1 //===-- OpDescriptor.h ------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Provides the fuzzerop::Descriptor class and related tools for describing
10 // operations an IR fuzzer can work with.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_FUZZMUTATE_OPDESCRIPTOR_H
15 #define LLVM_FUZZMUTATE_OPDESCRIPTOR_H
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/Type.h"
24 #include "llvm/IR/Value.h"
25 #include <functional>
26 
27 namespace llvm {
28 namespace fuzzerop {
29 
30 /// @{
31 /// Populate a small list of potentially interesting constants of a given type.
32 void makeConstantsWithType(Type *T, std::vector<Constant *> &Cs);
33 std::vector<Constant *> makeConstantsWithType(Type *T);
34 /// @}
35 
36 /// A matcher/generator for finding suitable values for the next source in an
37 /// operation's partially completed argument list.
38 ///
39 /// Given that we're building some operation X and may have already filled some
40 /// subset of its operands, this predicate determines if some value New is
41 /// suitable for the next operand or generates a set of values that are
42 /// suitable.
43 class SourcePred {
44 public:
45   /// Given a list of already selected operands, returns whether a given new
46   /// operand is suitable for the next operand.
47   using PredT = std::function<bool(ArrayRef<Value *> Cur, const Value *New)>;
48   /// Given a list of already selected operands and a set of valid base types
49   /// for a fuzzer, generates a list of constants that could be used for the
50   /// next operand.
51   using MakeT = std::function<std::vector<Constant *>(
52       ArrayRef<Value *> Cur, ArrayRef<Type *> BaseTypes)>;
53 
54 private:
55   PredT Pred;
56   MakeT Make;
57 
58 public:
59   /// Create a fully general source predicate.
SourcePred(PredT Pred,MakeT Make)60   SourcePred(PredT Pred, MakeT Make) : Pred(Pred), Make(Make) {}
SourcePred(PredT Pred,NoneType)61   SourcePred(PredT Pred, NoneType) : Pred(Pred) {
62     Make = [Pred](ArrayRef<Value *> Cur, ArrayRef<Type *> BaseTypes) {
63       // Default filter just calls Pred on each of the base types.
64       std::vector<Constant *> Result;
65       for (Type *T : BaseTypes) {
66         Constant *V = UndefValue::get(T);
67         if (Pred(Cur, V))
68           makeConstantsWithType(T, Result);
69       }
70       if (Result.empty())
71         report_fatal_error("Predicate does not match for base types");
72       return Result;
73     };
74   }
75 
76   /// Returns true if \c New is compatible for the argument after \c Cur
matches(ArrayRef<Value * > Cur,const Value * New)77   bool matches(ArrayRef<Value *> Cur, const Value *New) {
78     return Pred(Cur, New);
79   }
80 
81   /// Generates a list of potential values for the argument after \c Cur.
generate(ArrayRef<Value * > Cur,ArrayRef<Type * > BaseTypes)82   std::vector<Constant *> generate(ArrayRef<Value *> Cur,
83                                    ArrayRef<Type *> BaseTypes) {
84     return Make(Cur, BaseTypes);
85   }
86 };
87 
88 /// A description of some operation we can build while fuzzing IR.
89 struct OpDescriptor {
90   unsigned Weight;
91   SmallVector<SourcePred, 2> SourcePreds;
92   std::function<Value *(ArrayRef<Value *>, Instruction *)> BuilderFunc;
93 };
94 
onlyType(Type * Only)95 static inline SourcePred onlyType(Type *Only) {
96   auto Pred = [Only](ArrayRef<Value *>, const Value *V) {
97     return V->getType() == Only;
98   };
99   auto Make = [Only](ArrayRef<Value *>, ArrayRef<Type *>) {
100     return makeConstantsWithType(Only);
101   };
102   return {Pred, Make};
103 }
104 
anyType()105 static inline SourcePred anyType() {
106   auto Pred = [](ArrayRef<Value *>, const Value *V) {
107     return !V->getType()->isVoidTy();
108   };
109   auto Make = None;
110   return {Pred, Make};
111 }
112 
anyIntType()113 static inline SourcePred anyIntType() {
114   auto Pred = [](ArrayRef<Value *>, const Value *V) {
115     return V->getType()->isIntegerTy();
116   };
117   auto Make = None;
118   return {Pred, Make};
119 }
120 
anyFloatType()121 static inline SourcePred anyFloatType() {
122   auto Pred = [](ArrayRef<Value *>, const Value *V) {
123     return V->getType()->isFloatingPointTy();
124   };
125   auto Make = None;
126   return {Pred, Make};
127 }
128 
anyPtrType()129 static inline SourcePred anyPtrType() {
130   auto Pred = [](ArrayRef<Value *>, const Value *V) {
131     return V->getType()->isPointerTy() && !V->isSwiftError();
132   };
133   auto Make = [](ArrayRef<Value *>, ArrayRef<Type *> Ts) {
134     std::vector<Constant *> Result;
135     // TODO: Should these point at something?
