1 //===- ICF.cpp ------------------------------------------------------------===//
2 //
3 //                             The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // ICF is short for Identical Code Folding. This is a size optimization to
11 // identify and merge two or more read-only sections (typically functions)
12 // that happened to have the same contents. It usually reduces output size
13 // by a few percent.
14 //
15 // In ICF, two sections are considered identical if they have the same
16 // section flags, section data, and relocations. Relocations are tricky,
17 // because two relocations are considered the same if they have the same
18 // relocation types, values, and if they point to the same sections *in
19 // terms of ICF*.
20 //
21 // Here is an example. If foo and bar defined below are compiled to the
22 // same machine instructions, ICF can and should merge the two, although
23 // their relocations point to each other.
24 //
25 //   void foo() { bar(); }
26 //   void bar() { foo(); }
27 //
28 // If you merge the two, their relocations point to the same section and
29 // thus you know they are mergeable, but how do you know they are
30 // mergeable in the first place? This is not an easy problem to solve.
31 //
32 // What we are doing in LLD is to partition sections into equivalence
33 // classes. Sections in the same equivalence class when the algorithm
34 // terminates are considered identical. Here are details:
35 //
36 // 1. First, we partition sections using their hash values as keys. Hash
37 //    values contain section types, section contents and numbers of
38 //    relocations. During this step, relocation targets are not taken into
39 //    account. We just put sections that apparently differ into different
40 //    equivalence classes.
41 //
42 // 2. Next, for each equivalence class, we visit sections to compare
43 //    relocation targets. Relocation targets are considered equivalent if
44 //    their targets are in the same equivalence class. Sections with
45 //    different relocation targets are put into different equivalence
46 //    clases.
47 //
48 // 3. If we split an equivalence class in step 2, two relocations
49 //    previously target the same equivalence class may now target
50 //    different equivalence classes. Therefore, we repeat step 2 until a
51 //    convergence is obtained.
52 //
53 // 4. For each equivalence class C, pick an arbitrary section in C, and
54 //    merge all the other sections in C with it.
55 //
56 // For small programs, this algorithm needs 3-5 iterations. For large
57 // programs such as Chromium, it takes more than 20 iterations.
58 //
59 // This algorithm was mentioned as an "optimistic algorithm" in [1],
60 // though gold implements a different algorithm than this.
61 //
62 // We parallelize each step so that multiple threads can work on different
63 // equivalence classes concurrently. That gave us a large performance
64 // boost when applying ICF on large programs. For example, MSVC link.exe
65 // or GNU gold takes 10-20 seconds to apply ICF on Chromium, whose output
66 // size is about 1.5 GB, but LLD can finish it in less than 2 seconds on a
67 // 2.8 GHz 40 core machine. Even without threading, LLD's ICF is still
68 // faster than MSVC or gold though.
69 //
70 // [1] Safe ICF: Pointer Safe and Unwinding aware Identical Code Folding
71 // in the Gold Linker
72 // http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36912.pdf
73 //
74 //===----------------------------------------------------------------------===//
75 
76 #include "ICF.h"
77 #include "Config.h"
78 #include "SymbolTable.h"
79 #include "Symbols.h"
80 #include "SyntheticSections.h"
81 #include "Writer.h"
82 #include "lld/Common/Threads.h"
83 #include "llvm/ADT/StringExtras.h"
84 #include "llvm/BinaryFormat/ELF.h"
85 #include "llvm/Object/ELF.h"
86 #include "llvm/Support/xxhash.h"
87 #include <algorithm>
88 #include <atomic>
89 
90 using namespace lld;
91 using namespace lld::elf;
92 using namespace llvm;
93 using namespace llvm::ELF;
94 using namespace llvm::object;
95 
96 namespace {
97 template <class ELFT> class ICF {
98 public:
99   void run();
100 
101 private:
102   void segregate(size_t Begin, size_t End, bool Constant);
103 
104   template <class RelTy>
105   bool constantEq(const InputSection *A, ArrayRef<RelTy> RelsA,
106                   const InputSection *B, ArrayRef<RelTy> RelsB);
107 
108   template <class RelTy>
109   bool variableEq(const InputSection *A, ArrayRef<RelTy> RelsA,
110                   const InputSection *B, ArrayRef<RelTy> RelsB);
111 
112   bool equalsConstant(const InputSection *A, const InputSection *B);
113   bool equalsVariable(const InputSection *A, const InputSection *B);
114 
115   size_t findBoundary(size_t Begin, size_t End);
116 
117   void forEachClassRange(size_t Begin, size_t End,
118                          llvm::function_ref<void(size_t, size_t)> Fn);
119 
120   void forEachClass(llvm::function_ref<void(size_t, size_t)> Fn);
121 
122   std::vector<InputSection *> Sections;
123 
124   // We repeat the main loop while `Repeat` is true.
