1//===- ARMInstrInfo.td - Target Description for ARM Target -*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the ARM instructions in TableGen format.
10//
11//===----------------------------------------------------------------------===//
12
13//===----------------------------------------------------------------------===//
14// ARM specific DAG Nodes.
15//
16
17// Type profiles.
18def SDT_ARMCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32>,
19                                           SDTCisVT<1, i32> ]>;
20def SDT_ARMCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i32>, SDTCisVT<1, i32> ]>;
21def SDT_ARMStructByVal : SDTypeProfile<0, 4,
22                                       [SDTCisVT<0, i32>, SDTCisVT<1, i32>,
23                                        SDTCisVT<2, i32>, SDTCisVT<3, i32>]>;
24
25def SDT_ARMSaveCallPC : SDTypeProfile<0, 1, []>;
26
27def SDT_ARMcall    : SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>;
28
29def SDT_ARMCMov    : SDTypeProfile<1, 3,
30                                   [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>,
31                                    SDTCisVT<3, i32>]>;
32
33def SDT_ARMBrcond  : SDTypeProfile<0, 2,
34                                   [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
35
36def SDT_ARMBrJT    : SDTypeProfile<0, 2,
37                                  [SDTCisPtrTy<0>, SDTCisVT<1, i32>]>;
38
39def SDT_ARMBr2JT   : SDTypeProfile<0, 3,
40                                  [SDTCisPtrTy<0>, SDTCisVT<1, i32>,
41                                   SDTCisVT<2, i32>]>;
42
43def SDT_ARMBCC_i64 : SDTypeProfile<0, 6,
44                                  [SDTCisVT<0, i32>,
45                                   SDTCisVT<1, i32>, SDTCisVT<2, i32>,
46                                   SDTCisVT<3, i32>, SDTCisVT<4, i32>,
47                                   SDTCisVT<5, OtherVT>]>;
48
49def SDT_ARMAnd     : SDTypeProfile<1, 2,
50                                   [SDTCisVT<0, i32>, SDTCisVT<1, i32>,
51                                    SDTCisVT<2, i32>]>;
52
53def SDT_ARMCmp     : SDTypeProfile<0, 2, [SDTCisSameAs<0, 1>]>;
54def SDT_ARMFCmp    : SDTypeProfile<0, 3, [SDTCisSameAs<0, 1>,
55                                          SDTCisVT<2, i32>]>;
56
57def SDT_ARMPICAdd  : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>,
58                                          SDTCisPtrTy<1>, SDTCisVT<2, i32>]>;
59
60def SDT_ARMThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
61def SDT_ARMEH_SJLJ_Setjmp : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisPtrTy<1>,
62                                                 SDTCisInt<2>]>;
63def SDT_ARMEH_SJLJ_Longjmp: SDTypeProfile<0, 2, [SDTCisPtrTy<0>, SDTCisInt<1>]>;
64def SDT_ARMEH_SJLJ_SetupDispatch: SDTypeProfile<0, 0, []>;
65
66def SDT_ARMMEMBARRIER     : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
67
68def SDT_ARMPREFETCH : SDTypeProfile<0, 3, [SDTCisPtrTy<0>, SDTCisSameAs<1, 2>,
69                                           SDTCisInt<1>]>;
70
71def SDT_ARMTCRET : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
72
73def SDT_ARMBFI : SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>,
74                                      SDTCisVT<2, i32>, SDTCisVT<3, i32>]>;
75
76def SDT_WIN__DBZCHK : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
77
78def SDT_ARMMEMCPY  : SDTypeProfile<2, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>,
79                                          SDTCisVT<2, i32>, SDTCisVT<3, i32>,
80                                          SDTCisVT<4, i32>]>;
81
82def SDTBinaryArithWithFlags : SDTypeProfile<2, 2,
83                                            [SDTCisSameAs<0, 2>,
84                                             SDTCisSameAs<0, 3>,
85                                             SDTCisInt<0>, SDTCisVT<1, i32>]>;
86
87// SDTBinaryArithWithFlagsInOut - RES1, CPSR = op LHS, RHS, CPSR
88def SDTBinaryArithWithFlagsInOut : SDTypeProfile<2, 3,
89                                            [SDTCisSameAs<0, 2>,
90                                             SDTCisSameAs<0, 3>,
91                                             SDTCisInt<0>,
92                                             SDTCisVT<1, i32>,
93                                             SDTCisVT<4, i32>]>;
94
95def SDT_LongMac  : SDTypeProfile<2, 4, [SDTCisVT<0, i32>,
96                                        SDTCisSameAs<0, 1>,
97                                        SDTCisSameAs<0, 2>,
98                                        SDTCisSameAs<0, 3>,
99                                        SDTCisSameAs<0, 4>,
100                                        SDTCisSameAs<0, 5>]>;
101
102// ARMlsll, ARMlsrl, ARMasrl
103def SDT_ARMIntShiftParts : SDTypeProfile<2, 3, [SDTCisSameAs<0, 1>,
104                                              SDTCisSameAs<0, 2>,
105                                              SDTCisSameAs<0, 3>,
106                                              SDTCisInt<0>,
107                                              SDTCisInt<4>]>;
108
109// TODO Add another operand for 'Size' so that we can re-use this node when we
110// start supporting *TP versions.
111def SDT_ARMWhileLoop : SDTypeProfile<0, 2, [SDTCisVT<0, i32>,
112                                            SDTCisVT<1, OtherVT>]>;
113
114def ARMSmlald        : SDNode<"ARMISD::SMLALD", SDT_LongMac>;
115def ARMSmlaldx       : SDNode<"ARMISD::SMLALDX", SDT_LongMac>;
116def ARMSmlsld        : SDNode<"ARMISD::SMLSLD", SDT_LongMac>;
117def ARMSmlsldx       : SDNode<"ARMISD::SMLSLDX", SDT_LongMac>;
118
119def SDT_MulHSR       : SDTypeProfile<1, 3, [SDTCisVT<0,i32>,
120                                            SDTCisSameAs<0, 1>,
121                                            SDTCisSameAs<0, 2>,
122                                            SDTCisSameAs<0, 3>]>;
123
124def ARMsmmlar      : SDNode<"ARMISD::SMMLAR", SDT_MulHSR>;
125def ARMsmmlsr      : SDNode<"ARMISD::SMMLSR", SDT_MulHSR>;
126
127// Node definitions.
128def ARMWrapper       : SDNode<"ARMISD::Wrapper",     SDTIntUnaryOp>;
129def ARMWrapperPIC    : SDNode<"ARMISD::WrapperPIC",  SDTIntUnaryOp>;
130def ARMWrapperJT     : SDNode<"ARMISD::WrapperJT",   SDTIntUnaryOp>;
131
132def ARMcallseq_start : SDNode<"ISD::CALLSEQ_START", SDT_ARMCallSeqStart,
133                              [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>;
134def ARMcallseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_ARMCallSeqEnd,
135                              [SDNPHasChain, SDNPSideEffect,
136                               SDNPOptInGlue, SDNPOutGlue]>;
137def ARMcopystructbyval : SDNode<"ARMISD::COPY_STRUCT_BYVAL" ,
138                                SDT_ARMStructByVal,
139                                [SDNPHasChain, SDNPInGlue, SDNPOutGlue,
140                                 SDNPMayStore, SDNPMayLoad]>;
141
142def ARMcall          : SDNode<"ARMISD::CALL", SDT_ARMcall,
143                              [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
144                               SDNPVariadic]>;
145def ARMcall_pred    : SDNode<"ARMISD::CALL_PRED", SDT_ARMcall,
146                              [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
147                               SDNPVariadic]>;
148def ARMcall_nolink   : SDNode<"ARMISD::CALL_NOLINK", SDT_ARMcall,
149                              [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
150                               SDNPVariadic]>;
151
152def ARMretflag       : SDNode<"ARMISD::RET_FLAG", SDTNone,
153                              [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
154def ARMintretflag    : SDNode<"ARMISD::INTRET_FLAG", SDT_ARMcall,
155                              [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
156def ARMcmov          : SDNode<"ARMISD::CMOV", SDT_ARMCMov,
157                              [SDNPInGlue]>;
158def ARMsubs          : SDNode<"ARMISD::SUBS", SDTIntBinOp, [SDNPOutGlue]>;
159
160def ARMssatnoshift   : SDNode<"ARMISD::SSAT", SDTIntSatNoShOp, []>;
161
162def ARMusatnoshift   : SDNode<"ARMISD::USAT", SDTIntSatNoShOp, []>;
163
164def ARMbrcond        : SDNode<"ARMISD::BRCOND", SDT_ARMBrcond,
165                              [SDNPHasChain, SDNPInGlue, SDNPOutGlue]>;
166
167def ARMbrjt          : SDNode<"ARMISD::BR_JT", SDT_ARMBrJT,
168                              [SDNPHasChain]>;
169def ARMbr2jt         : SDNode<"ARMISD::BR2_JT", SDT_ARMBr2JT,
170                              [SDNPHasChain]>;
171
172def ARMBcci64        : SDNode<"ARMISD::BCC_i64", SDT_ARMBCC_i64,
173                              [SDNPHasChain]>;
174
175def ARMcmp           : SDNode<"ARMISD::CMP", SDT_ARMCmp,
176                              [SDNPOutGlue]>;
177
178def ARMcmn           : SDNode<"ARMISD::CMN", SDT_ARMCmp,
179                              [SDNPOutGlue]>;
180
181def ARMcmpZ          : SDNode<"ARMISD::CMPZ", SDT_ARMCmp,
182                              [SDNPOutGlue, SDNPCommutative]>;
183
184def ARMpic_add       : SDNode<"ARMISD::PIC_ADD", SDT_ARMPICAdd>;
185
186def ARMasrl          : SDNode<"ARMISD::ASRL", SDT_ARMIntShiftParts, []>;
187def ARMlsrl          : SDNode<"ARMISD::LSRL", SDT_ARMIntShiftParts, []>;
188def ARMlsll          : SDNode<"ARMISD::LSLL", SDT_ARMIntShiftParts, []>;
189
190def ARMsrl_flag      : SDNode<"ARMISD::SRL_FLAG", SDTIntUnaryOp, [SDNPOutGlue]>;
191def ARMsra_flag      : SDNode<"ARMISD::SRA_FLAG", SDTIntUnaryOp, [SDNPOutGlue]>;
192def ARMrrx           : SDNode<"ARMISD::RRX"     , SDTIntUnaryOp, [SDNPInGlue ]>;
193
194def ARMaddc          : SDNode<"ARMISD::ADDC",  SDTBinaryArithWithFlags,
195                              [SDNPCommutative]>;
196def ARMsubc          : SDNode<"ARMISD::SUBC",  SDTBinaryArithWithFlags>;
197def ARMadde          : SDNode<"ARMISD::ADDE",  SDTBinaryArithWithFlagsInOut>;
198def ARMsube          : SDNode<"ARMISD::SUBE",  SDTBinaryArithWithFlagsInOut>;
199
200def ARMthread_pointer: SDNode<"ARMISD::THREAD_POINTER", SDT_ARMThreadPointer>;
201def ARMeh_sjlj_setjmp: SDNode<"ARMISD::EH_SJLJ_SETJMP",
202                               SDT_ARMEH_SJLJ_Setjmp,
203                               [SDNPHasChain, SDNPSideEffect]>;
204def ARMeh_sjlj_longjmp: SDNode<"ARMISD::EH_SJLJ_LONGJMP",
205                               SDT_ARMEH_SJLJ_Longjmp,
206                               [SDNPHasChain, SDNPSideEffect]>;
207def ARMeh_sjlj_setup_dispatch: SDNode<"ARMISD::EH_SJLJ_SETUP_DISPATCH",
208                                      SDT_ARMEH_SJLJ_SetupDispatch,
209                                      [SDNPHasChain, SDNPSideEffect]>;
210
211def ARMMemBarrierMCR  : SDNode<"ARMISD::MEMBARRIER_MCR", SDT_ARMMEMBARRIER,
212                               [SDNPHasChain, SDNPSideEffect]>;
213def ARMPreload        : SDNode<"ARMISD::PRELOAD", SDT_ARMPREFETCH,
214                               [SDNPHasChain, SDNPMayLoad, SDNPMayStore]>;
215
216def ARMtcret         : SDNode<"ARMISD::TC_RETURN", SDT_ARMTCRET,
217                        [SDNPHasChain,  SDNPOptInGlue, SDNPVariadic]>;
218
219def ARMbfi           : SDNode<"ARMISD::BFI", SDT_ARMBFI>;
220
221def ARMmemcopy : SDNode<"ARMISD::MEMCPY", SDT_ARMMEMCPY,
222                        [SDNPHasChain, SDNPInGlue, SDNPOutGlue,
223                         SDNPMayStore, SDNPMayLoad]>;
224
225def ARMsmulwb       : SDNode<"ARMISD::SMULWB", SDTIntBinOp, []>;
226def ARMsmulwt       : SDNode<"ARMISD::SMULWT", SDTIntBinOp, []>;
227def ARMsmlalbb      : SDNode<"ARMISD::SMLALBB", SDT_LongMac, []>;
228def ARMsmlalbt      : SDNode<"ARMISD::SMLALBT", SDT_LongMac, []>;
229def ARMsmlaltb      : SDNode<"ARMISD::SMLALTB", SDT_LongMac, []>;
230def ARMsmlaltt      : SDNode<"ARMISD::SMLALTT", SDT_LongMac, []>;
231
232// Vector operations shared between NEON and MVE
233
234def ARMvdup      : SDNode<"ARMISD::VDUP", SDTypeProfile<1, 1, [SDTCisVec<0>]>>;
235
236// VDUPLANE can produce a quad-register result from a double-register source,
237// so the result is not constrained to match the source.
238def ARMvduplane  : SDNode<"ARMISD::VDUPLANE",
239                          SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>,
240                                               SDTCisVT<2, i32>]>>;
241
242def SDTARMVSHUF   : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0, 1>]>;
243def ARMvrev64    : SDNode<"ARMISD::VREV64", SDTARMVSHUF>;
244def ARMvrev32    : SDNode<"ARMISD::VREV32", SDTARMVSHUF>;
245def ARMvrev16    : SDNode<"ARMISD::VREV16", SDTARMVSHUF>;
246
247def SDTARMVGETLN  : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisInt<1>,
248                                         SDTCisVT<2, i32>]>;
249def ARMvgetlaneu : SDNode<"ARMISD::VGETLANEu", SDTARMVGETLN>;
250def ARMvgetlanes : SDNode<"ARMISD::VGETLANEs", SDTARMVGETLN>;
251
252def SDTARMVMOVIMM : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVT<1, i32>]>;
253def ARMvmovImm   : SDNode<"ARMISD::VMOVIMM", SDTARMVMOVIMM>;
254def ARMvmvnImm   : SDNode<"ARMISD::VMVNIMM", SDTARMVMOVIMM>;
255def ARMvmovFPImm : SDNode<"ARMISD::VMOVFPIMM", SDTARMVMOVIMM>;
256
257
258def SDTARMVSHIMM : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
259                                        SDTCisVT<2, i32>]>;
260def SDTARMVSH : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
261                                     SDTCisSameAs<0, 2>,]>;
262def ARMvshlImm   : SDNode<"ARMISD::VSHLIMM", SDTARMVSHIMM>;
263def ARMvshrsImm  : SDNode<"ARMISD::VSHRsIMM", SDTARMVSHIMM>;
264def ARMvshruImm  : SDNode<"ARMISD::VSHRuIMM", SDTARMVSHIMM>;
265def ARMvshls     : SDNode<"ARMISD::VSHLs", SDTARMVSH>;
266def ARMvshlu     : SDNode<"ARMISD::VSHLu", SDTARMVSH>;
267
268def ARMWLS : SDNode<"ARMISD::WLS", SDT_ARMWhileLoop,
269                    [SDNPHasChain]>;
270
271//===----------------------------------------------------------------------===//
272// ARM Flag Definitions.
273
274class RegConstraint<string C> {
275  string Constraints = C;
276}
277
278//===----------------------------------------------------------------------===//
279//  ARM specific transformation functions and pattern fragments.
280//
281
282// imm_neg_XFORM - Return the negation of an i32 immediate value.
283def imm_neg_XFORM : SDNodeXForm<imm, [{
284  return CurDAG->getTargetConstant(-(int)N->getZExtValue(), SDLoc(N), MVT::i32);
285}]>;
286
287// imm_not_XFORM - Return the complement of a i32 immediate value.
288def imm_not_XFORM : SDNodeXForm<imm, [{
289  return CurDAG->getTargetConstant(~(int)N->getZExtValue(), SDLoc(N), MVT::i32);
290}]>;
291
292/// imm16_31 predicate - True if the 32-bit immediate is in the range [16,31].
293def imm16_31 : ImmLeaf<i32, [{
294  return (int32_t)Imm >= 16 && (int32_t)Imm < 32;
295}]>;
296
297// sext_16_node predicate - True if the SDNode is sign-extended 16 or more bits.
298def sext_16_node : PatLeaf<(i32 GPR:$a), [{
299  return CurDAG->ComputeNumSignBits(SDValue(N,0)) >= 17;
300}]>;
301
302def sext_bottom_16 : PatFrag<(ops node:$a),
303                             (sext_inreg node:$a, i16)>;
304def sext_top_16 : PatFrag<(ops node:$a),
305                          (i32 (sra node:$a, (i32 16)))>;
306
307def bb_mul : PatFrag<(ops node:$a, node:$b),
308                     (mul (sext_bottom_16 node:$a), (sext_bottom_16 node:$b))>;
309def bt_mul : PatFrag<(ops node:$a, node:$b),
310                     (mul (sext_bottom_16 node:$a), (sra node:$b, (i32 16)))>;
311def tb_mul : PatFrag<(ops node:$a, node:$b),
312                     (mul (sra node:$a, (i32 16)), (sext_bottom_16 node:$b))>;
313def tt_mul : PatFrag<(ops node:$a, node:$b),
314                     (mul (sra node:$a, (i32 16)), (sra node:$b, (i32 16)))>;
315
316/// Split a 32-bit immediate into two 16 bit parts.
317def hi16 : SDNodeXForm<imm, [{
318  return CurDAG->getTargetConstant((uint32_t)N->getZExtValue() >> 16, SDLoc(N),
319                                   MVT::i32);
320}]>;
321
322def lo16AllZero : PatLeaf<(i32 imm), [{
323  // Returns true if all low 16-bits are 0.
324  return (((uint32_t)N->getZExtValue()) & 0xFFFFUL) == 0;
325}], hi16>;
326
327class BinOpFrag<dag res> : PatFrag<(ops node:$LHS, node:$RHS), res>;
328class UnOpFrag <dag res> : PatFrag<(ops node:$Src), res>;
329
330// An 'and' node with a single use.
331def and_su : PatFrag<(ops node:$lhs, node:$rhs), (and node:$lhs, node:$rhs), [{
332  return N->hasOneUse();
333}]>;
334
335// An 'xor' node with a single use.
336def xor_su : PatFrag<(ops node:$lhs, node:$rhs), (xor node:$lhs, node:$rhs), [{
337  return N->hasOneUse();
338}]>;
339
340// An 'fmul' node with a single use.
341def fmul_su : PatFrag<(ops node:$lhs, node:$rhs), (fmul node:$lhs, node:$rhs),[{
342  return N->hasOneUse();
343}]>;
344
345// An 'fadd' node which checks for single non-hazardous use.
346def fadd_mlx : PatFrag<(ops node:$lhs, node:$rhs),(fadd node:$lhs, node:$rhs),[{
347  return hasNoVMLxHazardUse(N);
348}]>;
349
350// An 'fsub' node which checks for single non-hazardous use.
351def fsub_mlx : PatFrag<(ops node:$lhs, node:$rhs),(fsub node:$lhs, node:$rhs),[{
352  return hasNoVMLxHazardUse(N);
353}]>;
354
355//===----------------------------------------------------------------------===//
356// Operand Definitions.
357//
358
359// Immediate operands with a shared generic asm render method.
360class ImmAsmOperand<int Low, int High> : AsmOperandClass {
361  let RenderMethod = "addImmOperands";
362  let PredicateMethod = "isImmediate<" # Low # "," # High # ">";
363  let DiagnosticString = "operand must be an immediate in the range [" # Low # "," # High # "]";
364}
365
366class ImmAsmOperandMinusOne<int Low, int High> : AsmOperandClass {
367  let PredicateMethod = "isImmediate<" # Low # "," # High # ">";
368  let DiagnosticType = "ImmRange" # Low # "_" # High;
369  let DiagnosticString = "operand must be an immediate in the range [" # Low # "," # High # "]";
370}
371
372// Operands that are part of a memory addressing mode.
373class MemOperand : Operand<i32> { let OperandType = "OPERAND_MEMORY"; }
374
375// Branch target.
376// FIXME: rename brtarget to t2_brtarget
377def brtarget : Operand<OtherVT> {
378  let EncoderMethod = "getBranchTargetOpValue";
379  let OperandType = "OPERAND_PCREL";
380  let DecoderMethod = "DecodeT2BROperand";
381}
382
383// Branches targeting ARM-mode must be divisible by 4 if they're a raw
384// immediate.
385def ARMBranchTarget : AsmOperandClass {
386  let Name = "ARMBranchTarget";
387}
388
389// Branches targeting Thumb-mode must be divisible by 2 if they're a raw
390// immediate.
391def ThumbBranchTarget : AsmOperandClass {
392  let Name = "ThumbBranchTarget";
393}
394
395def arm_br_target : Operand<OtherVT> {
396  let ParserMatchClass = ARMBranchTarget;
397  let EncoderMethod = "getARMBranchTargetOpValue";
398  let OperandType = "OPERAND_PCREL";
399}
400
401// Call target for ARM. Handles conditional/unconditional
402// FIXME: rename bl_target to t2_bltarget?
403def arm_bl_target : Operand<i32> {
404  let ParserMatchClass = ARMBranchTarget;
405  let EncoderMethod = "getARMBLTargetOpValue";
406  let OperandType = "OPERAND_PCREL";
407}
408
409// Target for BLX *from* ARM mode.
410def arm_blx_target : Operand<i32> {
411  let ParserMatchClass = ThumbBranchTarget;
412  let EncoderMethod = "getARMBLXTargetOpValue";
413  let OperandType = "OPERAND_PCREL";
414}
415
416// A list of registers separated by comma. Used by load/store multiple.
417def RegListAsmOperand : AsmOperandClass { let Name = "RegList"; }
418def reglist : Operand<i32> {
419  let EncoderMethod = "getRegisterListOpValue";
420  let ParserMatchClass = RegListAsmOperand;
421  let PrintMethod = "printRegisterList";
422  let DecoderMethod = "DecodeRegListOperand";
423}
424
425// A list of general purpose registers and APSR separated by comma.
426// Used by CLRM
427def RegListWithAPSRAsmOperand : AsmOperandClass { let Name = "RegListWithAPSR"; }
428def reglist_with_apsr : Operand<i32> {
429  let EncoderMethod = "getRegisterListOpValue";
430  let ParserMatchClass = RegListWithAPSRAsmOperand;
431  let PrintMethod = "printRegisterList";
432  let DecoderMethod = "DecodeRegListOperand";
433}
434
435def GPRPairOp : RegisterOperand<GPRPair, "printGPRPairOperand">;
436
437def DPRRegListAsmOperand : AsmOperandClass {
438  let Name = "DPRRegList";
439  let DiagnosticType = "DPR_RegList";
440}
441def dpr_reglist : Operand<i32> {
442  let EncoderMethod = "getRegisterListOpValue";
443  let ParserMatchClass = DPRRegListAsmOperand;
444  let PrintMethod = "printRegisterList";
445  let DecoderMethod = "DecodeDPRRegListOperand";
446}
447
448def SPRRegListAsmOperand : AsmOperandClass {
449  let Name = "SPRRegList";
450  let DiagnosticString = "operand must be a list of registers in range [s0, s31]";
451}
452def spr_reglist : Operand<i32> {
453  let EncoderMethod = "getRegisterListOpValue";
454  let ParserMatchClass = SPRRegListAsmOperand;
455  let PrintMethod = "printRegisterList";
456  let DecoderMethod = "DecodeSPRRegListOperand";
457}
458
459def FPSRegListWithVPRAsmOperand : AsmOperandClass { let Name =
460    "FPSRegListWithVPR"; }
461def fp_sreglist_with_vpr : Operand<i32> {
462  let EncoderMethod = "getRegisterListOpValue";
463  let ParserMatchClass = FPSRegListWithVPRAsmOperand;
464  let PrintMethod = "printRegisterList";
465}
466def FPDRegListWithVPRAsmOperand : AsmOperandClass { let Name =
467    "FPDRegListWithVPR"; }
468def fp_dreglist_with_vpr : Operand<i32> {
469  let EncoderMethod = "getRegisterListOpValue";
470  let ParserMatchClass = FPDRegListWithVPRAsmOperand;
471  let PrintMethod = "printRegisterList";
472}
473
474// An operand for the CONSTPOOL_ENTRY pseudo-instruction.
475def cpinst_operand : Operand<i32> {
476  let PrintMethod = "printCPInstOperand";
477}
478
479// Local PC labels.
480def pclabel : Operand<i32> {
481  let PrintMethod = "printPCLabel";
482}
483
484// ADR instruction labels.
485def AdrLabelAsmOperand : AsmOperandClass { let Name = "AdrLabel"; }
486def adrlabel : Operand<i32> {
487  let EncoderMethod = "getAdrLabelOpValue";
488  let ParserMatchClass = AdrLabelAsmOperand;
489  let PrintMethod = "printAdrLabelOperand<0>";
490}
491
492def neon_vcvt_imm32 : Operand<i32> {
493  let EncoderMethod = "getNEONVcvtImm32OpValue";
494  let DecoderMethod = "DecodeVCVTImmOperand";
495}
496
497// rot_imm: An integer that encodes a rotate amount. Must be 8, 16, or 24.
498def rot_imm_XFORM: SDNodeXForm<imm, [{
499  switch (N->getZExtValue()){
500  default: llvm_unreachable(nullptr);
501  case 0:  return CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
502  case 8:  return CurDAG->getTargetConstant(1, SDLoc(N), MVT::i32);
503  case 16: return CurDAG->getTargetConstant(2, SDLoc(N), MVT::i32);
504  case 24: return CurDAG->getTargetConstant(3, SDLoc(N), MVT::i32);
505  }
506}]>;
507def RotImmAsmOperand : AsmOperandClass {
508  let Name = "RotImm";
509  let ParserMethod = "parseRotImm";
510}
511def rot_imm : Operand<i32>, PatLeaf<(i32 imm), [{
512    int32_t v = N->getZExtValue();
513    return v == 8 || v == 16 || v == 24; }],
514    rot_imm_XFORM> {
515  let PrintMethod = "printRotImmOperand";
516  let ParserMatchClass = RotImmAsmOperand;
517}
518
519// Power-of-two operand for MVE VIDUP and friends, which encode
520// {1,2,4,8} as its log to base 2, i.e. as {0,1,2,3} respectively
521def MVE_VIDUP_imm_asmoperand : AsmOperandClass {
522  let Name = "VIDUP_imm";
523  let PredicateMethod = "isPowerTwoInRange<1,8>";
524  let RenderMethod = "addPowerTwoOperands";
525  let DiagnosticString = "vector increment immediate must be 1, 2, 4 or 8";
526}
527def MVE_VIDUP_imm : Operand<i32> {
528  let EncoderMethod = "getPowerTwoOpValue";
529  let DecoderMethod = "DecodePowerTwoOperand<0,3>";
530  let ParserMatchClass = MVE_VIDUP_imm_asmoperand;
531}
532
533// Pair vector indexing
534class MVEPairVectorIndexOperand<string start, string end> : AsmOperandClass {
535  let Name = "MVEPairVectorIndex"#start;
536  let RenderMethod = "addMVEPairVectorIndexOperands";
537  let PredicateMethod = "isMVEPairVectorIndex<"#start#", "#end#">";
538}
539
540class MVEPairVectorIndex<string opval> : Operand<i32> {
541  let PrintMethod = "printVectorIndex";
542  let EncoderMethod = "getMVEPairVectorIndexOpValue<"#opval#">";
543  let DecoderMethod = "DecodeMVEPairVectorIndexOperand<"#opval#">";
544  let MIOperandInfo = (ops i32imm);
545}
546
547def MVEPairVectorIndex0 : MVEPairVectorIndex<"0"> {
548  let ParserMatchClass = MVEPairVectorIndexOperand<"0", "1">;
549}
550
551def MVEPairVectorIndex2 : MVEPairVectorIndex<"2"> {
552  let ParserMatchClass = MVEPairVectorIndexOperand<"2", "3">;
553}
554
555// Vector indexing
556class MVEVectorIndexOperand<int NumLanes> : AsmOperandClass {
557  let Name = "MVEVectorIndex"#NumLanes;
558  let RenderMethod = "addMVEVectorIndexOperands";
559  let PredicateMethod = "isVectorIndexInRange<"#NumLanes#">";
560}
561
562class MVEVectorIndex<int NumLanes> : Operand<i32> {
563  let PrintMethod = "printVectorIndex";
564  let ParserMatchClass = MVEVectorIndexOperand<NumLanes>;
565  let MIOperandInfo = (ops i32imm);
566}
567
568// shift_imm: An integer that encodes a shift amount and the type of shift
569// (asr or lsl). The 6-bit immediate encodes as:
570//    {5}     0 ==> lsl
571//            1     asr
572//    {4-0}   imm5 shift amount.
573//            asr #32 encoded as imm5 == 0.
574def ShifterImmAsmOperand : AsmOperandClass {
575  let Name = "ShifterImm";
576  let ParserMethod = "parseShifterImm";
577}
578def shift_imm : Operand<i32> {
579  let PrintMethod = "printShiftImmOperand";
580  let ParserMatchClass = ShifterImmAsmOperand;
581}
582
583// shifter_operand operands: so_reg_reg, so_reg_imm, and mod_imm.
