(true);
11510     return Load;
11511   }
11512   case X86::BI__builtin_ia32_paddsb512:
11513   case X86::BI__builtin_ia32_paddsw512:
11514   case X86::BI__builtin_ia32_paddsb256:
11515   case X86::BI__builtin_ia32_paddsw256:
11516   case X86::BI__builtin_ia32_paddsb128:
11517   case X86::BI__builtin_ia32_paddsw128:
11518     return EmitX86AddSubSatExpr(*this, Ops, true, true);
11519   case X86::BI__builtin_ia32_paddusb512:
11520   case X86::BI__builtin_ia32_paddusw512:
11521   case X86::BI__builtin_ia32_paddusb256:
11522   case X86::BI__builtin_ia32_paddusw256:
11523   case X86::BI__builtin_ia32_paddusb128:
11524   case X86::BI__builtin_ia32_paddusw128:
11525     return EmitX86AddSubSatExpr(*this, Ops, false, true);
11526   case X86::BI__builtin_ia32_psubsb512:
11527   case X86::BI__builtin_ia32_psubsw512:
11528   case X86::BI__builtin_ia32_psubsb256:
11529   case X86::BI__builtin_ia32_psubsw256:
11530   case X86::BI__builtin_ia32_psubsb128:
11531   case X86::BI__builtin_ia32_psubsw128:
11532     return EmitX86AddSubSatExpr(*this, Ops, true, false);
11533   case X86::BI__builtin_ia32_psubusb512:
11534   case X86::BI__builtin_ia32_psubusw512:
11535   case X86::BI__builtin_ia32_psubusb256:
11536   case X86::BI__builtin_ia32_psubusw256:
11537   case X86::BI__builtin_ia32_psubusb128:
11538   case X86::BI__builtin_ia32_psubusw128:
11539     return EmitX86AddSubSatExpr(*this, Ops, false, false);
11540   }
11541 }
11542 
EmitPPCBuiltinExpr(unsigned BuiltinID,const CallExpr * E)11543 Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
11544                                            const CallExpr *E) {
11545   SmallVector<Value*, 4> Ops;
11546 
11547   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
11548     Ops.push_back(EmitScalarExpr(E->getArg(i)));
11549 
11550   Intrinsic::ID ID = Intrinsic::not_intrinsic;
11551 
11552   switch (BuiltinID) {
11553   default: return nullptr;
11554 
11555   // __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we
11556   // call __builtin_readcyclecounter.
11557   case PPC::BI__builtin_ppc_get_timebase:
11558     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter));
11559 
11560   // vec_ld, vec_xl_be, vec_lvsl, vec_lvsr
11561   case PPC::BI__builtin_altivec_lvx:
11562   case PPC::BI__builtin_altivec_lvxl:
11563   case PPC::BI__builtin_altivec_lvebx:
11564   case PPC::BI__builtin_altivec_lvehx:
11565   case PPC::BI__builtin_altivec_lvewx:
11566   case PPC::BI__builtin_altivec_lvsl:
11567   case PPC::BI__builtin_altivec_lvsr:
11568   case PPC::BI__builtin_vsx_lxvd2x:
11569   case PPC::BI__builtin_vsx_lxvw4x:
11570   case PPC::BI__builtin_vsx_lxvd2x_be:
11571   case PPC::BI__builtin_vsx_lxvw4x_be:
11572   case PPC::BI__builtin_vsx_lxvl:
11573   case PPC::BI__builtin_vsx_lxvll:
11574   {
11575     if(BuiltinID == PPC::BI__builtin_vsx_lxvl ||
11576        BuiltinID == PPC::BI__builtin_vsx_lxvll){
11577       Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy);
11578     }else {
11579       Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
11580       Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]);
11581       Ops.pop_back();
11582     }
11583 
11584     switch (BuiltinID) {
11585     default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!");
11586     case PPC::BI__builtin_altivec_lvx:
11587       ID = Intrinsic::ppc_altivec_lvx;
11588       break;
11589     case PPC::BI__builtin_altivec_lvxl:
11590       ID = Intrinsic::ppc_altivec_lvxl;
11591       break;
11592     case PPC::BI__builtin_altivec_lvebx:
11593       ID = Intrinsic::ppc_altivec_lvebx;
11594       break;
11595     case PPC::BI__builtin_altivec_lvehx:
11596       ID = Intrinsic::ppc_altivec_lvehx;
11597       break;
11598     case PPC::BI__builtin_altivec_lvewx:
11599       ID = Intrinsic::ppc_altivec_lvewx;
11600       break;
11601     case PPC::BI__builtin_altivec_lvsl:
11602       ID = Intrinsic::ppc_altivec_lvsl;
11603       break;
11604     case PPC::BI__builtin_altivec_lvsr:
11605       ID = Intrinsic::ppc_altivec_lvsr;
11606       break;
11607     case PPC::BI__builtin_vsx_lxvd2x:
11608       ID = Intrinsic::ppc_vsx_lxvd2x;
11609       break;
11610     case PPC::BI__builtin_vsx_lxvw4x:
11611       ID = Intrinsic::ppc_vsx_lxvw4x;
11612       break;
11613     case PPC::BI__builtin_vsx_lxvd2x_be:
11614       ID = Intrinsic::ppc_vsx_lxvd2x_be;
11615       break;
11616     case PPC::BI__builtin_vsx_lxvw4x_be:
11617       ID = Intrinsic::ppc_vsx_lxvw4x_be;
11618       break;
11619     case PPC::BI__builtin_vsx_lxvl:
11620       ID = Intrinsic::ppc_vsx_lxvl;
11621       break;
11622     case PPC::BI__builtin_vsx_lxvll:
11623       ID = Intrinsic::ppc_vsx_lxvll;
11624       break;
11625     }
11626     llvm::Function *F = CGM.getIntrinsic(ID);
11627     return Builder.CreateCall(F, Ops, "");
11628   }
11629 
11630   // vec_st, vec_xst_be
11631   case PPC::BI__builtin_altivec_stvx:
11632   case PPC::BI__builtin_altivec_stvxl:
11633   case PPC::BI__builtin_altivec_stvebx:
11634   case PPC::BI__builtin_altivec_stvehx:
11635   case PPC::BI__builtin_altivec_stvewx:
11636   case PPC::BI__builtin_vsx_stxvd2x:
11637   case PPC::BI__builtin_vsx_stxvw4x:
11638   case PPC::BI__builtin_vsx_stxvd2x_be:
11639   case PPC::BI__builtin_vsx_stxvw4x_be:
11640   case PPC::BI__builtin_vsx_stxvl:
11641   case PPC::BI__builtin_vsx_stxvll:
11642   {
11643     if(BuiltinID == PPC::BI__builtin_vsx_stxvl ||
11644       BuiltinID == PPC::BI__builtin_vsx_stxvll ){
11645       Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
11646     }else {
11647       Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
11648       Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]);
11649       Ops.pop_back();
11650     }
11651 
11652     switch (BuiltinID) {
11653     default: llvm_unreachable("Unsupported st intrinsic!");
11654     case PPC::BI__builtin_altivec_stvx:
11655       ID = Intrinsic::ppc_altivec_stvx;
11656       break;
11657     case PPC::BI__builtin_altivec_stvxl:
11658       ID = Intrinsic::ppc_altivec_stvxl;
11659       break;
11660     case PPC::BI__builtin_altivec_stvebx:
11661       ID = Intrinsic::ppc_altivec_stvebx;
11662       break;
11663     case PPC::BI__builtin_altivec_stvehx:
11664       ID = Intrinsic::ppc_altivec_stvehx;
11665       break;
11666     case PPC::BI__builtin_altivec_stvewx:
11667       ID = Intrinsic::ppc_altivec_stvewx;
11668       break;
11669     case PPC::BI__builtin_vsx_stxvd2x:
11670       ID = Intrinsic::ppc_vsx_stxvd2x;
11671       break;
11672     case PPC::BI__builtin_vsx_stxvw4x:
11673       ID = Intrinsic::ppc_vsx_stxvw4x;
11674       break;
11675     case PPC::BI__builtin_vsx_stxvd2x_be:
11676       ID = Intrinsic::ppc_vsx_stxvd2x_be;
11677       break;
11678     case PPC::BI__builtin_vsx_stxvw4x_be:
11679       ID = Intrinsic::ppc_vsx_stxvw4x_be;
11680       break;
11681     case PPC::BI__builtin_vsx_stxvl:
11682       ID = Intrinsic::ppc_vsx_stxvl;
11683       break;
11684     case PPC::BI__builtin_vsx_stxvll:
11685       ID = Intrinsic::ppc_vsx_stxvll;
11686       break;
11687     }
11688     llvm::Function *F = CGM.getIntrinsic(ID);
11689     return Builder.CreateCall(F, Ops, "");
11690   }
11691   // Square root
11692   case PPC::BI__builtin_vsx_xvsqrtsp:
11693   case PPC::BI__builtin_vsx_xvsqrtdp: {
11694     llvm::Type *ResultType = ConvertType(E->getType());
11695     Value *X = EmitScalarExpr(E->getArg(0));
11696     ID = Intrinsic::sqrt;
11697     llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
11698     return Builder.CreateCall(F, X);
11699   }
11700   // Count leading zeros
11701   case PPC::BI__builtin_altivec_vclzb:
11702   case PPC::BI__builtin_altivec_vclzh:
11703   case PPC::BI__builtin_altivec_vclzw:
11704   case PPC::BI__builtin_altivec_vclzd: {
11705     llvm::Type *ResultType = ConvertType(E->getType());
11706     Value *X = EmitScalarExpr(E->getArg(0));
11707     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
11708     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
11709     return Builder.CreateCall(F, {X, Undef});
11710   }
11711   case PPC::BI__builtin_altivec_vctzb:
11712   case PPC::BI__builtin_altivec_vctzh:
11713   case PPC::BI__builtin_altivec_vctzw:
11714   case PPC::BI__builtin_altivec_vctzd: {
11715     llvm::Type *ResultType = ConvertType(E->getType());
11716     Value *X = EmitScalarExpr(E->getArg(0));
11717     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
11718     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
11719     return Builder.CreateCall(F, {X, Undef});
11720   }
11721   case PPC::BI__builtin_altivec_vpopcntb:
11722   case PPC::BI__builtin_altivec_vpopcnth:
11723   case PPC::BI__builtin_altivec_vpopcntw:
11724   case PPC::BI__builtin_altivec_vpopcntd: {
11725     llvm::Type *ResultType = ConvertType(E->getType());
11726     Value *X = EmitScalarExpr(E->getArg(0));
11727     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
11728     return Builder.CreateCall(F, X);
11729   }
11730   // Copy sign
11731   case PPC::BI__builtin_vsx_xvcpsgnsp:
11732   case PPC::BI__builtin_vsx_xvcpsgndp: {
11733     llvm::Type *ResultType = ConvertType(E->getType());
11734     Value *X = EmitScalarExpr(E->getArg(0));
11735     Value *Y = EmitScalarExpr(E->getArg(1));
11736     ID = Intrinsic::copysign;
11737     llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
11738     return Builder.CreateCall(F, {X, Y});
11739   }
11740   // Rounding/truncation
11741   case PPC::BI__builtin_vsx_xvrspip:
11742   case PPC::BI__builtin_vsx_xvrdpip:
11743   case PPC::BI__builtin_vsx_xvrdpim:
11744   case PPC::BI__builtin_vsx_xvrspim:
11745   case PPC::BI__builtin_vsx_xvrdpi:
11746   case PPC::BI__builtin_vsx_xvrspi:
11747   case PPC::BI__builtin_vsx_xvrdpic:
11748   case PPC::BI__builtin_vsx_xvrspic:
11749   case PPC::BI__builtin_vsx_xvrdpiz:
11750   case PPC::BI__builtin_vsx_xvrspiz: {
11751     llvm::Type *ResultType = ConvertType(E->getType());
11752     Value *X = EmitScalarExpr(E->getArg(0));
11753     if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim ||
11754         BuiltinID == PPC::BI__builtin_vsx_xvrspim)
11755       ID = Intrinsic::floor;
11756     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi ||
11757              BuiltinID == PPC::BI__builtin_vsx_xvrspi)
11758       ID = Intrinsic::round;
11759     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic ||
11760              BuiltinID == PPC::BI__builtin_vsx_xvrspic)
11761       ID = Intrinsic::nearbyint;
11762     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip ||
11763              BuiltinID == PPC::BI__builtin_vsx_xvrspip)
11764       ID = Intrinsic::ceil;
11765     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz ||
11766              BuiltinID == PPC::BI__builtin_vsx_xvrspiz)
11767       ID = Intrinsic::trunc;
11768     llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
11769     return Builder.CreateCall(F, X);
11770   }
11771 
11772   // Absolute value
11773   case PPC::BI__builtin_vsx_xvabsdp:
11774   case PPC::BI__builtin_vsx_xvabssp: {
11775     llvm::Type *ResultType = ConvertType(E->getType());
11776     Value *X = EmitScalarExpr(E->getArg(0));
11777     llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
11778     return Builder.CreateCall(F, X);
11779   }
11780 
11781   // FMA variations
11782   case PPC::BI__builtin_vsx_xvmaddadp:
11783   case PPC::BI__builtin_vsx_xvmaddasp:
11784   case PPC::BI__builtin_vsx_xvnmaddadp:
11785   case PPC::BI__builtin_vsx_xvnmaddasp:
11786   case PPC::BI__builtin_vsx_xvmsubadp:
11787   case PPC::BI__builtin_vsx_xvmsubasp:
11788   case PPC::BI__builtin_vsx_xvnmsubadp:
11789   case PPC::BI__builtin_vsx_xvnmsubasp: {
11790     llvm::Type *ResultType = ConvertType(E->getType());
11791     Value *X = EmitScalarExpr(E->getArg(0));
11792     Value *Y = EmitScalarExpr(E->getArg(1));
11793     Value *Z = EmitScalarExpr(E->getArg(2));
11794     Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
11795     llvm::Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
11796     switch (BuiltinID) {
11797       case PPC::BI__builtin_vsx_xvmaddadp:
11798       case PPC::BI__builtin_vsx_xvmaddasp:
11799         return Builder.CreateCall(F, {X, Y, Z});
11800       case PPC::BI__builtin_vsx_xvnmaddadp:
11801       case PPC::BI__builtin_vsx_xvnmaddasp:
11802         return Builder.CreateFSub(Zero,
11803                                   Builder.CreateCall(F, {X, Y, Z}), "sub");
11804       case PPC::BI__builtin_vsx_xvmsubadp:
11805       case PPC::BI__builtin_vsx_xvmsubasp:
11806         return Builder.CreateCall(F,
11807                                   {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
11808       case PPC::BI__builtin_vsx_xvnmsubadp:
11809       case PPC::BI__builtin_vsx_xvnmsubasp:
11810         Value *FsubRes =
11811           Builder.CreateCall(F, {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
11812         return Builder.CreateFSub(Zero, FsubRes, "sub");
11813     }
11814     llvm_unreachable("Unknown FMA operation");
11815     return nullptr; // Suppress no-return warning
11816   }
11817 
11818   case PPC::BI__builtin_vsx_insertword: {
11819     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw);
11820 
11821     // Third argument is a compile time constant int. It must be clamped to
11822     // to the range [0, 12].
