1 //===-- Analysis.cpp --------------------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "Analysis.h"
11 #include "BenchmarkResult.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/MC/MCAsmInfo.h"
14 #include "llvm/Support/FormatVariadic.h"
15 #include <limits>
16 #include <unordered_set>
17 #include <vector>
18 
19 namespace llvm {
20 namespace exegesis {
21 
22 static const char kCsvSep = ',';
23 
resolveSchedClassId(const llvm::MCSubtargetInfo & STI,unsigned SchedClassId,const llvm::MCInst & MCI)24 static unsigned resolveSchedClassId(const llvm::MCSubtargetInfo &STI,
25                                     unsigned SchedClassId,
26                                     const llvm::MCInst &MCI) {
27   const auto &SM = STI.getSchedModel();
28   while (SchedClassId && SM.getSchedClassDesc(SchedClassId)->isVariant())
29     SchedClassId =
30         STI.resolveVariantSchedClass(SchedClassId, &MCI, SM.getProcessorID());
31   return SchedClassId;
32 }
33 
34 namespace {
35 
36 enum EscapeTag { kEscapeCsv, kEscapeHtml, kEscapeHtmlString };
37 
38 template <EscapeTag Tag>
39 void writeEscaped(llvm::raw_ostream &OS, const llvm::StringRef S);
40 
41 template <>
writeEscaped(llvm::raw_ostream & OS,const llvm::StringRef S)42 void writeEscaped<kEscapeCsv>(llvm::raw_ostream &OS, const llvm::StringRef S) {
43   if (std::find(S.begin(), S.end(), kCsvSep) == S.end()) {
44     OS << S;
45   } else {
46     // Needs escaping.
47     OS << '"';
48     for (const char C : S) {
49       if (C == '"')
50         OS << "\"\"";
51       else
52         OS << C;
53     }
54     OS << '"';
55   }
56 }
57 
58 template <>
writeEscaped(llvm::raw_ostream & OS,const llvm::StringRef S)59 void writeEscaped<kEscapeHtml>(llvm::raw_ostream &OS, const llvm::StringRef S) {
60   for (const char C : S) {
61     if (C == '<')
62       OS << "&lt;";
63     else if (C == '>')
64       OS << "&gt;";
65     else if (C == '&')
66       OS << "&amp;";
67     else
68       OS << C;
69   }
70 }
71 
72 template <>
writeEscaped(llvm::raw_ostream & OS,const llvm::StringRef S)73 void writeEscaped<kEscapeHtmlString>(llvm::raw_ostream &OS,
74                                      const llvm::StringRef S) {
75   for (const char C : S) {
76     if (C == '"')
77       OS << "\\\"";
78     else
79       OS << C;
80   }
81 }
82 
83 } // namespace
84 
85 template <EscapeTag Tag>
86 static void
writeClusterId(llvm::raw_ostream & OS,const InstructionBenchmarkClustering::ClusterId & CID)87 writeClusterId(llvm::raw_ostream &OS,
88                const InstructionBenchmarkClustering::ClusterId &CID) {
89   if (CID.isNoise())
90     writeEscaped<Tag>(OS, "[noise]");
91   else if (CID.isError())
92     writeEscaped<Tag>(OS, "[error]");
93   else
94     OS << CID.getId();
95 }
96 
97 template <EscapeTag Tag>
writeMeasurementValue(llvm::raw_ostream & OS,const double Value)98 static void writeMeasurementValue(llvm::raw_ostream &OS, const double Value) {
99   // Given Value, if we wanted to serialize it to a string,
100   // how many base-10 digits will we need to store, max?
101   static constexpr auto MaxDigitCount =
102       std::numeric_limits<decltype(Value)>::max_digits10;
103   // Also, we will need a decimal separator.
104   static constexpr auto DecimalSeparatorLen = 1; // '.' e.g.
105   // So how long of a string will the serialization produce, max?
106   static constexpr auto SerializationLen = MaxDigitCount + DecimalSeparatorLen;
107 
108   // WARNING: when changing the format, also adjust the small-size estimate ^.
109   static constexpr StringLiteral SimpleFloatFormat = StringLiteral("{0:F}");
110 
111   writeEscaped<Tag>(
112       OS,
113       llvm::formatv(SimpleFloatFormat.data(), Value).sstr<SerializationLen>());
114 }
115 
116 template <typename EscapeTag, EscapeTag Tag>
writeSnippet(llvm::raw_ostream & OS,llvm::ArrayRef<uint8_t> Bytes,const char * Separator) const117 void Analysis::writeSnippet(llvm::raw_ostream &OS,
118                             llvm::ArrayRef<uint8_t> Bytes,
119                             const char *Separator) const {
120   llvm::SmallVector<std::string, 3> Lines;
121   // Parse the asm snippet and print it.