584def ShiftedRegAsmOperand : AsmOperandClass { let Name = "RegShiftedReg"; }
585def so_reg_reg : Operand<i32>,  // reg reg imm
586                 ComplexPattern<i32, 3, "SelectRegShifterOperand",
587                                [shl, srl, sra, rotr]> {
588  let EncoderMethod = "getSORegRegOpValue";
589  let PrintMethod = "printSORegRegOperand";
590  let DecoderMethod = "DecodeSORegRegOperand";
591  let ParserMatchClass = ShiftedRegAsmOperand;
592  let MIOperandInfo = (ops GPRnopc, GPRnopc, i32imm);
593}
594
595def ShiftedImmAsmOperand : AsmOperandClass { let Name = "RegShiftedImm"; }
596def so_reg_imm : Operand<i32>, // reg imm
597                 ComplexPattern<i32, 2, "SelectImmShifterOperand",
598                                [shl, srl, sra, rotr]> {
599  let EncoderMethod = "getSORegImmOpValue";
600  let PrintMethod = "printSORegImmOperand";
601  let DecoderMethod = "DecodeSORegImmOperand";
602  let ParserMatchClass = ShiftedImmAsmOperand;
603  let MIOperandInfo = (ops GPR, i32imm);
604}
605
606// FIXME: Does this need to be distinct from so_reg?
607def shift_so_reg_reg : Operand<i32>,    // reg reg imm
608                   ComplexPattern<i32, 3, "SelectShiftRegShifterOperand",
609                                  [shl,srl,sra,rotr]> {
610  let EncoderMethod = "getSORegRegOpValue";
611  let PrintMethod = "printSORegRegOperand";
612  let DecoderMethod = "DecodeSORegRegOperand";
613  let ParserMatchClass = ShiftedRegAsmOperand;
614  let MIOperandInfo = (ops GPR, GPR, i32imm);
615}
616
617// FIXME: Does this need to be distinct from so_reg?
618def shift_so_reg_imm : Operand<i32>,    // reg reg imm
619                   ComplexPattern<i32, 2, "SelectShiftImmShifterOperand",
620                                  [shl,srl,sra,rotr]> {
621  let EncoderMethod = "getSORegImmOpValue";
622  let PrintMethod = "printSORegImmOperand";
623  let DecoderMethod = "DecodeSORegImmOperand";
624  let ParserMatchClass = ShiftedImmAsmOperand;
625  let MIOperandInfo = (ops GPR, i32imm);
626}
627
628// mod_imm: match a 32-bit immediate operand, which can be encoded into
629// a 12-bit immediate; an 8-bit integer and a 4-bit rotator (See ARMARM
630// - "Modified Immediate Constants"). Within the MC layer we keep this
631// immediate in its encoded form.
632def ModImmAsmOperand: AsmOperandClass {
633  let Name = "ModImm";
634  let ParserMethod = "parseModImm";
635}
636def mod_imm : Operand<i32>, ImmLeaf<i32, [{
637    return ARM_AM::getSOImmVal(Imm) != -1;
638  }]> {
639  let EncoderMethod = "getModImmOpValue";
640  let PrintMethod = "printModImmOperand";
641  let ParserMatchClass = ModImmAsmOperand;
642}
643
644// Note: the patterns mod_imm_not and mod_imm_neg do not require an encoder
645// method and such, as they are only used on aliases (Pat<> and InstAlias<>).
646// The actual parsing, encoding, decoding are handled by the destination
647// instructions, which use mod_imm.
648
649def ModImmNotAsmOperand : AsmOperandClass { let Name = "ModImmNot"; }
650def mod_imm_not : Operand<i32>, PatLeaf<(imm), [{
651    return ARM_AM::getSOImmVal(~(uint32_t)N->getZExtValue()) != -1;
652  }], imm_not_XFORM> {
653  let ParserMatchClass = ModImmNotAsmOperand;
654}
655
656def ModImmNegAsmOperand : AsmOperandClass { let Name = "ModImmNeg"; }
657def mod_imm_neg : Operand<i32>, PatLeaf<(imm), [{
658    unsigned Value = -(unsigned)N->getZExtValue();
659    return Value && ARM_AM::getSOImmVal(Value) != -1;
660  }], imm_neg_XFORM> {
661  let ParserMatchClass = ModImmNegAsmOperand;
662}
663
664/// arm_i32imm - True for +V6T2, or when isSOImmTwoParVal()
665def arm_i32imm : IntImmLeaf<i32, [{
666  if (Subtarget->useMovt())
667    return true;
668  return ARM_AM::isSOImmTwoPartVal(Imm.getZExtValue());
669}]>;
670
671/// imm0_1 predicate - Immediate in the range [0,1].
672def Imm0_1AsmOperand: ImmAsmOperand<0,1> { let Name = "Imm0_1"; }
673def imm0_1 : Operand<i32> { let ParserMatchClass = Imm0_1AsmOperand; }
674
675/// imm0_3 predicate - Immediate in the range [0,3].
676def Imm0_3AsmOperand: ImmAsmOperand<0,3> { let Name = "Imm0_3"; }
677def imm0_3 : Operand<i32> { let ParserMatchClass = Imm0_3AsmOperand; }
678
679/// imm0_7 predicate - Immediate in the range [0,7].
680def Imm0_7AsmOperand: ImmAsmOperand<0,7> {
681  let Name = "Imm0_7";
682}
683def imm0_7 : Operand<i32>, ImmLeaf<i32, [{
684  return Imm >= 0 && Imm < 8;
685}]> {
686  let ParserMatchClass = Imm0_7AsmOperand;
687}
688
689/// imm8_255 predicate - Immediate in the range [8,255].
690def Imm8_255AsmOperand: ImmAsmOperand<8,255> { let Name = "Imm8_255"; }
691def imm8_255 : Operand<i32>, ImmLeaf<i32, [{
692  return Imm >= 8 && Imm < 256;
693}]> {
694  let ParserMatchClass = Imm8_255AsmOperand;
695}
696
697/// imm8 predicate - Immediate is exactly 8.
698def Imm8AsmOperand: ImmAsmOperand<8,8> { let Name = "Imm8"; }
699def imm8 : Operand<i32>, ImmLeaf<i32, [{ return Imm == 8; }]> {
700  let ParserMatchClass = Imm8AsmOperand;
701}
702
703/// imm16 predicate - Immediate is exactly 16.
704def Imm16AsmOperand: ImmAsmOperand<16,16> { let Name = "Imm16"; }
705def imm16 : Operand<i32>, ImmLeaf<i32, [{ return Imm == 16; }]> {
706  let ParserMatchClass = Imm16AsmOperand;
707}
708
709/// imm32 predicate - Immediate is exactly 32.
710def Imm32AsmOperand: ImmAsmOperand<32,32> { let Name = "Imm32"; }
711def imm32 : Operand<i32>, ImmLeaf<i32, [{ return Imm == 32; }]> {
712  let ParserMatchClass = Imm32AsmOperand;
713}
714
715def imm8_or_16 : ImmLeaf<i32, [{ return Imm == 8 || Imm == 16;}]>;
716
717/// imm1_7 predicate - Immediate in the range [1,7].
718def Imm1_7AsmOperand: ImmAsmOperand<1,7> { let Name = "Imm1_7"; }
719def imm1_7 : Operand<i32>, ImmLeaf<i32, [{ return Imm > 0 && Imm < 8; }]> {
720  let ParserMatchClass = Imm1_7AsmOperand;
721}
722
723/// imm1_15 predicate - Immediate in the range [1,15].
724def Imm1_15AsmOperand: ImmAsmOperand<1,15> { let Name = "Imm1_15"; }
725def imm1_15 : Operand<i32>, ImmLeaf<i32, [{ return Imm > 0 && Imm < 16; }]> {
726  let ParserMatchClass = Imm1_15AsmOperand;
727}
728
729/// imm1_31 predicate - Immediate in the range [1,31].
730def Imm1_31AsmOperand: ImmAsmOperand<1,31> { let Name = "Imm1_31"; }
731def imm1_31 : Operand<i32>, ImmLeaf<i32, [{ return Imm > 0 && Imm < 32; }]> {
732  let ParserMatchClass = Imm1_31AsmOperand;
733}
734
735/// imm0_15 predicate - Immediate in the range [0,15].
736def Imm0_15AsmOperand: ImmAsmOperand<0,15> {
737  let Name = "Imm0_15";
738}
739def imm0_15 : Operand<i32>, ImmLeaf<i32, [{
740  return Imm >= 0 && Imm < 16;
741}]> {
742  let ParserMatchClass = Imm0_15AsmOperand;
743}
744
745/// imm0_31 predicate - True if the 32-bit immediate is in the range [0,31].
746def Imm0_31AsmOperand: ImmAsmOperand<0,31> { let Name = "Imm0_31"; }
747def imm0_31 : Operand<i32>, ImmLeaf<i32, [{
748  return Imm >= 0 && Imm < 32;
749}]> {
750  let ParserMatchClass = Imm0_31AsmOperand;
751}
752
753/// imm0_32 predicate - True if the 32-bit immediate is in the range [0,32].
754def Imm0_32AsmOperand: ImmAsmOperand<0,32> { let Name = "Imm0_32"; }
755def imm0_32 : Operand<i32>, ImmLeaf<i32, [{
756  return Imm >= 0 && Imm < 33;
757}]> {
758  let ParserMatchClass = Imm0_32AsmOperand;
759}
760
761/// imm0_63 predicate - True if the 32-bit immediate is in the range [0,63].
762def Imm0_63AsmOperand: ImmAsmOperand<0,63> { let Name = "Imm0_63"; }
763def imm0_63 : Operand<i32>, ImmLeaf<i32, [{
764  return Imm >= 0 && Imm < 64;
765}]> {
766  let ParserMatchClass = Imm0_63AsmOperand;
767}
768
769/// imm0_239 predicate - Immediate in the range [0,239].
770def Imm0_239AsmOperand : ImmAsmOperand<0,239> {
771  let Name = "Imm0_239";
772}
773def imm0_239 : Operand<i32>, ImmLeaf<i32, [{ return Imm >= 0 && Imm < 240; }]> {
774  let ParserMatchClass = Imm0_239AsmOperand;
775}
776
777/// imm0_255 predicate - Immediate in the range [0,255].
778def Imm0_255AsmOperand : ImmAsmOperand<0,255> { let Name = "Imm0_255"; }
779def imm0_255 : Operand<i32>, ImmLeaf<i32, [{ return Imm >= 0 && Imm < 256; }]> {
780  let ParserMatchClass = Imm0_255AsmOperand;
781}
782
783/// imm0_65535 - An immediate is in the range [0,65535].
784def Imm0_65535AsmOperand: ImmAsmOperand<0,65535> { let Name = "Imm0_65535"; }
785def imm0_65535 : Operand<i32>, ImmLeaf<i32, [{
786  return Imm >= 0 && Imm < 65536;
787}]> {
788  let ParserMatchClass = Imm0_65535AsmOperand;
789}
790
791// imm0_65535_neg - An immediate whose negative value is in the range [0.65535].
792def imm0_65535_neg : Operand<i32>, ImmLeaf<i32, [{
793  return -Imm >= 0 && -Imm < 65536;
794}]>;
795
796// imm0_65535_expr - For movt/movw - 16-bit immediate that can also reference
797// a relocatable expression.
798//
799// FIXME: This really needs a Thumb version separate from the ARM version.
800// While the range is the same, and can thus use the same match class,
801// the encoding is different so it should have a different encoder method.
802def Imm0_65535ExprAsmOperand: AsmOperandClass {
803  let Name = "Imm0_65535Expr";
804  let RenderMethod = "addImmOperands";
805  let DiagnosticString = "operand must be an immediate in the range [0,0xffff] or a relocatable expression";
806}
807
808def imm0_65535_expr : Operand<i32> {
809  let EncoderMethod = "getHiLo16ImmOpValue";
810  let ParserMatchClass = Imm0_65535ExprAsmOperand;
811}
812
813def Imm256_65535ExprAsmOperand: ImmAsmOperand<256,65535> { let Name = "Imm256_65535Expr"; }
814def imm256_65535_expr : Operand<i32> {
815  let ParserMatchClass = Imm256_65535ExprAsmOperand;
816}
817
818/// imm24b - True if the 32-bit immediate is encodable in 24 bits.
819def Imm24bitAsmOperand: ImmAsmOperand<0,0xffffff> {
820  let Name = "Imm24bit";
821  let DiagnosticString = "operand must be an immediate in the range [0,0xffffff]";
822}
823def imm24b : Operand<i32>, ImmLeaf<i32, [{
824  return Imm >= 0 && Imm <= 0xffffff;
825}]> {
826  let ParserMatchClass = Imm24bitAsmOperand;
827}
828
829
830/// bf_inv_mask_imm predicate - An AND mask to clear an arbitrary width bitfield
831/// e.g., 0xf000ffff
832def BitfieldAsmOperand : AsmOperandClass {
833  let Name = "Bitfield";
834  let ParserMethod = "parseBitfield";
835}
836
837def bf_inv_mask_imm : Operand<i32>,
838                      PatLeaf<(imm), [{
839  return ARM::isBitFieldInvertedMask(N->getZExtValue());
840}] > {
841  let EncoderMethod = "getBitfieldInvertedMaskOpValue";
842  let PrintMethod = "printBitfieldInvMaskImmOperand";
843  let DecoderMethod = "DecodeBitfieldMaskOperand";
844  let ParserMatchClass = BitfieldAsmOperand;
845  let GISelPredicateCode = [{
846    // There's better methods of implementing this check. IntImmLeaf<> would be
847    // equivalent and have less boilerplate but we need a test for C++
848    // predicates and this one causes new rules to be imported into GlobalISel
849    // without requiring additional features first.
850    const auto &MO = MI.getOperand(1);
851    if (!MO.isCImm())
852      return false;
853    return ARM::isBitFieldInvertedMask(MO.getCImm()->getZExtValue());
854  }];
855}
856
857def imm1_32_XFORM: SDNodeXForm<imm, [{
858  return CurDAG->getTargetConstant((int)N->getZExtValue() - 1, SDLoc(N),
859                                   MVT::i32);
860}]>;
861def Imm1_32AsmOperand: ImmAsmOperandMinusOne<1,32> {
862  let Name = "Imm1_32";
863}
864def imm1_32 : Operand<i32>, PatLeaf<(imm), [{
865   uint64_t Imm = N->getZExtValue();
866   return Imm > 0 && Imm <= 32;
867 }],
868    imm1_32_XFORM> {
869  let PrintMethod = "printImmPlusOneOperand";
870  let ParserMatchClass = Imm1_32AsmOperand;
871}
872
873def imm1_16_XFORM: SDNodeXForm<imm, [{
874  return CurDAG->getTargetConstant((int)N->getZExtValue() - 1, SDLoc(N),
875                                   MVT::i32);
876}]>;
877def Imm1_16AsmOperand: ImmAsmOperandMinusOne<1,16> { let Name = "Imm1_16"; }
878def imm1_16 : Operand<i32>, ImmLeaf<i32, [{
879    return Imm > 0 && Imm <= 16;
880  }],
881    imm1_16_XFORM> {
882  let PrintMethod = "printImmPlusOneOperand";
883  let ParserMatchClass = Imm1_16AsmOperand;
884}
885
886def MVEShiftImm1_7AsmOperand: ImmAsmOperand<1,7> {
887  let Name = "MVEShiftImm1_7";
888  // Reason we're doing this is because instruction vshll.s8 t1 encoding
889  // accepts 1,7 but the t2 encoding accepts 8.  By doing this we can get a
890  // better diagnostic message if someone uses bigger immediate than the t1/t2
891  // encodings allow.
892  let DiagnosticString = "operand must be an immediate in the range [1,8]";
893}
894def mve_shift_imm1_7 : Operand<i32> {
895  let ParserMatchClass = MVEShiftImm1_7AsmOperand;
896  let EncoderMethod = "getMVEShiftImmOpValue";
897}
898
899def MVEShiftImm1_15AsmOperand: ImmAsmOperand<1,15> {
900  let Name = "MVEShiftImm1_15";
901  // Reason we're doing this is because instruction vshll.s16 t1 encoding
902  // accepts 1,15 but the t2 encoding accepts 16.  By doing this we can get a
903  // better diagnostic message if someone uses bigger immediate than the t1/t2
904  // encodings allow.
905  let DiagnosticString = "operand must be an immediate in the range [1,16]";
906}
907def mve_shift_imm1_15 : Operand<i32> {
908  let ParserMatchClass = MVEShiftImm1_15AsmOperand;
909  let EncoderMethod = "getMVEShiftImmOpValue";
910}
911
912// Define ARM specific addressing modes.
913// addrmode_imm12 := reg +/- imm12
914//
915def MemImm12OffsetAsmOperand : AsmOperandClass { let Name = "MemImm12Offset"; }
916class AddrMode_Imm12 : MemOperand,
917                     ComplexPattern<i32, 2, "SelectAddrModeImm12", []> {
918  // 12-bit immediate operand. Note that instructions using this encode
919  // #0 and #-0 differently. We flag #-0 as the magic value INT32_MIN. All other
920  // immediate values are as normal.
921
922  let EncoderMethod = "getAddrModeImm12OpValue";
923  let DecoderMethod = "DecodeAddrModeImm12Operand";
924  let ParserMatchClass = MemImm12OffsetAsmOperand;
925  let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm);
926}
927
928def addrmode_imm12 : AddrMode_Imm12 {
929  let PrintMethod = "printAddrModeImm12Operand<false>";
930}
931
932def addrmode_imm12_pre : AddrMode_Imm12 {
933  let PrintMethod = "printAddrModeImm12Operand<true>";
934}
935
936// ldst_so_reg := reg +/- reg shop imm
937//
938def MemRegOffsetAsmOperand : AsmOperandClass { let Name = "MemRegOffset"; }
939def ldst_so_reg : MemOperand,
940                  ComplexPattern<i32, 3, "SelectLdStSOReg", []> {
941  let EncoderMethod = "getLdStSORegOpValue";
942  // FIXME: Simplify the printer
943  let PrintMethod = "printAddrMode2Operand";
944  let DecoderMethod = "DecodeSORegMemOperand";
945  let ParserMatchClass = MemRegOffsetAsmOperand;
946  let MIOperandInfo = (ops GPR:$base, GPRnopc:$offsreg, i32imm:$shift);
947}
948
949// postidx_imm8 := +/- [0,255]
950//
951// 9 bit value:
952//  {8}       1 is imm8 is non-negative. 0 otherwise.
953//  {7-0}     [0,255] imm8 value.
954def PostIdxImm8AsmOperand : AsmOperandClass { let Name = "PostIdxImm8"; }
955def postidx_imm8 : MemOperand {
956  let PrintMethod = "printPostIdxImm8Operand";
957  let ParserMatchClass = PostIdxImm8AsmOperand;
958  let MIOperandInfo = (ops i32imm);
959}
960
961// postidx_imm8s4 := +/- [0,1020]
962//
963// 9 bit value:
964//  {8}       1 is imm8 is non-negative. 0 otherwise.
965//  {7-0}     [0,255] imm8 value, scaled by 4.
966def PostIdxImm8s4AsmOperand : AsmOperandClass { let Name = "PostIdxImm8s4"; }
967def postidx_imm8s4 : MemOperand {
968  let PrintMethod = "printPostIdxImm8s4Operand";
969  let ParserMatchClass = PostIdxImm8s4AsmOperand;
970  let MIOperandInfo = (ops i32imm);
971}
972
973
974// postidx_reg := +/- reg
975//
976def PostIdxRegAsmOperand : AsmOperandClass {
977  let Name = "PostIdxReg";
978  let ParserMethod = "parsePostIdxReg";
979}
980def postidx_reg : MemOperand {
981  let EncoderMethod = "getPostIdxRegOpValue";
982  let DecoderMethod = "DecodePostIdxReg";
983  let PrintMethod = "printPostIdxRegOperand";
984  let ParserMatchClass = PostIdxRegAsmOperand;
985  let MIOperandInfo = (ops GPRnopc, i32imm);
986}
987
988def PostIdxRegShiftedAsmOperand : AsmOperandClass {
989  let Name = "PostIdxRegShifted";
990  let ParserMethod = "parsePostIdxReg";
991}
992def am2offset_reg : MemOperand,
993                ComplexPattern<i32, 2, "SelectAddrMode2OffsetReg",
994                [], [SDNPWantRoot]> {
995  let EncoderMethod = "getAddrMode2OffsetOpValue";
996  let PrintMethod = "printAddrMode2OffsetOperand";
997  // When using this for assembly, it's always as a post-index offset.
998  let ParserMatchClass = PostIdxRegShiftedAsmOperand;
999  let MIOperandInfo = (ops GPRnopc, i32imm);
1000}
1001
1002// FIXME: am2offset_imm should only need the immediate, not the GPR. Having
1003// the GPR is purely vestigal at this point.
1004def AM2OffsetImmAsmOperand : AsmOperandClass { let Name = "AM2OffsetImm"; }
1005def am2offset_imm : MemOperand,
1006                ComplexPattern<i32, 2, "SelectAddrMode2OffsetImm",
1007                [], [SDNPWantRoot]> {
1008  let EncoderMethod = "getAddrMode2OffsetOpValue";
1009  let PrintMethod = "printAddrMode2OffsetOperand";
1010  let ParserMatchClass = AM2OffsetImmAsmOperand;
1011  let MIOperandInfo = (ops GPRnopc, i32imm);
1012}
1013
1014
1015// addrmode3 := reg +/- reg
1016// addrmode3 := reg +/- imm8
1017//
1018// FIXME: split into imm vs. reg versions.
1019def AddrMode3AsmOperand : AsmOperandClass { let Name = "AddrMode3"; }
1020class AddrMode3 : MemOperand,
1021                  ComplexPattern<i32, 3, "SelectAddrMode3", []> {
1022  let EncoderMethod = "getAddrMode3OpValue";
1023  let ParserMatchClass = AddrMode3AsmOperand;
1024  let MIOperandInfo = (ops GPR:$base, GPR:$offsreg, i32imm:$offsimm);
1025}
1026
1027def addrmode3 : AddrMode3
1028{
1029  let PrintMethod = "printAddrMode3Operand<false>";
1030}
1031
1032def addrmode3_pre : AddrMode3
1033{
1034  let PrintMethod = "printAddrMode3Operand<true>";
1035}
1036
1037// FIXME: split into imm vs. reg versions.
1038// FIXME: parser method to handle +/- register.
1039def AM3OffsetAsmOperand : AsmOperandClass {
1040  let Name = "AM3Offset";
1041  let ParserMethod = "parseAM3Offset";
1042}
1043def am3offset : MemOperand,
1044                ComplexPattern<i32, 2, "SelectAddrMode3Offset",
1045                               [], [SDNPWantRoot]> {
1046  let EncoderMethod = "getAddrMode3OffsetOpValue";
1047  let PrintMethod = "printAddrMode3OffsetOperand";
1048  let ParserMatchClass = AM3OffsetAsmOperand;
1049  let MIOperandInfo = (ops GPR, i32imm);
1050}
1051
1052// ldstm_mode := {ia, ib, da, db}
1053//
1054def ldstm_mode : OptionalDefOperand<OtherVT, (ops i32), (ops (i32 1))> {
1055  let EncoderMethod = "getLdStmModeOpValue";
1056  let PrintMethod = "printLdStmModeOperand";
1057}
1058
1059// addrmode5 := reg +/- imm8*4
1060//
1061def AddrMode5AsmOperand : AsmOperandClass { let Name = "AddrMode5"; }
1062class AddrMode5 : MemOperand,
1063                  ComplexPattern<i32, 2, "SelectAddrMode5", []> {
1064  let EncoderMethod = "getAddrMode5OpValue";
1065  let DecoderMethod = "DecodeAddrMode5Operand";
1066  let ParserMatchClass = AddrMode5AsmOperand;
1067  let MIOperandInfo = (ops GPR:$base, i32imm);
1068}
1069
1070def addrmode5 : AddrMode5 {
1071   let PrintMethod = "printAddrMode5Operand<false>";
1072}
1073
1074def addrmode5_pre : AddrMode5 {
1075   let PrintMethod = "printAddrMode5Operand<true>";
1076}
1077
1078// addrmode5fp16 := reg +/- imm8*2
1079//
1080def AddrMode5FP16AsmOperand : AsmOperandClass { let Name = "AddrMode5FP16"; }
1081class AddrMode5FP16 : Operand<i32>,
1082                      ComplexPattern<i32, 2, "SelectAddrMode5FP16", []> {
1083  let EncoderMethod = "getAddrMode5FP16OpValue";
1084  let DecoderMethod = "DecodeAddrMode5FP16Operand";
1085  let ParserMatchClass = AddrMode5FP16AsmOperand;
1086  let MIOperandInfo = (ops GPR:$base, i32imm);
1087}
1088
1089def addrmode5fp16 : AddrMode5FP16 {
1090   let PrintMethod = "printAddrMode5FP16Operand<false>";
1091}
1092
1093// addrmode6 := reg with optional alignment
1094//
1095def AddrMode6AsmOperand : AsmOperandClass { let Name = "AlignedMemory"; }
1096def addrmode6 : MemOperand,
1097                ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
1098  let PrintMethod = "printAddrMode6Operand";
1099  let MIOperandInfo = (ops GPR:$addr, i32imm:$align);
1100  let EncoderMethod = "getAddrMode6AddressOpValue";
1101  let DecoderMethod = "DecodeAddrMode6Operand";
1102  let ParserMatchClass = AddrMode6AsmOperand;
1103}
1104
1105def am6offset : MemOperand,
1106                ComplexPattern<i32, 1, "SelectAddrMode6Offset",
1107                               [], [SDNPWantRoot]> {
1108  let PrintMethod = "printAddrMode6OffsetOperand";
1109  let MIOperandInfo = (ops GPR);
1110  let EncoderMethod = "getAddrMode6OffsetOpValue";
1111  let DecoderMethod = "DecodeGPRRegisterClass";
1112}
1113
1114// Special version of addrmode6 to handle alignment encoding for VST1/VLD1
1115// (single element from one lane) for size 32.
1116def addrmode6oneL32 : MemOperand,
1117                ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
1118  let PrintMethod = "printAddrMode6Operand";
1119  let MIOperandInfo = (ops GPR:$addr, i32imm);
1120  let EncoderMethod = "getAddrMode6OneLane32AddressOpValue";
1121}
1122
1123// Base class for addrmode6 with specific alignment restrictions.
1124class AddrMode6Align : MemOperand,
1125                ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
1126  let PrintMethod = "printAddrMode6Operand";
1127  let MIOperandInfo = (ops GPR:$addr, i32imm:$align);
1128  let EncoderMethod = "getAddrMode6AddressOpValue";
1129  let DecoderMethod = "DecodeAddrMode6Operand";
1130}
1131
1132// Special version of addrmode6 to handle no allowed alignment encoding for
1133// VLD/VST instructions and checking the alignment is not specified.
1134def AddrMode6AlignNoneAsmOperand : AsmOperandClass {
1135  let Name = "AlignedMemoryNone";
1136  let DiagnosticString = "alignment must be omitted";
1137}
1138def addrmode6alignNone : AddrMode6Align {
1139  // The alignment specifier can only be omitted.
1140  let ParserMatchClass = AddrMode6AlignNoneAsmOperand;
1141}
1142
1143// Special version of addrmode6 to handle 16-bit alignment encoding for
1144// VLD/VST instructions and checking the alignment value.
1145def AddrMode6Align16AsmOperand : AsmOperandClass {
1146  let Name = "AlignedMemory16";
1147  let DiagnosticString = "alignment must be 16 or omitted";
1148}
1149def addrmode6align16 : AddrMode6Align {
1150  // The alignment specifier can only be 16 or omitted.
1151  let ParserMatchClass = AddrMode6Align16AsmOperand;
1152}
1153
1154// Special version of addrmode6 to handle 32-bit alignment encoding for
1155// VLD/VST instructions and checking the alignment value.
1156def AddrMode6Align32AsmOperand : AsmOperandClass {
1157  let Name = "AlignedMemory32";
1158  let DiagnosticString = "alignment must be 32 or omitted";
1159}
1160def addrmode6align32 : AddrMode6Align {
1161  // The alignment specifier can only be 32 or omitted.
1162  let ParserMatchClass = AddrMode6Align32AsmOperand;
1163}
1164
1165// Special version of addrmode6 to handle 64-bit alignment encoding for
1166// VLD/VST instructions and checking the alignment value.
1167def AddrMode6Align64AsmOperand : AsmOperandClass {
1168  let Name = "AlignedMemory64";
1169  let DiagnosticString = "alignment must be 64 or omitted";
1170}
1171def addrmode6align64 : AddrMode6Align {
1172  // The alignment specifier can only be 64 or omitted.
1173  let ParserMatchClass = AddrMode6Align64AsmOperand;
1174}
1175
1176// Special version of addrmode6 to handle 64-bit or 128-bit alignment encoding
1177// for VLD/VST instructions and checking the alignment value.
1178def AddrMode6Align64or128AsmOperand : AsmOperandClass {
1179  let Name = "AlignedMemory64or128";
1180  let DiagnosticString = "alignment must be 64, 128 or omitted";
1181}
1182def addrmode6align64or128 : AddrMode6Align {
1183  // The alignment specifier can only be 64, 128 or omitted.
1184  let ParserMatchClass = AddrMode6Align64or128AsmOperand;
1185}
1186
1187// Special version of addrmode6 to handle 64-bit, 128-bit or 256-bit alignment
1188// encoding for VLD/VST instructions and checking the alignment value.
1189def AddrMode6Align64or128or256AsmOperand : AsmOperandClass {
1190  let Name = "AlignedMemory64or128or256";
1191  let DiagnosticString = "alignment must be 64, 128, 256 or omitted";
1192}
1193def addrmode6align64or128or256 : AddrMode6Align {
1194  // The alignment specifier can only be 64, 128, 256 or omitted.
1195  let ParserMatchClass = AddrMode6Align64or128or256AsmOperand;
1196}
1197
1198// Special version of addrmode6 to handle alignment encoding for VLD-dup
1199// instructions, specifically VLD4-dup.