11823     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
11824     assert(ArgCI &&
11825            "Third arg to xxinsertw intrinsic must be constant integer");
11826     const int64_t MaxIndex = 12;
11827     int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
11828 
11829     // The builtin semantics don't exactly match the xxinsertw instructions
11830     // semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the
11831     // word from the first argument, and inserts it in the second argument. The
11832     // instruction extracts the word from its second input register and inserts
11833     // it into its first input register, so swap the first and second arguments.
11834     std::swap(Ops[0], Ops[1]);
11835 
11836     // Need to cast the second argument from a vector of unsigned int to a
11837     // vector of long long.
11838     Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int64Ty, 2));
11839 
11840     if (getTarget().isLittleEndian()) {
11841       // Create a shuffle mask of (1, 0)
11842       Constant *ShuffleElts[2] = { ConstantInt::get(Int32Ty, 1),
11843                                    ConstantInt::get(Int32Ty, 0)
11844                                  };
11845       Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
11846 
11847       // Reverse the double words in the vector we will extract from.
11848       Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
11849       Ops[0] = Builder.CreateShuffleVector(Ops[0], Ops[0], ShuffleMask);
11850 
11851       // Reverse the index.
11852       Index = MaxIndex - Index;
11853     }
11854 
11855     // Intrinsic expects the first arg to be a vector of int.
11856     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4));
11857     Ops[2] = ConstantInt::getSigned(Int32Ty, Index);
11858     return Builder.CreateCall(F, Ops);
11859   }
11860 
11861   case PPC::BI__builtin_vsx_extractuword: {
11862     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw);
11863 
11864     // Intrinsic expects the first argument to be a vector of doublewords.
11865     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
11866 
11867     // The second argument is a compile time constant int that needs to
11868     // be clamped to the range [0, 12].
11869     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[1]);
11870     assert(ArgCI &&
11871            "Second Arg to xxextractuw intrinsic must be a constant integer!");
11872     const int64_t MaxIndex = 12;
11873     int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
11874 
11875     if (getTarget().isLittleEndian()) {
11876       // Reverse the index.
11877       Index = MaxIndex - Index;
11878       Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
11879 
11880       // Emit the call, then reverse the double words of the results vector.
11881       Value *Call = Builder.CreateCall(F, Ops);
11882 
11883       // Create a shuffle mask of (1, 0)
11884       Constant *ShuffleElts[2] = { ConstantInt::get(Int32Ty, 1),
11885                                    ConstantInt::get(Int32Ty, 0)
11886                                  };
11887       Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
11888 
11889       Value *ShuffleCall = Builder.CreateShuffleVector(Call, Call, ShuffleMask);
11890       return ShuffleCall;
11891     } else {
11892       Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
11893       return Builder.CreateCall(F, Ops);
11894     }
11895   }
11896 
11897   case PPC::BI__builtin_vsx_xxpermdi: {
11898     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
11899     assert(ArgCI && "Third arg must be constant integer!");
11900 
11901     unsigned Index = ArgCI->getZExtValue();
11902     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
11903     Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int64Ty, 2));
11904 
11905     // Account for endianness by treating this as just a shuffle. So we use the
11906     // same indices for both LE and BE in order to produce expected results in
11907     // both cases.
11908     unsigned ElemIdx0 = (Index & 2) >> 1;
11909     unsigned ElemIdx1 = 2 + (Index & 1);
11910 
11911     Constant *ShuffleElts[2] = {ConstantInt::get(Int32Ty, ElemIdx0),
11912                                 ConstantInt::get(Int32Ty, ElemIdx1)};
11913     Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
11914 
11915     Value *ShuffleCall =
11916         Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleMask);
11917     QualType BIRetType = E->getType();
11918     auto RetTy = ConvertType(BIRetType);
11919     return Builder.CreateBitCast(ShuffleCall, RetTy);
11920   }
11921 
11922   case PPC::BI__builtin_vsx_xxsldwi: {
11923     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
11924     assert(ArgCI && "Third argument must be a compile time constant");
11925     unsigned Index = ArgCI->getZExtValue() & 0x3;
11926     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4));
11927     Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int32Ty, 4));
11928 
11929     // Create a shuffle mask
11930     unsigned ElemIdx0;
11931     unsigned ElemIdx1;
11932     unsigned ElemIdx2;
11933     unsigned ElemIdx3;
11934     if (getTarget().isLittleEndian()) {
11935       // Little endian element N comes from element 8+N-Index of the
11936       // concatenated wide vector (of course, using modulo arithmetic on
11937       // the total number of elements).
11938       ElemIdx0 = (8 - Index) % 8;
11939       ElemIdx1 = (9 - Index) % 8;
11940       ElemIdx2 = (10 - Index) % 8;
11941       ElemIdx3 = (11 - Index) % 8;
11942     } else {
11943       // Big endian ElemIdx<N> = Index + N
11944       ElemIdx0 = Index;
11945       ElemIdx1 = Index + 1;
11946       ElemIdx2 = Index + 2;
11947       ElemIdx3 = Index + 3;
11948     }
11949 
11950     Constant *ShuffleElts[4] = {ConstantInt::get(Int32Ty, ElemIdx0),
11951                                 ConstantInt::get(Int32Ty, ElemIdx1),
11952                                 ConstantInt::get(Int32Ty, ElemIdx2),
11953                                 ConstantInt::get(Int32Ty, ElemIdx3)};
11954 
11955     Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
11956     Value *ShuffleCall =
11957         Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleMask);
11958     QualType BIRetType = E->getType();
11959     auto RetTy = ConvertType(BIRetType);
11960     return Builder.CreateBitCast(ShuffleCall, RetTy);
11961   }
11962 
11963   case PPC::BI__builtin_pack_vector_int128: {
11964     bool isLittleEndian = getTarget().isLittleEndian();
11965     Value *UndefValue =
11966         llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), 2));
11967     Value *Res = Builder.CreateInsertElement(
11968         UndefValue, Ops[0], (uint64_t)(isLittleEndian ? 1 : 0));
11969     Res = Builder.CreateInsertElement(Res, Ops[1],
11970                                       (uint64_t)(isLittleEndian ? 0 : 1));
11971     return Builder.CreateBitCast(Res, ConvertType(E->getType()));
11972   }
11973 
11974   case PPC::BI__builtin_unpack_vector_int128: {
11975     ConstantInt *Index = cast<ConstantInt>(Ops[1]);
11976     Value *Unpacked = Builder.CreateBitCast(
11977         Ops[0], llvm::VectorType::get(ConvertType(E->getType()), 2));
11978 
11979     if (getTarget().isLittleEndian())
11980       Index = ConstantInt::get(Index->getType(), 1 - Index->getZExtValue());
11981 
11982     return Builder.CreateExtractElement(Unpacked, Index);
11983   }
11984   }
11985 }
11986 
EmitAMDGPUBuiltinExpr(unsigned BuiltinID,const CallExpr * E)11987 Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID,
11988                                               const CallExpr *E) {
11989   switch (BuiltinID) {
11990   case AMDGPU::BI__builtin_amdgcn_div_scale:
11991   case AMDGPU::BI__builtin_amdgcn_div_scalef: {
11992     // Translate from the intrinsics's struct return to the builtin's out
11993     // argument.