122   while (!Bytes.empty()) {
123     llvm::MCInst MI;
124     uint64_t MISize = 0;
125     if (!Disasm_->getInstruction(MI, MISize, Bytes, 0, llvm::nulls(),
126                                  llvm::nulls())) {
127       writeEscaped<Tag>(OS, llvm::join(Lines, Separator));
128       writeEscaped<Tag>(OS, Separator);
129       writeEscaped<Tag>(OS, "[error decoding asm snippet]");
130       return;
131     }
132     llvm::SmallString<128> InstPrinterStr; // FIXME: magic number.
133     llvm::raw_svector_ostream OSS(InstPrinterStr);
134     InstPrinter_->printInst(&MI, OSS, "", *SubtargetInfo_);
135     Bytes = Bytes.drop_front(MISize);
136     Lines.emplace_back(llvm::StringRef(InstPrinterStr).trim());
137   }
138   writeEscaped<Tag>(OS, llvm::join(Lines, Separator));
139 }
140 
141 // Prints a row representing an instruction, along with scheduling info and
142 // point coordinates (measurements).
printInstructionRowCsv(const size_t PointId,llvm::raw_ostream & OS) const143 void Analysis::printInstructionRowCsv(const size_t PointId,
144                                       llvm::raw_ostream &OS) const {
145   const InstructionBenchmark &Point = Clustering_.getPoints()[PointId];
146   writeClusterId<kEscapeCsv>(OS, Clustering_.getClusterIdForPoint(PointId));
147   OS << kCsvSep;
148   writeSnippet<EscapeTag, kEscapeCsv>(OS, Point.AssembledSnippet, "; ");
149   OS << kCsvSep;
150   writeEscaped<kEscapeCsv>(OS, Point.Key.Config);
151   OS << kCsvSep;
152   assert(!Point.Key.Instructions.empty());
153   const llvm::MCInst &MCI = Point.Key.Instructions[0];
154   const unsigned SchedClassId = resolveSchedClassId(
155       *SubtargetInfo_, InstrInfo_->get(MCI.getOpcode()).getSchedClass(), MCI);
156 
157 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
158   const llvm::MCSchedClassDesc *const SCDesc =
159       SubtargetInfo_->getSchedModel().getSchedClassDesc(SchedClassId);
160   writeEscaped<kEscapeCsv>(OS, SCDesc->Name);
161 #else
162   OS << SchedClassId;
163 #endif
164   for (const auto &Measurement : Point.Measurements) {
165     OS << kCsvSep;
166     writeMeasurementValue<kEscapeCsv>(OS, Measurement.PerInstructionValue);
167   }
168   OS << "\n";
169 }
170 
Analysis(const llvm::Target & Target,const InstructionBenchmarkClustering & Clustering)171 Analysis::Analysis(const llvm::Target &Target,
172                    const InstructionBenchmarkClustering &Clustering)
173     : Clustering_(Clustering) {
174   if (Clustering.getPoints().empty())
175     return;
176 
177   const InstructionBenchmark &FirstPoint = Clustering.getPoints().front();
178   InstrInfo_.reset(Target.createMCInstrInfo());
179   RegInfo_.reset(Target.createMCRegInfo(FirstPoint.LLVMTriple));
180   AsmInfo_.reset(Target.createMCAsmInfo(*RegInfo_, FirstPoint.LLVMTriple));
181   SubtargetInfo_.reset(Target.createMCSubtargetInfo(FirstPoint.LLVMTriple,
182                                                     FirstPoint.CpuName, ""));
183   InstPrinter_.reset(Target.createMCInstPrinter(
184       llvm::Triple(FirstPoint.LLVMTriple), 0 /*default variant*/, *AsmInfo_,
185       *InstrInfo_, *RegInfo_));
186 
187   Context_ = llvm::make_unique<llvm::MCContext>(AsmInfo_.get(), RegInfo_.get(),
188                                                 &ObjectFileInfo_);
189   Disasm_.reset(Target.createMCDisassembler(*SubtargetInfo_, *Context_));
190   assert(Disasm_ && "cannot create MCDisassembler. missing call to "
191                     "InitializeXXXTargetDisassembler ?");
192 }
193 
194 template <>
195 llvm::Error
run(llvm::raw_ostream & OS) const196 Analysis::run<Analysis::PrintClusters>(llvm::raw_ostream &OS) const {
197   if (Clustering_.getPoints().empty())
198     return llvm::Error::success();
199 
200   // Write the header.
201   OS << "cluster_id" << kCsvSep << "opcode_name" << kCsvSep << "config"
202      << kCsvSep << "sched_class";
203   for (const auto &Measurement : Clustering_.getPoints().front().Measurements) {
204     OS << kCsvSep;
205     writeEscaped<kEscapeCsv>(OS, Measurement.Key);
206   }
207   OS << "\n";
208 
209   // Write the points.
210   const auto &Clusters = Clustering_.getValidClusters();
211   for (size_t I = 0, E = Clusters.size(); I < E; ++I) {
212     for (const size_t PointId : Clusters[I].PointIndices) {
213       printInstructionRowCsv(PointId, OS);
214     }
215     OS << "\n\n";
216   }
217   return llvm::Error::success();
218 }
219 
ResolvedSchedClassAndPoints(ResolvedSchedClass && RSC)220 Analysis::ResolvedSchedClassAndPoints::ResolvedSchedClassAndPoints(
221     ResolvedSchedClass &&RSC)
222     : RSC(std::move(RSC)) {}
223 
224 std::vector<Analysis::ResolvedSchedClassAndPoints>
makePointsPerSchedClass() const225 Analysis::makePointsPerSchedClass() const {
226   std::vector<ResolvedSchedClassAndPoints> Entries;
227   // Maps SchedClassIds to index in result.