1200def addrmode6dup : MemOperand,
1201                ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
1202  let PrintMethod = "printAddrMode6Operand";
1203  let MIOperandInfo = (ops GPR:$addr, i32imm);
1204  let EncoderMethod = "getAddrMode6DupAddressOpValue";
1205  // FIXME: This is close, but not quite right. The alignment specifier is
1206  // different.
1207  let ParserMatchClass = AddrMode6AsmOperand;
1208}
1209
1210// Base class for addrmode6dup with specific alignment restrictions.
1211class AddrMode6DupAlign : MemOperand,
1212                ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
1213  let PrintMethod = "printAddrMode6Operand";
1214  let MIOperandInfo = (ops GPR:$addr, i32imm);
1215  let EncoderMethod = "getAddrMode6DupAddressOpValue";
1216}
1217
1218// Special version of addrmode6 to handle no allowed alignment encoding for
1219// VLD-dup instruction and checking the alignment is not specified.
1220def AddrMode6dupAlignNoneAsmOperand : AsmOperandClass {
1221  let Name = "DupAlignedMemoryNone";
1222  let DiagnosticString = "alignment must be omitted";
1223}
1224def addrmode6dupalignNone : AddrMode6DupAlign {
1225  // The alignment specifier can only be omitted.
1226  let ParserMatchClass = AddrMode6dupAlignNoneAsmOperand;
1227}
1228
1229// Special version of addrmode6 to handle 16-bit alignment encoding for VLD-dup
1230// instruction and checking the alignment value.
1231def AddrMode6dupAlign16AsmOperand : AsmOperandClass {
1232  let Name = "DupAlignedMemory16";
1233  let DiagnosticString = "alignment must be 16 or omitted";
1234}
1235def addrmode6dupalign16 : AddrMode6DupAlign {
1236  // The alignment specifier can only be 16 or omitted.
1237  let ParserMatchClass = AddrMode6dupAlign16AsmOperand;
1238}
1239
1240// Special version of addrmode6 to handle 32-bit alignment encoding for VLD-dup
1241// instruction and checking the alignment value.
1242def AddrMode6dupAlign32AsmOperand : AsmOperandClass {
1243  let Name = "DupAlignedMemory32";
1244  let DiagnosticString = "alignment must be 32 or omitted";
1245}
1246def addrmode6dupalign32 : AddrMode6DupAlign {
1247  // The alignment specifier can only be 32 or omitted.
1248  let ParserMatchClass = AddrMode6dupAlign32AsmOperand;
1249}
1250
1251// Special version of addrmode6 to handle 64-bit alignment encoding for VLD
1252// instructions and checking the alignment value.
1253def AddrMode6dupAlign64AsmOperand : AsmOperandClass {
1254  let Name = "DupAlignedMemory64";
1255  let DiagnosticString = "alignment must be 64 or omitted";
1256}
1257def addrmode6dupalign64 : AddrMode6DupAlign {
1258  // The alignment specifier can only be 64 or omitted.
1259  let ParserMatchClass = AddrMode6dupAlign64AsmOperand;
1260}
1261
1262// Special version of addrmode6 to handle 64-bit or 128-bit alignment encoding
1263// for VLD instructions and checking the alignment value.
1264def AddrMode6dupAlign64or128AsmOperand : AsmOperandClass {
1265  let Name = "DupAlignedMemory64or128";
1266  let DiagnosticString = "alignment must be 64, 128 or omitted";
1267}
1268def addrmode6dupalign64or128 : AddrMode6DupAlign {
1269  // The alignment specifier can only be 64, 128 or omitted.
1270  let ParserMatchClass = AddrMode6dupAlign64or128AsmOperand;
1271}
1272
1273// addrmodepc := pc + reg
1274//
1275def addrmodepc : MemOperand,
1276                 ComplexPattern<i32, 2, "SelectAddrModePC", []> {
1277  let PrintMethod = "printAddrModePCOperand";
1278  let MIOperandInfo = (ops GPR, i32imm);
1279}
1280
1281// addr_offset_none := reg
1282//
1283def MemNoOffsetAsmOperand : AsmOperandClass { let Name = "MemNoOffset"; }
1284def addr_offset_none : MemOperand,
1285                       ComplexPattern<i32, 1, "SelectAddrOffsetNone", []> {
1286  let PrintMethod = "printAddrMode7Operand";
1287  let DecoderMethod = "DecodeAddrMode7Operand";
1288  let ParserMatchClass = MemNoOffsetAsmOperand;
1289  let MIOperandInfo = (ops GPR:$base);
1290}
1291
1292// t_addr_offset_none := reg [r0-r7]
1293def MemNoOffsetTAsmOperand : AsmOperandClass { let Name = "MemNoOffsetT"; }
1294def t_addr_offset_none : MemOperand {
1295  let PrintMethod = "printAddrMode7Operand";
1296  let DecoderMethod = "DecodetGPRRegisterClass";
1297  let ParserMatchClass = MemNoOffsetTAsmOperand;
1298  let MIOperandInfo = (ops tGPR:$base);
1299}
1300
1301def nohash_imm : Operand<i32> {
1302  let PrintMethod = "printNoHashImmediate";
1303}
1304
1305def CoprocNumAsmOperand : AsmOperandClass {
1306  let Name = "CoprocNum";
1307  let ParserMethod = "parseCoprocNumOperand";
1308}
1309def p_imm : Operand<i32> {
1310  let PrintMethod = "printPImmediate";
1311  let ParserMatchClass = CoprocNumAsmOperand;
1312  let DecoderMethod = "DecodeCoprocessor";
1313}
1314
1315def CoprocRegAsmOperand : AsmOperandClass {
1316  let Name = "CoprocReg";
1317  let ParserMethod = "parseCoprocRegOperand";
1318}
1319def c_imm : Operand<i32> {
1320  let PrintMethod = "printCImmediate";
1321  let ParserMatchClass = CoprocRegAsmOperand;
1322}
1323def CoprocOptionAsmOperand : AsmOperandClass {
1324  let Name = "CoprocOption";
1325  let ParserMethod = "parseCoprocOptionOperand";
1326}
1327def coproc_option_imm : Operand<i32> {
1328  let PrintMethod = "printCoprocOptionImm";
1329  let ParserMatchClass = CoprocOptionAsmOperand;
1330}
1331
1332//===----------------------------------------------------------------------===//
1333
1334include "ARMInstrFormats.td"
1335
1336//===----------------------------------------------------------------------===//
1337// Multiclass helpers...
1338//
1339
1340/// AsI1_bin_irs - Defines a set of (op r, {mod_imm|r|so_reg}) patterns for a
1341/// binop that produces a value.
1342let TwoOperandAliasConstraint = "$Rn = $Rd" in
1343multiclass AsI1_bin_irs<bits<4> opcod, string opc,
1344                     InstrItinClass iii, InstrItinClass iir, InstrItinClass iis,
1345                     SDPatternOperator opnode, bit Commutable = 0> {
1346  // The register-immediate version is re-materializable. This is useful
1347  // in particular for taking the address of a local.
1348  let isReMaterializable = 1 in {
1349  def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm), DPFrm,
1350               iii, opc, "\t$Rd, $Rn, $imm",
1351               [(set GPR:$Rd, (opnode GPR:$Rn, mod_imm:$imm))]>,
1352           Sched<[WriteALU, ReadALU]> {
1353    bits<4> Rd;
1354    bits<4> Rn;
1355    bits<12> imm;
1356    let Inst{25} = 1;
1357    let Inst{19-16} = Rn;
1358    let Inst{15-12} = Rd;
1359    let Inst{11-0} = imm;
1360  }
1361  }
1362  def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), DPFrm,
1363               iir, opc, "\t$Rd, $Rn, $Rm",
1364               [(set GPR:$Rd, (opnode GPR:$Rn, GPR:$Rm))]>,
1365           Sched<[WriteALU, ReadALU, ReadALU]> {
1366    bits<4> Rd;
1367    bits<4> Rn;
1368    bits<4> Rm;
1369    let Inst{25} = 0;
1370    let isCommutable = Commutable;
1371    let Inst{19-16} = Rn;
1372    let Inst{15-12} = Rd;
1373    let Inst{11-4} = 0b00000000;
1374    let Inst{3-0} = Rm;
1375  }
1376
1377  def rsi : AsI1<opcod, (outs GPR:$Rd),
1378               (ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm,
1379               iis, opc, "\t$Rd, $Rn, $shift",
1380               [(set GPR:$Rd, (opnode GPR:$Rn, so_reg_imm:$shift))]>,
1381            Sched<[WriteALUsi, ReadALU]> {
1382    bits<4> Rd;
1383    bits<4> Rn;
1384    bits<12> shift;
1385    let Inst{25} = 0;
1386    let Inst{19-16} = Rn;
1387    let Inst{15-12} = Rd;
1388    let Inst{11-5} = shift{11-5};
1389    let Inst{4} = 0;
1390    let Inst{3-0} = shift{3-0};
1391  }
1392
1393  def rsr : AsI1<opcod, (outs GPR:$Rd),
1394               (ins GPR:$Rn, so_reg_reg:$shift), DPSoRegRegFrm,
1395               iis, opc, "\t$Rd, $Rn, $shift",
1396               [(set GPR:$Rd, (opnode GPR:$Rn, so_reg_reg:$shift))]>,
1397            Sched<[WriteALUsr, ReadALUsr]> {
1398    bits<4> Rd;
1399    bits<4> Rn;
1400    bits<12> shift;
1401    let Inst{25} = 0;
1402    let Inst{19-16} = Rn;
1403    let Inst{15-12} = Rd;
1404    let Inst{11-8} = shift{11-8};
1405    let Inst{7} = 0;
1406    let Inst{6-5} = shift{6-5};
1407    let Inst{4} = 1;
1408    let Inst{3-0} = shift{3-0};
1409  }
1410}
1411
1412/// AsI1_rbin_irs - Same as AsI1_bin_irs except the order of operands are
1413/// reversed.  The 'rr' form is only defined for the disassembler; for codegen
1414/// it is equivalent to the AsI1_bin_irs counterpart.
1415let TwoOperandAliasConstraint = "$Rn = $Rd" in
1416multiclass AsI1_rbin_irs<bits<4> opcod, string opc,
1417                     InstrItinClass iii, InstrItinClass iir, InstrItinClass iis,
1418                     SDNode opnode, bit Commutable = 0> {
1419  // The register-immediate version is re-materializable. This is useful
1420  // in particular for taking the address of a local.
1421  let isReMaterializable = 1 in {
1422  def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm), DPFrm,
1423               iii, opc, "\t$Rd, $Rn, $imm",
1424               [(set GPR:$Rd, (opnode mod_imm:$imm, GPR:$Rn))]>,
1425           Sched<[WriteALU, ReadALU]> {
1426    bits<4> Rd;
1427    bits<4> Rn;
1428    bits<12> imm;
1429    let Inst{25} = 1;
1430    let Inst{19-16} = Rn;
1431    let Inst{15-12} = Rd;
1432    let Inst{11-0} = imm;
1433  }
1434  }
1435  def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), DPFrm,
1436               iir, opc, "\t$Rd, $Rn, $Rm",
1437               [/* pattern left blank */]>,
1438           Sched<[WriteALU, ReadALU, ReadALU]> {
1439    bits<4> Rd;
1440    bits<4> Rn;
1441    bits<4> Rm;
1442    let Inst{11-4} = 0b00000000;
1443    let Inst{25} = 0;
1444    let Inst{3-0} = Rm;
1445    let Inst{15-12} = Rd;
1446    let Inst{19-16} = Rn;
1447  }
1448
1449  def rsi : AsI1<opcod, (outs GPR:$Rd),
1450               (ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm,
1451               iis, opc, "\t$Rd, $Rn, $shift",
1452               [(set GPR:$Rd, (opnode so_reg_imm:$shift, GPR:$Rn))]>,
1453            Sched<[WriteALUsi, ReadALU]> {
1454    bits<4> Rd;
1455    bits<4> Rn;
1456    bits<12> shift;
1457    let Inst{25} = 0;
1458    let Inst{19-16} = Rn;
1459    let Inst{15-12} = Rd;
1460    let Inst{11-5} = shift{11-5};
1461    let Inst{4} = 0;
1462    let Inst{3-0} = shift{3-0};
1463  }
1464
1465  def rsr : AsI1<opcod, (outs GPR:$Rd),
1466               (ins GPR:$Rn, so_reg_reg:$shift), DPSoRegRegFrm,
1467               iis, opc, "\t$Rd, $Rn, $shift",
1468               [(set GPR:$Rd, (opnode so_reg_reg:$shift, GPR:$Rn))]>,
1469            Sched<[WriteALUsr, ReadALUsr]> {
1470    bits<4> Rd;
1471    bits<4> Rn;
1472    bits<12> shift;
1473    let Inst{25} = 0;
1474    let Inst{19-16} = Rn;
1475    let Inst{15-12} = Rd;
1476    let Inst{11-8} = shift{11-8};
1477    let Inst{7} = 0;
1478    let Inst{6-5} = shift{6-5};
1479    let Inst{4} = 1;
1480    let Inst{3-0} = shift{3-0};
1481  }
1482}
1483
1484/// AsI1_bin_s_irs - Same as AsI1_bin_irs except it sets the 's' bit by default.
1485///
1486/// These opcodes will be converted to the real non-S opcodes by
1487/// AdjustInstrPostInstrSelection after giving them an optional CPSR operand.
1488let hasPostISelHook = 1, Defs = [CPSR] in {
1489multiclass AsI1_bin_s_irs<InstrItinClass iii, InstrItinClass iir,
1490                          InstrItinClass iis, SDNode opnode,
1491                          bit Commutable = 0> {
1492  def ri : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm, pred:$p),
1493                         4, iii,
1494                         [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, mod_imm:$imm))]>,
1495                         Sched<[WriteALU, ReadALU]>;
1496
1497  def rr : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, pred:$p),
1498                         4, iir,
1499                         [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, GPR:$Rm))]>,
1500                         Sched<[WriteALU, ReadALU, ReadALU]> {
1501    let isCommutable = Commutable;
1502  }
1503  def rsi : ARMPseudoInst<(outs GPR:$Rd),
1504                          (ins GPR:$Rn, so_reg_imm:$shift, pred:$p),
1505                          4, iis,
1506                          [(set GPR:$Rd, CPSR, (opnode GPR:$Rn,
1507                                                so_reg_imm:$shift))]>,
1508                          Sched<[WriteALUsi, ReadALU]>;
1509
1510  def rsr : ARMPseudoInst<(outs GPR:$Rd),
1511                          (ins GPR:$Rn, so_reg_reg:$shift, pred:$p),
1512                          4, iis,
1513                          [(set GPR:$Rd, CPSR, (opnode GPR:$Rn,
1514                                                so_reg_reg:$shift))]>,
1515                          Sched<[WriteALUSsr, ReadALUsr]>;
1516}
1517}
1518
1519/// AsI1_rbin_s_is - Same as AsI1_bin_s_irs, except selection DAG
1520/// operands are reversed.
1521let hasPostISelHook = 1, Defs = [CPSR] in {
1522multiclass AsI1_rbin_s_is<InstrItinClass iii, InstrItinClass iir,
1523                          InstrItinClass iis, SDNode opnode,
1524                          bit Commutable = 0> {
1525  def ri : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm, pred:$p),
1526                         4, iii,
1527                         [(set GPR:$Rd, CPSR, (opnode mod_imm:$imm, GPR:$Rn))]>,
1528           Sched<[WriteALU, ReadALU]>;
1529
1530  def rsi : ARMPseudoInst<(outs GPR:$Rd),
1531                          (ins GPR:$Rn, so_reg_imm:$shift, pred:$p),
1532                          4, iis,
1533                          [(set GPR:$Rd, CPSR, (opnode so_reg_imm:$shift,
1534                                             GPR:$Rn))]>,
1535            Sched<[WriteALUsi, ReadALU]>;
1536
1537  def rsr : ARMPseudoInst<(outs GPR:$Rd),
1538                          (ins GPR:$Rn, so_reg_reg:$shift, pred:$p),
1539                          4, iis,
1540                          [(set GPR:$Rd, CPSR, (opnode so_reg_reg:$shift,
1541                                             GPR:$Rn))]>,
1542            Sched<[WriteALUSsr, ReadALUsr]>;
1543}
1544}
1545
1546/// AI1_cmp_irs - Defines a set of (op r, {mod_imm|r|so_reg}) cmp / test
1547/// patterns. Similar to AsI1_bin_irs except the instruction does not produce
1548/// a explicit result, only implicitly set CPSR.
1549let isCompare = 1, Defs = [CPSR] in {
1550multiclass AI1_cmp_irs<bits<4> opcod, string opc,
1551                     InstrItinClass iii, InstrItinClass iir, InstrItinClass iis,
1552                     SDPatternOperator opnode, bit Commutable = 0,
1553                     string rrDecoderMethod = ""> {
1554  def ri : AI1<opcod, (outs), (ins GPR:$Rn, mod_imm:$imm), DPFrm, iii,
1555               opc, "\t$Rn, $imm",
1556               [(opnode GPR:$Rn, mod_imm:$imm)]>,
1557           Sched<[WriteCMP, ReadALU]> {
1558    bits<4> Rn;
1559    bits<12> imm;
1560    let Inst{25} = 1;
1561    let Inst{20} = 1;
1562    let Inst{19-16} = Rn;
1563    let Inst{15-12} = 0b0000;
1564    let Inst{11-0} = imm;
1565
1566    let Unpredictable{15-12} = 0b1111;
1567  }
1568  def rr : AI1<opcod, (outs), (ins GPR:$Rn, GPR:$Rm), DPFrm, iir,
1569               opc, "\t$Rn, $Rm",
1570               [(opnode GPR:$Rn, GPR:$Rm)]>,
1571           Sched<[WriteCMP, ReadALU, ReadALU]> {
1572    bits<4> Rn;
1573    bits<4> Rm;
1574    let isCommutable = Commutable;
1575    let Inst{25} = 0;
1576    let Inst{20} = 1;
1577    let Inst{19-16} = Rn;
1578    let Inst{15-12} = 0b0000;
1579    let Inst{11-4} = 0b00000000;
1580    let Inst{3-0} = Rm;
1581    let DecoderMethod = rrDecoderMethod;
1582
1583    let Unpredictable{15-12} = 0b1111;
1584  }
1585  def rsi : AI1<opcod, (outs),
1586               (ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm, iis,
1587               opc, "\t$Rn, $shift",
1588               [(opnode GPR:$Rn, so_reg_imm:$shift)]>,
1589            Sched<[WriteCMPsi, ReadALU]> {
1590    bits<4> Rn;
1591    bits<12> shift;
1592    let Inst{25} = 0;
1593    let Inst{20} = 1;
1594    let Inst{19-16} = Rn;
1595    let Inst{15-12} = 0b0000;
1596    let Inst{11-5} = shift{11-5};
1597    let Inst{4} = 0;
1598    let Inst{3-0} = shift{3-0};
1599
1600    let Unpredictable{15-12} = 0b1111;
1601  }
1602  def rsr : AI1<opcod, (outs),
1603               (ins GPRnopc:$Rn, so_reg_reg:$shift), DPSoRegRegFrm, iis,
1604               opc, "\t$Rn, $shift",
1605               [(opnode GPRnopc:$Rn, so_reg_reg:$shift)]>,
1606            Sched<[WriteCMPsr, ReadALU]> {
1607    bits<4> Rn;
1608    bits<12> shift;
1609    let Inst{25} = 0;
1610    let Inst{20} = 1;
1611    let Inst{19-16} = Rn;
1612    let Inst{15-12} = 0b0000;
1613    let Inst{11-8} = shift{11-8};
1614    let Inst{7} = 0;
1615    let Inst{6-5} = shift{6-5};
1616    let Inst{4} = 1;
1617    let Inst{3-0} = shift{3-0};
1618
1619    let Unpredictable{15-12} = 0b1111;
1620  }
1621
1622}
1623}
1624
1625/// AI_ext_rrot - A unary operation with two forms: one whose operand is a
1626/// register and one whose operand is a register rotated by 8/16/24.
1627/// FIXME: Remove the 'r' variant. Its rot_imm is zero.
1628class AI_ext_rrot<bits<8> opcod, string opc, PatFrag opnode>
1629  : AExtI<opcod, (outs GPRnopc:$Rd), (ins GPRnopc:$Rm, rot_imm:$rot),
1630          IIC_iEXTr, opc, "\t$Rd, $Rm$rot",
1631          [(set GPRnopc:$Rd, (opnode (rotr GPRnopc:$Rm, rot_imm:$rot)))]>,
1632       Requires<[IsARM, HasV6]>, Sched<[WriteALUsi]> {
1633  bits<4> Rd;
1634  bits<4> Rm;
1635  bits<2> rot;
1636  let Inst{19-16} = 0b1111;
1637  let Inst{15-12} = Rd;
1638  let Inst{11-10} = rot;
1639  let Inst{3-0}   = Rm;
1640}
1641
1642class AI_ext_rrot_np<bits<8> opcod, string opc>
1643  : AExtI<opcod, (outs GPRnopc:$Rd), (ins GPRnopc:$Rm, rot_imm:$rot),
1644          IIC_iEXTr, opc, "\t$Rd, $Rm$rot", []>,
1645       Requires<[IsARM, HasV6]>, Sched<[WriteALUsi]> {
1646  bits<2> rot;
1647  let Inst{19-16} = 0b1111;
1648  let Inst{11-10} = rot;
1649 }
1650
1651/// AI_exta_rrot - A binary operation with two forms: one whose operand is a
1652/// register and one whose operand is a register rotated by 8/16/24.
1653class AI_exta_rrot<bits<8> opcod, string opc, PatFrag opnode>
1654  : AExtI<opcod, (outs GPRnopc:$Rd), (ins GPR:$Rn, GPRnopc:$Rm, rot_imm:$rot),
1655          IIC_iEXTAr, opc, "\t$Rd, $Rn, $Rm$rot",
1656          [(set GPRnopc:$Rd, (opnode GPR:$Rn,
1657                                     (rotr GPRnopc:$Rm, rot_imm:$rot)))]>,
1658        Requires<[IsARM, HasV6]>, Sched<[WriteALUsr]> {
1659  bits<4> Rd;
1660  bits<4> Rm;
1661  bits<4> Rn;
1662  bits<2> rot;
1663  let Inst{19-16} = Rn;
1664  let Inst{15-12} = Rd;
1665  let Inst{11-10} = rot;
1666  let Inst{9-4}   = 0b000111;
1667  let Inst{3-0}   = Rm;
1668}
1669
1670class AI_exta_rrot_np<bits<8> opcod, string opc>
1671  : AExtI<opcod, (outs GPRnopc:$Rd), (ins GPR:$Rn, GPRnopc:$Rm, rot_imm:$rot),
1672          IIC_iEXTAr, opc, "\t$Rd, $Rn, $Rm$rot", []>,
1673       Requires<[IsARM, HasV6]>, Sched<[WriteALUsr]> {
1674  bits<4> Rn;
1675  bits<2> rot;
1676  let Inst{19-16} = Rn;
1677  let Inst{11-10} = rot;
1678}
1679
1680/// AI1_adde_sube_irs - Define instructions and patterns for adde and sube.
1681let TwoOperandAliasConstraint = "$Rn = $Rd" in
1682multiclass AI1_adde_sube_irs<bits<4> opcod, string opc, SDNode opnode,
1683                             bit Commutable = 0> {
1684  let hasPostISelHook = 1, Defs = [CPSR], Uses = [CPSR] in {
1685  def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm),
1686                DPFrm, IIC_iALUi, opc, "\t$Rd, $Rn, $imm",
1687               [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, mod_imm:$imm, CPSR))]>,
1688               Requires<[IsARM]>,
1689           Sched<[WriteALU, ReadALU]> {
1690    bits<4> Rd;
1691    bits<4> Rn;
1692    bits<12> imm;
1693    let Inst{25} = 1;
1694    let Inst{15-12} = Rd;
1695    let Inst{19-16} = Rn;
1696    let Inst{11-0} = imm;
1697  }
1698  def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
1699                DPFrm, IIC_iALUr, opc, "\t$Rd, $Rn, $Rm",
1700               [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, GPR:$Rm, CPSR))]>,
1701               Requires<[IsARM]>,
1702           Sched<[WriteALU, ReadALU, ReadALU]> {
1703    bits<4> Rd;
1704    bits<4> Rn;
1705    bits<4> Rm;
1706    let Inst{11-4} = 0b00000000;
1707    let Inst{25} = 0;
1708    let isCommutable = Commutable;
1709    let Inst{3-0} = Rm;
1710    let Inst{15-12} = Rd;
1711    let Inst{19-16} = Rn;
1712  }
1713  def rsi : AsI1<opcod, (outs GPR:$Rd),
1714                (ins GPR:$Rn, so_reg_imm:$shift),
1715                DPSoRegImmFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift",
1716              [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, so_reg_imm:$shift, CPSR))]>,
1717               Requires<[IsARM]>,
1718            Sched<[WriteALUsi, ReadALU]> {
1719    bits<4> Rd;
1720    bits<4> Rn;
1721    bits<12> shift;
1722    let Inst{25} = 0;
1723    let Inst{19-16} = Rn;
1724    let Inst{15-12} = Rd;
1725    let Inst{11-5} = shift{11-5};
1726    let Inst{4} = 0;
1727    let Inst{3-0} = shift{3-0};
1728  }
1729  def rsr : AsI1<opcod, (outs GPRnopc:$Rd),
1730                (ins GPRnopc:$Rn, so_reg_reg:$shift),
1731                DPSoRegRegFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift",
1732              [(set GPRnopc:$Rd, CPSR,
1733                    (opnode GPRnopc:$Rn, so_reg_reg:$shift, CPSR))]>,
1734               Requires<[IsARM]>,
1735            Sched<[WriteALUsr, ReadALUsr]> {
1736    bits<4> Rd;
1737    bits<4> Rn;
1738    bits<12> shift;
1739    let Inst{25} = 0;
1740    let Inst{19-16} = Rn;
1741    let Inst{15-12} = Rd;
1742    let Inst{11-8} = shift{11-8};
1743    let Inst{7} = 0;
1744    let Inst{6-5} = shift{6-5};
1745    let Inst{4} = 1;
1746    let Inst{3-0} = shift{3-0};
1747  }
1748  }
1749}
1750
1751/// AI1_rsc_irs - Define instructions and patterns for rsc
1752let TwoOperandAliasConstraint = "$Rn = $Rd" in
1753multiclass AI1_rsc_irs<bits<4> opcod, string opc, SDNode opnode> {
1754  let hasPostISelHook = 1, Defs = [CPSR], Uses = [CPSR] in {
1755  def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm),
1756                DPFrm, IIC_iALUi, opc, "\t$Rd, $Rn, $imm",
1757               [(set GPR:$Rd, CPSR, (opnode mod_imm:$imm, GPR:$Rn, CPSR))]>,
1758               Requires<[IsARM]>,
1759           Sched<[WriteALU, ReadALU]> {
1760    bits<4> Rd;
1761    bits<4> Rn;
1762    bits<12> imm;
1763    let Inst{25} = 1;
1764    let Inst{15-12} = Rd;
1765    let Inst{19-16} = Rn;
1766    let Inst{11-0} = imm;
1767  }
1768  def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
1769                DPFrm, IIC_iALUr, opc, "\t$Rd, $Rn, $Rm",
1770               [/* pattern left blank */]>,
1771           Sched<[WriteALU, ReadALU, ReadALU]> {
1772    bits<4> Rd;
1773    bits<4> Rn;
1774    bits<4> Rm;
1775    let Inst{11-4} = 0b00000000;
1776    let Inst{25} = 0;
1777    let Inst{3-0} = Rm;
1778    let Inst{15-12} = Rd;
1779    let Inst{19-16} = Rn;
1780  }
1781  def rsi : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_reg_imm:$shift),
1782                DPSoRegImmFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift",
1783              [(set GPR:$Rd, CPSR, (opnode so_reg_imm:$shift, GPR:$Rn, CPSR))]>,
1784               Requires<[IsARM]>,
1785            Sched<[WriteALUsi, ReadALU]> {
1786    bits<4> Rd;
1787    bits<4> Rn;
1788    bits<12> shift;
1789    let Inst{25} = 0;
1790    let Inst{19-16} = Rn;
1791    let Inst{15-12} = Rd;
1792    let Inst{11-5} = shift{11-5};
1793    let Inst{4} = 0;
1794    let Inst{3-0} = shift{3-0};
1795  }
1796  def rsr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_reg_reg:$shift),
1797                DPSoRegRegFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift",
1798              [(set GPR:$Rd, CPSR, (opnode so_reg_reg:$shift, GPR:$Rn, CPSR))]>,
1799               Requires<[IsARM]>,
1800            Sched<[WriteALUsr, ReadALUsr]> {
1801    bits<4> Rd;
1802    bits<4> Rn;
1803    bits<12> shift;
1804    let Inst{25} = 0;
1805    let Inst{19-16} = Rn;
1806    let Inst{15-12} = Rd;
1807    let Inst{11-8} = shift{11-8};
1808    let Inst{7} = 0;
1809    let Inst{6-5} = shift{6-5};
1810    let Inst{4} = 1;
1811    let Inst{3-0} = shift{3-0};
1812  }
1813  }
1814}
1815
1816let canFoldAsLoad = 1, isReMaterializable = 1 in {
1817multiclass AI_ldr1<bit isByte, string opc, InstrItinClass iii,
1818           InstrItinClass iir, PatFrag opnode> {
1819  // Note: We use the complex addrmode_imm12 rather than just an input
1820  // GPR and a constrained immediate so that we can use this to match
1821  // frame index references and avoid matching constant pool references.