11994 
11995     Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3));
11996 
11997     llvm::Value *X = EmitScalarExpr(E->getArg(0));
11998     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
11999     llvm::Value *Z = EmitScalarExpr(E->getArg(2));
12000 
12001     llvm::Value *Callee = CGM.getIntrinsic(Intrinsic::amdgcn_div_scale,
12002                                            X->getType());
12003 
12004     llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z});
12005 
12006     llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0);
12007     llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1);
12008 
12009     llvm::Type *RealFlagType
12010       = FlagOutPtr.getPointer()->getType()->getPointerElementType();
12011 
12012     llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType);
12013     Builder.CreateStore(FlagExt, FlagOutPtr);
12014     return Result;
12015   }
12016   case AMDGPU::BI__builtin_amdgcn_div_fmas:
12017   case AMDGPU::BI__builtin_amdgcn_div_fmasf: {
12018     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
12019     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
12020     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
12021     llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
12022 
12023     llvm::Value *F = CGM.getIntrinsic(Intrinsic::amdgcn_div_fmas,
12024                                       Src0->getType());
12025     llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3);
12026     return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool});
12027   }
12028 
12029   case AMDGPU::BI__builtin_amdgcn_ds_swizzle:
12030     return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_ds_swizzle);
12031   case AMDGPU::BI__builtin_amdgcn_mov_dpp:
12032   case AMDGPU::BI__builtin_amdgcn_update_dpp: {
12033     llvm::SmallVector<llvm::Value *, 6> Args;
12034     for (unsigned I = 0; I != E->getNumArgs(); ++I)
12035       Args.push_back(EmitScalarExpr(E->getArg(I)));
12036     assert(Args.size() == 5 || Args.size() == 6);
12037     if (Args.size() == 5)
12038       Args.insert(Args.begin(), llvm::UndefValue::get(Args[0]->getType()));
12039     Value *F =
12040         CGM.getIntrinsic(Intrinsic::amdgcn_update_dpp, Args[0]->getType());
12041     return Builder.CreateCall(F, Args);
12042   }
12043   case AMDGPU::BI__builtin_amdgcn_div_fixup:
12044   case AMDGPU::BI__builtin_amdgcn_div_fixupf:
12045   case AMDGPU::BI__builtin_amdgcn_div_fixuph:
12046     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_div_fixup);
12047   case AMDGPU::BI__builtin_amdgcn_trig_preop:
12048   case AMDGPU::BI__builtin_amdgcn_trig_preopf:
12049     return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_trig_preop);
12050   case AMDGPU::BI__builtin_amdgcn_rcp:
12051   case AMDGPU::BI__builtin_amdgcn_rcpf:
12052   case AMDGPU::BI__builtin_amdgcn_rcph:
12053     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rcp);
12054   case AMDGPU::BI__builtin_amdgcn_rsq:
12055   case AMDGPU::BI__builtin_amdgcn_rsqf:
12056   case AMDGPU::BI__builtin_amdgcn_rsqh:
12057     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq);
12058   case AMDGPU::BI__builtin_amdgcn_rsq_clamp:
12059   case AMDGPU::BI__builtin_amdgcn_rsq_clampf:
12060     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq_clamp);
12061   case AMDGPU::BI__builtin_amdgcn_sinf:
12062   case AMDGPU::BI__builtin_amdgcn_sinh:
12063     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sin);
12064   case AMDGPU::BI__builtin_amdgcn_cosf:
12065   case AMDGPU::BI__builtin_amdgcn_cosh:
12066     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_cos);
12067   case AMDGPU::BI__builtin_amdgcn_log_clampf:
12068     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_log_clamp);
12069   case AMDGPU::BI__builtin_amdgcn_ldexp:
12070   case AMDGPU::BI__builtin_amdgcn_ldexpf:
12071   case AMDGPU::BI__builtin_amdgcn_ldexph:
12072     return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_ldexp);
12073   case AMDGPU::BI__builtin_amdgcn_frexp_mant:
12074   case AMDGPU::BI__builtin_amdgcn_frexp_mantf:
12075   case AMDGPU::BI__builtin_amdgcn_frexp_manth:
12076     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_frexp_mant);
12077   case AMDGPU::BI__builtin_amdgcn_frexp_exp:
12078   case AMDGPU::BI__builtin_amdgcn_frexp_expf: {
12079     Value *Src0 = EmitScalarExpr(E->getArg(0));
12080     Value *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
12081                                 { Builder.getInt32Ty(), Src0->getType() });
12082     return Builder.CreateCall(F, Src0);
12083   }
12084   case AMDGPU::BI__builtin_amdgcn_frexp_exph: {
12085     Value *Src0 = EmitScalarExpr(E->getArg(0));
12086     Value *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
12087                                 { Builder.getInt16Ty(), Src0->getType() });
12088     return Builder.CreateCall(F, Src0);
12089   }
12090   case AMDGPU::BI__builtin_amdgcn_fract:
12091   case AMDGPU::BI__builtin_amdgcn_fractf:
12092   case AMDGPU::BI__builtin_amdgcn_fracth:
12093     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_fract);
12094   case AMDGPU::BI__builtin_amdgcn_lerp:
12095     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_lerp);
12096   case AMDGPU::BI__builtin_amdgcn_uicmp:
12097   case AMDGPU::BI__builtin_amdgcn_uicmpl:
12098   case AMDGPU::BI__builtin_amdgcn_sicmp:
12099   case AMDGPU::BI__builtin_amdgcn_sicmpl:
12100     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_icmp);
12101   case AMDGPU::BI__builtin_amdgcn_fcmp:
12102   case AMDGPU::BI__builtin_amdgcn_fcmpf:
12103     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fcmp);
12104   case AMDGPU::BI__builtin_amdgcn_class:
12105   case AMDGPU::BI__builtin_amdgcn_classf:
12106   case AMDGPU::BI__builtin_amdgcn_classh:
12107     return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_class);
12108   case AMDGPU::BI__builtin_amdgcn_fmed3f:
12109   case AMDGPU::BI__builtin_amdgcn_fmed3h:
12110     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fmed3);
12111   case AMDGPU::BI__builtin_amdgcn_read_exec: {
12112     CallInst *CI = cast<CallInst>(
12113       EmitSpecialRegisterBuiltin(*this, E, Int64Ty, Int64Ty, true, "exec"));
12114     CI->setConvergent();
12115     return CI;
12116   }
12117   case AMDGPU::BI__builtin_amdgcn_read_exec_lo:
12118   case AMDGPU::BI__builtin_amdgcn_read_exec_hi: {
12119     StringRef RegName = BuiltinID == AMDGPU::BI__builtin_amdgcn_read_exec_lo ?
12120       "exec_lo" : "exec_hi";
12121     CallInst *CI = cast<CallInst>(
12122       EmitSpecialRegisterBuiltin(*this, E, Int32Ty, Int32Ty, true, RegName));
12123     CI->setConvergent();
12124     return CI;
12125   }
12126   // amdgcn workitem
12127   case AMDGPU::BI__builtin_amdgcn_workitem_id_x:
12128     return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_x, 0, 1024);
12129   case AMDGPU::BI__builtin_amdgcn_workitem_id_y:
12130     return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_y, 0, 1024);
12131   case AMDGPU::BI__builtin_amdgcn_workitem_id_z:
12132     return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_z, 0, 1024);
12133 
12134   // r600 intrinsics
12135   case AMDGPU::BI__builtin_r600_recipsqrt_ieee:
12136   case AMDGPU::BI__builtin_r600_recipsqrt_ieeef:
12137     return emitUnaryBuiltin(*this, E, Intrinsic::r600_recipsqrt_ieee);
12138   case AMDGPU::BI__builtin_r600_read_tidig_x:
12139     return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_x, 0, 1024);
12140   case AMDGPU::BI__builtin_r600_read_tidig_y:
12141     return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_y, 0, 1024);
12142   case AMDGPU::BI__builtin_r600_read_tidig_z:
12143     return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_z, 0, 1024);
12144   default:
12145     return nullptr;
12146   }
12147 }
12148 
12149 /// Handle a SystemZ function in which the final argument is a pointer
12150 /// to an int that receives the post-instruction CC value.  At the LLVM level
12151 /// this is represented as a function that returns a {result, cc} pair.
EmitSystemZIntrinsicWithCC(CodeGenFunction & CGF,unsigned IntrinsicID,const CallExpr * E)12152 static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF,
12153                                          unsigned IntrinsicID,
12154                                          const CallExpr *E) {
12155   unsigned NumArgs = E->getNumArgs() - 1;
12156   SmallVector<Value *, 8> Args(NumArgs);
12157   for (unsigned I = 0; I < NumArgs; ++I)
12158     Args[I] = CGF.EmitScalarExpr(E->getArg(I));
12159   Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs));
12160   Value *F = CGF.CGM.getIntrinsic(IntrinsicID);
12161   Value *Call = CGF.Builder.CreateCall(F, Args);
12162   Value *CC = CGF.Builder.CreateExtractValue(Call, 1);
12163   CGF.Builder.CreateStore(CC, CCPtr);
12164   return CGF.Builder.CreateExtractValue(Call, 0);
12165 }
12166 
EmitSystemZBuiltinExpr(unsigned BuiltinID,const CallExpr * E)12167 Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID,
12168                                                const CallExpr *E) {
12169   switch (BuiltinID) {
12170   case SystemZ::BI__builtin_tbegin: {
12171     Value *TDB = EmitScalarExpr(E->getArg(0));
12172     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
12173     Value *F = CGM.getIntrinsic(Intrinsic::s390_tbegin);
12174     return Builder.CreateCall(F, {TDB, Control});
12175   }
12176   case SystemZ::BI__builtin_tbegin_nofloat: {
12177     Value *TDB = EmitScalarExpr(E->getArg(0));
12178     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
12179     Value *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat);
12180     return Builder.CreateCall(F, {TDB, Control});
12181   }
12182   case SystemZ::BI__builtin_tbeginc: {
12183     Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy);
12184     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08);
12185     Value *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc);
12186     return Builder.CreateCall(F, {TDB, Control});
12187   }
12188   case SystemZ::BI__builtin_tabort: {
12189     Value *Data = EmitScalarExpr(E->getArg(0));
12190     Value *F = CGM.getIntrinsic(Intrinsic::s390_tabort);
12191     return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort"));
12192   }
12193   case SystemZ::BI__builtin_non_tx_store: {
12194     Value *Address = EmitScalarExpr(E->getArg(0));
12195     Value *Data = EmitScalarExpr(E->getArg(1));
12196     Value *F = CGM.getIntrinsic(Intrinsic::s390_ntstg);
12197     return Builder.CreateCall(F, {Data, Address});
12198   }
12199 
12200   // Vector builtins.  Note that most vector builtins are mapped automatically
12201   // to target-specific LLVM intrinsics.  The ones handled specially here can
12202   // be represented via standard LLVM IR, which is preferable to enable common
12203   // LLVM optimizations.
12204 
12205   case SystemZ::BI__builtin_s390_vpopctb:
12206   case SystemZ::BI__builtin_s390_vpopcth:
12207   case SystemZ::BI__builtin_s390_vpopctf:
12208   case SystemZ::BI__builtin_s390_vpopctg: {
12209     llvm::Type *ResultType = ConvertType(E->getType());
12210     Value *X = EmitScalarExpr(E->getArg(0));
12211     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
12212     return Builder.CreateCall(F, X);
12213   }
12214 
12215   case SystemZ::BI__builtin_s390_vclzb:
12216   case SystemZ::BI__builtin_s390_vclzh:
12217   case SystemZ::BI__builtin_s390_vclzf:
12218   case SystemZ::BI__builtin_s390_vclzg: {
12219     llvm::Type *ResultType = ConvertType(E->getType());
12220     Value *X = EmitScalarExpr(E->getArg(0));
12221     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
12222     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
12223     return Builder.CreateCall(F, {X, Undef});
12224   }
12225 
12226   case SystemZ::BI__builtin_s390_vctzb:
12227   case SystemZ::BI__builtin_s390_vctzh:
12228   case SystemZ::BI__builtin_s390_vctzf:
12229   case SystemZ::BI__builtin_s390_vctzg: {
12230     llvm::Type *ResultType = ConvertType(E->getType());
12231     Value *X = EmitScalarExpr(E->getArg(0));
12232     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
12233     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
12234     return Builder.CreateCall(F, {X, Undef});
12235   }
12236 
12237   case SystemZ::BI__builtin_s390_vfsqsb:
12238   case SystemZ::BI__builtin_s390_vfsqdb: {
12239     llvm::Type *ResultType = ConvertType(E->getType());
12240     Value *X = EmitScalarExpr(E->getArg(0));
12241     Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
12242     return Builder.CreateCall(F, X);
12243   }
12244   case SystemZ::BI__builtin_s390_vfmasb:
12245   case SystemZ::BI__builtin_s390_vfmadb: {
12246     llvm::Type *ResultType = ConvertType(E->getType());
12247     Value *X = EmitScalarExpr(E->getArg(0));
12248     Value *Y = EmitScalarExpr(E->getArg(1));
12249     Value *Z = EmitScalarExpr(E->getArg(2));
12250     Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
12251     return Builder.CreateCall(F, {X, Y, Z});
12252   }
12253   case SystemZ::BI__builtin_s390_vfmssb:
12254   case SystemZ::BI__builtin_s390_vfmsdb: {
12255     llvm::Type *ResultType = ConvertType(E->getType());
12256     Value *X = EmitScalarExpr(E->getArg(0));
12257     Value *Y = EmitScalarExpr(E->getArg(1));
12258     Value *Z = EmitScalarExpr(E->getArg(2));
12259     Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
12260     Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
12261     return Builder.CreateCall(F, {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
12262   }
12263   case SystemZ::BI__builtin_s390_vfnmasb:
12264   case SystemZ::BI__builtin_s390_vfnmadb: {
12265     llvm::Type *ResultType = ConvertType(E->getType());
12266     Value *X = EmitScalarExpr(E->getArg(0));
12267     Value *Y = EmitScalarExpr(E->getArg(1));
12268     Value *Z = EmitScalarExpr(E->getArg(2));
12269     Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
12270     Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
12271     return Builder.CreateFSub(Zero, Builder.CreateCall(F, {X, Y, Z}), "sub");
12272   }
12273   case SystemZ::BI__builtin_s390_vfnmssb:
12274   case SystemZ::BI__builtin_s390_vfnmsdb: {
12275     llvm::Type *ResultType = ConvertType(E->getType());
12276     Value *X = EmitScalarExpr(E->getArg(0));
12277     Value *Y = EmitScalarExpr(E->getArg(1));
12278     Value *Z = EmitScalarExpr(E->getArg(2));
12279     Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
12280     Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
12281     Value *NegZ = Builder.CreateFSub(Zero, Z, "sub");
12282     return Builder.CreateFSub(Zero, Builder.CreateCall(F, {X, Y, NegZ}));
12283   }
12284   case SystemZ::BI__builtin_s390_vflpsb:
12285   case SystemZ::BI__builtin_s390_vflpdb: {
12286     llvm::Type *ResultType = ConvertType(E->getType());
12287     Value *X = EmitScalarExpr(E->getArg(0));
12288     Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
12289     return Builder.CreateCall(F, X);
12290   }
12291   case SystemZ::BI__builtin_s390_vflnsb:
12292   case SystemZ::BI__builtin_s390_vflndb: {
12293     llvm::Type *ResultType = ConvertType(E->getType());
12294     Value *X = EmitScalarExpr(E->getArg(0));
12295     Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
12296     Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
12297     return Builder.CreateFSub(Zero, Builder.CreateCall(F, X), "sub");
12298   }
12299   case SystemZ::BI__builtin_s390_vfisb:
12300   case SystemZ::BI__builtin_s390_vfidb: {
12301     llvm::Type *ResultType = ConvertType(E->getType());
12302     Value *X = EmitScalarExpr(E->getArg(0));
12303     // Constant-fold the M4 and M5 mask arguments.