228   std::unordered_map<unsigned, size_t> SchedClassIdToIndex;
229   const auto &Points = Clustering_.getPoints();
230   for (size_t PointId = 0, E = Points.size(); PointId < E; ++PointId) {
231     const InstructionBenchmark &Point = Points[PointId];
232     if (!Point.Error.empty())
233       continue;
234     assert(!Point.Key.Instructions.empty());
235     // FIXME: we should be using the tuple of classes for instructions in the
236     // snippet as key.
237     const llvm::MCInst &MCI = Point.Key.Instructions[0];
238     unsigned SchedClassId = InstrInfo_->get(MCI.getOpcode()).getSchedClass();
239     const bool WasVariant = SchedClassId && SubtargetInfo_->getSchedModel()
240                                                 .getSchedClassDesc(SchedClassId)
241                                                 ->isVariant();
242     SchedClassId = resolveSchedClassId(*SubtargetInfo_, SchedClassId, MCI);
243     const auto IndexIt = SchedClassIdToIndex.find(SchedClassId);
244     if (IndexIt == SchedClassIdToIndex.end()) {
245       // Create a new entry.
246       SchedClassIdToIndex.emplace(SchedClassId, Entries.size());
247       ResolvedSchedClassAndPoints Entry(
248           ResolvedSchedClass(*SubtargetInfo_, SchedClassId, WasVariant));
249       Entry.PointIds.push_back(PointId);
250       Entries.push_back(std::move(Entry));
251     } else {
252       // Append to the existing entry.
253       Entries[IndexIt->second].PointIds.push_back(PointId);
254     }
255   }
256   return Entries;
257 }
258 
259 // Uops repeat the same opcode over again. Just show this opcode and show the
260 // whole snippet only on hover.
writeUopsSnippetHtml(llvm::raw_ostream & OS,const std::vector<llvm::MCInst> & Instructions,const llvm::MCInstrInfo & InstrInfo)261 static void writeUopsSnippetHtml(llvm::raw_ostream &OS,
262                                  const std::vector<llvm::MCInst> &Instructions,
263                                  const llvm::MCInstrInfo &InstrInfo) {
264   if (Instructions.empty())
265     return;
266   writeEscaped<kEscapeHtml>(OS, InstrInfo.getName(Instructions[0].getOpcode()));
267   if (Instructions.size() > 1)
268     OS << " (x" << Instructions.size() << ")";
269 }
270 
271 // Latency tries to find a serial path. Just show the opcode path and show the
272 // whole snippet only on hover.
273 static void
writeLatencySnippetHtml(llvm::raw_ostream & OS,const std::vector<llvm::MCInst> & Instructions,const llvm::MCInstrInfo & InstrInfo)274 writeLatencySnippetHtml(llvm::raw_ostream &OS,
275                         const std::vector<llvm::MCInst> &Instructions,
276                         const llvm::MCInstrInfo &InstrInfo) {
277   bool First = true;
278   for (const llvm::MCInst &Instr : Instructions) {
279     if (First)
280       First = false;
281     else
282       OS << " &rarr; ";
283     writeEscaped<kEscapeHtml>(OS, InstrInfo.getName(Instr.getOpcode()));
284   }
285 }
286 
printSchedClassClustersHtml(const std::vector<SchedClassCluster> & Clusters,const ResolvedSchedClass & RSC,llvm::raw_ostream & OS) const287 void Analysis::printSchedClassClustersHtml(
288     const std::vector<SchedClassCluster> &Clusters,
289     const ResolvedSchedClass &RSC, llvm::raw_ostream &OS) const {
290   const auto &Points = Clustering_.getPoints();
291   OS << "<table class=\"sched-class-clusters\">";
292   OS << "<tr><th>ClusterId</th><th>Opcode/Config</th>";
293   assert(!Clusters.empty());
294   for (const auto &Measurement :
295        Points[Clusters[0].getPointIds()[0]].Measurements) {
296     OS << "<th>";
297     writeEscaped<kEscapeHtml>(OS, Measurement.Key);
298     OS << "</th>";
299   }
300   OS << "</tr>";
301   for (const SchedClassCluster &Cluster : Clusters) {
302     OS << "<tr class=\""
303        << (Cluster.measurementsMatch(*SubtargetInfo_, RSC, Clustering_)
304                ? "good-cluster"
305                : "bad-cluster")
306        << "\"><td>";
307     writeClusterId<kEscapeHtml>(OS, Cluster.id());
308     OS << "</td><td><ul>";
309     for (const size_t PointId : Cluster.getPointIds()) {
310       const auto &Point = Points[PointId];
311       OS << "<li><span class=\"mono\" title=\"";
312       writeSnippet<EscapeTag, kEscapeHtmlString>(OS, Point.AssembledSnippet,
313                                                  "\n");
314       OS << "\">";
315       switch (Point.Mode) {
316       case InstructionBenchmark::Latency:
317         writeLatencySnippetHtml(OS, Point.Key.Instructions, *InstrInfo_);
318         break;
319       case InstructionBenchmark::Uops:
320         writeUopsSnippetHtml(OS, Point.Key.Instructions, *InstrInfo_);
321         break;
322       default:
323         llvm_unreachable("invalid mode");
324       }
325       OS << "</span> <span class=\"mono\">";
326       writeEscaped<kEscapeHtml>(OS, Point.Key.Config);
327       OS << "</span></li>";
328     }
329     OS << "</ul></td>";
330     for (const auto &Stats : Cluster.getRepresentative()) {
331       OS << "<td class=\"measurement\">";
332       writeMeasurementValue<kEscapeHtml>(OS, Stats.avg());
333       OS << "<br><span class=\"minmax\">[";
334       writeMeasurementValue<kEscapeHtml>(OS, Stats.min());
335       OS << ";";
336       writeMeasurementValue<kEscapeHtml>(OS, Stats.max());
337       OS << "]</span></td>";
338     }
339     OS << "</tr>";
340   }
341   OS << "</table>";
342 }
343 
344 // Return the non-redundant list of WriteProcRes used by the given sched class.