1822  def i12: AI2ldst<0b010, 1, isByte, (outs GPR:$Rt), (ins addrmode_imm12:$addr),
1823                   AddrMode_i12, LdFrm, iii, opc, "\t$Rt, $addr",
1824                  [(set GPR:$Rt, (opnode addrmode_imm12:$addr))]> {
1825    bits<4>  Rt;
1826    bits<17> addr;
1827    let Inst{23}    = addr{12};     // U (add = ('U' == 1))
1828    let Inst{19-16} = addr{16-13};  // Rn
1829    let Inst{15-12} = Rt;
1830    let Inst{11-0}  = addr{11-0};   // imm12
1831  }
1832  def rs : AI2ldst<0b011, 1, isByte, (outs GPR:$Rt), (ins ldst_so_reg:$shift),
1833                  AddrModeNone, LdFrm, iir, opc, "\t$Rt, $shift",
1834                 [(set GPR:$Rt, (opnode ldst_so_reg:$shift))]> {
1835    bits<4>  Rt;
1836    bits<17> shift;
1837    let shift{4}    = 0;            // Inst{4} = 0
1838    let Inst{23}    = shift{12};    // U (add = ('U' == 1))
1839    let Inst{19-16} = shift{16-13}; // Rn
1840    let Inst{15-12} = Rt;
1841    let Inst{11-0}  = shift{11-0};
1842  }
1843}
1844}
1845
1846let canFoldAsLoad = 1, isReMaterializable = 1 in {
1847multiclass AI_ldr1nopc<bit isByte, string opc, InstrItinClass iii,
1848           InstrItinClass iir, PatFrag opnode> {
1849  // Note: We use the complex addrmode_imm12 rather than just an input
1850  // GPR and a constrained immediate so that we can use this to match
1851  // frame index references and avoid matching constant pool references.
1852  def i12: AI2ldst<0b010, 1, isByte, (outs GPRnopc:$Rt),
1853                   (ins addrmode_imm12:$addr),
1854                   AddrMode_i12, LdFrm, iii, opc, "\t$Rt, $addr",
1855                   [(set GPRnopc:$Rt, (opnode addrmode_imm12:$addr))]> {
1856    bits<4>  Rt;
1857    bits<17> addr;
1858    let Inst{23}    = addr{12};     // U (add = ('U' == 1))
1859    let Inst{19-16} = addr{16-13};  // Rn
1860    let Inst{15-12} = Rt;
1861    let Inst{11-0}  = addr{11-0};   // imm12
1862  }
1863  def rs : AI2ldst<0b011, 1, isByte, (outs GPRnopc:$Rt),
1864                   (ins ldst_so_reg:$shift),
1865                   AddrModeNone, LdFrm, iir, opc, "\t$Rt, $shift",
1866                   [(set GPRnopc:$Rt, (opnode ldst_so_reg:$shift))]> {
1867    bits<4>  Rt;
1868    bits<17> shift;
1869    let shift{4}    = 0;            // Inst{4} = 0
1870    let Inst{23}    = shift{12};    // U (add = ('U' == 1))
1871    let Inst{19-16} = shift{16-13}; // Rn
1872    let Inst{15-12} = Rt;
1873    let Inst{11-0}  = shift{11-0};
1874  }
1875}
1876}
1877
1878
1879multiclass AI_str1<bit isByte, string opc, InstrItinClass iii,
1880           InstrItinClass iir, PatFrag opnode> {
1881  // Note: We use the complex addrmode_imm12 rather than just an input
1882  // GPR and a constrained immediate so that we can use this to match
1883  // frame index references and avoid matching constant pool references.
1884  def i12 : AI2ldst<0b010, 0, isByte, (outs),
1885                   (ins GPR:$Rt, addrmode_imm12:$addr),
1886                   AddrMode_i12, StFrm, iii, opc, "\t$Rt, $addr",
1887                  [(opnode GPR:$Rt, addrmode_imm12:$addr)]> {
1888    bits<4> Rt;
1889    bits<17> addr;
1890    let Inst{23}    = addr{12};     // U (add = ('U' == 1))
1891    let Inst{19-16} = addr{16-13};  // Rn
1892    let Inst{15-12} = Rt;
1893    let Inst{11-0}  = addr{11-0};   // imm12
1894  }
1895  def rs : AI2ldst<0b011, 0, isByte, (outs), (ins GPR:$Rt, ldst_so_reg:$shift),
1896                  AddrModeNone, StFrm, iir, opc, "\t$Rt, $shift",
1897                 [(opnode GPR:$Rt, ldst_so_reg:$shift)]> {
1898    bits<4> Rt;
1899    bits<17> shift;
1900    let shift{4}    = 0;            // Inst{4} = 0
1901    let Inst{23}    = shift{12};    // U (add = ('U' == 1))
1902    let Inst{19-16} = shift{16-13}; // Rn
1903    let Inst{15-12} = Rt;
1904    let Inst{11-0}  = shift{11-0};
1905  }
1906}
1907
1908multiclass AI_str1nopc<bit isByte, string opc, InstrItinClass iii,
1909           InstrItinClass iir, PatFrag opnode> {
1910  // Note: We use the complex addrmode_imm12 rather than just an input
1911  // GPR and a constrained immediate so that we can use this to match
1912  // frame index references and avoid matching constant pool references.
1913  def i12 : AI2ldst<0b010, 0, isByte, (outs),
1914                   (ins GPRnopc:$Rt, addrmode_imm12:$addr),
1915                   AddrMode_i12, StFrm, iii, opc, "\t$Rt, $addr",
1916                  [(opnode GPRnopc:$Rt, addrmode_imm12:$addr)]> {
1917    bits<4> Rt;
1918    bits<17> addr;
1919    let Inst{23}    = addr{12};     // U (add = ('U' == 1))
1920    let Inst{19-16} = addr{16-13};  // Rn
1921    let Inst{15-12} = Rt;
1922    let Inst{11-0}  = addr{11-0};   // imm12
1923  }
1924  def rs : AI2ldst<0b011, 0, isByte, (outs),
1925                   (ins GPRnopc:$Rt, ldst_so_reg:$shift),
1926                   AddrModeNone, StFrm, iir, opc, "\t$Rt, $shift",
1927                   [(opnode GPRnopc:$Rt, ldst_so_reg:$shift)]> {
1928    bits<4> Rt;
1929    bits<17> shift;
1930    let shift{4}    = 0;            // Inst{4} = 0
1931    let Inst{23}    = shift{12};    // U (add = ('U' == 1))
1932    let Inst{19-16} = shift{16-13}; // Rn
1933    let Inst{15-12} = Rt;
1934    let Inst{11-0}  = shift{11-0};
1935  }
1936}
1937
1938
1939//===----------------------------------------------------------------------===//
1940// Instructions
1941//===----------------------------------------------------------------------===//
1942
1943//===----------------------------------------------------------------------===//
1944//  Miscellaneous Instructions.
1945//
1946
1947/// CONSTPOOL_ENTRY - This instruction represents a floating constant pool in
1948/// the function.  The first operand is the ID# for this instruction, the second
1949/// is the index into the MachineConstantPool that this is, the third is the
1950/// size in bytes of this constant pool entry.
1951let hasSideEffects = 0, isNotDuplicable = 1 in
1952def CONSTPOOL_ENTRY :
1953PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
1954                    i32imm:$size), NoItinerary, []>;
1955
1956/// A jumptable consisting of direct 32-bit addresses of the destination basic
1957/// blocks (either absolute, or relative to the start of the jump-table in PIC
1958/// mode). Used mostly in ARM and Thumb-1 modes.
1959def JUMPTABLE_ADDRS :
1960PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
1961                        i32imm:$size), NoItinerary, []>;
1962
1963/// A jumptable consisting of 32-bit jump instructions. Used for Thumb-2 tables
1964/// that cannot be optimised to use TBB or TBH.
1965def JUMPTABLE_INSTS :
1966PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
1967                        i32imm:$size), NoItinerary, []>;
1968
1969/// A jumptable consisting of 8-bit unsigned integers representing offsets from
1970/// a TBB instruction.
1971def JUMPTABLE_TBB :
1972PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
1973                        i32imm:$size), NoItinerary, []>;
1974
1975/// A jumptable consisting of 16-bit unsigned integers representing offsets from
1976/// a TBH instruction.
1977def JUMPTABLE_TBH :
1978PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
1979                        i32imm:$size), NoItinerary, []>;
1980
1981
1982// FIXME: Marking these as hasSideEffects is necessary to prevent machine DCE
1983// from removing one half of the matched pairs. That breaks PEI, which assumes
1984// these will always be in pairs, and asserts if it finds otherwise. Better way?
1985let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
1986def ADJCALLSTACKUP :
1987PseudoInst<(outs), (ins i32imm:$amt1, i32imm:$amt2, pred:$p), NoItinerary,
1988           [(ARMcallseq_end timm:$amt1, timm:$amt2)]>;
1989
1990def ADJCALLSTACKDOWN :
1991PseudoInst<(outs), (ins i32imm:$amt, i32imm:$amt2, pred:$p), NoItinerary,
1992           [(ARMcallseq_start timm:$amt, timm:$amt2)]>;
1993}
1994
1995def HINT : AI<(outs), (ins imm0_239:$imm), MiscFrm, NoItinerary,
1996              "hint", "\t$imm", [(int_arm_hint imm0_239:$imm)]>,
1997           Requires<[IsARM, HasV6]> {
1998  bits<8> imm;
1999  let Inst{27-8} = 0b00110010000011110000;
2000  let Inst{7-0} = imm;
2001  let DecoderMethod = "DecodeHINTInstruction";
2002}
2003
2004def : InstAlias<"nop$p", (HINT 0, pred:$p)>, Requires<[IsARM, HasV6K]>;
2005def : InstAlias<"yield$p", (HINT 1, pred:$p)>, Requires<[IsARM, HasV6K]>;
2006def : InstAlias<"wfe$p", (HINT 2, pred:$p)>, Requires<[IsARM, HasV6K]>;
2007def : InstAlias<"wfi$p", (HINT 3, pred:$p)>, Requires<[IsARM, HasV6K]>;
2008def : InstAlias<"sev$p", (HINT 4, pred:$p)>, Requires<[IsARM, HasV6K]>;
2009def : InstAlias<"sevl$p", (HINT 5, pred:$p)>, Requires<[IsARM, HasV8]>;
2010def : InstAlias<"esb$p", (HINT 16, pred:$p)>, Requires<[IsARM, HasRAS]>;
2011def : InstAlias<"csdb$p", (HINT 20, pred:$p)>, Requires<[IsARM, HasV6K]>;
2012
2013def SEL : AI<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), DPFrm, NoItinerary, "sel",
2014             "\t$Rd, $Rn, $Rm",
2015             [(set GPR:$Rd, (int_arm_sel GPR:$Rn, GPR:$Rm))]>,
2016             Requires<[IsARM, HasV6]> {
2017  bits<4> Rd;
2018  bits<4> Rn;
2019  bits<4> Rm;
2020  let Inst{3-0} = Rm;
2021  let Inst{15-12} = Rd;
2022  let Inst{19-16} = Rn;
2023  let Inst{27-20} = 0b01101000;
2024  let Inst{7-4} = 0b1011;
2025  let Inst{11-8} = 0b1111;
2026  let Unpredictable{11-8} = 0b1111;
2027}
2028
2029// The 16-bit operand $val can be used by a debugger to store more information
2030// about the breakpoint.
2031def BKPT : AInoP<(outs), (ins imm0_65535:$val), MiscFrm, NoItinerary,
2032                 "bkpt", "\t$val", []>, Requires<[IsARM]> {
2033  bits<16> val;
2034  let Inst{3-0} = val{3-0};
2035  let Inst{19-8} = val{15-4};
2036  let Inst{27-20} = 0b00010010;
2037  let Inst{31-28} = 0xe; // AL
2038  let Inst{7-4} = 0b0111;
2039}
2040// default immediate for breakpoint mnemonic
2041def : InstAlias<"bkpt", (BKPT 0), 0>, Requires<[IsARM]>;
2042
2043def HLT : AInoP<(outs), (ins imm0_65535:$val), MiscFrm, NoItinerary,
2044                 "hlt", "\t$val", []>, Requires<[IsARM, HasV8]> {
2045  bits<16> val;
2046  let Inst{3-0} = val{3-0};
2047  let Inst{19-8} = val{15-4};
2048  let Inst{27-20} = 0b00010000;
2049  let Inst{31-28} = 0xe; // AL
2050  let Inst{7-4} = 0b0111;
2051}
2052
2053// Change Processor State
2054// FIXME: We should use InstAlias to handle the optional operands.
2055class CPS<dag iops, string asm_ops>
2056  : AXI<(outs), iops, MiscFrm, NoItinerary, !strconcat("cps", asm_ops),
2057        []>, Requires<[IsARM]> {
2058  bits<2> imod;
2059  bits<3> iflags;
2060  bits<5> mode;
2061  bit M;
2062
2063  let Inst{31-28} = 0b1111;
2064  let Inst{27-20} = 0b00010000;
2065  let Inst{19-18} = imod;
2066  let Inst{17}    = M; // Enabled if mode is set;
2067  let Inst{16-9}  = 0b00000000;
2068  let Inst{8-6}   = iflags;
2069  let Inst{5}     = 0;
2070  let Inst{4-0}   = mode;
2071}
2072
2073let DecoderMethod = "DecodeCPSInstruction" in {
2074let M = 1 in
2075  def CPS3p : CPS<(ins imod_op:$imod, iflags_op:$iflags, imm0_31:$mode),
2076                  "$imod\t$iflags, $mode">;
2077let mode = 0, M = 0 in
2078  def CPS2p : CPS<(ins imod_op:$imod, iflags_op:$iflags), "$imod\t$iflags">;
2079
2080let imod = 0, iflags = 0, M = 1 in
2081  def CPS1p : CPS<(ins imm0_31:$mode), "\t$mode">;
2082}
2083
2084// Preload signals the memory system of possible future data/instruction access.
2085multiclass APreLoad<bits<1> read, bits<1> data, string opc> {
2086
2087  def i12 : AXIM<(outs), (ins addrmode_imm12:$addr), AddrMode_i12, MiscFrm,
2088                IIC_Preload, !strconcat(opc, "\t$addr"),
2089                [(ARMPreload addrmode_imm12:$addr, (i32 read), (i32 data))]>,
2090                Sched<[WritePreLd]> {
2091    bits<4> Rt;
2092    bits<17> addr;
2093    let Inst{31-26} = 0b111101;
2094    let Inst{25} = 0; // 0 for immediate form
2095    let Inst{24} = data;
2096    let Inst{23} = addr{12};        // U (add = ('U' == 1))
2097    let Inst{22} = read;
2098    let Inst{21-20} = 0b01;
2099    let Inst{19-16} = addr{16-13};  // Rn
2100    let Inst{15-12} = 0b1111;
2101    let Inst{11-0}  = addr{11-0};   // imm12
2102  }
2103
2104  def rs : AXI<(outs), (ins ldst_so_reg:$shift), MiscFrm, IIC_Preload,
2105               !strconcat(opc, "\t$shift"),
2106               [(ARMPreload ldst_so_reg:$shift, (i32 read), (i32 data))]>,
2107               Sched<[WritePreLd]> {
2108    bits<17> shift;
2109    let Inst{31-26} = 0b111101;
2110    let Inst{25} = 1; // 1 for register form
2111    let Inst{24} = data;
2112    let Inst{23} = shift{12};    // U (add = ('U' == 1))
2113    let Inst{22} = read;
2114    let Inst{21-20} = 0b01;
2115    let Inst{19-16} = shift{16-13}; // Rn
2116    let Inst{15-12} = 0b1111;
2117    let Inst{11-0}  = shift{11-0};
2118    let Inst{4} = 0;
2119  }
2120}
2121
2122defm PLD  : APreLoad<1, 1, "pld">,  Requires<[IsARM]>;
2123defm PLDW : APreLoad<0, 1, "pldw">, Requires<[IsARM,HasV7,HasMP]>;
2124defm PLI  : APreLoad<1, 0, "pli">,  Requires<[IsARM,HasV7]>;
2125
2126def SETEND : AXI<(outs), (ins setend_op:$end), MiscFrm, NoItinerary,
2127                 "setend\t$end", []>, Requires<[IsARM]>, Deprecated<HasV8Ops> {
2128  bits<1> end;
2129  let Inst{31-10} = 0b1111000100000001000000;
2130  let Inst{9} = end;
2131  let Inst{8-0} = 0;
2132}
2133
2134def DBG : AI<(outs), (ins imm0_15:$opt), MiscFrm, NoItinerary, "dbg", "\t$opt",
2135             [(int_arm_dbg imm0_15:$opt)]>, Requires<[IsARM, HasV7]> {
2136  bits<4> opt;
2137  let Inst{27-4} = 0b001100100000111100001111;
2138  let Inst{3-0} = opt;
2139}
2140
2141// A8.8.247  UDF - Undefined (Encoding A1)
2142def UDF : AInoP<(outs), (ins imm0_65535:$imm16), MiscFrm, NoItinerary,
2143                "udf", "\t$imm16", [(int_arm_undefined imm0_65535:$imm16)]> {
2144  bits<16> imm16;
2145  let Inst{31-28} = 0b1110; // AL
2146  let Inst{27-25} = 0b011;
2147  let Inst{24-20} = 0b11111;
2148  let Inst{19-8} = imm16{15-4};
2149  let Inst{7-4} = 0b1111;
2150  let Inst{3-0} = imm16{3-0};
2151}
2152
2153/*
2154 * A5.4 Permanently UNDEFINED instructions.
2155 *
2156 * For most targets use UDF #65006, for which the OS will generate SIGTRAP.
2157 * Other UDF encodings generate SIGILL.
2158 *
2159 * NaCl's OS instead chooses an ARM UDF encoding that's also a UDF in Thumb.
2160 * Encoding A1:
2161 *  1110 0111 1111 iiii iiii iiii 1111 iiii
2162 * Encoding T1:
2163 *  1101 1110 iiii iiii
2164 * It uses the following encoding:
2165 *  1110 0111 1111 1110 1101 1110 1111 0000
2166 *  - In ARM: UDF #60896;
2167 *  - In Thumb: UDF #254 followed by a branch-to-self.
2168 */
2169let isBarrier = 1, isTerminator = 1 in
2170def TRAPNaCl : AXI<(outs), (ins), MiscFrm, NoItinerary,
2171               "trap", [(trap)]>,
2172           Requires<[IsARM,UseNaClTrap]> {
2173  let Inst = 0xe7fedef0;
2174}
2175let isBarrier = 1, isTerminator = 1 in
2176def TRAP : AXI<(outs), (ins), MiscFrm, NoItinerary,
2177               "trap", [(trap)]>,
2178           Requires<[IsARM,DontUseNaClTrap]> {
2179  let Inst = 0xe7ffdefe;
2180}
2181
2182def : Pat<(debugtrap), (BKPT 0)>, Requires<[IsARM, HasV5T]>;
2183def : Pat<(debugtrap), (UDF 254)>, Requires<[IsARM, NoV5T]>;
2184
2185// Address computation and loads and stores in PIC mode.
2186let isNotDuplicable = 1 in {
2187def PICADD  : ARMPseudoInst<(outs GPR:$dst), (ins GPR:$a, pclabel:$cp, pred:$p),
2188                            4, IIC_iALUr,
2189                            [(set GPR:$dst, (ARMpic_add GPR:$a, imm:$cp))]>,
2190                            Sched<[WriteALU, ReadALU]>;
2191
2192let AddedComplexity = 10 in {
2193def PICLDR  : ARMPseudoInst<(outs GPR:$dst), (ins addrmodepc:$addr, pred:$p),
2194                            4, IIC_iLoad_r,
2195                            [(set GPR:$dst, (load addrmodepc:$addr))]>;
2196
2197def PICLDRH : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p),
2198                            4, IIC_iLoad_bh_r,
2199                            [(set GPR:$Rt, (zextloadi16 addrmodepc:$addr))]>;
2200
2201def PICLDRB : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p),
2202                            4, IIC_iLoad_bh_r,
2203                            [(set GPR:$Rt, (zextloadi8 addrmodepc:$addr))]>;
2204
2205def PICLDRSH : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p),
2206                            4, IIC_iLoad_bh_r,
2207                            [(set GPR:$Rt, (sextloadi16 addrmodepc:$addr))]>;
2208
2209def PICLDRSB : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p),
2210                            4, IIC_iLoad_bh_r,
2211                            [(set GPR:$Rt, (sextloadi8 addrmodepc:$addr))]>;
2212}
2213let AddedComplexity = 10 in {
2214def PICSTR  : ARMPseudoInst<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p),
2215      4, IIC_iStore_r, [(store GPR:$src, addrmodepc:$addr)]>;
2216
2217def PICSTRH : ARMPseudoInst<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p),
2218      4, IIC_iStore_bh_r, [(truncstorei16 GPR:$src,
2219                                                   addrmodepc:$addr)]>;
2220
2221def PICSTRB : ARMPseudoInst<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p),
2222      4, IIC_iStore_bh_r, [(truncstorei8 GPR:$src, addrmodepc:$addr)]>;
2223}
2224} // isNotDuplicable = 1
2225
2226
2227// LEApcrel - Load a pc-relative address into a register without offending the
2228// assembler.
2229let hasSideEffects = 0, isReMaterializable = 1 in
2230// The 'adr' mnemonic encodes differently if the label is before or after
2231// the instruction. The {24-21} opcode bits are set by the fixup, as we don't
2232// know until then which form of the instruction will be used.
2233def ADR : AI1<{0,?,?,0}, (outs GPR:$Rd), (ins adrlabel:$label),
2234                 MiscFrm, IIC_iALUi, "adr", "\t$Rd, $label", []>,
2235                 Sched<[WriteALU, ReadALU]> {
2236  bits<4> Rd;
2237  bits<14> label;
2238  let Inst{27-25} = 0b001;
2239  let Inst{24} = 0;
2240  let Inst{23-22} = label{13-12};
2241  let Inst{21} = 0;
2242  let Inst{20} = 0;
2243  let Inst{19-16} = 0b1111;
2244  let Inst{15-12} = Rd;
2245  let Inst{11-0} = label{11-0};
2246}
2247
2248let hasSideEffects = 1 in {
2249def LEApcrel : ARMPseudoInst<(outs GPR:$Rd), (ins i32imm:$label, pred:$p),
2250                    4, IIC_iALUi, []>, Sched<[WriteALU, ReadALU]>;
2251
2252def LEApcrelJT : ARMPseudoInst<(outs GPR:$Rd),
2253                      (ins i32imm:$label, pred:$p),
2254                      4, IIC_iALUi, []>, Sched<[WriteALU, ReadALU]>;
2255}
2256
2257//===----------------------------------------------------------------------===//
2258//  Control Flow Instructions.
2259//
2260
2261let isReturn = 1, isTerminator = 1, isBarrier = 1 in {
2262  // ARMV4T and above
2263  def BX_RET : AI<(outs), (ins), BrMiscFrm, IIC_Br,
2264                  "bx", "\tlr", [(ARMretflag)]>,
2265               Requires<[IsARM, HasV4T]>, Sched<[WriteBr]> {
2266    let Inst{27-0}  = 0b0001001011111111111100011110;
2267  }
2268
2269  // ARMV4 only
2270  def MOVPCLR : AI<(outs), (ins), BrMiscFrm, IIC_Br,
2271                  "mov", "\tpc, lr", [(ARMretflag)]>,
2272               Requires<[IsARM, NoV4T]>, Sched<[WriteBr]> {
2273    let Inst{27-0} = 0b0001101000001111000000001110;
2274  }
2275
2276  // Exception return: N.b. doesn't set CPSR as far as we're concerned (it sets
2277  // the user-space one).
2278  def SUBS_PC_LR : ARMPseudoInst<(outs), (ins i32imm:$offset, pred:$p),
2279                                 4, IIC_Br,
2280                                 [(ARMintretflag imm:$offset)]>;
2281}
2282
2283// Indirect branches
2284let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
2285  // ARMV4T and above
2286  def BX : AXI<(outs), (ins GPR:$dst), BrMiscFrm, IIC_Br, "bx\t$dst",
2287                  [(brind GPR:$dst)]>,
2288              Requires<[IsARM, HasV4T]>, Sched<[WriteBr]> {
2289    bits<4> dst;
2290    let Inst{31-4} = 0b1110000100101111111111110001;
2291    let Inst{3-0}  = dst;
2292  }
2293
2294  def BX_pred : AI<(outs), (ins GPR:$dst), BrMiscFrm, IIC_Br,
2295                  "bx", "\t$dst", [/* pattern left blank */]>,
2296              Requires<[IsARM, HasV4T]>, Sched<[WriteBr]> {
2297    bits<4> dst;
2298    let Inst{27-4} = 0b000100101111111111110001;
2299    let Inst{3-0}  = dst;
2300  }
2301}
2302
2303// SP is marked as a use to prevent stack-pointer assignments that appear
2304// immediately before calls from potentially appearing dead.
2305let isCall = 1,
2306  // FIXME:  Do we really need a non-predicated version? If so, it should
2307  // at least be a pseudo instruction expanding to the predicated version
2308  // at MC lowering time.
2309  Defs = [LR], Uses = [SP] in {
2310  def BL  : ABXI<0b1011, (outs), (ins arm_bl_target:$func),
2311                IIC_Br, "bl\t$func",
2312                [(ARMcall tglobaladdr:$func)]>,
2313            Requires<[IsARM]>, Sched<[WriteBrL]> {
2314    let Inst{31-28} = 0b1110;
2315    bits<24> func;
2316    let Inst{23-0} = func;
2317    let DecoderMethod = "DecodeBranchImmInstruction";
2318  }
2319
2320  def BL_pred : ABI<0b1011, (outs), (ins arm_bl_target:$func),
2321                   IIC_Br, "bl", "\t$func",
2322                   [(ARMcall_pred tglobaladdr:$func)]>,
2323                Requires<[IsARM]>, Sched<[WriteBrL]> {
2324    bits<24> func;
2325    let Inst{23-0} = func;
2326    let DecoderMethod = "DecodeBranchImmInstruction";
2327  }
2328
2329  // ARMv5T and above
2330  def BLX : AXI<(outs), (ins GPR:$func), BrMiscFrm,
2331                IIC_Br, "blx\t$func",
2332                [(ARMcall GPR:$func)]>,
2333            Requires<[IsARM, HasV5T]>, Sched<[WriteBrL]> {
2334    bits<4> func;
2335    let Inst{31-4} = 0b1110000100101111111111110011;
2336    let Inst{3-0}  = func;
2337  }
2338
2339  def BLX_pred : AI<(outs), (ins GPR:$func), BrMiscFrm,
2340                    IIC_Br, "blx", "\t$func",
2341                    [(ARMcall_pred GPR:$func)]>,
2342                 Requires<[IsARM, HasV5T]>, Sched<[WriteBrL]> {
2343    bits<4> func;
2344    let Inst{27-4} = 0b000100101111111111110011;
2345    let Inst{3-0}  = func;
2346  }
2347
2348  // ARMv4T
2349  // Note: Restrict $func to the tGPR regclass to prevent it being in LR.
2350  def BX_CALL : ARMPseudoInst<(outs), (ins tGPR:$func),
2351                   8, IIC_Br, [(ARMcall_nolink tGPR:$func)]>,
2352                   Requires<[IsARM, HasV4T]>, Sched<[WriteBr]>;
2353
2354  // ARMv4
2355  def BMOVPCRX_CALL : ARMPseudoInst<(outs), (ins tGPR:$func),
2356                   8, IIC_Br, [(ARMcall_nolink tGPR:$func)]>,
2357                   Requires<[IsARM, NoV4T]>, Sched<[WriteBr]>;
2358
2359  // mov lr, pc; b if callee is marked noreturn to avoid confusing the
2360  // return stack predictor.
2361  def BMOVPCB_CALL : ARMPseudoInst<(outs), (ins arm_bl_target:$func),
2362                               8, IIC_Br, [(ARMcall_nolink tglobaladdr:$func)]>,
2363                      Requires<[IsARM]>, Sched<[WriteBr]>;
2364}
2365
2366let isBranch = 1, isTerminator = 1 in {
2367  // FIXME: should be able to write a pattern for ARMBrcond, but can't use
2368  // a two-value operand where a dag node expects two operands. :(
2369  def Bcc : ABI<0b1010, (outs), (ins arm_br_target:$target),
2370               IIC_Br, "b", "\t$target",
2371               [/*(ARMbrcond bb:$target, imm:$cc, CCR:$ccr)*/]>,
2372               Sched<[WriteBr]>  {
2373    bits<24> target;
2374    let Inst{23-0} = target;
2375    let DecoderMethod = "DecodeBranchImmInstruction";
2376  }
2377
2378  let isBarrier = 1 in {
2379    // B is "predicable" since it's just a Bcc with an 'always' condition.
2380    let isPredicable = 1 in
2381    // FIXME: We shouldn't need this pseudo at all. Just using Bcc directly
2382    // should be sufficient.
2383    // FIXME: Is B really a Barrier? That doesn't seem right.
2384    def B : ARMPseudoExpand<(outs), (ins arm_br_target:$target), 4, IIC_Br,
2385                [(br bb:$target)], (Bcc arm_br_target:$target,
2386                (ops 14, zero_reg))>,
2387                Sched<[WriteBr]>;
2388
2389    let Size = 4, isNotDuplicable = 1, isIndirectBranch = 1 in {
2390    def BR_JTr : ARMPseudoInst<(outs),
2391                      (ins GPR:$target, i32imm:$jt),
2392                      0, IIC_Br,
2393                      [(ARMbrjt GPR:$target, tjumptable:$jt)]>,
2394                      Sched<[WriteBr]>;
2395    def BR_JTm_i12 : ARMPseudoInst<(outs),
2396                     (ins addrmode_imm12:$target, i32imm:$jt),
2397                     0, IIC_Br,
2398                     [(ARMbrjt (i32 (load addrmode_imm12:$target)),
2399                               tjumptable:$jt)]>, Sched<[WriteBrTbl]>;
2400    def BR_JTm_rs : ARMPseudoInst<(outs),
2401                     (ins ldst_so_reg:$target, i32imm:$jt),
2402                     0, IIC_Br,
2403                     [(ARMbrjt (i32 (load ldst_so_reg:$target)),
2404                               tjumptable:$jt)]>, Sched<[WriteBrTbl]>;
2405    def BR_JTadd : ARMPseudoInst<(outs),
2406                   (ins GPR:$target, GPR:$idx, i32imm:$jt),
2407                   0, IIC_Br,
2408                   [(ARMbrjt (add GPR:$target, GPR:$idx), tjumptable:$jt)]>,
2409                   Sched<[WriteBrTbl]>;
2410    } // isNotDuplicable = 1, isIndirectBranch = 1
2411  } // isBarrier = 1
2412
2413}
2414
2415// BLX (immediate)
2416def BLXi : AXI<(outs), (ins arm_blx_target:$target), BrMiscFrm, NoItinerary,
2417               "blx\t$target", []>,
2418           Requires<[IsARM, HasV5T]>, Sched<[WriteBrL]> {
2419  let Inst{31-25} = 0b1111101;
2420  bits<25> target;
2421  let Inst{23-0} = target{24-1};
2422  let Inst{24} = target{0};
2423  let isCall = 1;
2424}
2425
2426// Branch and Exchange Jazelle
2427def BXJ : ABI<0b0001, (outs), (ins GPR:$func), NoItinerary, "bxj", "\t$func",
2428              [/* pattern left blank */]>, Sched<[WriteBr]> {
2429  bits<4> func;
2430  let Inst{23-20} = 0b0010;
2431  let Inst{19-8} = 0xfff;
2432  let Inst{7-4} = 0b0010;
2433  let Inst{3-0} = func;
2434  let isBranch = 1;
2435}
2436
2437// Tail calls.