12304     llvm::APSInt M4, M5;
12305     bool IsConstM4 = E->getArg(1)->isIntegerConstantExpr(M4, getContext());
12306     bool IsConstM5 = E->getArg(2)->isIntegerConstantExpr(M5, getContext());
12307     assert(IsConstM4 && IsConstM5 && "Constant arg isn't actually constant?");
12308     (void)IsConstM4; (void)IsConstM5;
12309     // Check whether this instance can be represented via a LLVM standard
12310     // intrinsic.  We only support some combinations of M4 and M5.
12311     Intrinsic::ID ID = Intrinsic::not_intrinsic;
12312     switch (M4.getZExtValue()) {
12313     default: break;
12314     case 0:  // IEEE-inexact exception allowed
12315       switch (M5.getZExtValue()) {
12316       default: break;
12317       case 0: ID = Intrinsic::rint; break;
12318       }
12319       break;
12320     case 4:  // IEEE-inexact exception suppressed
12321       switch (M5.getZExtValue()) {
12322       default: break;
12323       case 0: ID = Intrinsic::nearbyint; break;
12324       case 1: ID = Intrinsic::round; break;
12325       case 5: ID = Intrinsic::trunc; break;
12326       case 6: ID = Intrinsic::ceil; break;
12327       case 7: ID = Intrinsic::floor; break;
12328       }
12329       break;
12330     }
12331     if (ID != Intrinsic::not_intrinsic) {
12332       Function *F = CGM.getIntrinsic(ID, ResultType);
12333       return Builder.CreateCall(F, X);
12334     }
12335     switch (BuiltinID) {
12336       case SystemZ::BI__builtin_s390_vfisb: ID = Intrinsic::s390_vfisb; break;
12337       case SystemZ::BI__builtin_s390_vfidb: ID = Intrinsic::s390_vfidb; break;
12338       default: llvm_unreachable("Unknown BuiltinID");
12339     }
12340     Function *F = CGM.getIntrinsic(ID);
12341     Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
12342     Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5);
12343     return Builder.CreateCall(F, {X, M4Value, M5Value});
12344   }
12345   case SystemZ::BI__builtin_s390_vfmaxsb:
12346   case SystemZ::BI__builtin_s390_vfmaxdb: {
12347     llvm::Type *ResultType = ConvertType(E->getType());
12348     Value *X = EmitScalarExpr(E->getArg(0));
12349     Value *Y = EmitScalarExpr(E->getArg(1));
12350     // Constant-fold the M4 mask argument.
12351     llvm::APSInt M4;
12352     bool IsConstM4 = E->getArg(2)->isIntegerConstantExpr(M4, getContext());
12353     assert(IsConstM4 && "Constant arg isn't actually constant?");
12354     (void)IsConstM4;
12355     // Check whether this instance can be represented via a LLVM standard
12356     // intrinsic.  We only support some values of M4.
12357     Intrinsic::ID ID = Intrinsic::not_intrinsic;
12358     switch (M4.getZExtValue()) {
12359     default: break;
12360     case 4: ID = Intrinsic::maxnum; break;
12361     }
12362     if (ID != Intrinsic::not_intrinsic) {
12363       Function *F = CGM.getIntrinsic(ID, ResultType);
12364       return Builder.CreateCall(F, {X, Y});
12365     }
12366     switch (BuiltinID) {
12367       case SystemZ::BI__builtin_s390_vfmaxsb: ID = Intrinsic::s390_vfmaxsb; break;
12368       case SystemZ::BI__builtin_s390_vfmaxdb: ID = Intrinsic::s390_vfmaxdb; break;
12369       default: llvm_unreachable("Unknown BuiltinID");
12370     }
12371     Function *F = CGM.getIntrinsic(ID);
12372     Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
12373     return Builder.CreateCall(F, {X, Y, M4Value});
12374   }
12375   case SystemZ::BI__builtin_s390_vfminsb:
12376   case SystemZ::BI__builtin_s390_vfmindb: {
12377     llvm::Type *ResultType = ConvertType(E->getType());
12378     Value *X = EmitScalarExpr(E->getArg(0));
12379     Value *Y = EmitScalarExpr(E->getArg(1));
12380     // Constant-fold the M4 mask argument.
12381     llvm::APSInt M4;
12382     bool IsConstM4 = E->getArg(2)->isIntegerConstantExpr(M4, getContext());
12383     assert(IsConstM4 && "Constant arg isn't actually constant?");
12384     (void)IsConstM4;
12385     // Check whether this instance can be represented via a LLVM standard
12386     // intrinsic.  We only support some values of M4.
12387     Intrinsic::ID ID = Intrinsic::not_intrinsic;
12388     switch (M4.getZExtValue()) {
12389     default: break;
12390     case 4: ID = Intrinsic::minnum; break;
12391     }
12392     if (ID != Intrinsic::not_intrinsic) {
12393       Function *F = CGM.getIntrinsic(ID, ResultType);
12394       return Builder.CreateCall(F, {X, Y});
12395     }
12396     switch (BuiltinID) {
12397       case SystemZ::BI__builtin_s390_vfminsb: ID = Intrinsic::s390_vfminsb; break;
12398       case SystemZ::BI__builtin_s390_vfmindb: ID = Intrinsic::s390_vfmindb; break;
12399       default: llvm_unreachable("Unknown BuiltinID");
12400     }
12401     Function *F = CGM.getIntrinsic(ID);
12402     Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
12403     return Builder.CreateCall(F, {X, Y, M4Value});
12404   }
12405 
12406   // Vector intrinsics that output the post-instruction CC value.
12407 
12408 #define INTRINSIC_WITH_CC(NAME) \
12409     case SystemZ::BI__builtin_##NAME: \
12410       return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E)
12411 
12412   INTRINSIC_WITH_CC(s390_vpkshs);
12413   INTRINSIC_WITH_CC(s390_vpksfs);
12414   INTRINSIC_WITH_CC(s390_vpksgs);
12415 
12416   INTRINSIC_WITH_CC(s390_vpklshs);
12417   INTRINSIC_WITH_CC(s390_vpklsfs);
12418   INTRINSIC_WITH_CC(s390_vpklsgs);
12419 
12420   INTRINSIC_WITH_CC(s390_vceqbs);
12421   INTRINSIC_WITH_CC(s390_vceqhs);
12422   INTRINSIC_WITH_CC(s390_vceqfs);
12423   INTRINSIC_WITH_CC(s390_vceqgs);
12424 
12425   INTRINSIC_WITH_CC(s390_vchbs);
12426   INTRINSIC_WITH_CC(s390_vchhs);
12427   INTRINSIC_WITH_CC(s390_vchfs);
12428   INTRINSIC_WITH_CC(s390_vchgs);
12429 
12430   INTRINSIC_WITH_CC(s390_vchlbs);
12431   INTRINSIC_WITH_CC(s390_vchlhs);
12432   INTRINSIC_WITH_CC(s390_vchlfs);
12433   INTRINSIC_WITH_CC(s390_vchlgs);
12434 
12435   INTRINSIC_WITH_CC(s390_vfaebs);
12436   INTRINSIC_WITH_CC(s390_vfaehs);
12437   INTRINSIC_WITH_CC(s390_vfaefs);
12438 
12439   INTRINSIC_WITH_CC(s390_vfaezbs);
12440   INTRINSIC_WITH_CC(s390_vfaezhs);
12441   INTRINSIC_WITH_CC(s390_vfaezfs);
12442 
12443   INTRINSIC_WITH_CC(s390_vfeebs);
12444   INTRINSIC_WITH_CC(s390_vfeehs);
12445   INTRINSIC_WITH_CC(s390_vfeefs);
12446 
12447   INTRINSIC_WITH_CC(s390_vfeezbs);
12448   INTRINSIC_WITH_CC(s390_vfeezhs);
12449   INTRINSIC_WITH_CC(s390_vfeezfs);
12450 
12451   INTRINSIC_WITH_CC(s390_vfenebs);
12452   INTRINSIC_WITH_CC(s390_vfenehs);
12453   INTRINSIC_WITH_CC(s390_vfenefs);
12454 
12455   INTRINSIC_WITH_CC(s390_vfenezbs);
12456   INTRINSIC_WITH_CC(s390_vfenezhs);
12457   INTRINSIC_WITH_CC(s390_vfenezfs);
12458 
12459   INTRINSIC_WITH_CC(s390_vistrbs);
12460   INTRINSIC_WITH_CC(s390_vistrhs);
12461   INTRINSIC_WITH_CC(s390_vistrfs);
12462 
12463   INTRINSIC_WITH_CC(s390_vstrcbs);
12464   INTRINSIC_WITH_CC(s390_vstrchs);
12465   INTRINSIC_WITH_CC(s390_vstrcfs);
12466 
12467   INTRINSIC_WITH_CC(s390_vstrczbs);
12468   INTRINSIC_WITH_CC(s390_vstrczhs);
12469   INTRINSIC_WITH_CC(s390_vstrczfs);
12470 
12471   INTRINSIC_WITH_CC(s390_vfcesbs);
12472   INTRINSIC_WITH_CC(s390_vfcedbs);
12473   INTRINSIC_WITH_CC(s390_vfchsbs);
12474   INTRINSIC_WITH_CC(s390_vfchdbs);
12475   INTRINSIC_WITH_CC(s390_vfchesbs);
12476   INTRINSIC_WITH_CC(s390_vfchedbs);
12477 
12478   INTRINSIC_WITH_CC(s390_vftcisb);
12479   INTRINSIC_WITH_CC(s390_vftcidb);
12480 
12481 #undef INTRINSIC_WITH_CC
12482 
12483   default:
12484     return nullptr;
12485   }
12486 }
12487 
EmitNVPTXBuiltinExpr(unsigned BuiltinID,const CallExpr * E)12488 Value *CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID,
12489                                              const CallExpr *E) {
12490   auto MakeLdg = [&](unsigned IntrinsicID) {
12491     Value *Ptr = EmitScalarExpr(E->getArg(0));
12492     clang::CharUnits Align =
12493         getNaturalPointeeTypeAlignment(E->getArg(0)->getType());
12494     return Builder.CreateCall(
12495         CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
12496                                        Ptr->getType()}),
12497         {Ptr, ConstantInt::get(Builder.getInt32Ty(), Align.getQuantity())});
12498   };
12499   auto MakeScopedAtomic = [&](unsigned IntrinsicID) {
12500     Value *Ptr = EmitScalarExpr(E->getArg(0));
12501     return Builder.CreateCall(
12502         CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
12503                                        Ptr->getType()}),
12504         {Ptr, EmitScalarExpr(E->getArg(1))});
12505   };
12506   switch (BuiltinID) {
12507   case NVPTX::BI__nvvm_atom_add_gen_i:
12508   case NVPTX::BI__nvvm_atom_add_gen_l:
12509   case NVPTX::BI__nvvm_atom_add_gen_ll:
12510     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E);
12511 
12512   case NVPTX::BI__nvvm_atom_sub_gen_i:
12513   case NVPTX::BI__nvvm_atom_sub_gen_l:
12514   case NVPTX::BI__nvvm_atom_sub_gen_ll:
12515     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E);
12516 
12517   case NVPTX::BI__nvvm_atom_and_gen_i:
12518   case NVPTX::BI__nvvm_atom_and_gen_l:
12519   case NVPTX::BI__nvvm_atom_and_gen_ll:
12520     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E);
12521 
12522   case NVPTX::BI__nvvm_atom_or_gen_i:
12523   case NVPTX::BI__nvvm_atom_or_gen_l:
12524   case NVPTX::BI__nvvm_atom_or_gen_ll:
12525     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E);
12526 
12527   case NVPTX::BI__nvvm_atom_xor_gen_i:
12528   case NVPTX::BI__nvvm_atom_xor_gen_l:
12529   case NVPTX::BI__nvvm_atom_xor_gen_ll:
12530     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E);
12531 
12532   case NVPTX::BI__nvvm_atom_xchg_gen_i:
12533   case NVPTX::BI__nvvm_atom_xchg_gen_l:
12534   case NVPTX::BI__nvvm_atom_xchg_gen_ll:
12535     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E);
12536 
12537   case NVPTX::BI__nvvm_atom_max_gen_i:
12538   case NVPTX::BI__nvvm_atom_max_gen_l:
12539   case NVPTX::BI__nvvm_atom_max_gen_ll:
12540     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E);
12541 
12542   case NVPTX::BI__nvvm_atom_max_gen_ui:
12543   case NVPTX::BI__nvvm_atom_max_gen_ul:
12544   case NVPTX::BI__nvvm_atom_max_gen_ull:
12545     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E);
12546 
12547   case NVPTX::BI__nvvm_atom_min_gen_i:
12548   case NVPTX::BI__nvvm_atom_min_gen_l:
12549   case NVPTX::BI__nvvm_atom_min_gen_ll:
12550     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E);
12551 
12552   case NVPTX::BI__nvvm_atom_min_gen_ui:
12553   case NVPTX::BI__nvvm_atom_min_gen_ul:
12554   case NVPTX::BI__nvvm_atom_min_gen_ull:
12555     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E);
12556 
12557   case NVPTX::BI__nvvm_atom_cas_gen_i:
12558   case NVPTX::BI__nvvm_atom_cas_gen_l:
12559   case NVPTX::BI__nvvm_atom_cas_gen_ll:
12560     // __nvvm_atom_cas_gen_* should return the old value rather than the
12561     // success flag.