125   std::atomic<bool> Repeat;
126 
127   // The main loop counter.
128   int Cnt = 0;
129 
130   // We have two locations for equivalence classes. On the first iteration
131   // of the main loop, Class[0] has a valid value, and Class[1] contains
132   // garbage. We read equivalence classes from slot 0 and write to slot 1.
133   // So, Class[0] represents the current class, and Class[1] represents
134   // the next class. On each iteration, we switch their roles and use them
135   // alternately.
136   //
137   // Why are we doing this? Recall that other threads may be working on
138   // other equivalence classes in parallel. They may read sections that we
139   // are updating. We cannot update equivalence classes in place because
140   // it breaks the invariance that all possibly-identical sections must be
141   // in the same equivalence class at any moment. In other words, the for
142   // loop to update equivalence classes is not atomic, and that is
143   // observable from other threads. By writing new classes to other
144   // places, we can keep the invariance.
145   //
146   // Below, `Current` has the index of the current class, and `Next` has
147   // the index of the next class. If threading is enabled, they are either
148   // (0, 1) or (1, 0).
149   //
150   // Note on single-thread: if that's the case, they are always (0, 0)
151   // because we can safely read the next class without worrying about race
152   // conditions. Using the same location makes this algorithm converge
153   // faster because it uses results of the same iteration earlier.
154   int Current = 0;
155   int Next = 0;
156 };
157 }
158 
159 // Returns true if section S is subject of ICF.
isEligible(InputSection * S)160 static bool isEligible(InputSection *S) {
161   if (!S->Live || S->KeepUnique || !(S->Flags & SHF_ALLOC))
162     return false;
163 
164   // Don't merge writable sections. .data.rel.ro sections are marked as writable
165   // but are semantically read-only.
166   if ((S->Flags & SHF_WRITE) && S->Name != ".data.rel.ro" &&
167       !S->Name.startswith(".data.rel.ro."))
168     return false;
169 
170   // SHF_LINK_ORDER sections are ICF'd as a unit with their dependent sections,
171   // so we don't consider them for ICF individually.
172   if (S->Flags & SHF_LINK_ORDER)
173     return false;
174 
175   // Don't merge synthetic sections as their Data member is not valid and empty.
176   // The Data member needs to be valid for ICF as it is used by ICF to determine
177   // the equality of section contents.
178   if (isa<SyntheticSection>(S))
179     return false;
180 
181   // .init and .fini contains instructions that must be executed to initialize
182   // and finalize the process. They cannot and should not be merged.
183   if (S->Name == ".init" || S->Name == ".fini")
184     return false;
185 
186   // A user program may enumerate sections named with a C identifier using
187   // __start_* and __stop_* symbols. We cannot ICF any such sections because
188   // that could change program semantics.
189   if (isValidCIdentifier(S->Name))
190     return false;
191 
192   return true;
193 }
194 
195 // Split an equivalence class into smaller classes.
196 template <class ELFT>
segregate(size_t Begin,size_t End,bool Constant)197 void ICF<ELFT>::segregate(size_t Begin, size_t End, bool Constant) {
198   // This loop rearranges sections in [Begin, End) so that all sections
199   // that are equal in terms of equals{Constant,Variable} are contiguous
200   // in [Begin, End).
201   //
202   // The algorithm is quadratic in the worst case, but that is not an
203   // issue in practice because the number of the distinct sections in
204   // each range is usually very small.
205 
206   while (Begin < End) {
207     // Divide [Begin, End) into two. Let Mid be the start index of the
208     // second group.
209     auto Bound =
210         std::stable_partition(Sections.begin() + Begin + 1,
211                               Sections.begin() + End, [&](InputSection *S) {
212                                 if (Constant)
213                                   return equalsConstant(Sections[Begin], S);
214                                 return equalsVariable(Sections[Begin], S);
215                               });
216     size_t Mid = Bound - Sections.begin();
217 
218     // Now we split [Begin, End) into [Begin, Mid) and [Mid, End) by
219     // updating the sections in [Begin, Mid). We use Mid as an equivalence
220     // class ID because every group ends with a unique index.