345 // The scheduling model for LLVM is such that each instruction has a certain
346 // number of uops which consume resources which are described by WriteProcRes
347 // entries. Each entry describe how many cycles are spent on a specific ProcRes
348 // kind.
349 // For example, an instruction might have 3 uOps, one dispatching on P0
350 // (ProcResIdx=1) and two on P06 (ProcResIdx = 7).
351 // Note that LLVM additionally denormalizes resource consumption to include
352 // usage of super resources by subresources. So in practice if there exists a
353 // P016 (ProcResIdx=10), then the cycles consumed by P0 are also consumed by
354 // P06 (ProcResIdx = 7) and P016 (ProcResIdx = 10), and the resources consumed
355 // by P06 are also consumed by P016. In the figure below, parenthesized cycles
356 // denote implied usage of superresources by subresources:
357 //            P0      P06    P016
358 //     uOp1    1      (1)     (1)
359 //     uOp2            1      (1)
360 //     uOp3            1      (1)
361 //     =============================
362 //             1       3       3
363 // Eventually we end up with three entries for the WriteProcRes of the
364 // instruction:
365 //    {ProcResIdx=1,  Cycles=1}  // P0
366 //    {ProcResIdx=7,  Cycles=3}  // P06
367 //    {ProcResIdx=10, Cycles=3}  // P016
368 //
369 // Note that in this case, P016 does not contribute any cycles, so it would
370 // be removed by this function.
371 // FIXME: Move this to MCSubtargetInfo and use it in llvm-mca.
372 static llvm::SmallVector<llvm::MCWriteProcResEntry, 8>
getNonRedundantWriteProcRes(const llvm::MCSchedClassDesc & SCDesc,const llvm::MCSubtargetInfo & STI)373 getNonRedundantWriteProcRes(const llvm::MCSchedClassDesc &SCDesc,
374                             const llvm::MCSubtargetInfo &STI) {
375   llvm::SmallVector<llvm::MCWriteProcResEntry, 8> Result;
376   const auto &SM = STI.getSchedModel();
377   const unsigned NumProcRes = SM.getNumProcResourceKinds();
378 
379   // This assumes that the ProcResDescs are sorted in topological order, which
380   // is guaranteed by the tablegen backend.
381   llvm::SmallVector<float, 32> ProcResUnitUsage(NumProcRes);
382   for (const auto *WPR = STI.getWriteProcResBegin(&SCDesc),
383                   *const WPREnd = STI.getWriteProcResEnd(&SCDesc);
384        WPR != WPREnd; ++WPR) {
385     const llvm::MCProcResourceDesc *const ProcResDesc =
386         SM.getProcResource(WPR->ProcResourceIdx);
387     if (ProcResDesc->SubUnitsIdxBegin == nullptr) {
388       // This is a ProcResUnit.
389       Result.push_back({WPR->ProcResourceIdx, WPR->Cycles});
390       ProcResUnitUsage[WPR->ProcResourceIdx] += WPR->Cycles;
391     } else {
392       // This is a ProcResGroup. First see if it contributes any cycles or if
393       // it has cycles just from subunits.
394       float RemainingCycles = WPR->Cycles;
395       for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin;
396            SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits;
397            ++SubResIdx) {
398         RemainingCycles -= ProcResUnitUsage[*SubResIdx];
399       }
400       if (RemainingCycles < 0.01f) {
401         // The ProcResGroup contributes no cycles of its own.
402         continue;
403       }
404       // The ProcResGroup contributes `RemainingCycles` cycles of its own.