12562     return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false);
12563 
12564   case NVPTX::BI__nvvm_atom_add_gen_f: {
12565     Value *Ptr = EmitScalarExpr(E->getArg(0));
12566     Value *Val = EmitScalarExpr(E->getArg(1));
12567     // atomicrmw only deals with integer arguments so we need to use
12568     // LLVM's nvvm_atomic_load_add_f32 intrinsic for that.
12569     Value *FnALAF32 =
12570         CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_add_f32, Ptr->getType());
12571     return Builder.CreateCall(FnALAF32, {Ptr, Val});
12572   }
12573 
12574   case NVPTX::BI__nvvm_atom_add_gen_d: {
12575     Value *Ptr = EmitScalarExpr(E->getArg(0));
12576     Value *Val = EmitScalarExpr(E->getArg(1));
12577     // atomicrmw only deals with integer arguments, so we need to use
12578     // LLVM's nvvm_atomic_load_add_f64 intrinsic.
12579     Value *FnALAF64 =
12580         CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_add_f64, Ptr->getType());
12581     return Builder.CreateCall(FnALAF64, {Ptr, Val});
12582   }
12583 
12584   case NVPTX::BI__nvvm_atom_inc_gen_ui: {
12585     Value *Ptr = EmitScalarExpr(E->getArg(0));
12586     Value *Val = EmitScalarExpr(E->getArg(1));
12587     Value *FnALI32 =
12588         CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32, Ptr->getType());
12589     return Builder.CreateCall(FnALI32, {Ptr, Val});
12590   }
12591 
12592   case NVPTX::BI__nvvm_atom_dec_gen_ui: {
12593     Value *Ptr = EmitScalarExpr(E->getArg(0));
12594     Value *Val = EmitScalarExpr(E->getArg(1));
12595     Value *FnALD32 =
12596         CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32, Ptr->getType());
12597     return Builder.CreateCall(FnALD32, {Ptr, Val});
12598   }
12599 
12600   case NVPTX::BI__nvvm_ldg_c:
12601   case NVPTX::BI__nvvm_ldg_c2:
12602   case NVPTX::BI__nvvm_ldg_c4:
12603   case NVPTX::BI__nvvm_ldg_s:
12604   case NVPTX::BI__nvvm_ldg_s2:
12605   case NVPTX::BI__nvvm_ldg_s4:
12606   case NVPTX::BI__nvvm_ldg_i:
12607   case NVPTX::BI__nvvm_ldg_i2:
12608   case NVPTX::BI__nvvm_ldg_i4:
12609   case NVPTX::BI__nvvm_ldg_l:
12610   case NVPTX::BI__nvvm_ldg_ll:
12611   case NVPTX::BI__nvvm_ldg_ll2:
12612   case NVPTX::BI__nvvm_ldg_uc:
12613   case NVPTX::BI__nvvm_ldg_uc2:
12614   case NVPTX::BI__nvvm_ldg_uc4:
12615   case NVPTX::BI__nvvm_ldg_us:
12616   case NVPTX::BI__nvvm_ldg_us2:
12617   case NVPTX::BI__nvvm_ldg_us4:
12618   case NVPTX::BI__nvvm_ldg_ui:
12619   case NVPTX::BI__nvvm_ldg_ui2:
12620   case NVPTX::BI__nvvm_ldg_ui4:
12621   case NVPTX::BI__nvvm_ldg_ul:
12622   case NVPTX::BI__nvvm_ldg_ull:
12623   case NVPTX::BI__nvvm_ldg_ull2:
12624     // PTX Interoperability section 2.2: "For a vector with an even number of
12625     // elements, its alignment is set to number of elements times the alignment
12626     // of its member: n*alignof(t)."
12627     return MakeLdg(Intrinsic::nvvm_ldg_global_i);
12628   case NVPTX::BI__nvvm_ldg_f:
12629   case NVPTX::BI__nvvm_ldg_f2:
12630   case NVPTX::BI__nvvm_ldg_f4:
12631   case NVPTX::BI__nvvm_ldg_d:
12632   case NVPTX::BI__nvvm_ldg_d2:
12633     return MakeLdg(Intrinsic::nvvm_ldg_global_f);
12634 
12635   case NVPTX::BI__nvvm_atom_cta_add_gen_i:
12636   case NVPTX::BI__nvvm_atom_cta_add_gen_l:
12637   case NVPTX::BI__nvvm_atom_cta_add_gen_ll:
12638     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_cta);
12639   case NVPTX::BI__nvvm_atom_sys_add_gen_i:
12640   case NVPTX::BI__nvvm_atom_sys_add_gen_l:
12641   case NVPTX::BI__nvvm_atom_sys_add_gen_ll:
12642     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_sys);
12643   case NVPTX::BI__nvvm_atom_cta_add_gen_f:
12644   case NVPTX::BI__nvvm_atom_cta_add_gen_d:
12645     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_cta);
12646   case NVPTX::BI__nvvm_atom_sys_add_gen_f:
12647   case NVPTX::BI__nvvm_atom_sys_add_gen_d:
12648     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_sys);
12649   case NVPTX::BI__nvvm_atom_cta_xchg_gen_i:
12650   case NVPTX::BI__nvvm_atom_cta_xchg_gen_l:
12651   case NVPTX::BI__nvvm_atom_cta_xchg_gen_ll:
12652     return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_cta);
12653   case NVPTX::BI__nvvm_atom_sys_xchg_gen_i:
12654   case NVPTX::BI__nvvm_atom_sys_xchg_gen_l:
12655   case NVPTX::BI__nvvm_atom_sys_xchg_gen_ll:
12656     return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_sys);
12657   case NVPTX::BI__nvvm_atom_cta_max_gen_i:
12658   case NVPTX::BI__nvvm_atom_cta_max_gen_ui:
12659   case NVPTX::BI__nvvm_atom_cta_max_gen_l:
12660   case NVPTX::BI__nvvm_atom_cta_max_gen_ul:
12661   case NVPTX::BI__nvvm_atom_cta_max_gen_ll:
12662   case NVPTX::BI__nvvm_atom_cta_max_gen_ull:
12663     return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_cta);
12664   case NVPTX::BI__nvvm_atom_sys_max_gen_i:
12665   case NVPTX::BI__nvvm_atom_sys_max_gen_ui:
12666   case NVPTX::BI__nvvm_atom_sys_max_gen_l:
12667   case NVPTX::BI__nvvm_atom_sys_max_gen_ul:
12668   case NVPTX::BI__nvvm_atom_sys_max_gen_ll:
12669   case NVPTX::BI__nvvm_atom_sys_max_gen_ull:
12670     return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_sys);
12671   case NVPTX::BI__nvvm_atom_cta_min_gen_i:
12672   case NVPTX::BI__nvvm_atom_cta_min_gen_ui:
12673   case NVPTX::BI__nvvm_atom_cta_min_gen_l:
12674   case NVPTX::BI__nvvm_atom_cta_min_gen_ul:
12675   case NVPTX::BI__nvvm_atom_cta_min_gen_ll:
12676   case NVPTX::BI__nvvm_atom_cta_min_gen_ull:
12677     return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_cta);
12678   case NVPTX::BI__nvvm_atom_sys_min_gen_i:
12679   case NVPTX::BI__nvvm_atom_sys_min_gen_ui:
12680   case NVPTX::BI__nvvm_atom_sys_min_gen_l:
12681   case NVPTX::BI__nvvm_atom_sys_min_gen_ul:
12682   case NVPTX::BI__nvvm_atom_sys_min_gen_ll:
12683   case NVPTX::BI__nvvm_atom_sys_min_gen_ull:
12684     return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_sys);
12685   case NVPTX::BI__nvvm_atom_cta_inc_gen_ui:
12686     return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_cta);
12687   case NVPTX::BI__nvvm_atom_cta_dec_gen_ui:
12688     return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_cta);
12689   case NVPTX::BI__nvvm_atom_sys_inc_gen_ui:
12690     return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_sys);
12691   case NVPTX::BI__nvvm_atom_sys_dec_gen_ui:
12692     return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_sys);
12693   case NVPTX::BI__nvvm_atom_cta_and_gen_i:
12694   case NVPTX::BI__nvvm_atom_cta_and_gen_l:
12695   case NVPTX::BI__nvvm_atom_cta_and_gen_ll:
12696     return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_cta);
12697   case NVPTX::BI__nvvm_atom_sys_and_gen_i:
12698   case NVPTX::BI__nvvm_atom_sys_and_gen_l:
12699   case NVPTX::BI__nvvm_atom_sys_and_gen_ll:
12700     return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_sys);
12701   case NVPTX::BI__nvvm_atom_cta_or_gen_i:
12702   case NVPTX::BI__nvvm_atom_cta_or_gen_l:
12703   case NVPTX::BI__nvvm_atom_cta_or_gen_ll:
12704     return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_cta);
12705   case NVPTX::BI__nvvm_atom_sys_or_gen_i:
12706   case NVPTX::BI__nvvm_atom_sys_or_gen_l:
12707   case NVPTX::BI__nvvm_atom_sys_or_gen_ll:
12708     return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_sys);
12709   case NVPTX::BI__nvvm_atom_cta_xor_gen_i:
12710   case NVPTX::BI__nvvm_atom_cta_xor_gen_l:
12711   case NVPTX::BI__nvvm_atom_cta_xor_gen_ll:
12712     return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_cta);
12713   case NVPTX::BI__nvvm_atom_sys_xor_gen_i:
12714   case NVPTX::BI__nvvm_atom_sys_xor_gen_l:
12715   case NVPTX::BI__nvvm_atom_sys_xor_gen_ll:
12716     return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_sys);
12717   case NVPTX::BI__nvvm_atom_cta_cas_gen_i:
12718   case NVPTX::BI__nvvm_atom_cta_cas_gen_l:
12719   case NVPTX::BI__nvvm_atom_cta_cas_gen_ll: {
12720     Value *Ptr = EmitScalarExpr(E->getArg(0));
12721     return Builder.CreateCall(
12722         CGM.getIntrinsic(
12723             Intrinsic::nvvm_atomic_cas_gen_i_cta,
12724             {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
12725         {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
12726   }
12727   case NVPTX::BI__nvvm_atom_sys_cas_gen_i:
12728   case NVPTX::BI__nvvm_atom_sys_cas_gen_l:
12729   case NVPTX::BI__nvvm_atom_sys_cas_gen_ll: {
12730     Value *Ptr = EmitScalarExpr(E->getArg(0));
12731     return Builder.CreateCall(
12732         CGM.getIntrinsic(
12733             Intrinsic::nvvm_atomic_cas_gen_i_sys,
12734             {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
12735         {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
12736   }
12737   case NVPTX::BI__nvvm_match_all_sync_i32p:
12738   case NVPTX::BI__nvvm_match_all_sync_i64p: {
12739     Value *Mask = EmitScalarExpr(E->getArg(0));
12740     Value *Val = EmitScalarExpr(E->getArg(1));
12741     Address PredOutPtr = EmitPointerWithAlignment(E->getArg(2));
12742     Value *ResultPair = Builder.CreateCall(
12743         CGM.getIntrinsic(BuiltinID == NVPTX::BI__nvvm_match_all_sync_i32p
12744                              ? Intrinsic::nvvm_match_all_sync_i32p
12745                              : Intrinsic::nvvm_match_all_sync_i64p),
12746         {Mask, Val});
12747     Value *Pred = Builder.CreateZExt(Builder.CreateExtractValue(ResultPair, 1),
12748                                      PredOutPtr.getElementType());
12749     Builder.CreateStore(Pred, PredOutPtr);
12750     return Builder.CreateExtractValue(ResultPair, 0);
12751   }
12752   case NVPTX::BI__hmma_m16n16k16_ld_a:
12753   case NVPTX::BI__hmma_m16n16k16_ld_b:
12754   case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
12755   case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
12756   case NVPTX::BI__hmma_m32n8k16_ld_a:
12757   case NVPTX::BI__hmma_m32n8k16_ld_b:
12758   case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
12759   case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
12760   case NVPTX::BI__hmma_m8n32k16_ld_a:
12761   case NVPTX::BI__hmma_m8n32k16_ld_b:
12762   case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
12763   case NVPTX::BI__hmma_m8n32k16_ld_c_f32: {
12764     Address Dst = EmitPointerWithAlignment(E->getArg(0));
12765     Value *Src = EmitScalarExpr(E->getArg(1));
12766     Value *Ldm = EmitScalarExpr(E->getArg(2));
12767     llvm::APSInt isColMajorArg;
12768     if (!E->getArg(3)->isIntegerConstantExpr(isColMajorArg, getContext()))
12769       return nullptr;
12770     bool isColMajor = isColMajorArg.getSExtValue();
12771     unsigned IID;
12772     unsigned NumResults;
12773     switch (BuiltinID) {
12774     case NVPTX::BI__hmma_m16n16k16_ld_a:
12775       IID = isColMajor ? Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col_stride
12776                        : Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row_stride;
12777       NumResults = 8;
12778       break;
12779     case NVPTX::BI__hmma_m16n16k16_ld_b:
12780       IID = isColMajor ? Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col_stride
12781                        : Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row_stride;
12782       NumResults = 8;
12783       break;
12784     case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
12785       IID = isColMajor ? Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col_stride
12786                        : Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row_stride;
12787       NumResults = 4;
12788       break;
12789     case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
12790       IID = isColMajor ? Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col_stride
12791                        : Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row_stride;
12792       NumResults = 8;
12793       break;
12794     case NVPTX::BI__hmma_m32n8k16_ld_a:
12795       IID = isColMajor ? Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col_stride
12796                        : Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row_stride;
12797       NumResults = 8;
12798       break;
12799     case NVPTX::BI__hmma_m32n8k16_ld_b:
12800       IID = isColMajor ? Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col_stride
12801                        : Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row_stride;
12802       NumResults = 8;
12803       break;
12804     case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
12805       IID = isColMajor ? Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col_stride
12806                        : Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row_stride;
12807       NumResults = 4;
12808       break;
12809     case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
12810       IID = isColMajor ? Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col_stride
12811                        : Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row_stride;
12812       NumResults = 8;
12813       break;
12814     case NVPTX::BI__hmma_m8n32k16_ld_a:
12815       IID = isColMajor ? Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col_stride
12816                        : Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row_stride;
12817       NumResults = 8;
12818       break;
12819     case NVPTX::BI__hmma_m8n32k16_ld_b:
12820       IID = isColMajor ? Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col_stride
12821                        : Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row_stride;
12822       NumResults = 8;
12823       break;
12824     case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
12825       IID = isColMajor ? Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col_stride
12826                        : Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row_stride;
12827       NumResults = 4;
12828       break;
12829     case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
12830       IID = isColMajor ? Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col_stride
12831                        : Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row_stride;
12832       NumResults = 8;
12833       break;
12834     default:
12835       llvm_unreachable("Unexpected builtin ID.");
12836     }
12837     Value *Result =
12838         Builder.CreateCall(CGM.getIntrinsic(IID, Src->getType()), {Src, Ldm});
12839 
12840     // Save returned values.