221     for (size_t I = Begin; I < Mid; ++I)
222       Sections[I]->Class[Next] = Mid;
223 
224     // If we created a group, we need to iterate the main loop again.
225     if (Mid != End)
226       Repeat = true;
227 
228     Begin = Mid;
229   }
230 }
231 
232 // Compare two lists of relocations.
233 template <class ELFT>
234 template <class RelTy>
constantEq(const InputSection * SecA,ArrayRef<RelTy> RA,const InputSection * SecB,ArrayRef<RelTy> RB)235 bool ICF<ELFT>::constantEq(const InputSection *SecA, ArrayRef<RelTy> RA,
236                            const InputSection *SecB, ArrayRef<RelTy> RB) {
237   for (size_t I = 0; I < RA.size(); ++I) {
238     if (RA[I].r_offset != RB[I].r_offset ||
239         RA[I].getType(Config->IsMips64EL) != RB[I].getType(Config->IsMips64EL))
240       return false;
241 
242     uint64_t AddA = getAddend<ELFT>(RA[I]);
243     uint64_t AddB = getAddend<ELFT>(RB[I]);
244 
245     Symbol &SA = SecA->template getFile<ELFT>()->getRelocTargetSym(RA[I]);
246     Symbol &SB = SecB->template getFile<ELFT>()->getRelocTargetSym(RB[I]);
247     if (&SA == &SB) {
248       if (AddA == AddB)
249         continue;
250       return false;
251     }
252 
253     auto *DA = dyn_cast<Defined>(&SA);
254     auto *DB = dyn_cast<Defined>(&SB);
255 
256     // Placeholder symbols generated by linker scripts look the same now but
257     // may have different values later.
258     if (!DA || !DB || DA->ScriptDefined || DB->ScriptDefined)
259       return false;
260 
261     // Relocations referring to absolute symbols are constant-equal if their
262     // values are equal.
263     if (!DA->Section && !DB->Section && DA->Value + AddA == DB->Value + AddB)
264       continue;
265     if (!DA->Section || !DB->Section)
266       return false;
267 
268     if (DA->Section->kind() != DB->Section->kind())
269       return false;
270 
271     // Relocations referring to InputSections are constant-equal if their
272     // section offsets are equal.
273     if (isa<InputSection>(DA->Section)) {
274       if (DA->Value + AddA == DB->Value + AddB)
275         continue;
276       return false;
277     }
278 
279     // Relocations referring to MergeInputSections are constant-equal if their
280     // offsets in the output section are equal.
281     auto *X = dyn_cast<MergeInputSection>(DA->Section);
282     if (!X)
283       return false;
284     auto *Y = cast<MergeInputSection>(DB->Section);
285     if (X->getParent() != Y->getParent())
286       return false;
287 
288     uint64_t OffsetA =
289         SA.isSection() ? X->getOffset(AddA) : X->getOffset(DA->Value) + AddA;
290     uint64_t OffsetB =
291         SB.isSection() ? Y->getOffset(AddB) : Y->getOffset(DB->Value) + AddB;
292     if (OffsetA != OffsetB)
293       return false;
294   }
295 
296   return true;
297 }
298 
299 // Compare "non-moving" part of two InputSections, namely everything
300 // except relocation targets.
301 template <class ELFT>
equalsConstant(const InputSection * A,const InputSection * B)302 bool ICF<ELFT>::equalsConstant(const InputSection *A, const InputSection *B) {
303   if (A->NumRelocations != B->NumRelocations || A->Flags != B->Flags ||
304       A->getSize() != B->getSize() || A->data() != B->data())
305     return false;
306 
307   // If two sections have different output sections, we cannot merge them.
308   // FIXME: This doesn't do the right thing in the case where there is a linker
309   // script. We probably need to move output section assignment before ICF to
310   // get the correct behaviour here.
311   if (getOutputSectionName(A) != getOutputSectionName(B))
312     return false;
313 
314   if (A->AreRelocsRela)
315     return constantEq(A, A->template relas<ELFT>(), B,
316                       B->template relas<ELFT>());
317   return constantEq(A, A->template rels<ELFT>(), B, B->template rels<ELFT>());
318 }
319 
320 // Compare two lists of relocations. Returns true if all pairs of
321 // relocations point to the same section in terms of ICF.