405       Result.push_back({WPR->ProcResourceIdx,
406                         static_cast<uint16_t>(std::round(RemainingCycles))});
407       // Spread the remaining cycles over all subunits.
408       for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin;
409            SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits;
410            ++SubResIdx) {
411         ProcResUnitUsage[*SubResIdx] += RemainingCycles / ProcResDesc->NumUnits;
412       }
413     }
414   }
415   return Result;
416 }
417 
ResolvedSchedClass(const llvm::MCSubtargetInfo & STI,unsigned ResolvedSchedClassId,bool WasVariant)418 Analysis::ResolvedSchedClass::ResolvedSchedClass(
419     const llvm::MCSubtargetInfo &STI, unsigned ResolvedSchedClassId,
420     bool WasVariant)
421     : SchedClassId(ResolvedSchedClassId), SCDesc(STI.getSchedModel().getSchedClassDesc(ResolvedSchedClassId)),
422       WasVariant(WasVariant),
423       NonRedundantWriteProcRes(getNonRedundantWriteProcRes(*SCDesc, STI)),
424       IdealizedProcResPressure(computeIdealizedProcResPressure(
425           STI.getSchedModel(), NonRedundantWriteProcRes)) {
426   assert((SCDesc == nullptr || !SCDesc->isVariant()) &&
427          "ResolvedSchedClass should never be variant");
428 }
429 
addPoint(size_t PointId,const InstructionBenchmarkClustering & Clustering)430 void Analysis::SchedClassCluster::addPoint(
431     size_t PointId, const InstructionBenchmarkClustering &Clustering) {
432   PointIds.push_back(PointId);
433   const auto &Point = Clustering.getPoints()[PointId];
434   if (ClusterId.isUndef()) {
435     ClusterId = Clustering.getClusterIdForPoint(PointId);
436     Representative.resize(Point.Measurements.size());
437   }
438   for (size_t I = 0, E = Point.Measurements.size(); I < E; ++I) {
439     Representative[I].push(Point.Measurements[I]);
440   }
441   assert(ClusterId == Clustering.getClusterIdForPoint(PointId));
442 }
443 
444 // Returns a ProxResIdx by id or name.
findProcResIdx(const llvm::MCSubtargetInfo & STI,const llvm::StringRef NameOrId)445 static unsigned findProcResIdx(const llvm::MCSubtargetInfo &STI,
446                                const llvm::StringRef NameOrId) {
447   // Interpret the key as an ProcResIdx.
448   unsigned ProcResIdx = 0;
449   if (llvm::to_integer(NameOrId, ProcResIdx, 10))
450     return ProcResIdx;
451   // Interpret the key as a ProcRes name.
452   const auto &SchedModel = STI.getSchedModel();
453   for (int I = 0, E = SchedModel.getNumProcResourceKinds(); I < E; ++I) {
454     if (NameOrId == SchedModel.getProcResource(I)->Name)
455       return I;
456   }
457   return 0;
458 }
459 
measurementsMatch(const llvm::MCSubtargetInfo & STI,const ResolvedSchedClass & RSC,const InstructionBenchmarkClustering & Clustering) const460 bool Analysis::SchedClassCluster::measurementsMatch(
461     const llvm::MCSubtargetInfo &STI, const ResolvedSchedClass &RSC,
462     const InstructionBenchmarkClustering &Clustering) const {
463   const size_t NumMeasurements = Representative.size();
464   std::vector<BenchmarkMeasure> ClusterCenterPoint(NumMeasurements);
465   std::vector<BenchmarkMeasure> SchedClassPoint(NumMeasurements);
466   // Latency case.
467   assert(!Clustering.getPoints().empty());
468   const InstructionBenchmark::ModeE Mode = Clustering.getPoints()[0].Mode;
469   if (Mode == InstructionBenchmark::Latency) {
470     if (NumMeasurements != 1) {
471       llvm::errs()
472           << "invalid number of measurements in latency mode: expected 1, got "
473           << NumMeasurements << "\n";
474       return false;
475     }
476     // Find the latency.
477     SchedClassPoint[0].PerInstructionValue = 0.0;
478     for (unsigned I = 0; I < RSC.SCDesc->NumWriteLatencyEntries; ++I) {
479       const llvm::MCWriteLatencyEntry *const WLE =
480           STI.getWriteLatencyEntry(RSC.SCDesc, I);
481       SchedClassPoint[0].PerInstructionValue =
482           std::max<double>(SchedClassPoint[0].PerInstructionValue, WLE->Cycles);
483     }
484     ClusterCenterPoint[0].PerInstructionValue = Representative[0].avg();
485   } else if (Mode == InstructionBenchmark::Uops) {
486     for (int I = 0, E = Representative.size(); I < E; ++I) {
487       const auto Key = Representative[I].key();
488       uint16_t ProcResIdx = findProcResIdx(STI, Key);
489       if (ProcResIdx > 0) {
490         // Find the pressure on ProcResIdx `Key`.