12841     for (unsigned i = 0; i < NumResults; ++i) {
12842       Builder.CreateAlignedStore(
12843           Builder.CreateBitCast(Builder.CreateExtractValue(Result, i),
12844                                 Dst.getElementType()),
12845           Builder.CreateGEP(Dst.getPointer(), llvm::ConstantInt::get(IntTy, i)),
12846           CharUnits::fromQuantity(4));
12847     }
12848     return Result;
12849   }
12850 
12851   case NVPTX::BI__hmma_m16n16k16_st_c_f16:
12852   case NVPTX::BI__hmma_m16n16k16_st_c_f32:
12853   case NVPTX::BI__hmma_m32n8k16_st_c_f16:
12854   case NVPTX::BI__hmma_m32n8k16_st_c_f32:
12855   case NVPTX::BI__hmma_m8n32k16_st_c_f16:
12856   case NVPTX::BI__hmma_m8n32k16_st_c_f32: {
12857     Value *Dst = EmitScalarExpr(E->getArg(0));
12858     Address Src = EmitPointerWithAlignment(E->getArg(1));
12859     Value *Ldm = EmitScalarExpr(E->getArg(2));
12860     llvm::APSInt isColMajorArg;
12861     if (!E->getArg(3)->isIntegerConstantExpr(isColMajorArg, getContext()))
12862       return nullptr;
12863     bool isColMajor = isColMajorArg.getSExtValue();
12864     unsigned IID;
12865     unsigned NumResults = 8;
12866     // PTX Instructions (and LLVM intrinsics) are defined for slice _d_, yet
12867     // for some reason nvcc builtins use _c_.
12868     switch (BuiltinID) {
12869     case NVPTX::BI__hmma_m16n16k16_st_c_f16:
12870       IID = isColMajor ? Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col_stride
12871                        : Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row_stride;
12872       NumResults = 4;
12873       break;
12874     case NVPTX::BI__hmma_m16n16k16_st_c_f32:
12875       IID = isColMajor ? Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col_stride
12876                        : Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row_stride;
12877       break;
12878     case NVPTX::BI__hmma_m32n8k16_st_c_f16:
12879       IID = isColMajor ? Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col_stride
12880                        : Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row_stride;
12881       NumResults = 4;
12882       break;
12883     case NVPTX::BI__hmma_m32n8k16_st_c_f32:
12884       IID = isColMajor ? Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col_stride
12885                        : Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row_stride;
12886       break;
12887     case NVPTX::BI__hmma_m8n32k16_st_c_f16:
12888       IID = isColMajor ? Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col_stride
12889                        : Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row_stride;
12890       NumResults = 4;
12891       break;
12892     case NVPTX::BI__hmma_m8n32k16_st_c_f32:
12893       IID = isColMajor ? Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col_stride
12894                        : Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row_stride;
12895       break;
12896     default:
12897       llvm_unreachable("Unexpected builtin ID.");
12898     }
12899     Function *Intrinsic = CGM.getIntrinsic(IID, Dst->getType());
12900     llvm::Type *ParamType = Intrinsic->getFunctionType()->getParamType(1);
12901     SmallVector<Value *, 10> Values = {Dst};
12902     for (unsigned i = 0; i < NumResults; ++i) {
12903       Value *V = Builder.CreateAlignedLoad(
12904           Builder.CreateGEP(Src.getPointer(), llvm::ConstantInt::get(IntTy, i)),
12905           CharUnits::fromQuantity(4));
12906       Values.push_back(Builder.CreateBitCast(V, ParamType));
12907     }
12908     Values.push_back(Ldm);
12909     Value *Result = Builder.CreateCall(Intrinsic, Values);
12910     return Result;
12911   }
12912 
12913   // BI__hmma_m16n16k16_mma_<Dtype><CType>(d, a, b, c, layout, satf) -->
12914   // Intrinsic::nvvm_wmma_m16n16k16_mma_sync<layout A,B><DType><CType><Satf>
12915   case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
12916   case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
12917   case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
12918   case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
12919   case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
12920   case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
12921   case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
12922   case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
12923   case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
12924   case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
12925   case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
12926   case NVPTX::BI__hmma_m8n32k16_mma_f16f32: {
12927     Address Dst = EmitPointerWithAlignment(E->getArg(0));
12928     Address SrcA = EmitPointerWithAlignment(E->getArg(1));
12929     Address SrcB = EmitPointerWithAlignment(E->getArg(2));
12930     Address SrcC = EmitPointerWithAlignment(E->getArg(3));
12931     llvm::APSInt LayoutArg;
12932     if (!E->getArg(4)->isIntegerConstantExpr(LayoutArg, getContext()))
12933       return nullptr;
12934     int Layout = LayoutArg.getSExtValue();
12935     if (Layout < 0 || Layout > 3)
12936       return nullptr;
12937     llvm::APSInt SatfArg;
12938     if (!E->getArg(5)->isIntegerConstantExpr(SatfArg, getContext()))
12939       return nullptr;
12940     bool Satf = SatfArg.getSExtValue();
12941 
12942     // clang-format off
12943 #define MMA_VARIANTS(geom, type) {{                                 \
12944       Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type,             \
12945       Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type##_satfinite, \
12946       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type,             \
12947       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
12948       Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type,             \
12949       Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type##_satfinite, \
12950       Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type,             \
12951       Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type##_satfinite  \
12952     }}
12953     // clang-format on
12954 
12955     auto getMMAIntrinsic = [Layout, Satf](std::array<unsigned, 8> Variants) {
12956       unsigned Index = Layout * 2 + Satf;
12957       assert(Index < 8);
12958       return Variants[Index];
12959     };
12960     unsigned IID;
12961     unsigned NumEltsC;
12962     unsigned NumEltsD;
12963     switch (BuiltinID) {
12964     case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
12965       IID = getMMAIntrinsic(MMA_VARIANTS(m16n16k16, f16_f16));
12966       NumEltsC = 4;
12967       NumEltsD = 4;
12968       break;
12969     case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
12970       IID = getMMAIntrinsic(MMA_VARIANTS(m16n16k16, f32_f16));
12971       NumEltsC = 4;
12972       NumEltsD = 8;
12973       break;
12974     case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
12975       IID = getMMAIntrinsic(MMA_VARIANTS(m16n16k16, f16_f32));
12976       NumEltsC = 8;
12977       NumEltsD = 4;
12978       break;
12979     case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
12980       IID = getMMAIntrinsic(MMA_VARIANTS(m16n16k16, f32_f32));
12981       NumEltsC = 8;
12982       NumEltsD = 8;
12983       break;
12984     case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
12985       IID = getMMAIntrinsic(MMA_VARIANTS(m32n8k16, f16_f16));
12986       NumEltsC = 4;
12987       NumEltsD = 4;
12988       break;
12989     case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
12990       IID = getMMAIntrinsic(MMA_VARIANTS(m32n8k16, f32_f16));
12991       NumEltsC = 4;
12992       NumEltsD = 8;
12993       break;
12994     case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
12995       IID = getMMAIntrinsic(MMA_VARIANTS(m32n8k16, f16_f32));
12996       NumEltsC = 8;
12997       NumEltsD = 4;
12998       break;
12999     case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
13000       IID = getMMAIntrinsic(MMA_VARIANTS(m32n8k16, f32_f32));
13001       NumEltsC = 8;
13002       NumEltsD = 8;
13003       break;
13004     case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
13005       IID = getMMAIntrinsic(MMA_VARIANTS(m8n32k16, f16_f16));
13006       NumEltsC = 4;
13007       NumEltsD = 4;
13008       break;
13009     case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
13010       IID = getMMAIntrinsic(MMA_VARIANTS(m8n32k16, f32_f16));
13011       NumEltsC = 4;
13012       NumEltsD = 8;
13013       break;
13014     case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
13015       IID = getMMAIntrinsic(MMA_VARIANTS(m8n32k16, f16_f32));
13016       NumEltsC = 8;
13017       NumEltsD = 4;
13018       break;
13019     case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
13020       IID = getMMAIntrinsic(MMA_VARIANTS(m8n32k16, f32_f32));
13021       NumEltsC = 8;
13022       NumEltsD = 8;
13023       break;
13024     default:
13025       llvm_unreachable("Unexpected builtin ID.");
13026     }
13027 #undef MMA_VARIANTS
13028 
13029     SmallVector<Value *, 24> Values;
13030     Function *Intrinsic = CGM.getIntrinsic(IID);
13031     llvm::Type *ABType = Intrinsic->getFunctionType()->getParamType(0);
13032     // Load A
13033     for (unsigned i = 0; i < 8; ++i) {
13034       Value *V = Builder.CreateAlignedLoad(
13035           Builder.CreateGEP(SrcA.getPointer(),
13036                             llvm::ConstantInt::get(IntTy, i)),
13037           CharUnits::fromQuantity(4));
13038       Values.push_back(Builder.CreateBitCast(V, ABType));
13039     }
13040     // Load B
13041     for (unsigned i = 0; i < 8; ++i) {
13042       Value *V = Builder.CreateAlignedLoad(
13043           Builder.CreateGEP(SrcB.getPointer(),
13044                             llvm::ConstantInt::get(IntTy, i)),
13045           CharUnits::fromQuantity(4));
13046       Values.push_back(Builder.CreateBitCast(V, ABType));
13047     }
13048     // Load C
13049     llvm::Type *CType = Intrinsic->getFunctionType()->getParamType(16);
13050     for (unsigned i = 0; i < NumEltsC; ++i) {
13051       Value *V = Builder.CreateAlignedLoad(
13052           Builder.CreateGEP(SrcC.getPointer(),
13053                             llvm::ConstantInt::get(IntTy, i)),
13054           CharUnits::fromQuantity(4));
13055       Values.push_back(Builder.CreateBitCast(V, CType));
13056     }
13057     Value *Result = Builder.CreateCall(Intrinsic, Values);
13058     llvm::Type *DType = Dst.getElementType();
13059     for (unsigned i = 0; i < NumEltsD; ++i)
13060       Builder.CreateAlignedStore(
13061           Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), DType),
13062           Builder.CreateGEP(Dst.getPointer(), llvm::ConstantInt::get(IntTy, i)),
13063           CharUnits::fromQuantity(4));
13064     return Result;
13065   }
13066   default:
13067     return nullptr;
13068   }
13069 }
13070 
EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,const CallExpr * E)13071 Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
13072                                                    const CallExpr *E) {
13073   switch (BuiltinID) {
13074   case WebAssembly::BI__builtin_wasm_memory_size: {
13075     llvm::Type *ResultType = ConvertType(E->getType());
13076     Value *I = EmitScalarExpr(E->getArg(0));
13077     Value *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_size, ResultType);
13078     return Builder.CreateCall(Callee, I);
13079   }
13080   case WebAssembly::BI__builtin_wasm_memory_grow: {
13081     llvm::Type *ResultType = ConvertType(E->getType());
13082     Value *Args[] = {
13083       EmitScalarExpr(E->getArg(0)),
13084       EmitScalarExpr(E->getArg(1))
13085     };
13086     Value *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_grow, ResultType);
13087     return Builder.CreateCall(Callee, Args);
13088   }
13089   case WebAssembly::BI__builtin_wasm_throw: {
13090     Value *Tag = EmitScalarExpr(E->getArg(0));