2438
2439let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [SP] in {
2440  def TCRETURNdi : PseudoInst<(outs), (ins i32imm:$dst), IIC_Br, []>,
2441                   Sched<[WriteBr]>;
2442
2443  def TCRETURNri : PseudoInst<(outs), (ins tcGPR:$dst), IIC_Br, []>,
2444                   Sched<[WriteBr]>;
2445
2446  def TAILJMPd : ARMPseudoExpand<(outs), (ins arm_br_target:$dst),
2447                                 4, IIC_Br, [],
2448                                 (Bcc arm_br_target:$dst, (ops 14, zero_reg))>,
2449                                 Requires<[IsARM]>, Sched<[WriteBr]>;
2450
2451  def TAILJMPr : ARMPseudoExpand<(outs), (ins tcGPR:$dst),
2452                                 4, IIC_Br, [],
2453                                 (BX GPR:$dst)>, Sched<[WriteBr]>,
2454                                 Requires<[IsARM, HasV4T]>;
2455}
2456
2457// Secure Monitor Call is a system instruction.
2458def SMC : ABI<0b0001, (outs), (ins imm0_15:$opt), NoItinerary, "smc", "\t$opt",
2459              []>, Requires<[IsARM, HasTrustZone]> {
2460  bits<4> opt;
2461  let Inst{23-4} = 0b01100000000000000111;
2462  let Inst{3-0} = opt;
2463}
2464def : MnemonicAlias<"smi", "smc">;
2465
2466// Supervisor Call (Software Interrupt)
2467let isCall = 1, Uses = [SP] in {
2468def SVC : ABI<0b1111, (outs), (ins imm24b:$svc), IIC_Br, "svc", "\t$svc", []>,
2469          Sched<[WriteBr]> {
2470  bits<24> svc;
2471  let Inst{23-0} = svc;
2472}
2473}
2474
2475// Store Return State
2476class SRSI<bit wb, string asm>
2477  : XI<(outs), (ins imm0_31:$mode), AddrModeNone, 4, IndexModeNone, BrFrm,
2478       NoItinerary, asm, "", []> {
2479  bits<5> mode;
2480  let Inst{31-28} = 0b1111;
2481  let Inst{27-25} = 0b100;
2482  let Inst{22} = 1;
2483  let Inst{21} = wb;
2484  let Inst{20} = 0;
2485  let Inst{19-16} = 0b1101;  // SP
2486  let Inst{15-5} = 0b00000101000;
2487  let Inst{4-0} = mode;
2488}
2489
2490def SRSDA : SRSI<0, "srsda\tsp, $mode"> {
2491  let Inst{24-23} = 0;
2492}
2493def SRSDA_UPD : SRSI<1, "srsda\tsp!, $mode"> {
2494  let Inst{24-23} = 0;
2495}
2496def SRSDB : SRSI<0, "srsdb\tsp, $mode"> {
2497  let Inst{24-23} = 0b10;
2498}
2499def SRSDB_UPD : SRSI<1, "srsdb\tsp!, $mode"> {
2500  let Inst{24-23} = 0b10;
2501}
2502def SRSIA : SRSI<0, "srsia\tsp, $mode"> {
2503  let Inst{24-23} = 0b01;
2504}
2505def SRSIA_UPD : SRSI<1, "srsia\tsp!, $mode"> {
2506  let Inst{24-23} = 0b01;
2507}
2508def SRSIB : SRSI<0, "srsib\tsp, $mode"> {
2509  let Inst{24-23} = 0b11;
2510}
2511def SRSIB_UPD : SRSI<1, "srsib\tsp!, $mode"> {
2512  let Inst{24-23} = 0b11;
2513}
2514
2515def : ARMInstAlias<"srsda $mode", (SRSDA imm0_31:$mode)>;
2516def : ARMInstAlias<"srsda $mode!", (SRSDA_UPD imm0_31:$mode)>;
2517
2518def : ARMInstAlias<"srsdb $mode", (SRSDB imm0_31:$mode)>;
2519def : ARMInstAlias<"srsdb $mode!", (SRSDB_UPD imm0_31:$mode)>;
2520
2521def : ARMInstAlias<"srsia $mode", (SRSIA imm0_31:$mode)>;
2522def : ARMInstAlias<"srsia $mode!", (SRSIA_UPD imm0_31:$mode)>;
2523
2524def : ARMInstAlias<"srsib $mode", (SRSIB imm0_31:$mode)>;
2525def : ARMInstAlias<"srsib $mode!", (SRSIB_UPD imm0_31:$mode)>;
2526
2527// Return From Exception
2528class RFEI<bit wb, string asm>
2529  : XI<(outs), (ins GPR:$Rn), AddrModeNone, 4, IndexModeNone, BrFrm,
2530       NoItinerary, asm, "", []> {
2531  bits<4> Rn;
2532  let Inst{31-28} = 0b1111;
2533  let Inst{27-25} = 0b100;
2534  let Inst{22} = 0;
2535  let Inst{21} = wb;
2536  let Inst{20} = 1;
2537  let Inst{19-16} = Rn;
2538  let Inst{15-0} = 0xa00;
2539}
2540
2541def RFEDA : RFEI<0, "rfeda\t$Rn"> {
2542  let Inst{24-23} = 0;
2543}
2544def RFEDA_UPD : RFEI<1, "rfeda\t$Rn!"> {
2545  let Inst{24-23} = 0;
2546}
2547def RFEDB : RFEI<0, "rfedb\t$Rn"> {
2548  let Inst{24-23} = 0b10;
2549}
2550def RFEDB_UPD : RFEI<1, "rfedb\t$Rn!"> {
2551  let Inst{24-23} = 0b10;
2552}
2553def RFEIA : RFEI<0, "rfeia\t$Rn"> {
2554  let Inst{24-23} = 0b01;
2555}
2556def RFEIA_UPD : RFEI<1, "rfeia\t$Rn!"> {
2557  let Inst{24-23} = 0b01;
2558}
2559def RFEIB : RFEI<0, "rfeib\t$Rn"> {
2560  let Inst{24-23} = 0b11;
2561}
2562def RFEIB_UPD : RFEI<1, "rfeib\t$Rn!"> {
2563  let Inst{24-23} = 0b11;
2564}
2565
2566// Hypervisor Call is a system instruction
2567let isCall = 1 in {
2568def HVC : AInoP< (outs), (ins imm0_65535:$imm), BrFrm, NoItinerary,
2569                "hvc", "\t$imm", []>,
2570          Requires<[IsARM, HasVirtualization]> {
2571  bits<16> imm;
2572
2573  // Even though HVC isn't predicable, it's encoding includes a condition field.
2574  // The instruction is undefined if the condition field is 0xf otherwise it is
2575  // unpredictable if it isn't condition AL (0xe).
2576  let Inst{31-28} = 0b1110;
2577  let Unpredictable{31-28} = 0b1111;
2578  let Inst{27-24} = 0b0001;
2579  let Inst{23-20} = 0b0100;
2580  let Inst{19-8} = imm{15-4};
2581  let Inst{7-4} = 0b0111;
2582  let Inst{3-0} = imm{3-0};
2583}
2584}
2585
2586// Return from exception in Hypervisor mode.
2587let isReturn = 1, isBarrier = 1, isTerminator = 1, Defs = [PC] in
2588def ERET : ABI<0b0001, (outs), (ins), NoItinerary, "eret", "", []>,
2589    Requires<[IsARM, HasVirtualization]> {
2590    let Inst{23-0} = 0b011000000000000001101110;
2591}
2592
2593//===----------------------------------------------------------------------===//
2594//  Load / Store Instructions.
2595//
2596
2597// Load
2598
2599
2600defm LDR  : AI_ldr1<0, "ldr", IIC_iLoad_r, IIC_iLoad_si, load>;
2601defm LDRB : AI_ldr1nopc<1, "ldrb", IIC_iLoad_bh_r, IIC_iLoad_bh_si,
2602                        zextloadi8>;
2603defm STR  : AI_str1<0, "str", IIC_iStore_r, IIC_iStore_si, store>;
2604defm STRB : AI_str1nopc<1, "strb", IIC_iStore_bh_r, IIC_iStore_bh_si,
2605                        truncstorei8>;
2606
2607// Special LDR for loads from non-pc-relative constpools.
2608let canFoldAsLoad = 1, mayLoad = 1, hasSideEffects = 0,
2609    isReMaterializable = 1, isCodeGenOnly = 1 in
2610def LDRcp : AI2ldst<0b010, 1, 0, (outs GPR:$Rt), (ins addrmode_imm12:$addr),
2611                 AddrMode_i12, LdFrm, IIC_iLoad_r, "ldr", "\t$Rt, $addr",
2612                 []> {
2613  bits<4> Rt;
2614  bits<17> addr;
2615  let Inst{23}    = addr{12};     // U (add = ('U' == 1))
2616  let Inst{19-16} = 0b1111;
2617  let Inst{15-12} = Rt;
2618  let Inst{11-0}  = addr{11-0};   // imm12
2619}
2620
2621// Loads with zero extension
2622def LDRH  : AI3ld<0b1011, 1, (outs GPR:$Rt), (ins addrmode3:$addr), LdMiscFrm,
2623                  IIC_iLoad_bh_r, "ldrh", "\t$Rt, $addr",
2624                  [(set GPR:$Rt, (zextloadi16 addrmode3:$addr))]>;
2625
2626// Loads with sign extension
2627def LDRSH : AI3ld<0b1111, 1, (outs GPR:$Rt), (ins addrmode3:$addr), LdMiscFrm,
2628                   IIC_iLoad_bh_r, "ldrsh", "\t$Rt, $addr",
2629                   [(set GPR:$Rt, (sextloadi16 addrmode3:$addr))]>;
2630
2631def LDRSB : AI3ld<0b1101, 1, (outs GPR:$Rt), (ins addrmode3:$addr), LdMiscFrm,
2632                   IIC_iLoad_bh_r, "ldrsb", "\t$Rt, $addr",
2633                   [(set GPR:$Rt, (sextloadi8 addrmode3:$addr))]>;
2634
2635let mayLoad = 1, hasSideEffects = 0, hasExtraDefRegAllocReq = 1 in {
2636  // Load doubleword
2637  def LDRD : AI3ld<0b1101, 0, (outs GPR:$Rt, GPR:$Rt2), (ins addrmode3:$addr),
2638                   LdMiscFrm, IIC_iLoad_d_r, "ldrd", "\t$Rt, $Rt2, $addr", []>,
2639             Requires<[IsARM, HasV5TE]>;
2640}
2641
2642def LDA : AIldracq<0b00, (outs GPR:$Rt), (ins addr_offset_none:$addr),
2643                    NoItinerary, "lda", "\t$Rt, $addr", []>;
2644def LDAB : AIldracq<0b10, (outs GPR:$Rt), (ins addr_offset_none:$addr),
2645                    NoItinerary, "ldab", "\t$Rt, $addr", []>;
2646def LDAH : AIldracq<0b11, (outs GPR:$Rt), (ins addr_offset_none:$addr),
2647                    NoItinerary, "ldah", "\t$Rt, $addr", []>;
2648
2649// Indexed loads
2650multiclass AI2_ldridx<bit isByte, string opc,
2651                      InstrItinClass iii, InstrItinClass iir> {
2652  def _PRE_IMM  : AI2ldstidx<1, isByte, 1, (outs GPR:$Rt, GPR:$Rn_wb),
2653                      (ins addrmode_imm12_pre:$addr), IndexModePre, LdFrm, iii,
2654                      opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> {
2655    bits<17> addr;
2656    let Inst{25} = 0;
2657    let Inst{23} = addr{12};
2658    let Inst{19-16} = addr{16-13};
2659    let Inst{11-0} = addr{11-0};
2660    let DecoderMethod = "DecodeLDRPreImm";
2661  }
2662
2663  def _PRE_REG  : AI2ldstidx<1, isByte, 1, (outs GPR:$Rt, GPR:$Rn_wb),
2664                      (ins ldst_so_reg:$addr), IndexModePre, LdFrm, iir,
2665                      opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> {
2666    bits<17> addr;
2667    let Inst{25} = 1;
2668    let Inst{23} = addr{12};
2669    let Inst{19-16} = addr{16-13};
2670    let Inst{11-0} = addr{11-0};
2671    let Inst{4} = 0;
2672    let DecoderMethod = "DecodeLDRPreReg";
2673  }
2674
2675  def _POST_REG : AI2ldstidx<1, isByte, 0, (outs GPR:$Rt, GPR:$Rn_wb),
2676                       (ins addr_offset_none:$addr, am2offset_reg:$offset),
2677                       IndexModePost, LdFrm, iir,
2678                       opc, "\t$Rt, $addr, $offset",
2679                       "$addr.base = $Rn_wb", []> {
2680     // {12}     isAdd
2681     // {11-0}   imm12/Rm
2682     bits<14> offset;
2683     bits<4> addr;
2684     let Inst{25} = 1;
2685     let Inst{23} = offset{12};
2686     let Inst{19-16} = addr;
2687     let Inst{11-0} = offset{11-0};
2688     let Inst{4} = 0;
2689
2690    let DecoderMethod = "DecodeAddrMode2IdxInstruction";
2691   }
2692
2693   def _POST_IMM : AI2ldstidx<1, isByte, 0, (outs GPR:$Rt, GPR:$Rn_wb),
2694                       (ins addr_offset_none:$addr, am2offset_imm:$offset),
2695                      IndexModePost, LdFrm, iii,
2696                      opc, "\t$Rt, $addr, $offset",
2697                      "$addr.base = $Rn_wb", []> {
2698    // {12}     isAdd
2699    // {11-0}   imm12/Rm
2700    bits<14> offset;
2701    bits<4> addr;
2702    let Inst{25} = 0;
2703    let Inst{23} = offset{12};
2704    let Inst{19-16} = addr;
2705    let Inst{11-0} = offset{11-0};
2706
2707    let DecoderMethod = "DecodeAddrMode2IdxInstruction";
2708  }
2709
2710}
2711
2712let mayLoad = 1, hasSideEffects = 0 in {
2713// FIXME: for LDR_PRE_REG etc. the itineray should be either IIC_iLoad_ru or
2714// IIC_iLoad_siu depending on whether it the offset register is shifted.
2715defm LDR  : AI2_ldridx<0, "ldr", IIC_iLoad_iu, IIC_iLoad_ru>;
2716defm LDRB : AI2_ldridx<1, "ldrb", IIC_iLoad_bh_iu, IIC_iLoad_bh_ru>;
2717}
2718
2719multiclass AI3_ldridx<bits<4> op, string opc, InstrItinClass itin> {
2720  def _PRE  : AI3ldstidx<op, 1, 1, (outs GPR:$Rt, GPR:$Rn_wb),
2721                        (ins addrmode3_pre:$addr), IndexModePre,
2722                        LdMiscFrm, itin,
2723                        opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> {
2724    bits<14> addr;
2725    let Inst{23}    = addr{8};      // U bit
2726    let Inst{22}    = addr{13};     // 1 == imm8, 0 == Rm
2727    let Inst{19-16} = addr{12-9};   // Rn
2728    let Inst{11-8}  = addr{7-4};    // imm7_4/zero
2729    let Inst{3-0}   = addr{3-0};    // imm3_0/Rm
2730    let DecoderMethod = "DecodeAddrMode3Instruction";
2731  }
2732  def _POST : AI3ldstidx<op, 1, 0, (outs GPR:$Rt, GPR:$Rn_wb),
2733                        (ins addr_offset_none:$addr, am3offset:$offset),
2734                        IndexModePost, LdMiscFrm, itin,
2735                        opc, "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb",
2736                        []> {
2737    bits<10> offset;
2738    bits<4> addr;
2739    let Inst{23}    = offset{8};      // U bit
2740    let Inst{22}    = offset{9};      // 1 == imm8, 0 == Rm
2741    let Inst{19-16} = addr;
2742    let Inst{11-8}  = offset{7-4};    // imm7_4/zero
2743    let Inst{3-0}   = offset{3-0};    // imm3_0/Rm
2744    let DecoderMethod = "DecodeAddrMode3Instruction";
2745  }
2746}
2747
2748let mayLoad = 1, hasSideEffects = 0 in {
2749defm LDRH  : AI3_ldridx<0b1011, "ldrh", IIC_iLoad_bh_ru>;
2750defm LDRSH : AI3_ldridx<0b1111, "ldrsh", IIC_iLoad_bh_ru>;
2751defm LDRSB : AI3_ldridx<0b1101, "ldrsb", IIC_iLoad_bh_ru>;
2752let hasExtraDefRegAllocReq = 1 in {
2753def LDRD_PRE : AI3ldstidx<0b1101, 0, 1, (outs GPR:$Rt, GPR:$Rt2, GPR:$Rn_wb),
2754                          (ins addrmode3_pre:$addr), IndexModePre,
2755                          LdMiscFrm, IIC_iLoad_d_ru,
2756                          "ldrd", "\t$Rt, $Rt2, $addr!",
2757                          "$addr.base = $Rn_wb", []> {
2758  bits<14> addr;
2759  let Inst{23}    = addr{8};      // U bit
2760  let Inst{22}    = addr{13};     // 1 == imm8, 0 == Rm
2761  let Inst{19-16} = addr{12-9};   // Rn
2762  let Inst{11-8}  = addr{7-4};    // imm7_4/zero
2763  let Inst{3-0}   = addr{3-0};    // imm3_0/Rm
2764  let DecoderMethod = "DecodeAddrMode3Instruction";
2765}
2766def LDRD_POST: AI3ldstidx<0b1101, 0, 0, (outs GPR:$Rt, GPR:$Rt2, GPR:$Rn_wb),
2767                          (ins addr_offset_none:$addr, am3offset:$offset),
2768                          IndexModePost, LdMiscFrm, IIC_iLoad_d_ru,
2769                          "ldrd", "\t$Rt, $Rt2, $addr, $offset",
2770                          "$addr.base = $Rn_wb", []> {
2771  bits<10> offset;
2772  bits<4> addr;
2773  let Inst{23}    = offset{8};      // U bit
2774  let Inst{22}    = offset{9};      // 1 == imm8, 0 == Rm
2775  let Inst{19-16} = addr;
2776  let Inst{11-8}  = offset{7-4};    // imm7_4/zero
2777  let Inst{3-0}   = offset{3-0};    // imm3_0/Rm
2778  let DecoderMethod = "DecodeAddrMode3Instruction";
2779}
2780} // hasExtraDefRegAllocReq = 1
2781} // mayLoad = 1, hasSideEffects = 0
2782
2783// LDRT, LDRBT, LDRSBT, LDRHT, LDRSHT.
2784let mayLoad = 1, hasSideEffects = 0 in {
2785def LDRT_POST_REG : AI2ldstidx<1, 0, 0, (outs GPR:$Rt, GPR:$Rn_wb),
2786                    (ins addr_offset_none:$addr, am2offset_reg:$offset),
2787                    IndexModePost, LdFrm, IIC_iLoad_ru,
2788                    "ldrt", "\t$Rt, $addr, $offset",
2789                    "$addr.base = $Rn_wb", []> {
2790  // {12}     isAdd
2791  // {11-0}   imm12/Rm
2792  bits<14> offset;
2793  bits<4> addr;
2794  let Inst{25} = 1;
2795  let Inst{23} = offset{12};
2796  let Inst{21} = 1; // overwrite
2797  let Inst{19-16} = addr;
2798  let Inst{11-5} = offset{11-5};
2799  let Inst{4} = 0;
2800  let Inst{3-0} = offset{3-0};
2801  let DecoderMethod = "DecodeAddrMode2IdxInstruction";
2802}
2803
2804def LDRT_POST_IMM
2805  : AI2ldstidx<1, 0, 0, (outs GPR:$Rt, GPR:$Rn_wb),
2806               (ins addr_offset_none:$addr, am2offset_imm:$offset),
2807               IndexModePost, LdFrm, IIC_iLoad_ru,
2808               "ldrt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> {
2809  // {12}     isAdd
2810  // {11-0}   imm12/Rm
2811  bits<14> offset;
2812  bits<4> addr;
2813  let Inst{25} = 0;
2814  let Inst{23} = offset{12};
2815  let Inst{21} = 1; // overwrite
2816  let Inst{19-16} = addr;
2817  let Inst{11-0} = offset{11-0};
2818  let DecoderMethod = "DecodeAddrMode2IdxInstruction";
2819}
2820
2821def LDRBT_POST_REG : AI2ldstidx<1, 1, 0, (outs GPR:$Rt, GPR:$Rn_wb),
2822                     (ins addr_offset_none:$addr, am2offset_reg:$offset),
2823                     IndexModePost, LdFrm, IIC_iLoad_bh_ru,
2824                     "ldrbt", "\t$Rt, $addr, $offset",
2825                     "$addr.base = $Rn_wb", []> {
2826  // {12}     isAdd
2827  // {11-0}   imm12/Rm
2828  bits<14> offset;
2829  bits<4> addr;
2830  let Inst{25} = 1;
2831  let Inst{23} = offset{12};
2832  let Inst{21} = 1; // overwrite
2833  let Inst{19-16} = addr;
2834  let Inst{11-5} = offset{11-5};
2835  let Inst{4} = 0;
2836  let Inst{3-0} = offset{3-0};
2837  let DecoderMethod = "DecodeAddrMode2IdxInstruction";
2838}
2839
2840def LDRBT_POST_IMM
2841  : AI2ldstidx<1, 1, 0, (outs GPR:$Rt, GPR:$Rn_wb),
2842               (ins addr_offset_none:$addr, am2offset_imm:$offset),
2843               IndexModePost, LdFrm, IIC_iLoad_bh_ru,
2844               "ldrbt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> {
2845  // {12}     isAdd
2846  // {11-0}   imm12/Rm
2847  bits<14> offset;
2848  bits<4> addr;
2849  let Inst{25} = 0;
2850  let Inst{23} = offset{12};
2851  let Inst{21} = 1; // overwrite
2852  let Inst{19-16} = addr;
2853  let Inst{11-0} = offset{11-0};
2854  let DecoderMethod = "DecodeAddrMode2IdxInstruction";
2855}
2856
2857multiclass AI3ldrT<bits<4> op, string opc> {
2858  def i : AI3ldstidxT<op, 1, (outs GPR:$Rt, GPR:$base_wb),
2859                      (ins addr_offset_none:$addr, postidx_imm8:$offset),
2860                      IndexModePost, LdMiscFrm, IIC_iLoad_bh_ru, opc,
2861                      "\t$Rt, $addr, $offset", "$addr.base = $base_wb", []> {
2862    bits<9> offset;
2863    let Inst{23} = offset{8};
2864    let Inst{22} = 1;
2865    let Inst{11-8} = offset{7-4};
2866    let Inst{3-0} = offset{3-0};
2867  }
2868  def r : AI3ldstidxT<op, 1, (outs GPRnopc:$Rt, GPRnopc:$base_wb),
2869                      (ins addr_offset_none:$addr, postidx_reg:$Rm),
2870                      IndexModePost, LdMiscFrm, IIC_iLoad_bh_ru, opc,
2871                      "\t$Rt, $addr, $Rm", "$addr.base = $base_wb", []> {
2872    bits<5> Rm;
2873    let Inst{23} = Rm{4};
2874    let Inst{22} = 0;
2875    let Inst{11-8} = 0;
2876    let Unpredictable{11-8} = 0b1111;
2877    let Inst{3-0} = Rm{3-0};
2878    let DecoderMethod = "DecodeLDR";
2879  }
2880}
2881
2882defm LDRSBT : AI3ldrT<0b1101, "ldrsbt">;
2883defm LDRHT  : AI3ldrT<0b1011, "ldrht">;
2884defm LDRSHT : AI3ldrT<0b1111, "ldrsht">;
2885}
2886
2887def LDRT_POST
2888  : ARMAsmPseudo<"ldrt${q} $Rt, $addr", (ins addr_offset_none:$addr, pred:$q),
2889                 (outs GPR:$Rt)>;
2890
2891def LDRBT_POST
2892  : ARMAsmPseudo<"ldrbt${q} $Rt, $addr", (ins addr_offset_none:$addr, pred:$q),
2893                 (outs GPR:$Rt)>;
2894
2895// Pseudo instruction ldr Rt, =immediate
2896def LDRConstPool
2897  : ARMAsmPseudo<"ldr${q} $Rt, $immediate",
2898                 (ins const_pool_asm_imm:$immediate, pred:$q),
2899                 (outs GPR:$Rt)>;
2900
2901// Store
2902
2903// Stores with truncate
2904def STRH : AI3str<0b1011, (outs), (ins GPR:$Rt, addrmode3:$addr), StMiscFrm,
2905               IIC_iStore_bh_r, "strh", "\t$Rt, $addr",
2906               [(truncstorei16 GPR:$Rt, addrmode3:$addr)]>;
2907
2908// Store doubleword
2909let mayStore = 1, hasSideEffects = 0, hasExtraSrcRegAllocReq = 1 in {
2910  def STRD : AI3str<0b1111, (outs), (ins GPR:$Rt, GPR:$Rt2, addrmode3:$addr),
2911                    StMiscFrm, IIC_iStore_d_r, "strd", "\t$Rt, $Rt2, $addr", []>,
2912             Requires<[IsARM, HasV5TE]> {
2913    let Inst{21} = 0;
2914  }
2915}
2916
2917// Indexed stores
2918multiclass AI2_stridx<bit isByte, string opc,
2919                      InstrItinClass iii, InstrItinClass iir> {
2920  def _PRE_IMM : AI2ldstidx<0, isByte, 1, (outs GPR:$Rn_wb),
2921                            (ins GPR:$Rt, addrmode_imm12_pre:$addr), IndexModePre,
2922                            StFrm, iii,
2923                            opc, "\t$Rt, $addr!",
2924                            "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> {
2925    bits<17> addr;
2926    let Inst{25} = 0;
2927    let Inst{23}    = addr{12};     // U (add = ('U' == 1))
2928    let Inst{19-16} = addr{16-13};  // Rn
2929    let Inst{11-0}  = addr{11-0};   // imm12
2930    let DecoderMethod = "DecodeSTRPreImm";
2931  }
2932
2933  def _PRE_REG  : AI2ldstidx<0, isByte, 1, (outs GPR:$Rn_wb),
2934                      (ins GPR:$Rt, ldst_so_reg:$addr),
2935                      IndexModePre, StFrm, iir,
2936                      opc, "\t$Rt, $addr!",
2937                      "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> {
2938    bits<17> addr;
2939    let Inst{25} = 1;
2940    let Inst{23}    = addr{12};    // U (add = ('U' == 1))
2941    let Inst{19-16} = addr{16-13}; // Rn
2942    let Inst{11-0}  = addr{11-0};
2943    let Inst{4}     = 0;           // Inst{4} = 0
2944    let DecoderMethod = "DecodeSTRPreReg";
2945  }
2946  def _POST_REG : AI2ldstidx<0, isByte, 0, (outs GPR:$Rn_wb),
2947                (ins GPR:$Rt, addr_offset_none:$addr, am2offset_reg:$offset),
2948                IndexModePost, StFrm, iir,
2949                opc, "\t$Rt, $addr, $offset",
2950                "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> {
2951     // {12}     isAdd
2952     // {11-0}   imm12/Rm
2953     bits<14> offset;
2954     bits<4> addr;
2955     let Inst{25} = 1;
2956     let Inst{23} = offset{12};
2957     let Inst{19-16} = addr;
2958     let Inst{11-0} = offset{11-0};
2959     let Inst{4} = 0;
2960
2961    let DecoderMethod = "DecodeAddrMode2IdxInstruction";
2962   }
2963
2964   def _POST_IMM : AI2ldstidx<0, isByte, 0, (outs GPR:$Rn_wb),
2965                (ins GPR:$Rt, addr_offset_none:$addr, am2offset_imm:$offset),
2966                IndexModePost, StFrm, iii,
2967                opc, "\t$Rt, $addr, $offset",
2968                "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> {
2969    // {12}     isAdd
2970    // {11-0}   imm12/Rm
2971    bits<14> offset;
2972    bits<4> addr;
2973    let Inst{25} = 0;
2974    let Inst{23} = offset{12};
2975    let Inst{19-16} = addr;
2976    let Inst{11-0} = offset{11-0};
2977
2978    let DecoderMethod = "DecodeAddrMode2IdxInstruction";
2979  }
2980}
2981
2982let mayStore = 1, hasSideEffects = 0 in {
2983// FIXME: for STR_PRE_REG etc. the itineray should be either IIC_iStore_ru or
2984// IIC_iStore_siu depending on whether it the offset register is shifted.