491         const auto ProcResPressureIt =
492             std::find_if(RSC.IdealizedProcResPressure.begin(),
493                          RSC.IdealizedProcResPressure.end(),
494                          [ProcResIdx](const std::pair<uint16_t, float> &WPR) {
495                            return WPR.first == ProcResIdx;
496                          });
497         SchedClassPoint[I].PerInstructionValue =
498             ProcResPressureIt == RSC.IdealizedProcResPressure.end()
499                 ? 0.0
500                 : ProcResPressureIt->second;
501       } else if (Key == "NumMicroOps") {
502         SchedClassPoint[I].PerInstructionValue = RSC.SCDesc->NumMicroOps;
503       } else {
504         llvm::errs() << "expected `key` to be either a ProcResIdx or a ProcRes "
505                         "name, got "
506                      << Key << "\n";
507         return false;
508       }
509       ClusterCenterPoint[I].PerInstructionValue = Representative[I].avg();
510     }
511   } else {
512     llvm::errs() << "unimplemented measurement matching for mode " << Mode
513                  << "\n";
514     return false;
515   }
516   return Clustering.isNeighbour(ClusterCenterPoint, SchedClassPoint);
517 }
518 
printSchedClassDescHtml(const ResolvedSchedClass & RSC,llvm::raw_ostream & OS) const519 void Analysis::printSchedClassDescHtml(const ResolvedSchedClass &RSC,
520                                        llvm::raw_ostream &OS) const {
521   OS << "<table class=\"sched-class-desc\">";
522   OS << "<tr><th>Valid</th><th>Variant</th><th>NumMicroOps</th><th>Latency</"
523         "th><th>WriteProcRes</th><th title=\"This is the idealized unit "
524         "resource (port) pressure assuming ideal distribution\">Idealized "
525         "Resource Pressure</th></tr>";
526   if (RSC.SCDesc->isValid()) {
527     const auto &SM = SubtargetInfo_->getSchedModel();
528     OS << "<tr><td>&#10004;</td>";
529     OS << "<td>" << (RSC.WasVariant ? "&#10004;" : "&#10005;") << "</td>";
530     OS << "<td>" << RSC.SCDesc->NumMicroOps << "</td>";
531     // Latencies.
532     OS << "<td><ul>";
533     for (int I = 0, E = RSC.SCDesc->NumWriteLatencyEntries; I < E; ++I) {
534       const auto *const Entry =
535           SubtargetInfo_->getWriteLatencyEntry(RSC.SCDesc, I);
536       OS << "<li>" << Entry->Cycles;
537       if (RSC.SCDesc->NumWriteLatencyEntries > 1) {
538         // Dismabiguate if more than 1 latency.
539         OS << " (WriteResourceID " << Entry->WriteResourceID << ")";
540       }
541       OS << "</li>";
542     }
543     OS << "</ul></td>";
544     // WriteProcRes.
545     OS << "<td><ul>";
546     for (const auto &WPR : RSC.NonRedundantWriteProcRes) {
547       OS << "<li><span class=\"mono\">";
548       writeEscaped<kEscapeHtml>(OS,
549                                 SM.getProcResource(WPR.ProcResourceIdx)->Name);
550       OS << "</span>: " << WPR.Cycles << "</li>";
551     }
552     OS << "</ul></td>";
553     // Idealized port pressure.
554     OS << "<td><ul>";
555     for (const auto &Pressure : RSC.IdealizedProcResPressure) {
556       OS << "<li><span class=\"mono\">";
557       writeEscaped<kEscapeHtml>(OS, SubtargetInfo_->getSchedModel()
558                                         .getProcResource(Pressure.first)
559                                         ->Name);
560       OS << "</span>: ";
561       writeMeasurementValue<kEscapeHtml>(OS, Pressure.second);
562       OS << "</li>";
563     }
564     OS << "</ul></td>";
565     OS << "</tr>";
566   } else {
567     OS << "<tr><td>&#10005;</td><td></td><td></td></tr>";
568   }
569   OS << "</table>";
570 }
571 
572 static constexpr const char kHtmlHead[] = R"(
573 <head>
574 <title>llvm-exegesis Analysis Results</title>
575 <style>
576 body {
577   font-family: sans-serif
578 }
579 span.sched-class-name {
580   font-weight: bold;
581   font-family: monospace;
582 }
583 span.opcode {
584   font-family: monospace;
585 }
586 span.config {
587   font-family: monospace;
588 }
589 div.inconsistency {
590   margin-top: 50px;
591 }
592 table {
593   margin-left: 50px;
594   border-collapse: collapse;
595 }
596 table, table tr,td,th {
597   border: 1px solid #444;
598 }
599 table ul {
600   padding-left: 0px;
601   margin: 0px;
602   list-style-type: none;
603 }
604 table.sched-class-clusters td {
605   padding-left: 10px;
606   padding-right: 10px;
607   padding-top: 10px;
608   padding-bottom: 10px;
609 }
610 table.sched-class-desc td {
611   padding-left: 10px;
612   padding-right: 10px;
613   padding-top: 2px;
614   padding-bottom: 2px;
615 }
616 span.mono {
617   font-family: monospace;
618 }
619 td.measurement {
620   text-align: center;
621 }
622 tr.good-cluster td.measurement {
623   color: #292
624 }
625 tr.bad-cluster td.measurement {
626   color: #922
627 }
628 tr.good-cluster td.measurement span.minmax {
629   color: #888;
630 }
631 tr.bad-cluster td.measurement span.minmax {
632   color: #888;
633 }
634 </style>
635 </head>
636 )";
637 
638 template <>
run(llvm::raw_ostream & OS) const639 llvm::Error Analysis::run<Analysis::PrintSchedClassInconsistencies>(
640     llvm::raw_ostream &OS) const {
641   const auto &FirstPoint = Clustering_.getPoints()[0];
642   // Print the header.