13091     Value *Obj = EmitScalarExpr(E->getArg(1));
13092     Value *Callee = CGM.getIntrinsic(Intrinsic::wasm_throw);
13093     return Builder.CreateCall(Callee, {Tag, Obj});
13094   }
13095   case WebAssembly::BI__builtin_wasm_rethrow: {
13096     Value *Callee = CGM.getIntrinsic(Intrinsic::wasm_rethrow);
13097     return Builder.CreateCall(Callee);
13098   }
13099   case WebAssembly::BI__builtin_wasm_atomic_wait_i32: {
13100     Value *Addr = EmitScalarExpr(E->getArg(0));
13101     Value *Expected = EmitScalarExpr(E->getArg(1));
13102     Value *Timeout = EmitScalarExpr(E->getArg(2));
13103     Value *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_wait_i32);
13104     return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
13105   }
13106   case WebAssembly::BI__builtin_wasm_atomic_wait_i64: {
13107     Value *Addr = EmitScalarExpr(E->getArg(0));
13108     Value *Expected = EmitScalarExpr(E->getArg(1));
13109     Value *Timeout = EmitScalarExpr(E->getArg(2));
13110     Value *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_wait_i64);
13111     return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
13112   }
13113   case WebAssembly::BI__builtin_wasm_atomic_notify: {
13114     Value *Addr = EmitScalarExpr(E->getArg(0));
13115     Value *Count = EmitScalarExpr(E->getArg(1));
13116     Value *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_notify);
13117     return Builder.CreateCall(Callee, {Addr, Count});
13118   }
13119   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f32:
13120   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f64:
13121   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f32:
13122   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f64:
13123   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32x4_f32x4:
13124   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64x2_f64x2: {
13125     Value *Src = EmitScalarExpr(E->getArg(0));
13126     llvm::Type *ResT = ConvertType(E->getType());
13127     Value *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_saturate_signed,
13128                                      {ResT, Src->getType()});
13129     return Builder.CreateCall(Callee, {Src});
13130   }
13131   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f32:
13132   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f64:
13133   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f32:
13134   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f64:
13135   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32x4_f32x4:
13136   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64x2_f64x2: {
13137     Value *Src = EmitScalarExpr(E->getArg(0));
13138     llvm::Type *ResT = ConvertType(E->getType());
13139     Value *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_saturate_unsigned,
13140                                      {ResT, Src->getType()});
13141     return Builder.CreateCall(Callee, {Src});
13142   }
13143   case WebAssembly::BI__builtin_wasm_min_f32:
13144   case WebAssembly::BI__builtin_wasm_min_f64:
13145   case WebAssembly::BI__builtin_wasm_min_f32x4:
13146   case WebAssembly::BI__builtin_wasm_min_f64x2: {
13147     Value *LHS = EmitScalarExpr(E->getArg(0));
13148     Value *RHS = EmitScalarExpr(E->getArg(1));
13149     Value *Callee = CGM.getIntrinsic(Intrinsic::minimum,
13150                                      ConvertType(E->getType()));
13151     return Builder.CreateCall(Callee, {LHS, RHS});
13152   }
13153   case WebAssembly::BI__builtin_wasm_max_f32:
13154   case WebAssembly::BI__builtin_wasm_max_f64:
13155   case WebAssembly::BI__builtin_wasm_max_f32x4:
13156   case WebAssembly::BI__builtin_wasm_max_f64x2: {
13157     Value *LHS = EmitScalarExpr(E->getArg(0));
13158     Value *RHS = EmitScalarExpr(E->getArg(1));
13159     Value *Callee = CGM.getIntrinsic(Intrinsic::maximum,
13160                                      ConvertType(E->getType()));
13161     return Builder.CreateCall(Callee, {LHS, RHS});
13162   }
13163   case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16:
13164   case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16:
13165   case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8:
13166   case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8:
13167   case WebAssembly::BI__builtin_wasm_extract_lane_i32x4:
13168   case WebAssembly::BI__builtin_wasm_extract_lane_i64x2:
13169   case WebAssembly::BI__builtin_wasm_extract_lane_f32x4:
13170   case WebAssembly::BI__builtin_wasm_extract_lane_f64x2: {
13171     llvm::APSInt LaneConst;
13172     if (!E->getArg(1)->isIntegerConstantExpr(LaneConst, getContext()))
13173       llvm_unreachable("Constant arg isn't actually constant?");
13174     Value *Vec = EmitScalarExpr(E->getArg(0));
13175     Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst);
13176     Value *Extract = Builder.CreateExtractElement(Vec, Lane);
13177     switch (BuiltinID) {
13178     case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16:
13179     case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8:
13180       return Builder.CreateSExt(Extract, ConvertType(E->getType()));
13181     case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16:
13182     case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8:
13183       return Builder.CreateZExt(Extract, ConvertType(E->getType()));
13184     case WebAssembly::BI__builtin_wasm_extract_lane_i32x4:
13185     case WebAssembly::BI__builtin_wasm_extract_lane_i64x2:
13186     case WebAssembly::BI__builtin_wasm_extract_lane_f32x4:
13187     case WebAssembly::BI__builtin_wasm_extract_lane_f64x2:
13188       return Extract;
13189     default:
13190       llvm_unreachable("unexpected builtin ID");
13191     }
13192   }
13193   case WebAssembly::BI__builtin_wasm_replace_lane_i8x16:
13194   case WebAssembly::BI__builtin_wasm_replace_lane_i16x8:
13195   case WebAssembly::BI__builtin_wasm_replace_lane_i32x4:
13196   case WebAssembly::BI__builtin_wasm_replace_lane_i64x2:
13197   case WebAssembly::BI__builtin_wasm_replace_lane_f32x4:
13198   case WebAssembly::BI__builtin_wasm_replace_lane_f64x2: {
13199     llvm::APSInt LaneConst;
13200     if (!E->getArg(1)->isIntegerConstantExpr(LaneConst, getContext()))
13201       llvm_unreachable("Constant arg isn't actually constant?");
13202     Value *Vec = EmitScalarExpr(E->getArg(0));
13203     Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst);
13204     Value *Val = EmitScalarExpr(E->getArg(2));
13205     switch (BuiltinID) {
13206     case WebAssembly::BI__builtin_wasm_replace_lane_i8x16:
13207     case WebAssembly::BI__builtin_wasm_replace_lane_i16x8: {
13208       llvm::Type *ElemType = ConvertType(E->getType())->getVectorElementType();
13209       Value *Trunc = Builder.CreateTrunc(Val, ElemType);
13210       return Builder.CreateInsertElement(Vec, Trunc, Lane);
13211     }
13212     case WebAssembly::BI__builtin_wasm_replace_lane_i32x4:
13213     case WebAssembly::BI__builtin_wasm_replace_lane_i64x2:
13214     case WebAssembly::BI__builtin_wasm_replace_lane_f32x4:
13215     case WebAssembly::BI__builtin_wasm_replace_lane_f64x2:
13216       return Builder.CreateInsertElement(Vec, Val, Lane);
13217     default:
13218       llvm_unreachable("unexpected builtin ID");
13219     }
13220   }
13221   case WebAssembly::BI__builtin_wasm_add_saturate_s_i8x16:
13222   case WebAssembly::BI__builtin_wasm_add_saturate_u_i8x16:
13223   case WebAssembly::BI__builtin_wasm_add_saturate_s_i16x8:
13224   case WebAssembly::BI__builtin_wasm_add_saturate_u_i16x8:
13225   case WebAssembly::BI__builtin_wasm_sub_saturate_s_i8x16:
13226   case WebAssembly::BI__builtin_wasm_sub_saturate_u_i8x16:
13227   case WebAssembly::BI__builtin_wasm_sub_saturate_s_i16x8:
13228   case WebAssembly::BI__builtin_wasm_sub_saturate_u_i16x8: {
13229     unsigned IntNo;
13230     switch (BuiltinID) {
13231     case WebAssembly::BI__builtin_wasm_add_saturate_s_i8x16:
13232     case WebAssembly::BI__builtin_wasm_add_saturate_s_i16x8:
13233       IntNo = Intrinsic::sadd_sat;
13234       break;
13235     case WebAssembly::BI__builtin_wasm_add_saturate_u_i8x16:
13236     case WebAssembly::BI__builtin_wasm_add_saturate_u_i16x8:
13237       IntNo = Intrinsic::uadd_sat;
13238       break;
13239     case WebAssembly::BI__builtin_wasm_sub_saturate_s_i8x16:
13240     case WebAssembly::BI__builtin_wasm_sub_saturate_s_i16x8:
13241       IntNo = Intrinsic::wasm_sub_saturate_signed;
13242       break;
13243     case WebAssembly::BI__builtin_wasm_sub_saturate_u_i8x16:
13244     case WebAssembly::BI__builtin_wasm_sub_saturate_u_i16x8:
13245       IntNo = Intrinsic::wasm_sub_saturate_unsigned;
13246       break;
13247     default:
13248       llvm_unreachable("unexpected builtin ID");
13249     }
13250     Value *LHS = EmitScalarExpr(E->getArg(0));
13251     Value *RHS = EmitScalarExpr(E->getArg(1));
13252     Value *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
13253     return Builder.CreateCall(Callee, {LHS, RHS});
13254   }
13255   case WebAssembly::BI__builtin_wasm_bitselect: {
13256     Value *V1 = EmitScalarExpr(E->getArg(0));
13257     Value *V2 = EmitScalarExpr(E->getArg(1));
13258     Value *C = EmitScalarExpr(E->getArg(2));
13259     Value *Callee = CGM.getIntrinsic(Intrinsic::wasm_bitselect,
13260                                      ConvertType(E->getType()));
13261     return Builder.CreateCall(Callee, {V1, V2, C});
13262   }
13263   case WebAssembly::BI__builtin_wasm_any_true_i8x16:
13264   case WebAssembly::BI__builtin_wasm_any_true_i16x8:
13265   case WebAssembly::BI__builtin_wasm_any_true_i32x4:
13266   case WebAssembly::BI__builtin_wasm_any_true_i64x2:
13267   case WebAssembly::BI__builtin_wasm_all_true_i8x16:
13268   case WebAssembly::BI__builtin_wasm_all_true_i16x8:
13269   case WebAssembly::BI__builtin_wasm_all_true_i32x4:
13270   case WebAssembly::BI__builtin_wasm_all_true_i64x2: {
13271     unsigned IntNo;
13272     switch (BuiltinID) {
13273     case WebAssembly::BI__builtin_wasm_any_true_i8x16:
13274     case WebAssembly::BI__builtin_wasm_any_true_i16x8:
13275     case WebAssembly::BI__builtin_wasm_any_true_i32x4:
13276     case WebAssembly::BI__builtin_wasm_any_true_i64x2:
13277       IntNo = Intrinsic::wasm_anytrue;
13278       break;
13279     case WebAssembly::BI__builtin_wasm_all_true_i8x16:
13280     case WebAssembly::BI__builtin_wasm_all_true_i16x8:
13281     case WebAssembly::BI__builtin_wasm_all_true_i32x4:
13282     case WebAssembly::BI__builtin_wasm_all_true_i64x2:
13283       IntNo = Intrinsic::wasm_alltrue;
13284       break;
13285     default:
13286       llvm_unreachable("unexpected builtin ID");
13287     }
13288     Value *Vec = EmitScalarExpr(E->getArg(0));
13289     Value *Callee = CGM.getIntrinsic(IntNo, Vec->getType());
13290     return Builder.CreateCall(Callee, {Vec});
13291   }
13292   case WebAssembly::BI__builtin_wasm_abs_f32x4:
13293   case WebAssembly::BI__builtin_wasm_abs_f64x2: {
13294     Value *Vec = EmitScalarExpr(E->getArg(0));
13295     Value *Callee = CGM.getIntrinsic(Intrinsic::fabs, Vec->getType());
13296     return Builder.CreateCall(Callee, {Vec});
13297   }
13298   case WebAssembly::BI__builtin_wasm_sqrt_f32x4:
13299   case WebAssembly::BI__builtin_wasm_sqrt_f64x2: {
13300     Value *Vec = EmitScalarExpr(E->getArg(0));
13301     Value *Callee = CGM.getIntrinsic(Intrinsic::sqrt, Vec->getType());
13302     return Builder.CreateCall(Callee, {Vec});
13303   }
13304 
13305   default:
13306     return nullptr;
13307   }
13308 }
13309 
EmitHexagonBuiltinExpr(unsigned BuiltinID,const CallExpr * E)13310 Value *CodeGenFunction::EmitHexagonBuiltinExpr(unsigned BuiltinID,
13311                                                const CallExpr *E) {
13312   SmallVector<llvm::Value *, 4> Ops;
13313   Intrinsic::ID ID = Intrinsic::not_intrinsic;
13314 
13315   auto MakeCircLd = [&](unsigned IntID, bool HasImm) {
13316     // The base pointer is passed by address, so it needs to be loaded.