322 template <class ELFT>
323 template <class RelTy>
variableEq(const InputSection * SecA,ArrayRef<RelTy> RA,const InputSection * SecB,ArrayRef<RelTy> RB)324 bool ICF<ELFT>::variableEq(const InputSection *SecA, ArrayRef<RelTy> RA,
325                            const InputSection *SecB, ArrayRef<RelTy> RB) {
326   assert(RA.size() == RB.size());
327 
328   for (size_t I = 0; I < RA.size(); ++I) {
329     // The two sections must be identical.
330     Symbol &SA = SecA->template getFile<ELFT>()->getRelocTargetSym(RA[I]);
331     Symbol &SB = SecB->template getFile<ELFT>()->getRelocTargetSym(RB[I]);
332     if (&SA == &SB)
333       continue;
334 
335     auto *DA = cast<Defined>(&SA);
336     auto *DB = cast<Defined>(&SB);
337 
338     // We already dealt with absolute and non-InputSection symbols in
339     // constantEq, and for InputSections we have already checked everything
340     // except the equivalence class.
341     if (!DA->Section)
342       continue;
343     auto *X = dyn_cast<InputSection>(DA->Section);
344     if (!X)
345       continue;
346     auto *Y = cast<InputSection>(DB->Section);
347 
348     // Ineligible sections are in the special equivalence class 0.
349     // They can never be the same in terms of the equivalence class.
350     if (X->Class[Current] == 0)
351       return false;
352     if (X->Class[Current] != Y->Class[Current])
353       return false;
354   };
355 
356   return true;
357 }
358 
359 // Compare "moving" part of two InputSections, namely relocation targets.
360 template <class ELFT>
equalsVariable(const InputSection * A,const InputSection * B)361 bool ICF<ELFT>::equalsVariable(const InputSection *A, const InputSection *B) {
362   if (A->AreRelocsRela)
363     return variableEq(A, A->template relas<ELFT>(), B,
364                       B->template relas<ELFT>());
365   return variableEq(A, A->template rels<ELFT>(), B, B->template rels<ELFT>());
366 }
367 
findBoundary(size_t Begin,size_t End)368 template <class ELFT> size_t ICF<ELFT>::findBoundary(size_t Begin, size_t End) {
369   uint32_t Class = Sections[Begin]->Class[Current];
370   for (size_t I = Begin + 1; I < End; ++I)
371     if (Class != Sections[I]->Class[Current])
372       return I;
373   return End;
374 }
375 
376 // Sections in the same equivalence class are contiguous in Sections
377 // vector. Therefore, Sections vector can be considered as contiguous
378 // groups of sections, grouped by the class.
379 //
380 // This function calls Fn on every group within [Begin, End).
381 template <class ELFT>
forEachClassRange(size_t Begin,size_t End,llvm::function_ref<void (size_t,size_t)> Fn)382 void ICF<ELFT>::forEachClassRange(size_t Begin, size_t End,
383                                   llvm::function_ref<void(size_t, size_t)> Fn) {
384   while (Begin < End) {
385     size_t Mid = findBoundary(Begin, End);
386     Fn(Begin, Mid);
387     Begin = Mid;
388   }
389 }
390 
391 // Call Fn on each equivalence class.
392 template <class ELFT>
forEachClass(llvm::function_ref<void (size_t,size_t)> Fn)393 void ICF<ELFT>::forEachClass(llvm::function_ref<void(size_t, size_t)> Fn) {
394   // If threading is disabled or the number of sections are
395   // too small to use threading, call Fn sequentially.
396   if (!ThreadsEnabled || Sections.size() < 1024) {
397     forEachClassRange(0, Sections.size(), Fn);
398     ++Cnt;
399     return;
400   }
401 
402   Current = Cnt % 2;
403   Next = (Cnt + 1) % 2;
404 
405   // Shard into non-overlapping intervals, and call Fn in parallel.
406   // The sharding must be completed before any calls to Fn are made
407   // so that Fn can modify the Chunks in its shard without causing data
408   // races.