643   OS << "<!DOCTYPE html><html>" << kHtmlHead << "<body>";
644   OS << "<h1><span class=\"mono\">llvm-exegesis</span> Analysis Results</h1>";
645   OS << "<h3>Triple: <span class=\"mono\">";
646   writeEscaped<kEscapeHtml>(OS, FirstPoint.LLVMTriple);
647   OS << "</span></h3><h3>Cpu: <span class=\"mono\">";
648   writeEscaped<kEscapeHtml>(OS, FirstPoint.CpuName);
649   OS << "</span></h3>";
650 
651   for (const auto &RSCAndPoints : makePointsPerSchedClass()) {
652     if (!RSCAndPoints.RSC.SCDesc)
653       continue;
654     // Bucket sched class points into sched class clusters.
655     std::vector<SchedClassCluster> SchedClassClusters;
656     for (const size_t PointId : RSCAndPoints.PointIds) {
657       const auto &ClusterId = Clustering_.getClusterIdForPoint(PointId);
658       if (!ClusterId.isValid())
659         continue; // Ignore noise and errors. FIXME: take noise into account ?
660       auto SchedClassClusterIt =
661           std::find_if(SchedClassClusters.begin(), SchedClassClusters.end(),
662                        [ClusterId](const SchedClassCluster &C) {
663                          return C.id() == ClusterId;
664                        });
665       if (SchedClassClusterIt == SchedClassClusters.end()) {
666         SchedClassClusters.emplace_back();
667         SchedClassClusterIt = std::prev(SchedClassClusters.end());
668       }
669       SchedClassClusterIt->addPoint(PointId, Clustering_);
670     }
671 
672     // Print any scheduling class that has at least one cluster that does not
673     // match the checked-in data.
674     if (llvm::all_of(SchedClassClusters,
675                      [this, &RSCAndPoints](const SchedClassCluster &C) {
676                        return C.measurementsMatch(
677                            *SubtargetInfo_, RSCAndPoints.RSC, Clustering_);
678                      }))
679       continue; // Nothing weird.
680 
681     OS << "<div class=\"inconsistency\"><p>Sched Class <span "
682           "class=\"sched-class-name\">";
683 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
684     writeEscaped<kEscapeHtml>(OS, RSCAndPoints.RSC.SCDesc->Name);
685 #else
686     OS << RSCAndPoints.RSC.SchedClassId;
687 #endif
688     OS << "</span> contains instructions whose performance characteristics do"
689           " not match that of LLVM:</p>";
690     printSchedClassClustersHtml(SchedClassClusters, RSCAndPoints.RSC, OS);
691     OS << "<p>llvm SchedModel data:</p>";
692     printSchedClassDescHtml(RSCAndPoints.RSC, OS);
693     OS << "</div>";
694   }
695 
696   OS << "</body></html>";
697   return llvm::Error::success();
698 }
699 
700 // Distributes a pressure budget as evenly as possible on the provided subunits
701 // given the already existing port pressure distribution.
702 //
703 // The algorithm is as follows: while there is remaining pressure to
704 // distribute, find the subunits with minimal pressure, and distribute
705 // remaining pressure equally up to the pressure of the unit with
706 // second-to-minimal pressure.
707 // For example, let's assume we want to distribute 2*P1256
708 // (Subunits = [P1,P2,P5,P6]), and the starting DensePressure is:
709 //     DensePressure =        P0   P1   P2   P3   P4   P5   P6   P7
710 //                           0.1  0.3  0.2  0.0  0.0  0.5  0.5  0.5
711 //     RemainingPressure = 2.0
712 // We sort the subunits by pressure:
713 //     Subunits = [(P2,p=0.2), (P1,p=0.3), (P5,p=0.5), (P6, p=0.5)]
714 // We'll first start by the subunits with minimal pressure, which are at
715 // the beginning of the sorted array. In this example there is one (P2).
716 // The subunit with second-to-minimal pressure is the next one in the
717 // array (P1). So we distribute 0.1 pressure to P2, and remove 0.1 cycles
718 // from the budget.