136     for (Type *T : Ts)
137       Result.push_back(UndefValue::get(PointerType::getUnqual(T)));
138     return Result;
139   };
140   return {Pred, Make};
141 }
142 
sizedPtrType()143 static inline SourcePred sizedPtrType() {
144   auto Pred = [](ArrayRef<Value *>, const Value *V) {
145     if (V->isSwiftError())
146       return false;
147 
148     if (const auto *PtrT = dyn_cast<PointerType>(V->getType()))
149       return PtrT->getElementType()->isSized();
150     return false;
151   };
152   auto Make = [](ArrayRef<Value *>, ArrayRef<Type *> Ts) {
153     std::vector<Constant *> Result;
154 
155     for (Type *T : Ts)
156       if (T->isSized())
157         Result.push_back(UndefValue::get(PointerType::getUnqual(T)));
158 
159     return Result;
160   };
161   return {Pred, Make};
162 }
163 
anyAggregateType()164 static inline SourcePred anyAggregateType() {
165   auto Pred = [](ArrayRef<Value *>, const Value *V) {
166     // We can't index zero sized arrays.
167     if (isa<ArrayType>(V->getType()))
168       return V->getType()->getArrayNumElements() > 0;
169 
170     // Structs can also be zero sized. I.e opaque types.
171     if (isa<StructType>(V->getType()))
172       return V->getType()->getStructNumElements() > 0;
173 
174     return V->getType()->isAggregateType();
175   };
176   // TODO: For now we only find aggregates in BaseTypes. It might be better to
177   // manufacture them out of the base types in some cases.
178   auto Find = None;
179   return {Pred, Find};
180 }
181 
anyVectorType()182 static inline SourcePred anyVectorType() {
183   auto Pred = [](ArrayRef<Value *>, const Value *V) {
184     return V->getType()->isVectorTy();
185   };
186   // TODO: For now we only find vectors in BaseTypes. It might be better to
187   // manufacture vectors out of the base types, but it's tricky to be sure
188   // that's actually a reasonable type.
189   auto Make = None;
190   return {Pred, Make};
191 }
192 
193 /// Match values that have the same type as the first source.
matchFirstType()194 static inline SourcePred matchFirstType() {
195   auto Pred = [](ArrayRef<Value *> Cur, const Value *V) {
196     assert(!Cur.empty() && "No first source yet");
197     return V->getType() == Cur[0]->getType();
198   };
199   auto Make = [](ArrayRef<Value *> Cur, ArrayRef<Type *>) {
200     assert(!Cur.empty() && "No first source yet");
201     return makeConstantsWithType(Cur[0]->getType());
202   };
203   return {Pred, Make};
204 }
205 
206 /// Match values that have the first source's scalar type.
matchScalarOfFirstType()207 static inline SourcePred matchScalarOfFirstType() {
208   auto Pred = [](ArrayRef<Value *> Cur, const Value *V) {
209     assert(!Cur.empty() && "No first source yet");
210     return V->getType() == Cur[0]->getType()->getScalarType();
211   };
212   auto Make = [](ArrayRef<Value *> Cur, ArrayRef<Type *>) {
213     assert(!Cur.empty() && "No first source yet");
214     return makeConstantsWithType(Cur[0]->getType()->getScalarType());
215   };
216   return {Pred, Make};
217 }
218 
219 } // end fuzzerop namespace
220 } // end llvm namespace
221 
222 #endif // LLVM_FUZZMUTATE_OPDESCRIPTOR_H
223