2985defm STR  : AI2_stridx<0, "str", IIC_iStore_iu, IIC_iStore_ru>;
2986defm STRB : AI2_stridx<1, "strb", IIC_iStore_bh_iu, IIC_iStore_bh_ru>;
2987}
2988
2989def : ARMPat<(post_store GPR:$Rt, addr_offset_none:$addr,
2990                         am2offset_reg:$offset),
2991             (STR_POST_REG GPR:$Rt, addr_offset_none:$addr,
2992                           am2offset_reg:$offset)>;
2993def : ARMPat<(post_store GPR:$Rt, addr_offset_none:$addr,
2994                         am2offset_imm:$offset),
2995             (STR_POST_IMM GPR:$Rt, addr_offset_none:$addr,
2996                           am2offset_imm:$offset)>;
2997def : ARMPat<(post_truncsti8 GPR:$Rt, addr_offset_none:$addr,
2998                             am2offset_reg:$offset),
2999             (STRB_POST_REG GPR:$Rt, addr_offset_none:$addr,
3000                            am2offset_reg:$offset)>;
3001def : ARMPat<(post_truncsti8 GPR:$Rt, addr_offset_none:$addr,
3002                             am2offset_imm:$offset),
3003             (STRB_POST_IMM GPR:$Rt, addr_offset_none:$addr,
3004                            am2offset_imm:$offset)>;
3005
3006// Pseudo-instructions for pattern matching the pre-indexed stores. We can't
3007// put the patterns on the instruction definitions directly as ISel wants
3008// the address base and offset to be separate operands, not a single
3009// complex operand like we represent the instructions themselves. The
3010// pseudos map between the two.
3011let usesCustomInserter = 1,
3012    Constraints = "$Rn = $Rn_wb,@earlyclobber $Rn_wb" in {
3013def STRi_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
3014               (ins GPR:$Rt, GPR:$Rn, am2offset_imm:$offset, pred:$p),
3015               4, IIC_iStore_ru,
3016            [(set GPR:$Rn_wb,
3017                  (pre_store GPR:$Rt, GPR:$Rn, am2offset_imm:$offset))]>;
3018def STRr_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
3019               (ins GPR:$Rt, GPR:$Rn, am2offset_reg:$offset, pred:$p),
3020               4, IIC_iStore_ru,
3021            [(set GPR:$Rn_wb,
3022                  (pre_store GPR:$Rt, GPR:$Rn, am2offset_reg:$offset))]>;
3023def STRBi_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
3024               (ins GPR:$Rt, GPR:$Rn, am2offset_imm:$offset, pred:$p),
3025               4, IIC_iStore_ru,
3026            [(set GPR:$Rn_wb,
3027                  (pre_truncsti8 GPR:$Rt, GPR:$Rn, am2offset_imm:$offset))]>;
3028def STRBr_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
3029               (ins GPR:$Rt, GPR:$Rn, am2offset_reg:$offset, pred:$p),
3030               4, IIC_iStore_ru,
3031            [(set GPR:$Rn_wb,
3032                  (pre_truncsti8 GPR:$Rt, GPR:$Rn, am2offset_reg:$offset))]>;
3033def STRH_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
3034               (ins GPR:$Rt, GPR:$Rn, am3offset:$offset, pred:$p),
3035               4, IIC_iStore_ru,
3036            [(set GPR:$Rn_wb,
3037                  (pre_truncsti16 GPR:$Rt, GPR:$Rn, am3offset:$offset))]>;
3038}
3039
3040
3041
3042def STRH_PRE  : AI3ldstidx<0b1011, 0, 1, (outs GPR:$Rn_wb),
3043                           (ins GPR:$Rt, addrmode3_pre:$addr), IndexModePre,
3044                           StMiscFrm, IIC_iStore_bh_ru,
3045                           "strh", "\t$Rt, $addr!",
3046                           "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> {
3047  bits<14> addr;
3048  let Inst{23}    = addr{8};      // U bit
3049  let Inst{22}    = addr{13};     // 1 == imm8, 0 == Rm
3050  let Inst{19-16} = addr{12-9};   // Rn
3051  let Inst{11-8}  = addr{7-4};    // imm7_4/zero
3052  let Inst{3-0}   = addr{3-0};    // imm3_0/Rm
3053  let DecoderMethod = "DecodeAddrMode3Instruction";
3054}
3055
3056def STRH_POST : AI3ldstidx<0b1011, 0, 0, (outs GPR:$Rn_wb),
3057                       (ins GPR:$Rt, addr_offset_none:$addr, am3offset:$offset),
3058                       IndexModePost, StMiscFrm, IIC_iStore_bh_ru,
3059                       "strh", "\t$Rt, $addr, $offset",
3060                       "$addr.base = $Rn_wb,@earlyclobber $Rn_wb",
3061                   [(set GPR:$Rn_wb, (post_truncsti16 GPR:$Rt,
3062                                                      addr_offset_none:$addr,
3063                                                      am3offset:$offset))]> {
3064  bits<10> offset;
3065  bits<4> addr;
3066  let Inst{23}    = offset{8};      // U bit
3067  let Inst{22}    = offset{9};      // 1 == imm8, 0 == Rm
3068  let Inst{19-16} = addr;
3069  let Inst{11-8}  = offset{7-4};    // imm7_4/zero
3070  let Inst{3-0}   = offset{3-0};    // imm3_0/Rm
3071  let DecoderMethod = "DecodeAddrMode3Instruction";
3072}
3073
3074let mayStore = 1, hasSideEffects = 0, hasExtraSrcRegAllocReq = 1 in {
3075def STRD_PRE : AI3ldstidx<0b1111, 0, 1, (outs GPR:$Rn_wb),
3076                          (ins GPR:$Rt, GPR:$Rt2, addrmode3_pre:$addr),
3077                          IndexModePre, StMiscFrm, IIC_iStore_d_ru,
3078                          "strd", "\t$Rt, $Rt2, $addr!",
3079                          "$addr.base = $Rn_wb", []> {
3080  bits<14> addr;
3081  let Inst{23}    = addr{8};      // U bit
3082  let Inst{22}    = addr{13};     // 1 == imm8, 0 == Rm
3083  let Inst{19-16} = addr{12-9};   // Rn
3084  let Inst{11-8}  = addr{7-4};    // imm7_4/zero
3085  let Inst{3-0}   = addr{3-0};    // imm3_0/Rm
3086  let DecoderMethod = "DecodeAddrMode3Instruction";
3087}
3088
3089def STRD_POST: AI3ldstidx<0b1111, 0, 0, (outs GPR:$Rn_wb),
3090                          (ins GPR:$Rt, GPR:$Rt2, addr_offset_none:$addr,
3091                               am3offset:$offset),
3092                          IndexModePost, StMiscFrm, IIC_iStore_d_ru,
3093                          "strd", "\t$Rt, $Rt2, $addr, $offset",
3094                          "$addr.base = $Rn_wb", []> {
3095  bits<10> offset;
3096  bits<4> addr;
3097  let Inst{23}    = offset{8};      // U bit
3098  let Inst{22}    = offset{9};      // 1 == imm8, 0 == Rm
3099  let Inst{19-16} = addr;
3100  let Inst{11-8}  = offset{7-4};    // imm7_4/zero
3101  let Inst{3-0}   = offset{3-0};    // imm3_0/Rm
3102  let DecoderMethod = "DecodeAddrMode3Instruction";
3103}
3104} // mayStore = 1, hasSideEffects = 0, hasExtraSrcRegAllocReq = 1
3105
3106// STRT, STRBT, and STRHT
3107
3108def STRBT_POST_REG : AI2ldstidx<0, 1, 0, (outs GPR:$Rn_wb),
3109                   (ins GPR:$Rt, addr_offset_none:$addr, am2offset_reg:$offset),
3110                   IndexModePost, StFrm, IIC_iStore_bh_ru,
3111                   "strbt", "\t$Rt, $addr, $offset",
3112                   "$addr.base = $Rn_wb", []> {
3113  // {12}     isAdd
3114  // {11-0}   imm12/Rm
3115  bits<14> offset;
3116  bits<4> addr;
3117  let Inst{25} = 1;
3118  let Inst{23} = offset{12};
3119  let Inst{21} = 1; // overwrite
3120  let Inst{19-16} = addr;
3121  let Inst{11-5} = offset{11-5};
3122  let Inst{4} = 0;
3123  let Inst{3-0} = offset{3-0};
3124  let DecoderMethod = "DecodeAddrMode2IdxInstruction";
3125}
3126
3127def STRBT_POST_IMM
3128  : AI2ldstidx<0, 1, 0, (outs GPR:$Rn_wb),
3129               (ins GPR:$Rt, addr_offset_none:$addr, am2offset_imm:$offset),
3130               IndexModePost, StFrm, IIC_iStore_bh_ru,
3131               "strbt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> {
3132  // {12}     isAdd
3133  // {11-0}   imm12/Rm
3134  bits<14> offset;
3135  bits<4> addr;
3136  let Inst{25} = 0;
3137  let Inst{23} = offset{12};
3138  let Inst{21} = 1; // overwrite
3139  let Inst{19-16} = addr;
3140  let Inst{11-0} = offset{11-0};
3141  let DecoderMethod = "DecodeAddrMode2IdxInstruction";
3142}
3143
3144def STRBT_POST
3145  : ARMAsmPseudo<"strbt${q} $Rt, $addr",
3146                 (ins GPR:$Rt, addr_offset_none:$addr, pred:$q)>;
3147
3148let mayStore = 1, hasSideEffects = 0 in {
3149def STRT_POST_REG : AI2ldstidx<0, 0, 0, (outs GPR:$Rn_wb),
3150                   (ins GPR:$Rt, addr_offset_none:$addr, am2offset_reg:$offset),
3151                   IndexModePost, StFrm, IIC_iStore_ru,
3152                   "strt", "\t$Rt, $addr, $offset",
3153                   "$addr.base = $Rn_wb", []> {
3154  // {12}     isAdd
3155  // {11-0}   imm12/Rm
3156  bits<14> offset;
3157  bits<4> addr;
3158  let Inst{25} = 1;
3159  let Inst{23} = offset{12};
3160  let Inst{21} = 1; // overwrite
3161  let Inst{19-16} = addr;
3162  let Inst{11-5} = offset{11-5};
3163  let Inst{4} = 0;
3164  let Inst{3-0} = offset{3-0};
3165  let DecoderMethod = "DecodeAddrMode2IdxInstruction";
3166}
3167
3168def STRT_POST_IMM
3169  : AI2ldstidx<0, 0, 0, (outs GPR:$Rn_wb),
3170               (ins GPR:$Rt, addr_offset_none:$addr, am2offset_imm:$offset),
3171               IndexModePost, StFrm, IIC_iStore_ru,
3172               "strt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> {
3173  // {12}     isAdd
3174  // {11-0}   imm12/Rm
3175  bits<14> offset;
3176  bits<4> addr;
3177  let Inst{25} = 0;
3178  let Inst{23} = offset{12};
3179  let Inst{21} = 1; // overwrite
3180  let Inst{19-16} = addr;
3181  let Inst{11-0} = offset{11-0};
3182  let DecoderMethod = "DecodeAddrMode2IdxInstruction";
3183}
3184}
3185
3186def STRT_POST
3187  : ARMAsmPseudo<"strt${q} $Rt, $addr",
3188                 (ins GPR:$Rt, addr_offset_none:$addr, pred:$q)>;
3189
3190multiclass AI3strT<bits<4> op, string opc> {
3191  def i : AI3ldstidxT<op, 0, (outs GPR:$base_wb),
3192                    (ins GPR:$Rt, addr_offset_none:$addr, postidx_imm8:$offset),
3193                    IndexModePost, StMiscFrm, IIC_iStore_bh_ru, opc,
3194                    "\t$Rt, $addr, $offset", "$addr.base = $base_wb", []> {
3195    bits<9> offset;
3196    let Inst{23} = offset{8};
3197    let Inst{22} = 1;
3198    let Inst{11-8} = offset{7-4};
3199    let Inst{3-0} = offset{3-0};
3200  }
3201  def r : AI3ldstidxT<op, 0, (outs GPR:$base_wb),
3202                      (ins GPR:$Rt, addr_offset_none:$addr, postidx_reg:$Rm),
3203                      IndexModePost, StMiscFrm, IIC_iStore_bh_ru, opc,
3204                      "\t$Rt, $addr, $Rm", "$addr.base = $base_wb", []> {
3205    bits<5> Rm;
3206    let Inst{23} = Rm{4};
3207    let Inst{22} = 0;
3208    let Inst{11-8} = 0;
3209    let Inst{3-0} = Rm{3-0};
3210  }
3211}
3212
3213
3214defm STRHT : AI3strT<0b1011, "strht">;
3215
3216def STL : AIstrrel<0b00, (outs), (ins GPR:$Rt, addr_offset_none:$addr),
3217                   NoItinerary, "stl", "\t$Rt, $addr", []>;
3218def STLB : AIstrrel<0b10, (outs), (ins GPR:$Rt, addr_offset_none:$addr),
3219                    NoItinerary, "stlb", "\t$Rt, $addr", []>;
3220def STLH : AIstrrel<0b11, (outs), (ins GPR:$Rt, addr_offset_none:$addr),
3221                    NoItinerary, "stlh", "\t$Rt, $addr", []>;
3222
3223//===----------------------------------------------------------------------===//
3224//  Load / store multiple Instructions.
3225//
3226
3227multiclass arm_ldst_mult<string asm, string sfx, bit L_bit, bit P_bit, Format f,
3228                         InstrItinClass itin, InstrItinClass itin_upd> {
3229  // IA is the default, so no need for an explicit suffix on the
3230  // mnemonic here. Without it is the canonical spelling.
3231  def IA :
3232    AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3233         IndexModeNone, f, itin,
3234         !strconcat(asm, "${p}\t$Rn, $regs", sfx), "", []> {
3235    let Inst{24-23} = 0b01;       // Increment After
3236    let Inst{22}    = P_bit;
3237    let Inst{21}    = 0;          // No writeback
3238    let Inst{20}    = L_bit;
3239  }
3240  def IA_UPD :
3241    AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3242         IndexModeUpd, f, itin_upd,
3243         !strconcat(asm, "${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> {
3244    let Inst{24-23} = 0b01;       // Increment After
3245    let Inst{22}    = P_bit;
3246    let Inst{21}    = 1;          // Writeback
3247    let Inst{20}    = L_bit;
3248
3249    let DecoderMethod = "DecodeMemMultipleWritebackInstruction";
3250  }
3251  def DA :
3252    AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3253         IndexModeNone, f, itin,
3254         !strconcat(asm, "da${p}\t$Rn, $regs", sfx), "", []> {
3255    let Inst{24-23} = 0b00;       // Decrement After
3256    let Inst{22}    = P_bit;
3257    let Inst{21}    = 0;          // No writeback
3258    let Inst{20}    = L_bit;
3259  }
3260  def DA_UPD :
3261    AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3262         IndexModeUpd, f, itin_upd,
3263         !strconcat(asm, "da${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> {
3264    let Inst{24-23} = 0b00;       // Decrement After
3265    let Inst{22}    = P_bit;
3266    let Inst{21}    = 1;          // Writeback
3267    let Inst{20}    = L_bit;
3268
3269    let DecoderMethod = "DecodeMemMultipleWritebackInstruction";
3270  }
3271  def DB :
3272    AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3273         IndexModeNone, f, itin,
3274         !strconcat(asm, "db${p}\t$Rn, $regs", sfx), "", []> {
3275    let Inst{24-23} = 0b10;       // Decrement Before
3276    let Inst{22}    = P_bit;
3277    let Inst{21}    = 0;          // No writeback
3278    let Inst{20}    = L_bit;
3279  }
3280  def DB_UPD :
3281    AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3282         IndexModeUpd, f, itin_upd,
3283         !strconcat(asm, "db${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> {
3284    let Inst{24-23} = 0b10;       // Decrement Before
3285    let Inst{22}    = P_bit;
3286    let Inst{21}    = 1;          // Writeback
3287    let Inst{20}    = L_bit;
3288
3289    let DecoderMethod = "DecodeMemMultipleWritebackInstruction";
3290  }
3291  def IB :
3292    AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3293         IndexModeNone, f, itin,
3294         !strconcat(asm, "ib${p}\t$Rn, $regs", sfx), "", []> {
3295    let Inst{24-23} = 0b11;       // Increment Before
3296    let Inst{22}    = P_bit;
3297    let Inst{21}    = 0;          // No writeback
3298    let Inst{20}    = L_bit;
3299  }
3300  def IB_UPD :
3301    AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3302         IndexModeUpd, f, itin_upd,
3303         !strconcat(asm, "ib${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> {
3304    let Inst{24-23} = 0b11;       // Increment Before
3305    let Inst{22}    = P_bit;
3306    let Inst{21}    = 1;          // Writeback
3307    let Inst{20}    = L_bit;
3308
3309    let DecoderMethod = "DecodeMemMultipleWritebackInstruction";
3310  }
3311}
3312
3313let hasSideEffects = 0 in {
3314
3315let mayLoad = 1, hasExtraDefRegAllocReq = 1, variadicOpsAreDefs = 1 in
3316defm LDM : arm_ldst_mult<"ldm", "", 1, 0, LdStMulFrm, IIC_iLoad_m,
3317                         IIC_iLoad_mu>, ComplexDeprecationPredicate<"ARMLoad">;
3318
3319let mayStore = 1, hasExtraSrcRegAllocReq = 1 in
3320defm STM : arm_ldst_mult<"stm", "", 0, 0, LdStMulFrm, IIC_iStore_m,
3321                         IIC_iStore_mu>,
3322           ComplexDeprecationPredicate<"ARMStore">;
3323
3324} // hasSideEffects
3325
3326// FIXME: remove when we have a way to marking a MI with these properties.
3327// FIXME: Should pc be an implicit operand like PICADD, etc?
3328let isReturn = 1, isTerminator = 1, isBarrier = 1, mayLoad = 1,
3329    hasExtraDefRegAllocReq = 1, isCodeGenOnly = 1 in
3330def LDMIA_RET : ARMPseudoExpand<(outs GPR:$wb), (ins GPR:$Rn, pred:$p,
3331                                                 reglist:$regs, variable_ops),
3332                     4, IIC_iLoad_mBr, [],
3333                     (LDMIA_UPD GPR:$wb, GPR:$Rn, pred:$p, reglist:$regs)>,
3334      RegConstraint<"$Rn = $wb">;
3335
3336let mayLoad = 1, hasExtraDefRegAllocReq = 1 in
3337defm sysLDM : arm_ldst_mult<"ldm", " ^", 1, 1, LdStMulFrm, IIC_iLoad_m,
3338                               IIC_iLoad_mu>;
3339
3340let mayStore = 1, hasExtraSrcRegAllocReq = 1 in
3341defm sysSTM : arm_ldst_mult<"stm", " ^", 0, 1, LdStMulFrm, IIC_iStore_m,
3342                               IIC_iStore_mu>;
3343
3344
3345
3346//===----------------------------------------------------------------------===//
3347//  Move Instructions.
3348//
3349
3350let hasSideEffects = 0, isMoveReg = 1 in
3351def MOVr : AsI1<0b1101, (outs GPR:$Rd), (ins GPR:$Rm), DPFrm, IIC_iMOVr,
3352                "mov", "\t$Rd, $Rm", []>, UnaryDP, Sched<[WriteALU]> {
3353  bits<4> Rd;
3354  bits<4> Rm;
3355
3356  let Inst{19-16} = 0b0000;
3357  let Inst{11-4} = 0b00000000;
3358  let Inst{25} = 0;
3359  let Inst{3-0} = Rm;
3360  let Inst{15-12} = Rd;
3361}
3362
3363// A version for the smaller set of tail call registers.
3364let hasSideEffects = 0 in
3365def MOVr_TC : AsI1<0b1101, (outs tcGPR:$Rd), (ins tcGPR:$Rm), DPFrm,
3366                IIC_iMOVr, "mov", "\t$Rd, $Rm", []>, UnaryDP, Sched<[WriteALU]> {
3367  bits<4> Rd;
3368  bits<4> Rm;
3369
3370  let Inst{11-4} = 0b00000000;
3371  let Inst{25} = 0;
3372  let Inst{3-0} = Rm;
3373  let Inst{15-12} = Rd;
3374}
3375
3376def MOVsr : AsI1<0b1101, (outs GPRnopc:$Rd), (ins shift_so_reg_reg:$src),
3377                DPSoRegRegFrm, IIC_iMOVsr,
3378                "mov", "\t$Rd, $src",
3379                [(set GPRnopc:$Rd, shift_so_reg_reg:$src)]>, UnaryDP,
3380                Sched<[WriteALU]> {
3381  bits<4> Rd;
3382  bits<12> src;
3383  let Inst{15-12} = Rd;
3384  let Inst{19-16} = 0b0000;
3385  let Inst{11-8} = src{11-8};
3386  let Inst{7} = 0;
3387  let Inst{6-5} = src{6-5};
3388  let Inst{4} = 1;
3389  let Inst{3-0} = src{3-0};
3390  let Inst{25} = 0;
3391}
3392
3393def MOVsi : AsI1<0b1101, (outs GPR:$Rd), (ins shift_so_reg_imm:$src),
3394                DPSoRegImmFrm, IIC_iMOVsr,
3395                "mov", "\t$Rd, $src", [(set GPR:$Rd, shift_so_reg_imm:$src)]>,
3396                UnaryDP, Sched<[WriteALU]> {
3397  bits<4> Rd;
3398  bits<12> src;
3399  let Inst{15-12} = Rd;
3400  let Inst{19-16} = 0b0000;
3401  let Inst{11-5} = src{11-5};
3402  let Inst{4} = 0;
3403  let Inst{3-0} = src{3-0};
3404  let Inst{25} = 0;
3405}
3406
3407let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in
3408def MOVi : AsI1<0b1101, (outs GPR:$Rd), (ins mod_imm:$imm), DPFrm, IIC_iMOVi,
3409                "mov", "\t$Rd, $imm", [(set GPR:$Rd, mod_imm:$imm)]>, UnaryDP,
3410                Sched<[WriteALU]> {
3411  bits<4> Rd;
3412  bits<12> imm;
3413  let Inst{25} = 1;
3414  let Inst{15-12} = Rd;
3415  let Inst{19-16} = 0b0000;
3416  let Inst{11-0} = imm;
3417}
3418
3419let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in
3420def MOVi16 : AI1<0b1000, (outs GPR:$Rd), (ins imm0_65535_expr:$imm),
3421                 DPFrm, IIC_iMOVi,
3422                 "movw", "\t$Rd, $imm",
3423                 [(set GPR:$Rd, imm0_65535:$imm)]>,
3424                 Requires<[IsARM, HasV6T2]>, UnaryDP, Sched<[WriteALU]> {
3425  bits<4> Rd;
3426  bits<16> imm;
3427  let Inst{15-12} = Rd;
3428  let Inst{11-0}  = imm{11-0};
3429  let Inst{19-16} = imm{15-12};
3430  let Inst{20} = 0;
3431  let Inst{25} = 1;
3432  let DecoderMethod = "DecodeArmMOVTWInstruction";
3433}
3434
3435def : InstAlias<"mov${p} $Rd, $imm",
3436                (MOVi16 GPR:$Rd, imm0_65535_expr:$imm, pred:$p), 0>,
3437        Requires<[IsARM, HasV6T2]>;
3438
3439def MOVi16_ga_pcrel : PseudoInst<(outs GPR:$Rd),
3440                                (ins i32imm:$addr, pclabel:$id), IIC_iMOVi, []>,
3441                      Sched<[WriteALU]>;
3442
3443let Constraints = "$src = $Rd" in {
3444def MOVTi16 : AI1<0b1010, (outs GPRnopc:$Rd),
3445                  (ins GPR:$src, imm0_65535_expr:$imm),
3446                  DPFrm, IIC_iMOVi,
3447                  "movt", "\t$Rd, $imm",
3448                  [(set GPRnopc:$Rd,
3449                        (or (and GPR:$src, 0xffff),
3450                            lo16AllZero:$imm))]>, UnaryDP,
3451                  Requires<[IsARM, HasV6T2]>, Sched<[WriteALU]> {
3452  bits<4> Rd;
3453  bits<16> imm;
3454  let Inst{15-12} = Rd;
3455  let Inst{11-0}  = imm{11-0};
3456  let Inst{19-16} = imm{15-12};
3457  let Inst{20} = 0;
3458  let Inst{25} = 1;
3459  let DecoderMethod = "DecodeArmMOVTWInstruction";
3460}
3461
3462def MOVTi16_ga_pcrel : PseudoInst<(outs GPR:$Rd),
3463                      (ins GPR:$src, i32imm:$addr, pclabel:$id), IIC_iMOVi, []>,
3464                      Sched<[WriteALU]>;
3465
3466} // Constraints
3467
3468def : ARMPat<(or GPR:$src, 0xffff0000), (MOVTi16 GPR:$src, 0xffff)>,
3469      Requires<[IsARM, HasV6T2]>;
3470
3471let Uses = [CPSR] in
3472def RRX: PseudoInst<(outs GPR:$Rd), (ins GPR:$Rm), IIC_iMOVsi,
3473                    [(set GPR:$Rd, (ARMrrx GPR:$Rm))]>, UnaryDP,
3474                    Requires<[IsARM]>, Sched<[WriteALU]>;
3475
3476// These aren't really mov instructions, but we have to define them this way
3477// due to flag operands.
3478
3479let Defs = [CPSR] in {
3480def MOVsrl_flag : PseudoInst<(outs GPR:$dst), (ins GPR:$src), IIC_iMOVsi,
3481                      [(set GPR:$dst, (ARMsrl_flag GPR:$src))]>, UnaryDP,
3482                      Sched<[WriteALU]>, Requires<[IsARM]>;
3483def MOVsra_flag : PseudoInst<(outs GPR:$dst), (ins GPR:$src), IIC_iMOVsi,
3484                      [(set GPR:$dst, (ARMsra_flag GPR:$src))]>, UnaryDP,
3485                      Sched<[WriteALU]>, Requires<[IsARM]>;
3486}
3487
3488//===----------------------------------------------------------------------===//
3489//  Extend Instructions.
3490//
3491
3492// Sign extenders
3493
3494def SXTB  : AI_ext_rrot<0b01101010,
3495                         "sxtb", UnOpFrag<(sext_inreg node:$Src, i8)>>;
3496def SXTH  : AI_ext_rrot<0b01101011,
3497                         "sxth", UnOpFrag<(sext_inreg node:$Src, i16)>>;
3498
3499def SXTAB : AI_exta_rrot<0b01101010,
3500               "sxtab", BinOpFrag<(add node:$LHS, (sext_inreg node:$RHS, i8))>>;
3501def SXTAH : AI_exta_rrot<0b01101011,
3502               "sxtah", BinOpFrag<(add node:$LHS, (sext_inreg node:$RHS,i16))>>;
3503
3504def : ARMV6Pat<(add rGPR:$Rn, (sext_inreg (srl rGPR:$Rm, rot_imm:$rot), i8)),
3505               (SXTAB rGPR:$Rn, rGPR:$Rm, rot_imm:$rot)>;
3506def : ARMV6Pat<(add rGPR:$Rn, (sext_inreg (srl rGPR:$Rm, imm8_or_16:$rot),
3507                                          i16)),
3508               (SXTAH rGPR:$Rn, rGPR:$Rm, rot_imm:$rot)>;
3509
3510def SXTB16  : AI_ext_rrot_np<0b01101000, "sxtb16">;
3511def : ARMV6Pat<(int_arm_sxtb16 GPR:$Src),
3512               (SXTB16 GPR:$Src, 0)>;
3513def : ARMV6Pat<(int_arm_sxtb16 (rotr GPR:$Src, rot_imm:$rot)),
3514               (SXTB16 GPR:$Src, rot_imm:$rot)>;
3515
3516def SXTAB16 : AI_exta_rrot_np<0b01101000, "sxtab16">;
3517def : ARMV6Pat<(int_arm_sxtab16 GPR:$LHS, GPR:$RHS),
3518               (SXTAB16 GPR:$LHS, GPR:$RHS, 0)>;
3519def : ARMV6Pat<(int_arm_sxtab16 GPR:$LHS, (rotr GPR:$RHS, rot_imm:$rot)),
3520               (SXTAB16 GPR:$LHS, GPR:$RHS, rot_imm:$rot)>;
3521
3522// Zero extenders
3523
3524let AddedComplexity = 16 in {
3525def UXTB   : AI_ext_rrot<0b01101110,
3526                          "uxtb"  , UnOpFrag<(and node:$Src, 0x000000FF)>>;
3527def UXTH   : AI_ext_rrot<0b01101111,
3528                          "uxth"  , UnOpFrag<(and node:$Src, 0x0000FFFF)>>;
3529def UXTB16 : AI_ext_rrot<0b01101100,
3530                          "uxtb16", UnOpFrag<(and node:$Src, 0x00FF00FF)>>;
3531
3532// FIXME: This pattern incorrectly assumes the shl operator is a rotate.
3533//        The transformation should probably be done as a combiner action
3534//        instead so we can include a check for masking back in the upper
3535//        eight bits of the source into the lower eight bits of the result.
3536//def : ARMV6Pat<(and (shl GPR:$Src, (i32 8)), 0xFF00FF),
3537//               (UXTB16r_rot GPR:$Src, 3)>;
3538def : ARMV6Pat<(and (srl GPR:$Src, (i32 8)), 0xFF00FF),
3539               (UXTB16 GPR:$Src, 1)>;
3540def : ARMV6Pat<(int_arm_uxtb16 GPR:$Src),
3541               (UXTB16 GPR:$Src, 0)>;
3542def : ARMV6Pat<(int_arm_uxtb16 (rotr GPR:$Src, rot_imm:$rot)),
3543               (UXTB16 GPR:$Src, rot_imm:$rot)>;
3544
3545def UXTAB : AI_exta_rrot<0b01101110, "uxtab",
3546                        BinOpFrag<(add node:$LHS, (and node:$RHS, 0x00FF))>>;
3547def UXTAH : AI_exta_rrot<0b01101111, "uxtah",
3548                        BinOpFrag<(add node:$LHS, (and node:$RHS, 0xFFFF))>>;
3549
3550def : ARMV6Pat<(add rGPR:$Rn, (and (srl rGPR:$Rm, rot_imm:$rot), 0xFF)),
3551               (UXTAB rGPR:$Rn, rGPR:$Rm, rot_imm:$rot)>;
3552def : ARMV6Pat<(add rGPR:$Rn, (and (srl rGPR:$Rm, imm8_or_16:$rot), 0xFFFF)),
3553               (UXTAH rGPR:$Rn, rGPR:$Rm, rot_imm:$rot)>;
3554}
3555
3556// This isn't safe in general, the add is two 16-bit units, not a 32-bit add.