719 //     Subunits = [(P2,p=0.3), (P1,p=0.3), (P5,p=0.5), (P5,p=0.5)]
720 //     RemainingPressure = 1.9
721 // We repeat this process: distribute 0.2 pressure on each of the minimal
722 // P2 and P1, decrease budget by 2*0.2:
723 //     Subunits = [(P2,p=0.5), (P1,p=0.5), (P5,p=0.5), (P5,p=0.5)]
724 //     RemainingPressure = 1.5
725 // There are no second-to-minimal subunits so we just share the remaining
726 // budget (1.5 cycles) equally:
727 //     Subunits = [(P2,p=0.875), (P1,p=0.875), (P5,p=0.875), (P5,p=0.875)]
728 //     RemainingPressure = 0.0
729 // We stop as there is no remaining budget to distribute.
distributePressure(float RemainingPressure,llvm::SmallVector<uint16_t,32> Subunits,llvm::SmallVector<float,32> & DensePressure)730 void distributePressure(float RemainingPressure,
731                         llvm::SmallVector<uint16_t, 32> Subunits,
732                         llvm::SmallVector<float, 32> &DensePressure) {
733   // Find the number of subunits with minimal pressure (they are at the
734   // front).
735   llvm::sort(Subunits, [&DensePressure](const uint16_t A, const uint16_t B) {
736     return DensePressure[A] < DensePressure[B];
737   });
738   const auto getPressureForSubunit = [&DensePressure,
739                                       &Subunits](size_t I) -> float & {
740     return DensePressure[Subunits[I]];
741   };
742   size_t NumMinimalSU = 1;
743   while (NumMinimalSU < Subunits.size() &&
744          getPressureForSubunit(NumMinimalSU) == getPressureForSubunit(0)) {
745     ++NumMinimalSU;
746   }
747   while (RemainingPressure > 0.0f) {
748     if (NumMinimalSU == Subunits.size()) {
749       // All units are minimal, just distribute evenly and be done.
750       for (size_t I = 0; I < NumMinimalSU; ++I) {
751         getPressureForSubunit(I) += RemainingPressure / NumMinimalSU;
752       }
753       return;
754     }
755     // Distribute the remaining pressure equally.
756     const float MinimalPressure = getPressureForSubunit(NumMinimalSU - 1);
757     const float SecondToMinimalPressure = getPressureForSubunit(NumMinimalSU);
758     assert(MinimalPressure < SecondToMinimalPressure);
759     const float Increment = SecondToMinimalPressure - MinimalPressure;
760     if (RemainingPressure <= NumMinimalSU * Increment) {
761       // There is not enough remaining pressure.
762       for (size_t I = 0; I < NumMinimalSU; ++I) {
763         getPressureForSubunit(I) += RemainingPressure / NumMinimalSU;
764       }
765       return;
766     }
767     // Bump all minimal pressure subunits to `SecondToMinimalPressure`.
768     for (size_t I = 0; I < NumMinimalSU; ++I) {
769       getPressureForSubunit(I) = SecondToMinimalPressure;
770       RemainingPressure -= SecondToMinimalPressure;
771     }
772     while (NumMinimalSU < Subunits.size() &&
773            getPressureForSubunit(NumMinimalSU) == SecondToMinimalPressure) {
774       ++NumMinimalSU;
775     }
776   }
777 }
778 
computeIdealizedProcResPressure(const llvm::MCSchedModel & SM,llvm::SmallVector<llvm::MCWriteProcResEntry,8> WPRS)779 std::vector<std::pair<uint16_t, float>> computeIdealizedProcResPressure(
780     const llvm::MCSchedModel &SM,
781     llvm::SmallVector<llvm::MCWriteProcResEntry, 8> WPRS) {
782   // DensePressure[I] is the port pressure for Proc Resource I.
783   llvm::SmallVector<float, 32> DensePressure(SM.getNumProcResourceKinds());
784   llvm::sort(WPRS, [](const llvm::MCWriteProcResEntry &A,
785                       const llvm::MCWriteProcResEntry &B) {
786     return A.ProcResourceIdx < B.ProcResourceIdx;
787   });
788   for (const llvm::MCWriteProcResEntry &WPR : WPRS) {
789     // Get units for the entry.
790     const llvm::MCProcResourceDesc *const ProcResDesc =
791         SM.getProcResource(WPR.ProcResourceIdx);
792     if (ProcResDesc->SubUnitsIdxBegin == nullptr) {
793       // This is a ProcResUnit.
794       DensePressure[WPR.ProcResourceIdx] += WPR.Cycles;
795     } else {
796       // This is a ProcResGroup.
797       llvm::SmallVector<uint16_t, 32> Subunits(ProcResDesc->SubUnitsIdxBegin,
798                                                ProcResDesc->SubUnitsIdxBegin +
799                                                    ProcResDesc->NumUnits);
800       distributePressure(WPR.Cycles, Subunits, DensePressure);
801     }
802   }
803   // Turn dense pressure into sparse pressure by removing zero entries.
804   std::vector<std::pair<uint16_t, float>> Pressure;
805   for (unsigned I = 0, E = SM.getNumProcResourceKinds(); I < E; ++I) {
806     if (DensePressure[I] > 0.0f)
807       Pressure.emplace_back(I, DensePressure[I]);
808   }
809   return Pressure;
810 }
811 
812 } // namespace exegesis
813 } // namespace llvm
814