13317     Address BP = EmitPointerWithAlignment(E->getArg(0));
13318     BP = Address(Builder.CreateBitCast(BP.getPointer(), Int8PtrPtrTy),
13319                  BP.getAlignment());
13320     llvm::Value *Base = Builder.CreateLoad(BP);
13321     // Operands are Base, Increment, Modifier, Start.
13322     if (HasImm)
13323       Ops = { Base, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)),
13324               EmitScalarExpr(E->getArg(3)) };
13325     else
13326       Ops = { Base, EmitScalarExpr(E->getArg(1)),
13327               EmitScalarExpr(E->getArg(2)) };
13328 
13329     llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
13330     llvm::Value *NewBase = Builder.CreateExtractValue(Result, 1);
13331     llvm::Value *LV = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)),
13332                                             NewBase->getType()->getPointerTo());
13333     Address Dest = EmitPointerWithAlignment(E->getArg(0));
13334     // The intrinsic generates two results. The new value for the base pointer
13335     // needs to be stored.
13336     Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment());
13337     return Builder.CreateExtractValue(Result, 0);
13338   };
13339 
13340   auto MakeCircSt = [&](unsigned IntID, bool HasImm) {
13341     // The base pointer is passed by address, so it needs to be loaded.
13342     Address BP = EmitPointerWithAlignment(E->getArg(0));
13343     BP = Address(Builder.CreateBitCast(BP.getPointer(), Int8PtrPtrTy),
13344                  BP.getAlignment());
13345     llvm::Value *Base = Builder.CreateLoad(BP);
13346     // Operands are Base, Increment, Modifier, Value, Start.
13347     if (HasImm)
13348       Ops = { Base, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)),
13349               EmitScalarExpr(E->getArg(3)), EmitScalarExpr(E->getArg(4)) };
13350     else
13351       Ops = { Base, EmitScalarExpr(E->getArg(1)),
13352               EmitScalarExpr(E->getArg(2)), EmitScalarExpr(E->getArg(3)) };
13353 
13354     llvm::Value *NewBase = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
13355     llvm::Value *LV = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)),
13356                                             NewBase->getType()->getPointerTo());
13357     Address Dest = EmitPointerWithAlignment(E->getArg(0));
13358     // The intrinsic generates one result, which is the new value for the base
13359     // pointer. It needs to be stored.
13360     return Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment());
13361   };
13362 
13363   // Handle the conversion of bit-reverse load intrinsics to bit code.
13364   // The intrinsic call after this function only reads from memory and the
13365   // write to memory is dealt by the store instruction.
13366   auto MakeBrevLd = [&](unsigned IntID, llvm::Type *DestTy) {
13367     // The intrinsic generates one result, which is the new value for the base
13368     // pointer. It needs to be returned. The result of the load instruction is
13369     // passed to intrinsic by address, so the value needs to be stored.
13370     llvm::Value *BaseAddress =
13371         Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int8PtrTy);
13372 
13373     // Expressions like &(*pt++) will be incremented per evaluation.
13374     // EmitPointerWithAlignment and EmitScalarExpr evaluates the expression
13375     // per call.
13376     Address DestAddr = EmitPointerWithAlignment(E->getArg(1));
13377     DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), Int8PtrTy),
13378                        DestAddr.getAlignment());
13379     llvm::Value *DestAddress = DestAddr.getPointer();
13380 
13381     // Operands are Base, Dest, Modifier.
13382     // The intrinsic format in LLVM IR is defined as
13383     // { ValueType, i8* } (i8*, i32).
13384     Ops = {BaseAddress, EmitScalarExpr(E->getArg(2))};
13385 
13386     llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
13387     // The value needs to be stored as the variable is passed by reference.
13388     llvm::Value *DestVal = Builder.CreateExtractValue(Result, 0);
13389 
13390     // The store needs to be truncated to fit the destination type.
13391     // While i32 and i64 are natively supported on Hexagon, i8 and i16 needs
13392     // to be handled with stores of respective destination type.
13393     DestVal = Builder.CreateTrunc(DestVal, DestTy);
13394 
13395     llvm::Value *DestForStore =
13396         Builder.CreateBitCast(DestAddress, DestVal->getType()->getPointerTo());
13397     Builder.CreateAlignedStore(DestVal, DestForStore, DestAddr.getAlignment());
13398     // The updated value of the base pointer is returned.
13399     return Builder.CreateExtractValue(Result, 1);
13400   };
13401 
13402   switch (BuiltinID) {
13403   case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry:
13404   case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B: {
13405     Address Dest = EmitPointerWithAlignment(E->getArg(2));
13406     unsigned Size;
13407     if (BuiltinID == Hexagon::BI__builtin_HEXAGON_V6_vaddcarry) {
13408       Size = 512;
13409       ID = Intrinsic::hexagon_V6_vaddcarry;
13410     } else {
13411       Size = 1024;
13412       ID = Intrinsic::hexagon_V6_vaddcarry_128B;
13413     }
13414     Dest = Builder.CreateBitCast(Dest,
13415         llvm::VectorType::get(Builder.getInt1Ty(), Size)->getPointerTo(0));
13416     LoadInst *QLd = Builder.CreateLoad(Dest);
13417     Ops = { EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), QLd };
13418     llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
13419     llvm::Value *Vprd = Builder.CreateExtractValue(Result, 1);
13420     llvm::Value *Base = Builder.CreateBitCast(EmitScalarExpr(E->getArg(2)),
13421                                               Vprd->getType()->getPointerTo(0));
13422     Builder.CreateAlignedStore(Vprd, Base, Dest.getAlignment());
13423     return Builder.CreateExtractValue(Result, 0);
13424   }
13425   case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry:
13426   case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B: {
13427     Address Dest = EmitPointerWithAlignment(E->getArg(2));
13428     unsigned Size;
13429     if (BuiltinID == Hexagon::BI__builtin_HEXAGON_V6_vsubcarry) {
13430       Size = 512;
13431       ID = Intrinsic::hexagon_V6_vsubcarry;
13432     } else {
13433       Size = 1024;
13434       ID = Intrinsic::hexagon_V6_vsubcarry_128B;
13435     }
13436     Dest = Builder.CreateBitCast(Dest,
13437         llvm::VectorType::get(Builder.getInt1Ty(), Size)->getPointerTo(0));
13438     LoadInst *QLd = Builder.CreateLoad(Dest);
13439     Ops = { EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), QLd };
13440     llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
13441     llvm::Value *Vprd = Builder.CreateExtractValue(Result, 1);
13442     llvm::Value *Base = Builder.CreateBitCast(EmitScalarExpr(E->getArg(2)),
13443                                               Vprd->getType()->getPointerTo(0));
13444     Builder.CreateAlignedStore(Vprd, Base, Dest.getAlignment());
13445     return Builder.CreateExtractValue(Result, 0);
13446   }
13447   case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci:
13448     return MakeCircLd(Intrinsic::hexagon_L2_loadrub_pci, /*HasImm*/true);
13449   case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci:
13450     return MakeCircLd(Intrinsic::hexagon_L2_loadrb_pci,  /*HasImm*/true);
13451   case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci:
13452     return MakeCircLd(Intrinsic::hexagon_L2_loadruh_pci, /*HasImm*/true);
13453   case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci:
13454     return MakeCircLd(Intrinsic::hexagon_L2_loadrh_pci,  /*HasImm*/true);
13455   case Hexagon::BI__builtin_HEXAGON_L2_loadri_pci:
13456     return MakeCircLd(Intrinsic::hexagon_L2_loadri_pci,  /*HasImm*/true);
13457   case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci:
13458     return MakeCircLd(Intrinsic::hexagon_L2_loadrd_pci,  /*HasImm*/true);
13459   case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pcr:
13460     return MakeCircLd(Intrinsic::hexagon_L2_loadrub_pcr, /*HasImm*/false);
13461   case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pcr:
13462     return MakeCircLd(Intrinsic::hexagon_L2_loadrb_pcr,  /*HasImm*/false);
13463   case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pcr:
13464     return MakeCircLd(Intrinsic::hexagon_L2_loadruh_pcr, /*HasImm*/false);
13465   case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pcr:
13466     return MakeCircLd(Intrinsic::hexagon_L2_loadrh_pcr,  /*HasImm*/false);
13467   case Hexagon::BI__builtin_HEXAGON_L2_loadri_pcr:
13468     return MakeCircLd(Intrinsic::hexagon_L2_loadri_pcr,  /*HasImm*/false);
13469   case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pcr:
13470     return MakeCircLd(Intrinsic::hexagon_L2_loadrd_pcr,  /*HasImm*/false);
13471   case Hexagon::BI__builtin_HEXAGON_S2_storerb_pci:
13472     return MakeCircSt(Intrinsic::hexagon_S2_storerb_pci, /*HasImm*/true);
13473   case Hexagon::BI__builtin_HEXAGON_S2_storerh_pci:
13474     return MakeCircSt(Intrinsic::hexagon_S2_storerh_pci, /*HasImm*/true);
13475   case Hexagon::BI__builtin_HEXAGON_S2_storerf_pci:
13476     return MakeCircSt(Intrinsic::hexagon_S2_storerf_pci, /*HasImm*/true);
13477   case Hexagon::BI__builtin_HEXAGON_S2_storeri_pci:
13478     return MakeCircSt(Intrinsic::hexagon_S2_storeri_pci, /*HasImm*/true);
13479   case Hexagon::BI__builtin_HEXAGON_S2_storerd_pci:
13480     return MakeCircSt(Intrinsic::hexagon_S2_storerd_pci, /*HasImm*/true);
13481   case Hexagon::BI__builtin_HEXAGON_S2_storerb_pcr:
13482     return MakeCircSt(Intrinsic::hexagon_S2_storerb_pcr, /*HasImm*/false);
13483   case Hexagon::BI__builtin_HEXAGON_S2_storerh_pcr:
13484     return MakeCircSt(Intrinsic::hexagon_S2_storerh_pcr, /*HasImm*/false);
13485   case Hexagon::BI__builtin_HEXAGON_S2_storerf_pcr:
13486     return MakeCircSt(Intrinsic::hexagon_S2_storerf_pcr, /*HasImm*/false);
13487   case Hexagon::BI__builtin_HEXAGON_S2_storeri_pcr:
13488     return MakeCircSt(Intrinsic::hexagon_S2_storeri_pcr, /*HasImm*/false);
13489   case Hexagon::BI__builtin_HEXAGON_S2_storerd_pcr:
13490     return MakeCircSt(Intrinsic::hexagon_S2_storerd_pcr, /*HasImm*/false);
13491   case Hexagon::BI__builtin_brev_ldub:
13492     return MakeBrevLd(Intrinsic::hexagon_L2_loadrub_pbr, Int8Ty);
13493   case Hexagon::BI__builtin_brev_ldb:
13494     return MakeBrevLd(Intrinsic::hexagon_L2_loadrb_pbr, Int8Ty);
13495   case Hexagon::BI__builtin_brev_lduh:
13496     return MakeBrevLd(Intrinsic::hexagon_L2_loadruh_pbr, Int16Ty);
13497   case Hexagon::BI__builtin_brev_ldh:
13498     return MakeBrevLd(Intrinsic::hexagon_L2_loadrh_pbr, Int16Ty);
13499   case Hexagon::BI__builtin_brev_ldw:
13500     return MakeBrevLd(Intrinsic::hexagon_L2_loadri_pbr, Int32Ty);
13501   case Hexagon::BI__builtin_brev_ldd:
13502     return MakeBrevLd(Intrinsic::hexagon_L2_loadrd_pbr, Int64Ty);
13503   default:
13504     break;
13505   } // switch
13506 
13507   return nullptr;
13508 }
13509