3557def UXTAB16 : AI_exta_rrot_np<0b01101100, "uxtab16">;
3558def : ARMV6Pat<(int_arm_uxtab16 GPR:$LHS, GPR:$RHS),
3559               (UXTAB16 GPR:$LHS, GPR:$RHS, 0)>;
3560def : ARMV6Pat<(int_arm_uxtab16 GPR:$LHS, (rotr GPR:$RHS, rot_imm:$rot)),
3561               (UXTAB16 GPR:$LHS, GPR:$RHS, rot_imm:$rot)>;
3562
3563
3564def SBFX  : I<(outs GPRnopc:$Rd),
3565              (ins GPRnopc:$Rn, imm0_31:$lsb, imm1_32:$width),
3566               AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi,
3567               "sbfx", "\t$Rd, $Rn, $lsb, $width", "", []>,
3568               Requires<[IsARM, HasV6T2]> {
3569  bits<4> Rd;
3570  bits<4> Rn;
3571  bits<5> lsb;
3572  bits<5> width;
3573  let Inst{27-21} = 0b0111101;
3574  let Inst{6-4}   = 0b101;
3575  let Inst{20-16} = width;
3576  let Inst{15-12} = Rd;
3577  let Inst{11-7}  = lsb;
3578  let Inst{3-0}   = Rn;
3579}
3580
3581def UBFX  : I<(outs GPRnopc:$Rd),
3582              (ins GPRnopc:$Rn, imm0_31:$lsb, imm1_32:$width),
3583               AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi,
3584               "ubfx", "\t$Rd, $Rn, $lsb, $width", "", []>,
3585               Requires<[IsARM, HasV6T2]> {
3586  bits<4> Rd;
3587  bits<4> Rn;
3588  bits<5> lsb;
3589  bits<5> width;
3590  let Inst{27-21} = 0b0111111;
3591  let Inst{6-4}   = 0b101;
3592  let Inst{20-16} = width;
3593  let Inst{15-12} = Rd;
3594  let Inst{11-7}  = lsb;
3595  let Inst{3-0}   = Rn;
3596}
3597
3598//===----------------------------------------------------------------------===//
3599//  Arithmetic Instructions.
3600//
3601
3602let isAdd = 1 in
3603defm ADD  : AsI1_bin_irs<0b0100, "add",
3604                         IIC_iALUi, IIC_iALUr, IIC_iALUsr, add, 1>;
3605defm SUB  : AsI1_bin_irs<0b0010, "sub",
3606                         IIC_iALUi, IIC_iALUr, IIC_iALUsr, sub>;
3607
3608// ADD and SUB with 's' bit set.
3609//
3610// Currently, ADDS/SUBS are pseudo opcodes that exist only in the
3611// selection DAG. They are "lowered" to real ADD/SUB opcodes by
3612// AdjustInstrPostInstrSelection where we determine whether or not to
3613// set the "s" bit based on CPSR liveness.
3614//
3615// FIXME: Eliminate ADDS/SUBS pseudo opcodes after adding tablegen
3616// support for an optional CPSR definition that corresponds to the DAG
3617// node's second value. We can then eliminate the implicit def of CPSR.
3618let isAdd = 1 in
3619defm ADDS : AsI1_bin_s_irs<IIC_iALUi, IIC_iALUr, IIC_iALUsr, ARMaddc, 1>;
3620defm SUBS : AsI1_bin_s_irs<IIC_iALUi, IIC_iALUr, IIC_iALUsr, ARMsubc>;
3621
3622def : ARMPat<(ARMsubs GPR:$Rn, mod_imm:$imm), (SUBSri $Rn, mod_imm:$imm)>;
3623def : ARMPat<(ARMsubs GPR:$Rn, GPR:$Rm), (SUBSrr $Rn, $Rm)>;
3624def : ARMPat<(ARMsubs GPR:$Rn, so_reg_imm:$shift),
3625             (SUBSrsi $Rn, so_reg_imm:$shift)>;
3626def : ARMPat<(ARMsubs GPR:$Rn, so_reg_reg:$shift),
3627             (SUBSrsr $Rn, so_reg_reg:$shift)>;
3628
3629
3630let isAdd = 1 in
3631defm ADC : AI1_adde_sube_irs<0b0101, "adc", ARMadde, 1>;
3632defm SBC : AI1_adde_sube_irs<0b0110, "sbc", ARMsube>;
3633
3634defm RSB  : AsI1_rbin_irs<0b0011, "rsb",
3635                          IIC_iALUi, IIC_iALUr, IIC_iALUsr,
3636                          sub>;
3637
3638// FIXME: Eliminate them if we can write def : Pat patterns which defines
3639// CPSR and the implicit def of CPSR is not needed.
3640defm RSBS : AsI1_rbin_s_is<IIC_iALUi, IIC_iALUr, IIC_iALUsr, ARMsubc>;
3641
3642defm RSC : AI1_rsc_irs<0b0111, "rsc", ARMsube>;
3643
3644// (sub X, imm) gets canonicalized to (add X, -imm).  Match this form.
3645// The assume-no-carry-in form uses the negation of the input since add/sub
3646// assume opposite meanings of the carry flag (i.e., carry == !borrow).
3647// See the definition of AddWithCarry() in the ARM ARM A2.2.1 for the gory
3648// details.
3649def : ARMPat<(add     GPR:$src, mod_imm_neg:$imm),
3650             (SUBri   GPR:$src, mod_imm_neg:$imm)>;
3651def : ARMPat<(ARMaddc GPR:$src, mod_imm_neg:$imm),
3652             (SUBSri  GPR:$src, mod_imm_neg:$imm)>;
3653
3654def : ARMPat<(add     GPR:$src, imm0_65535_neg:$imm),
3655             (SUBrr   GPR:$src, (MOVi16 (imm_neg_XFORM imm:$imm)))>,
3656             Requires<[IsARM, HasV6T2]>;
3657def : ARMPat<(ARMaddc GPR:$src, imm0_65535_neg:$imm),
3658             (SUBSrr  GPR:$src, (MOVi16 (imm_neg_XFORM imm:$imm)))>,
3659             Requires<[IsARM, HasV6T2]>;
3660
3661// The with-carry-in form matches bitwise not instead of the negation.
3662// Effectively, the inverse interpretation of the carry flag already accounts
3663// for part of the negation.
3664def : ARMPat<(ARMadde GPR:$src, mod_imm_not:$imm, CPSR),
3665             (SBCri   GPR:$src, mod_imm_not:$imm)>;
3666def : ARMPat<(ARMadde GPR:$src, imm0_65535_neg:$imm, CPSR),
3667             (SBCrr   GPR:$src, (MOVi16 (imm_not_XFORM imm:$imm)))>,
3668             Requires<[IsARM, HasV6T2]>;
3669
3670// Note: These are implemented in C++ code, because they have to generate
3671// ADD/SUBrs instructions, which use a complex pattern that a xform function
3672// cannot produce.
3673// (mul X, 2^n+1) -> (add (X << n), X)
3674// (mul X, 2^n-1) -> (rsb X, (X << n))
3675
3676// ARM Arithmetic Instruction
3677// GPR:$dst = GPR:$a op GPR:$b
3678class AAI<bits<8> op27_20, bits<8> op11_4, string opc,
3679          list<dag> pattern = [],
3680          dag iops = (ins GPRnopc:$Rn, GPRnopc:$Rm),
3681          string asm = "\t$Rd, $Rn, $Rm">
3682  : AI<(outs GPRnopc:$Rd), iops, DPFrm, IIC_iALUr, opc, asm, pattern>,
3683    Sched<[WriteALU, ReadALU, ReadALU]> {
3684  bits<4> Rn;
3685  bits<4> Rd;
3686  bits<4> Rm;
3687  let Inst{27-20} = op27_20;
3688  let Inst{11-4} = op11_4;
3689  let Inst{19-16} = Rn;
3690  let Inst{15-12} = Rd;
3691  let Inst{3-0}   = Rm;
3692
3693  let Unpredictable{11-8} = 0b1111;
3694}
3695
3696// Wrappers around the AAI class
3697class AAIRevOpr<bits<8> op27_20, bits<8> op11_4, string opc,
3698                list<dag> pattern = []>
3699  : AAI<op27_20, op11_4, opc,
3700        pattern,
3701        (ins GPRnopc:$Rm, GPRnopc:$Rn),
3702        "\t$Rd, $Rm, $Rn">;
3703
3704class AAIIntrinsic<bits<8> op27_20, bits<8> op11_4, string opc,
3705                 Intrinsic intrinsic>
3706  : AAI<op27_20, op11_4, opc,
3707        [(set GPRnopc:$Rd, (intrinsic GPRnopc:$Rn, GPRnopc:$Rm))]>;
3708
3709// Saturating add/subtract
3710let hasSideEffects = 1 in {
3711def QADD8   : AAIIntrinsic<0b01100010, 0b11111001, "qadd8", int_arm_qadd8>;
3712def QADD16  : AAIIntrinsic<0b01100010, 0b11110001, "qadd16", int_arm_qadd16>;
3713def QSUB16  : AAIIntrinsic<0b01100010, 0b11110111, "qsub16", int_arm_qsub16>;
3714def QSUB8   : AAIIntrinsic<0b01100010, 0b11111111, "qsub8", int_arm_qsub8>;
3715
3716def QDADD   : AAIRevOpr<0b00010100, 0b00000101, "qdadd",
3717              [(set GPRnopc:$Rd, (int_arm_qadd (int_arm_qadd GPRnopc:$Rm,
3718                                                             GPRnopc:$Rm),
3719                                  GPRnopc:$Rn))]>;
3720def QDSUB   : AAIRevOpr<0b00010110, 0b00000101, "qdsub",
3721              [(set GPRnopc:$Rd, (int_arm_qsub GPRnopc:$Rm,
3722                                  (int_arm_qadd GPRnopc:$Rn, GPRnopc:$Rn)))]>;
3723def QSUB    : AAIRevOpr<0b00010010, 0b00000101, "qsub",
3724              [(set GPRnopc:$Rd, (int_arm_qsub GPRnopc:$Rm, GPRnopc:$Rn))]>;
3725let DecoderMethod = "DecodeQADDInstruction" in
3726  def QADD    : AAIRevOpr<0b00010000, 0b00000101, "qadd",
3727                [(set GPRnopc:$Rd, (int_arm_qadd GPRnopc:$Rm, GPRnopc:$Rn))]>;
3728}
3729
3730def UQADD16 : AAIIntrinsic<0b01100110, 0b11110001, "uqadd16", int_arm_uqadd16>;
3731def UQADD8  : AAIIntrinsic<0b01100110, 0b11111001, "uqadd8", int_arm_uqadd8>;
3732def UQSUB16 : AAIIntrinsic<0b01100110, 0b11110111, "uqsub16", int_arm_uqsub16>;
3733def UQSUB8  : AAIIntrinsic<0b01100110, 0b11111111, "uqsub8", int_arm_uqsub8>;
3734def QASX    : AAIIntrinsic<0b01100010, 0b11110011, "qasx", int_arm_qasx>;
3735def QSAX    : AAIIntrinsic<0b01100010, 0b11110101, "qsax", int_arm_qsax>;
3736def UQASX   : AAIIntrinsic<0b01100110, 0b11110011, "uqasx", int_arm_uqasx>;
3737def UQSAX   : AAIIntrinsic<0b01100110, 0b11110101, "uqsax", int_arm_uqsax>;
3738
3739// Signed/Unsigned add/subtract
3740
3741def SASX   : AAIIntrinsic<0b01100001, 0b11110011, "sasx", int_arm_sasx>;
3742def SADD16 : AAIIntrinsic<0b01100001, 0b11110001, "sadd16", int_arm_sadd16>;
3743def SADD8  : AAIIntrinsic<0b01100001, 0b11111001, "sadd8", int_arm_sadd8>;
3744def SSAX   : AAIIntrinsic<0b01100001, 0b11110101, "ssax", int_arm_ssax>;
3745def SSUB16 : AAIIntrinsic<0b01100001, 0b11110111, "ssub16", int_arm_ssub16>;
3746def SSUB8  : AAIIntrinsic<0b01100001, 0b11111111, "ssub8", int_arm_ssub8>;
3747def UASX   : AAIIntrinsic<0b01100101, 0b11110011, "uasx", int_arm_uasx>;
3748def UADD16 : AAIIntrinsic<0b01100101, 0b11110001, "uadd16", int_arm_uadd16>;
3749def UADD8  : AAIIntrinsic<0b01100101, 0b11111001, "uadd8", int_arm_uadd8>;
3750def USAX   : AAIIntrinsic<0b01100101, 0b11110101, "usax", int_arm_usax>;
3751def USUB16 : AAIIntrinsic<0b01100101, 0b11110111, "usub16", int_arm_usub16>;
3752def USUB8  : AAIIntrinsic<0b01100101, 0b11111111, "usub8", int_arm_usub8>;
3753
3754// Signed/Unsigned halving add/subtract
3755
3756def SHASX   : AAIIntrinsic<0b01100011, 0b11110011, "shasx", int_arm_shasx>;
3757def SHADD16 : AAIIntrinsic<0b01100011, 0b11110001, "shadd16", int_arm_shadd16>;
3758def SHADD8  : AAIIntrinsic<0b01100011, 0b11111001, "shadd8", int_arm_shadd8>;
3759def SHSAX   : AAIIntrinsic<0b01100011, 0b11110101, "shsax", int_arm_shsax>;
3760def SHSUB16 : AAIIntrinsic<0b01100011, 0b11110111, "shsub16", int_arm_shsub16>;
3761def SHSUB8  : AAIIntrinsic<0b01100011, 0b11111111, "shsub8", int_arm_shsub8>;
3762def UHASX   : AAIIntrinsic<0b01100111, 0b11110011, "uhasx", int_arm_uhasx>;
3763def UHADD16 : AAIIntrinsic<0b01100111, 0b11110001, "uhadd16", int_arm_uhadd16>;
3764def UHADD8  : AAIIntrinsic<0b01100111, 0b11111001, "uhadd8", int_arm_uhadd8>;
3765def UHSAX   : AAIIntrinsic<0b01100111, 0b11110101, "uhsax", int_arm_uhsax>;
3766def UHSUB16 : AAIIntrinsic<0b01100111, 0b11110111, "uhsub16", int_arm_uhsub16>;
3767def UHSUB8  : AAIIntrinsic<0b01100111, 0b11111111, "uhsub8", int_arm_uhsub8>;
3768
3769// Unsigned Sum of Absolute Differences [and Accumulate].
3770
3771def USAD8  : AI<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
3772                MulFrm /* for convenience */, NoItinerary, "usad8",
3773                "\t$Rd, $Rn, $Rm",
3774             [(set GPR:$Rd, (int_arm_usad8 GPR:$Rn, GPR:$Rm))]>,
3775             Requires<[IsARM, HasV6]>, Sched<[WriteALU, ReadALU, ReadALU]> {
3776  bits<4> Rd;
3777  bits<4> Rn;
3778  bits<4> Rm;
3779  let Inst{27-20} = 0b01111000;
3780  let Inst{15-12} = 0b1111;
3781  let Inst{7-4} = 0b0001;
3782  let Inst{19-16} = Rd;
3783  let Inst{11-8} = Rm;
3784  let Inst{3-0} = Rn;
3785}
3786def USADA8 : AI<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
3787                MulFrm /* for convenience */, NoItinerary, "usada8",
3788                "\t$Rd, $Rn, $Rm, $Ra",
3789             [(set GPR:$Rd, (int_arm_usada8 GPR:$Rn, GPR:$Rm, GPR:$Ra))]>,
3790             Requires<[IsARM, HasV6]>, Sched<[WriteALU, ReadALU, ReadALU]>{
3791  bits<4> Rd;
3792  bits<4> Rn;
3793  bits<4> Rm;
3794  bits<4> Ra;
3795  let Inst{27-20} = 0b01111000;
3796  let Inst{7-4} = 0b0001;
3797  let Inst{19-16} = Rd;
3798  let Inst{15-12} = Ra;
3799  let Inst{11-8} = Rm;
3800  let Inst{3-0} = Rn;
3801}
3802
3803// Signed/Unsigned saturate
3804def SSAT : AI<(outs GPRnopc:$Rd),
3805              (ins imm1_32:$sat_imm, GPRnopc:$Rn, shift_imm:$sh),
3806              SatFrm, NoItinerary, "ssat", "\t$Rd, $sat_imm, $Rn$sh", []>,
3807              Requires<[IsARM,HasV6]>{
3808  bits<4> Rd;
3809  bits<5> sat_imm;
3810  bits<4> Rn;
3811  bits<8> sh;
3812  let Inst{27-21} = 0b0110101;
3813  let Inst{5-4} = 0b01;
3814  let Inst{20-16} = sat_imm;
3815  let Inst{15-12} = Rd;
3816  let Inst{11-7} = sh{4-0};
3817  let Inst{6} = sh{5};
3818  let Inst{3-0} = Rn;
3819}
3820
3821def SSAT16 : AI<(outs GPRnopc:$Rd),
3822                (ins imm1_16:$sat_imm, GPRnopc:$Rn), SatFrm,
3823                NoItinerary, "ssat16", "\t$Rd, $sat_imm, $Rn", []>,
3824                Requires<[IsARM,HasV6]>{
3825  bits<4> Rd;
3826  bits<4> sat_imm;
3827  bits<4> Rn;
3828  let Inst{27-20} = 0b01101010;
3829  let Inst{11-4} = 0b11110011;
3830  let Inst{15-12} = Rd;
3831  let Inst{19-16} = sat_imm;
3832  let Inst{3-0} = Rn;
3833}
3834
3835def USAT : AI<(outs GPRnopc:$Rd),
3836              (ins imm0_31:$sat_imm, GPRnopc:$Rn, shift_imm:$sh),
3837              SatFrm, NoItinerary, "usat", "\t$Rd, $sat_imm, $Rn$sh", []>,
3838              Requires<[IsARM,HasV6]> {
3839  bits<4> Rd;
3840  bits<5> sat_imm;
3841  bits<4> Rn;
3842  bits<8> sh;
3843  let Inst{27-21} = 0b0110111;
3844  let Inst{5-4} = 0b01;
3845  let Inst{15-12} = Rd;
3846  let Inst{11-7} = sh{4-0};
3847  let Inst{6} = sh{5};
3848  let Inst{20-16} = sat_imm;
3849  let Inst{3-0} = Rn;
3850}
3851
3852def USAT16 : AI<(outs GPRnopc:$Rd),
3853                (ins imm0_15:$sat_imm, GPRnopc:$Rn), SatFrm,
3854                NoItinerary, "usat16", "\t$Rd, $sat_imm, $Rn", []>,
3855                Requires<[IsARM,HasV6]>{
3856  bits<4> Rd;
3857  bits<4> sat_imm;
3858  bits<4> Rn;
3859  let Inst{27-20} = 0b01101110;
3860  let Inst{11-4} = 0b11110011;
3861  let Inst{15-12} = Rd;
3862  let Inst{19-16} = sat_imm;
3863  let Inst{3-0} = Rn;
3864}
3865
3866def : ARMV6Pat<(int_arm_ssat GPRnopc:$a, imm1_32:$pos),
3867               (SSAT imm1_32:$pos, GPRnopc:$a, 0)>;
3868def : ARMV6Pat<(int_arm_usat GPRnopc:$a, imm0_31:$pos),
3869               (USAT imm0_31:$pos, GPRnopc:$a, 0)>;
3870def : ARMPat<(ARMssatnoshift GPRnopc:$Rn, imm0_31:$imm),
3871             (SSAT imm0_31:$imm, GPRnopc:$Rn, 0)>;
3872def : ARMPat<(ARMusatnoshift GPRnopc:$Rn, imm0_31:$imm),
3873             (USAT imm0_31:$imm, GPRnopc:$Rn, 0)>;
3874def : ARMV6Pat<(int_arm_ssat16 GPRnopc:$a, imm1_16:$pos),
3875               (SSAT16 imm1_16:$pos, GPRnopc:$a)>;
3876def : ARMV6Pat<(int_arm_usat16 GPRnopc:$a, imm0_15:$pos),
3877               (USAT16 imm0_15:$pos, GPRnopc:$a)>;
3878
3879//===----------------------------------------------------------------------===//
3880//  Bitwise Instructions.
3881//
3882
3883defm AND   : AsI1_bin_irs<0b0000, "and",
3884                          IIC_iBITi, IIC_iBITr, IIC_iBITsr, and, 1>;
3885defm ORR   : AsI1_bin_irs<0b1100, "orr",
3886                          IIC_iBITi, IIC_iBITr, IIC_iBITsr, or, 1>;
3887defm EOR   : AsI1_bin_irs<0b0001, "eor",
3888                          IIC_iBITi, IIC_iBITr, IIC_iBITsr, xor, 1>;
3889defm BIC   : AsI1_bin_irs<0b1110, "bic",
3890                          IIC_iBITi, IIC_iBITr, IIC_iBITsr,
3891                          BinOpFrag<(and node:$LHS, (not node:$RHS))>>;
3892
3893// FIXME: bf_inv_mask_imm should be two operands, the lsb and the msb, just
3894// like in the actual instruction encoding. The complexity of mapping the mask
3895// to the lsb/msb pair should be handled by ISel, not encapsulated in the
3896// instruction description.
3897def BFC    : I<(outs GPR:$Rd), (ins GPR:$src, bf_inv_mask_imm:$imm),
3898               AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi,
3899               "bfc", "\t$Rd, $imm", "$src = $Rd",
3900               [(set GPR:$Rd, (and GPR:$src, bf_inv_mask_imm:$imm))]>,
3901               Requires<[IsARM, HasV6T2]> {
3902  bits<4> Rd;
3903  bits<10> imm;
3904  let Inst{27-21} = 0b0111110;
3905  let Inst{6-0}   = 0b0011111;
3906  let Inst{15-12} = Rd;
3907  let Inst{11-7}  = imm{4-0}; // lsb
3908  let Inst{20-16} = imm{9-5}; // msb
3909}
3910
3911// A8.6.18  BFI - Bitfield insert (Encoding A1)
3912def BFI:I<(outs GPRnopc:$Rd), (ins GPRnopc:$src, GPR:$Rn, bf_inv_mask_imm:$imm),
3913          AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi,
3914          "bfi", "\t$Rd, $Rn, $imm", "$src = $Rd",
3915          [(set GPRnopc:$Rd, (ARMbfi GPRnopc:$src, GPR:$Rn,
3916                           bf_inv_mask_imm:$imm))]>,
3917          Requires<[IsARM, HasV6T2]> {
3918  bits<4> Rd;
3919  bits<4> Rn;
3920  bits<10> imm;
3921  let Inst{27-21} = 0b0111110;
3922  let Inst{6-4}   = 0b001; // Rn: Inst{3-0} != 15
3923  let Inst{15-12} = Rd;
3924  let Inst{11-7}  = imm{4-0}; // lsb
3925  let Inst{20-16} = imm{9-5}; // width
3926  let Inst{3-0}   = Rn;
3927}
3928
3929def  MVNr  : AsI1<0b1111, (outs GPR:$Rd), (ins GPR:$Rm), DPFrm, IIC_iMVNr,
3930                  "mvn", "\t$Rd, $Rm",
3931                  [(set GPR:$Rd, (not GPR:$Rm))]>, UnaryDP, Sched<[WriteALU]> {
3932  bits<4> Rd;
3933  bits<4> Rm;
3934  let Inst{25} = 0;
3935  let Inst{19-16} = 0b0000;
3936  let Inst{11-4} = 0b00000000;
3937  let Inst{15-12} = Rd;
3938  let Inst{3-0} = Rm;
3939
3940  let Unpredictable{19-16} = 0b1111;
3941}
3942def  MVNsi  : AsI1<0b1111, (outs GPR:$Rd), (ins so_reg_imm:$shift),
3943                  DPSoRegImmFrm, IIC_iMVNsr, "mvn", "\t$Rd, $shift",
3944                  [(set GPR:$Rd, (not so_reg_imm:$shift))]>, UnaryDP,
3945                  Sched<[WriteALU]> {
3946  bits<4> Rd;
3947  bits<12> shift;
3948  let Inst{25} = 0;
3949  let Inst{19-16} = 0b0000;
3950  let Inst{15-12} = Rd;
3951  let Inst{11-5} = shift{11-5};
3952  let Inst{4} = 0;
3953  let Inst{3-0} = shift{3-0};
3954
3955  let Unpredictable{19-16} = 0b1111;
3956}
3957def  MVNsr  : AsI1<0b1111, (outs GPRnopc:$Rd), (ins so_reg_reg:$shift),
3958                  DPSoRegRegFrm, IIC_iMVNsr, "mvn", "\t$Rd, $shift",
3959                  [(set GPRnopc:$Rd, (not so_reg_reg:$shift))]>, UnaryDP,
3960                  Sched<[WriteALU]> {
3961  bits<4> Rd;
3962  bits<12> shift;
3963  let Inst{25} = 0;
3964  let Inst{19-16} = 0b0000;
3965  let Inst{15-12} = Rd;
3966  let Inst{11-8} = shift{11-8};
3967  let Inst{7} = 0;
3968  let Inst{6-5} = shift{6-5};
3969  let Inst{4} = 1;
3970  let Inst{3-0} = shift{3-0};
3971
3972  let Unpredictable{19-16} = 0b1111;
3973}
3974let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in
3975def  MVNi  : AsI1<0b1111, (outs GPR:$Rd), (ins mod_imm:$imm), DPFrm,
3976                  IIC_iMVNi, "mvn", "\t$Rd, $imm",
3977                  [(set GPR:$Rd, mod_imm_not:$imm)]>,UnaryDP, Sched<[WriteALU]> {
3978  bits<4> Rd;
3979  bits<12> imm;
3980  let Inst{25} = 1;
3981  let Inst{19-16} = 0b0000;
3982  let Inst{15-12} = Rd;
3983  let Inst{11-0} = imm;
3984}
3985
3986let AddedComplexity = 1 in
3987def : ARMPat<(and   GPR:$src, mod_imm_not:$imm),
3988             (BICri GPR:$src, mod_imm_not:$imm)>;
3989
3990//===----------------------------------------------------------------------===//
3991//  Multiply Instructions.
3992//
3993class AsMul1I32<bits<7> opcod, dag oops, dag iops, InstrItinClass itin,
3994             string opc, string asm, list<dag> pattern>
3995  : AsMul1I<opcod, oops, iops, itin, opc, asm, pattern> {
3996  bits<4> Rd;
3997  bits<4> Rm;
3998  bits<4> Rn;
3999  let Inst{19-16} = Rd;
4000  let Inst{11-8}  = Rm;
4001  let Inst{3-0}   = Rn;
4002}
4003class AsMul1I64<bits<7> opcod, dag oops, dag iops, InstrItinClass itin,
4004             string opc, string asm, list<dag> pattern>
4005  : AsMul1I<opcod, oops, iops, itin, opc, asm, pattern> {
4006  bits<4> RdLo;
4007  bits<4> RdHi;
4008  bits<4> Rm;
4009  bits<4> Rn;
4010  let Inst{19-16} = RdHi;
4011  let Inst{15-12} = RdLo;
4012  let Inst{11-8}  = Rm;
4013  let Inst{3-0}   = Rn;
4014}
4015class AsMla1I64<bits<7> opcod, dag oops, dag iops, InstrItinClass itin,
4016             string opc, string asm, list<dag> pattern>
4017  : AsMul1I<opcod, oops, iops, itin, opc, asm, pattern> {
4018  bits<4> RdLo;
4019  bits<4> RdHi;
4020  bits<4> Rm;
4021  bits<4> Rn;
4022  let Inst{19-16} = RdHi;
4023  let Inst{15-12} = RdLo;
4024  let Inst{11-8}  = Rm;
4025  let Inst{3-0}   = Rn;
4026}
4027
4028// FIXME: The v5 pseudos are only necessary for the additional Constraint
4029//        property. Remove them when it's possible to add those properties
4030//        on an individual MachineInstr, not just an instruction description.