409   const size_t NumShards = 256;
410   size_t Step = Sections.size() / NumShards;
411   size_t Boundaries[NumShards + 1];
412   Boundaries[0] = 0;
413   Boundaries[NumShards] = Sections.size();
414 
415   parallelForEachN(1, NumShards, [&](size_t I) {
416     Boundaries[I] = findBoundary((I - 1) * Step, Sections.size());
417   });
418 
419   parallelForEachN(1, NumShards + 1, [&](size_t I) {
420     if (Boundaries[I - 1] < Boundaries[I])
421       forEachClassRange(Boundaries[I - 1], Boundaries[I], Fn);
422   });
423   ++Cnt;
424 }
425 
426 // Combine the hashes of the sections referenced by the given section into its
427 // hash.
428 template <class ELFT, class RelTy>
combineRelocHashes(unsigned Cnt,InputSection * IS,ArrayRef<RelTy> Rels)429 static void combineRelocHashes(unsigned Cnt, InputSection *IS,
430                                ArrayRef<RelTy> Rels) {
431   uint32_t Hash = IS->Class[Cnt % 2];
432   for (RelTy Rel : Rels) {
433     Symbol &S = IS->template getFile<ELFT>()->getRelocTargetSym(Rel);
434     if (auto *D = dyn_cast<Defined>(&S))
435       if (auto *RelSec = dyn_cast_or_null<InputSection>(D->Section))
436         Hash += RelSec->Class[Cnt % 2];
437   }
438   // Set MSB to 1 to avoid collisions with non-hash IDs.
439   IS->Class[(Cnt + 1) % 2] = Hash | (1U << 31);
440 }
441 
print(const Twine & S)442 static void print(const Twine &S) {
443   if (Config->PrintIcfSections)
444     message(S);
445 }
446 
447 // The main function of ICF.
run()448 template <class ELFT> void ICF<ELFT>::run() {
449   // Collect sections to merge.
450   for (InputSectionBase *Sec : InputSections)
451     if (auto *S = dyn_cast<InputSection>(Sec))
452       if (isEligible(S))
453         Sections.push_back(S);
454 
455   // Initially, we use hash values to partition sections.
456   parallelForEach(Sections, [&](InputSection *S) {
457     S->Class[0] = xxHash64(S->data());
458   });
459 
460   for (unsigned Cnt = 0; Cnt != 2; ++Cnt) {
461     parallelForEach(Sections, [&](InputSection *S) {
462       if (S->AreRelocsRela)
463         combineRelocHashes<ELFT>(Cnt, S, S->template relas<ELFT>());
464       else
465         combineRelocHashes<ELFT>(Cnt, S, S->template rels<ELFT>());
466     });
467   }
468 
469   // From now on, sections in Sections vector are ordered so that sections
470   // in the same equivalence class are consecutive in the vector.
471   std::stable_sort(Sections.begin(), Sections.end(),
472                    [](InputSection *A, InputSection *B) {
473                      return A->Class[0] < B->Class[0];
474                    });
475 
476   // Compare static contents and assign unique IDs for each static content.
477   forEachClass([&](size_t Begin, size_t End) { segregate(Begin, End, true); });
478 
479   // Split groups by comparing relocations until convergence is obtained.
480   do {
481     Repeat = false;
482     forEachClass(
483         [&](size_t Begin, size_t End) { segregate(Begin, End, false); });
484   } while (Repeat);
485 
486   log("ICF needed " + Twine(Cnt) + " iterations");
487 
488   // Merge sections by the equivalence class.
489   forEachClassRange(0, Sections.size(), [&](size_t Begin, size_t End) {
490     if (End - Begin == 1)
491       return;
492     print("selected section " + toString(Sections[Begin]));
493     for (size_t I = Begin + 1; I < End; ++I) {
494       print("  removing identical section " + toString(Sections[I]));
495       Sections[Begin]->replace(Sections[I]);
496 
497       // At this point we know sections merged are fully identical and hence
498       // we want to remove duplicate implicit dependencies such as link order
499       // and relocation sections.
500       for (InputSection *IS : Sections[I]->DependentSections)
501         IS->Live = false;
502     }
503   });
504 }
505 
506 // ICF entry point function.
doIcf()507 template <class ELFT> void elf::doIcf() { ICF<ELFT>().run(); }
508 
509 template void elf::doIcf<ELF32LE>();
510 template void elf::doIcf<ELF32BE>();
511 template void elf::doIcf<ELF64LE>();
512 template void elf::doIcf<ELF64BE>();
513