4031let isCommutable = 1, TwoOperandAliasConstraint = "$Rn = $Rd" in {
4032def MUL : AsMul1I32<0b0000000, (outs GPRnopc:$Rd),
4033                    (ins GPRnopc:$Rn, GPRnopc:$Rm),
4034                    IIC_iMUL32, "mul", "\t$Rd, $Rn, $Rm",
4035                  [(set GPRnopc:$Rd, (mul GPRnopc:$Rn, GPRnopc:$Rm))]>,
4036                  Requires<[IsARM, HasV6]>,
4037         Sched<[WriteMUL32, ReadMUL, ReadMUL]> {
4038  let Inst{15-12} = 0b0000;
4039  let Unpredictable{15-12} = 0b1111;
4040}
4041
4042let Constraints = "@earlyclobber $Rd" in
4043def MULv5: ARMPseudoExpand<(outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm,
4044                                                    pred:$p, cc_out:$s),
4045                           4, IIC_iMUL32,
4046               [(set GPRnopc:$Rd, (mul GPRnopc:$Rn, GPRnopc:$Rm))],
4047               (MUL GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p, cc_out:$s)>,
4048               Requires<[IsARM, NoV6, UseMulOps]>,
4049           Sched<[WriteMUL32, ReadMUL, ReadMUL]>;
4050}
4051
4052def MLA  : AsMul1I32<0b0000001, (outs GPRnopc:$Rd),
4053                     (ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra),
4054                     IIC_iMAC32, "mla", "\t$Rd, $Rn, $Rm, $Ra",
4055        [(set GPRnopc:$Rd, (add (mul GPRnopc:$Rn, GPRnopc:$Rm), GPRnopc:$Ra))]>,
4056                     Requires<[IsARM, HasV6, UseMulOps]>,
4057        Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]> {
4058  bits<4> Ra;
4059  let Inst{15-12} = Ra;
4060}
4061
4062let Constraints = "@earlyclobber $Rd" in
4063def MLAv5: ARMPseudoExpand<(outs GPRnopc:$Rd),
4064                           (ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra,
4065                            pred:$p, cc_out:$s), 4, IIC_iMAC32,
4066         [(set GPRnopc:$Rd, (add (mul GPRnopc:$Rn, GPRnopc:$Rm), GPRnopc:$Ra))],
4067  (MLA GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra, pred:$p, cc_out:$s)>,
4068                           Requires<[IsARM, NoV6]>,
4069           Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
4070
4071def MLS  : AMul1I<0b0000011, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
4072                   IIC_iMAC32, "mls", "\t$Rd, $Rn, $Rm, $Ra",
4073                   [(set GPR:$Rd, (sub GPR:$Ra, (mul GPR:$Rn, GPR:$Rm)))]>,
4074                   Requires<[IsARM, HasV6T2, UseMulOps]>,
4075          Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]> {
4076  bits<4> Rd;
4077  bits<4> Rm;
4078  bits<4> Rn;
4079  bits<4> Ra;
4080  let Inst{19-16} = Rd;
4081  let Inst{15-12} = Ra;
4082  let Inst{11-8}  = Rm;
4083  let Inst{3-0}   = Rn;
4084}
4085
4086// Extra precision multiplies with low / high results
4087let hasSideEffects = 0 in {
4088let isCommutable = 1 in {
4089def SMULL : AsMul1I64<0b0000110, (outs GPR:$RdLo, GPR:$RdHi),
4090                                 (ins GPR:$Rn, GPR:$Rm), IIC_iMUL64,
4091                    "smull", "\t$RdLo, $RdHi, $Rn, $Rm",
4092                    [(set GPR:$RdLo, GPR:$RdHi,
4093                          (smullohi GPR:$Rn, GPR:$Rm))]>,
4094                    Requires<[IsARM, HasV6]>,
4095           Sched<[WriteMUL64Lo, WriteMUL64Hi, ReadMUL, ReadMUL]>;
4096
4097def UMULL : AsMul1I64<0b0000100, (outs GPR:$RdLo, GPR:$RdHi),
4098                                 (ins GPR:$Rn, GPR:$Rm), IIC_iMUL64,
4099                    "umull", "\t$RdLo, $RdHi, $Rn, $Rm",
4100                    [(set GPR:$RdLo, GPR:$RdHi,
4101                          (umullohi GPR:$Rn, GPR:$Rm))]>,
4102                    Requires<[IsARM, HasV6]>,
4103           Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL]>;
4104
4105let Constraints = "@earlyclobber $RdLo,@earlyclobber $RdHi" in {
4106def SMULLv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi),
4107                            (ins GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s),
4108                            4, IIC_iMUL64,
4109                            [(set GPR:$RdLo, GPR:$RdHi,
4110                                  (smullohi GPR:$Rn, GPR:$Rm))],
4111          (SMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s)>,
4112                           Requires<[IsARM, NoV6]>,
4113              Sched<[WriteMUL64Lo, WriteMUL64Hi, ReadMUL, ReadMUL]>;
4114
4115def UMULLv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi),
4116                            (ins GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s),
4117                            4, IIC_iMUL64,
4118                            [(set GPR:$RdLo, GPR:$RdHi,
4119                                  (umullohi GPR:$Rn, GPR:$Rm))],
4120          (UMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s)>,
4121                           Requires<[IsARM, NoV6]>,
4122             Sched<[WriteMUL64Lo, WriteMUL64Hi, ReadMUL, ReadMUL]>;
4123}
4124}
4125
4126// Multiply + accumulate
4127def SMLAL : AsMla1I64<0b0000111, (outs GPR:$RdLo, GPR:$RdHi),
4128                        (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi), IIC_iMAC64,
4129                    "smlal", "\t$RdLo, $RdHi, $Rn, $Rm", []>,
4130         RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">, Requires<[IsARM, HasV6]>,
4131           Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>;
4132def UMLAL : AsMla1I64<0b0000101, (outs GPR:$RdLo, GPR:$RdHi),
4133                        (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi), IIC_iMAC64,
4134                    "umlal", "\t$RdLo, $RdHi, $Rn, $Rm", []>,
4135         RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">, Requires<[IsARM, HasV6]>,
4136            Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>;
4137
4138def UMAAL : AMul1I <0b0000010, (outs GPR:$RdLo, GPR:$RdHi),
4139                               (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi),
4140                               IIC_iMAC64,
4141                    "umaal", "\t$RdLo, $RdHi, $Rn, $Rm", []>,
4142         RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">, Requires<[IsARM, HasV6]>,
4143            Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]> {
4144  bits<4> RdLo;
4145  bits<4> RdHi;
4146  bits<4> Rm;
4147  bits<4> Rn;
4148  let Inst{19-16} = RdHi;
4149  let Inst{15-12} = RdLo;
4150  let Inst{11-8}  = Rm;
4151  let Inst{3-0}   = Rn;
4152}
4153
4154let Constraints =
4155    "@earlyclobber $RdLo,@earlyclobber $RdHi,$RLo = $RdLo,$RHi = $RdHi" in {
4156def SMLALv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi),
4157                (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi, pred:$p, cc_out:$s),
4158                              4, IIC_iMAC64, [],
4159             (SMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi,
4160                           pred:$p, cc_out:$s)>,
4161                           Requires<[IsARM, NoV6]>,
4162              Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>;
4163def UMLALv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi),
4164                (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi, pred:$p, cc_out:$s),
4165                              4, IIC_iMAC64, [],
4166             (UMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi,
4167                           pred:$p, cc_out:$s)>,
4168                           Requires<[IsARM, NoV6]>,
4169              Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>;
4170}
4171
4172} // hasSideEffects
4173
4174// Most significant word multiply
4175def SMMUL : AMul2I <0b0111010, 0b0001, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4176               IIC_iMUL32, "smmul", "\t$Rd, $Rn, $Rm",
4177               [(set GPR:$Rd, (mulhs GPR:$Rn, GPR:$Rm))]>,
4178            Requires<[IsARM, HasV6]>,
4179            Sched<[WriteMUL32, ReadMUL, ReadMUL]> {
4180  let Inst{15-12} = 0b1111;
4181}
4182
4183def SMMULR : AMul2I <0b0111010, 0b0011, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4184               IIC_iMUL32, "smmulr", "\t$Rd, $Rn, $Rm",
4185               [(set GPR:$Rd, (ARMsmmlar GPR:$Rn, GPR:$Rm, (i32 0)))]>,
4186            Requires<[IsARM, HasV6]>,
4187             Sched<[WriteMUL32, ReadMUL, ReadMUL]>  {
4188  let Inst{15-12} = 0b1111;
4189}
4190
4191def SMMLA : AMul2Ia <0b0111010, 0b0001, (outs GPR:$Rd),
4192               (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
4193               IIC_iMAC32, "smmla", "\t$Rd, $Rn, $Rm, $Ra",
4194               [(set GPR:$Rd, (add (mulhs GPR:$Rn, GPR:$Rm), GPR:$Ra))]>,
4195            Requires<[IsARM, HasV6, UseMulOps]>,
4196            Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
4197
4198def SMMLAR : AMul2Ia <0b0111010, 0b0011, (outs GPR:$Rd),
4199               (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
4200               IIC_iMAC32, "smmlar", "\t$Rd, $Rn, $Rm, $Ra",
4201               [(set GPR:$Rd, (ARMsmmlar GPR:$Rn, GPR:$Rm, GPR:$Ra))]>,
4202            Requires<[IsARM, HasV6]>,
4203             Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
4204
4205def SMMLS : AMul2Ia <0b0111010, 0b1101, (outs GPR:$Rd),
4206               (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
4207               IIC_iMAC32, "smmls", "\t$Rd, $Rn, $Rm, $Ra", []>,
4208            Requires<[IsARM, HasV6, UseMulOps]>,
4209            Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
4210
4211def SMMLSR : AMul2Ia <0b0111010, 0b1111, (outs GPR:$Rd),
4212               (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
4213               IIC_iMAC32, "smmlsr", "\t$Rd, $Rn, $Rm, $Ra",
4214               [(set GPR:$Rd, (ARMsmmlsr GPR:$Rn, GPR:$Rm, GPR:$Ra))]>,
4215            Requires<[IsARM, HasV6]>,
4216             Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
4217
4218multiclass AI_smul<string opc> {
4219  def BB : AMulxyI<0b0001011, 0b00, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4220              IIC_iMUL16, !strconcat(opc, "bb"), "\t$Rd, $Rn, $Rm",
4221              [(set GPR:$Rd, (bb_mul GPR:$Rn, GPR:$Rm))]>,
4222           Requires<[IsARM, HasV5TE]>,
4223           Sched<[WriteMUL16, ReadMUL, ReadMUL]>;
4224
4225  def BT : AMulxyI<0b0001011, 0b10, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4226              IIC_iMUL16, !strconcat(opc, "bt"), "\t$Rd, $Rn, $Rm",
4227              [(set GPR:$Rd, (bt_mul GPR:$Rn, GPR:$Rm))]>,
4228           Requires<[IsARM, HasV5TE]>,
4229           Sched<[WriteMUL16, ReadMUL, ReadMUL]>;
4230
4231  def TB : AMulxyI<0b0001011, 0b01, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4232              IIC_iMUL16, !strconcat(opc, "tb"), "\t$Rd, $Rn, $Rm",
4233              [(set GPR:$Rd, (tb_mul GPR:$Rn, GPR:$Rm))]>,
4234           Requires<[IsARM, HasV5TE]>,
4235           Sched<[WriteMUL16, ReadMUL, ReadMUL]>;
4236
4237  def TT : AMulxyI<0b0001011, 0b11, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4238              IIC_iMUL16, !strconcat(opc, "tt"), "\t$Rd, $Rn, $Rm",
4239              [(set GPR:$Rd, (tt_mul GPR:$Rn, GPR:$Rm))]>,
4240            Requires<[IsARM, HasV5TE]>,
4241           Sched<[WriteMUL16, ReadMUL, ReadMUL]>;
4242
4243  def WB : AMulxyI<0b0001001, 0b01, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4244              IIC_iMUL16, !strconcat(opc, "wb"), "\t$Rd, $Rn, $Rm",
4245              [(set GPR:$Rd, (ARMsmulwb GPR:$Rn, GPR:$Rm))]>,
4246           Requires<[IsARM, HasV5TE]>,
4247           Sched<[WriteMUL16, ReadMUL, ReadMUL]>;
4248
4249  def WT : AMulxyI<0b0001001, 0b11, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4250              IIC_iMUL16, !strconcat(opc, "wt"), "\t$Rd, $Rn, $Rm",
4251              [(set GPR:$Rd, (ARMsmulwt GPR:$Rn, GPR:$Rm))]>,
4252            Requires<[IsARM, HasV5TE]>,
4253           Sched<[WriteMUL16, ReadMUL, ReadMUL]>;
4254}
4255
4256
4257multiclass AI_smla<string opc> {
4258  let DecoderMethod = "DecodeSMLAInstruction" in {
4259  def BB : AMulxyIa<0b0001000, 0b00, (outs GPRnopc:$Rd),
4260              (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4261              IIC_iMAC16, !strconcat(opc, "bb"), "\t$Rd, $Rn, $Rm, $Ra",
4262              [(set GPRnopc:$Rd, (add GPR:$Ra,
4263                                      (bb_mul GPRnopc:$Rn, GPRnopc:$Rm)))]>,
4264           Requires<[IsARM, HasV5TE, UseMulOps]>,
4265           Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>;
4266
4267  def BT : AMulxyIa<0b0001000, 0b10, (outs GPRnopc:$Rd),
4268              (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4269              IIC_iMAC16, !strconcat(opc, "bt"), "\t$Rd, $Rn, $Rm, $Ra",
4270              [(set GPRnopc:$Rd, (add GPR:$Ra,
4271                                      (bt_mul GPRnopc:$Rn, GPRnopc:$Rm)))]>,
4272           Requires<[IsARM, HasV5TE, UseMulOps]>,
4273           Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>;
4274
4275  def TB : AMulxyIa<0b0001000, 0b01, (outs GPRnopc:$Rd),
4276              (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4277              IIC_iMAC16, !strconcat(opc, "tb"), "\t$Rd, $Rn, $Rm, $Ra",
4278              [(set GPRnopc:$Rd, (add GPR:$Ra,
4279                                      (tb_mul GPRnopc:$Rn, GPRnopc:$Rm)))]>,
4280           Requires<[IsARM, HasV5TE, UseMulOps]>,
4281           Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>;
4282
4283  def TT : AMulxyIa<0b0001000, 0b11, (outs GPRnopc:$Rd),
4284              (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4285              IIC_iMAC16, !strconcat(opc, "tt"), "\t$Rd, $Rn, $Rm, $Ra",
4286             [(set GPRnopc:$Rd, (add GPR:$Ra,
4287                                     (tt_mul GPRnopc:$Rn, GPRnopc:$Rm)))]>,
4288            Requires<[IsARM, HasV5TE, UseMulOps]>,
4289            Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>;
4290
4291  def WB : AMulxyIa<0b0001001, 0b00, (outs GPRnopc:$Rd),
4292              (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4293              IIC_iMAC16, !strconcat(opc, "wb"), "\t$Rd, $Rn, $Rm, $Ra",
4294              [(set GPRnopc:$Rd,
4295                    (add GPR:$Ra, (ARMsmulwb GPRnopc:$Rn, GPRnopc:$Rm)))]>,
4296           Requires<[IsARM, HasV5TE, UseMulOps]>,
4297           Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>;
4298
4299  def WT : AMulxyIa<0b0001001, 0b10, (outs GPRnopc:$Rd),
4300              (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4301              IIC_iMAC16, !strconcat(opc, "wt"), "\t$Rd, $Rn, $Rm, $Ra",
4302              [(set GPRnopc:$Rd,
4303                    (add GPR:$Ra, (ARMsmulwt GPRnopc:$Rn, GPRnopc:$Rm)))]>,
4304            Requires<[IsARM, HasV5TE, UseMulOps]>,
4305            Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>;
4306  }
4307}
4308
4309defm SMUL : AI_smul<"smul">;
4310defm SMLA : AI_smla<"smla">;
4311
4312// Halfword multiply accumulate long: SMLAL<x><y>.
4313class SMLAL<bits<2> opc1, string asm>
4314 : AMulxyI64<0b0001010, opc1,
4315        (outs GPRnopc:$RdLo, GPRnopc:$RdHi),
4316        (ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
4317        IIC_iMAC64, asm, "\t$RdLo, $RdHi, $Rn, $Rm", []>,
4318        RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">,
4319        Requires<[IsARM, HasV5TE]>,
4320        Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>;
4321
4322def SMLALBB : SMLAL<0b00, "smlalbb">;
4323def SMLALBT : SMLAL<0b10, "smlalbt">;
4324def SMLALTB : SMLAL<0b01, "smlaltb">;
4325def SMLALTT : SMLAL<0b11, "smlaltt">;
4326
4327def : ARMV5TEPat<(ARMsmlalbb GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi),
4328                 (SMLALBB $Rn, $Rm, $RLo, $RHi)>;
4329def : ARMV5TEPat<(ARMsmlalbt GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi),
4330                 (SMLALBT $Rn, $Rm, $RLo, $RHi)>;
4331def : ARMV5TEPat<(ARMsmlaltb GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi),
4332                 (SMLALTB $Rn, $Rm, $RLo, $RHi)>;
4333def : ARMV5TEPat<(ARMsmlaltt GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi),
4334                 (SMLALTT $Rn, $Rm, $RLo, $RHi)>;
4335
4336// Helper class for AI_smld.
4337class AMulDualIbase<bit long, bit sub, bit swap, dag oops, dag iops,
4338                    InstrItinClass itin, string opc, string asm>
4339  : AI<oops, iops, MulFrm, itin, opc, asm, []>,
4340       Requires<[IsARM, HasV6]> {
4341  bits<4> Rn;
4342  bits<4> Rm;
4343  let Inst{27-23} = 0b01110;
4344  let Inst{22}    = long;
4345  let Inst{21-20} = 0b00;
4346  let Inst{11-8}  = Rm;
4347  let Inst{7}     = 0;
4348  let Inst{6}     = sub;
4349  let Inst{5}     = swap;
4350  let Inst{4}     = 1;
4351  let Inst{3-0}   = Rn;
4352}
4353class AMulDualI<bit long, bit sub, bit swap, dag oops, dag iops,
4354                InstrItinClass itin, string opc, string asm>
4355  : AMulDualIbase<long, sub, swap, oops, iops, itin, opc, asm> {
4356  bits<4> Rd;
4357  let Inst{15-12} = 0b1111;
4358  let Inst{19-16} = Rd;
4359}
4360class AMulDualIa<bit long, bit sub, bit swap, dag oops, dag iops,
4361                InstrItinClass itin, string opc, string asm>
4362  : AMulDualIbase<long, sub, swap, oops, iops, itin, opc, asm> {
4363  bits<4> Ra;
4364  bits<4> Rd;
4365  let Inst{19-16} = Rd;
4366  let Inst{15-12} = Ra;
4367}
4368class AMulDualI64<bit long, bit sub, bit swap, dag oops, dag iops,
4369                  InstrItinClass itin, string opc, string asm>
4370  : AMulDualIbase<long, sub, swap, oops, iops, itin, opc, asm> {
4371  bits<4> RdLo;
4372  bits<4> RdHi;
4373  let Inst{19-16} = RdHi;
4374  let Inst{15-12} = RdLo;
4375}
4376
4377multiclass AI_smld<bit sub, string opc> {
4378
4379  def D : AMulDualIa<0, sub, 0, (outs GPRnopc:$Rd),
4380                  (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4381                  NoItinerary, !strconcat(opc, "d"), "\t$Rd, $Rn, $Rm, $Ra">,
4382          Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
4383
4384  def DX: AMulDualIa<0, sub, 1, (outs GPRnopc:$Rd),
4385                  (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4386                  NoItinerary, !strconcat(opc, "dx"), "\t$Rd, $Rn, $Rm, $Ra">,
4387          Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
4388
4389  def LD: AMulDualI64<1, sub, 0, (outs GPRnopc:$RdLo, GPRnopc:$RdHi),
4390                  (ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
4391                  NoItinerary,
4392                  !strconcat(opc, "ld"), "\t$RdLo, $RdHi, $Rn, $Rm">,
4393                  RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">,
4394          Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>;
4395
4396  def LDX : AMulDualI64<1, sub, 1, (outs GPRnopc:$RdLo, GPRnopc:$RdHi),
4397                  (ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
4398                  NoItinerary,
4399                  !strconcat(opc, "ldx"),"\t$RdLo, $RdHi, $Rn, $Rm">,
4400                  RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">,
4401             Sched<[WriteMUL64Lo, WriteMUL64Hi, ReadMUL, ReadMUL]>;
4402}
4403
4404defm SMLA : AI_smld<0, "smla">;
4405defm SMLS : AI_smld<1, "smls">;
4406
4407def : ARMV6Pat<(int_arm_smlad GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4408               (SMLAD GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra)>;
4409def : ARMV6Pat<(int_arm_smladx GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4410               (SMLADX GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra)>;
4411def : ARMV6Pat<(int_arm_smlsd GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4412               (SMLSD GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra)>;
4413def : ARMV6Pat<(int_arm_smlsdx GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4414               (SMLSDX GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra)>;
4415def : ARMV6Pat<(ARMSmlald GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
4416               (SMLALD GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi)>;
4417def : ARMV6Pat<(ARMSmlaldx GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
4418               (SMLALDX GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi)>;
4419def : ARMV6Pat<(ARMSmlsld GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
4420               (SMLSLD GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi)>;
4421def : ARMV6Pat<(ARMSmlsldx GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
4422               (SMLSLDX GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi)>;
4423
4424multiclass AI_sdml<bit sub, string opc> {
4425
4426  def D:AMulDualI<0, sub, 0, (outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm),
4427                  NoItinerary, !strconcat(opc, "d"), "\t$Rd, $Rn, $Rm">,
4428        Sched<[WriteMUL32, ReadMUL, ReadMUL]>;
4429  def DX:AMulDualI<0, sub, 1, (outs GPRnopc:$Rd),(ins GPRnopc:$Rn, GPRnopc:$Rm),
4430                  NoItinerary, !strconcat(opc, "dx"), "\t$Rd, $Rn, $Rm">,
4431         Sched<[WriteMUL32, ReadMUL, ReadMUL]>;
4432}
4433
4434defm SMUA : AI_sdml<0, "smua">;
4435defm SMUS : AI_sdml<1, "smus">;
4436
4437def : ARMV6Pat<(int_arm_smuad GPRnopc:$Rn, GPRnopc:$Rm),
4438               (SMUAD GPRnopc:$Rn, GPRnopc:$Rm)>;
4439def : ARMV6Pat<(int_arm_smuadx GPRnopc:$Rn, GPRnopc:$Rm),
4440               (SMUADX GPRnopc:$Rn, GPRnopc:$Rm)>;
4441def : ARMV6Pat<(int_arm_smusd GPRnopc:$Rn, GPRnopc:$Rm),
4442               (SMUSD GPRnopc:$Rn, GPRnopc:$Rm)>;
4443def : ARMV6Pat<(int_arm_smusdx GPRnopc:$Rn, GPRnopc:$Rm),
4444               (SMUSDX GPRnopc:$Rn, GPRnopc:$Rm)>;
4445
4446//===----------------------------------------------------------------------===//
4447//  Division Instructions (ARMv7-A with virtualization extension)
4448//
4449def SDIV : ADivA1I<0b001, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), IIC_iDIV,
4450                   "sdiv", "\t$Rd, $Rn, $Rm",
4451                   [(set GPR:$Rd, (sdiv GPR:$Rn, GPR:$Rm))]>,
4452           Requires<[IsARM, HasDivideInARM]>,
4453           Sched<[WriteDIV]>;
4454
4455def UDIV : ADivA1I<0b011, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), IIC_iDIV,
4456                   "udiv", "\t$Rd, $Rn, $Rm",
4457                   [(set GPR:$Rd, (udiv GPR:$Rn, GPR:$Rm))]>,
4458           Requires<[IsARM, HasDivideInARM]>,
4459           Sched<[WriteDIV]>;
4460
4461//===----------------------------------------------------------------------===//
4462//  Misc. Arithmetic Instructions.
4463//
4464
4465def CLZ  : AMiscA1I<0b00010110, 0b0001, (outs GPR:$Rd), (ins GPR:$Rm),
4466              IIC_iUNAr, "clz", "\t$Rd, $Rm",
4467              [(set GPR:$Rd, (ctlz GPR:$Rm))]>, Requires<[IsARM, HasV5T]>,
4468           Sched<[WriteALU]>;
4469
4470def RBIT : AMiscA1I<0b01101111, 0b0011, (outs GPR:$Rd), (ins GPR:$Rm),
4471              IIC_iUNAr, "rbit", "\t$Rd, $Rm",
4472              [(set GPR:$Rd, (bitreverse GPR:$Rm))]>,
4473           Requires<[IsARM, HasV6T2]>,
4474           Sched<[WriteALU]>;
4475
4476def REV  : AMiscA1I<0b01101011, 0b0011, (outs GPR:$Rd), (ins GPR:$Rm),
4477              IIC_iUNAr, "rev", "\t$Rd, $Rm",
4478              [(set GPR:$Rd, (bswap GPR:$Rm))]>, Requires<[IsARM, HasV6]>,
4479           Sched<[WriteALU]>;
4480
4481let AddedComplexity = 5 in
4482def REV16 : AMiscA1I<0b01101011, 0b1011, (outs GPR:$Rd), (ins GPR:$Rm),
4483               IIC_iUNAr, "rev16", "\t$Rd, $Rm",
4484               [(set GPR:$Rd, (rotr (bswap GPR:$Rm), (i32 16)))]>,
4485               Requires<[IsARM, HasV6]>,
4486           Sched<[WriteALU]>;
4487
4488def : ARMV6Pat<(srl (bswap (extloadi16 addrmode3:$addr)), (i32 16)),
4489              (REV16 (LDRH addrmode3:$addr))>;
4490def : ARMV6Pat<(truncstorei16 (srl (bswap GPR:$Rn), (i32 16)), addrmode3:$addr),
4491               (STRH (REV16 GPR:$Rn), addrmode3:$addr)>;
4492
4493let AddedComplexity = 5 in
4494def REVSH : AMiscA1I<0b01101111, 0b1011, (outs GPR:$Rd), (ins GPR:$Rm),
4495               IIC_iUNAr, "revsh", "\t$Rd, $Rm",
4496               [(set GPR:$Rd, (sra (bswap GPR:$Rm), (i32 16)))]>,
4497               Requires<[IsARM, HasV6]>,
4498           Sched<[WriteALU]>;
4499
4500def : ARMV6Pat<(or (sra (shl GPR:$Rm, (i32 24)), (i32 16)),
4501                   (and (srl GPR:$Rm, (i32 8)), 0xFF)),
4502               (REVSH GPR:$Rm)>;
4503
4504def PKHBT : APKHI<0b01101000, 0, (outs GPRnopc:$Rd),
4505                              (ins GPRnopc:$Rn, GPRnopc:$Rm, pkh_lsl_amt:$sh),
4506               IIC_iALUsi, "pkhbt", "\t$Rd, $Rn, $Rm$sh",
4507               [(set GPRnopc:$Rd, (or (and GPRnopc:$Rn, 0xFFFF),
4508                                      (and (shl GPRnopc:$Rm, pkh_lsl_amt:$sh),
4509                                           0xFFFF0000)))]>,
4510               Requires<[IsARM, HasV6]>,
4511           Sched<[WriteALUsi, ReadALU]>;
4512
4513// Alternate cases for PKHBT where identities eliminate some nodes.
4514def : ARMV6Pat<(or (and GPRnopc:$Rn, 0xFFFF), (and GPRnopc:$Rm, 0xFFFF0000)),
4515               (PKHBT GPRnopc:$Rn, GPRnopc:$Rm, 0)>;
4516def : ARMV6Pat<(or (and GPRnopc:$Rn, 0xFFFF), (shl GPRnopc:$Rm, imm16_31:$sh)),
4517               (PKHBT GPRnopc:$Rn, GPRnopc:$Rm, imm16_31:$sh)>;
4518
4519// Note: Shifts of 1-15 bits will be transformed to srl instead of sra and
4520// will match the pattern below.
4521def PKHTB : APKHI<0b01101000, 1, (outs GPRnopc:$Rd),
4522                              (ins GPRnopc:$Rn, GPRnopc:$Rm, pkh_asr_amt:$sh),
4523               IIC_iBITsi, "pkhtb", "\t$Rd, $Rn, $Rm$sh",
4524               [(set GPRnopc:$Rd, (or (and GPRnopc:$Rn, 0xFFFF0000),
4525                                      (and (sra GPRnopc:$Rm, pkh_asr_amt:$sh),
4526                                           0xFFFF)))]>,
4527               Requires<[IsARM, HasV6]>,
4528           Sched<[WriteALUsi, ReadALU]>;
4529
4530// Alternate cases for PKHTB where identities eliminate some nodes.  Note that
4531// a shift amount of 0 is *not legal* here, it is PKHBT instead.
4532// We also can not replace a srl (17..31) by an arithmetic shift we would use in
4533// pkhtb src1, src2, asr (17..31).
4534def : ARMV6Pat<(or (and GPRnopc:$src1, 0xFFFF0000),
4535                   (srl GPRnopc:$src2, imm16:$sh)),
4536               (PKHTB GPRnopc:$src1, GPRnopc:$src2, imm16:$sh)>;
4537def : ARMV6Pat<(or (and GPRnopc:$src1, 0xFFFF0000),
4538                   (sra GPRnopc:$src2, imm16_31:$sh)),
4539               (PKHTB GPRnopc:$src1, GPRnopc:$src2, imm16_31:$sh)>;
4540def : ARMV6Pat<(or (and GPRnopc:$src1, 0xFFFF0000),
4541                   (and (srl GPRnopc:$src2, imm1_15:$sh), 0xFFFF)),
4542               (PKHTB GPRnopc:$src1, GPRnopc:$src2, imm1_15:$sh)>;
4543
4544//===----------------------------------------------------------------------===//
4545// CRC Instructions
4546//
4547// Polynomials:
4548// + CRC32{B,H,W}       0x04C11DB7
4549// + CRC32C{B,H,W}      0x1EDC6F41
4550//
4551
4552class AI_crc32<bit C, bits<2> sz, string suffix, SDPatternOperator builtin>
4553  : AInoP<(outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm), MiscFrm, NoItinerary,
4554               !strconcat("crc32", suffix), "\t$Rd, $Rn, $Rm",
4555               [(set GPRnopc:$Rd, (builtin GPRnopc:$Rn, GPRnopc:$Rm))]>,
4556               Requires<[IsARM, HasV8, HasCRC]> {
4557  bits<4> Rd;
4558  bits<4> Rn;
4559  bits<4> Rm;
4560
4561  let Inst{31-28} = 0b1110;
4562  let Inst{27-23} = 0b00010;
4563  let Inst{22-21} = sz;
4564  let Inst{20}    = 0;
4565  let Inst{19-16} = Rn;
4566  let Inst{15-12} = Rd;
4567  let Inst{11-10} = 0b00;
4568  let Inst{9}     = C;
4569  let Inst{8}     = 0;
4570  let Inst{7-4}   = 0b0100;
4571  let Inst{3-0}   = Rm;
4572
4573  let Unpredictable{11-8} = 0b1101;
4574}
4575
4576def CRC32B  : AI_crc32<0, 0b00, "b", int_arm_crc32b>;
4577def CRC32CB : AI_crc32<1, 0b00, "cb", int_arm_crc32cb>;
4578def CRC32H  : AI_crc32<0, 0b01, "h", int_arm_crc32h>;
4579def CRC32CH : AI_crc32<1, 0b01, "ch", int_arm_crc32ch>;
4580def CRC32W  : AI_crc32<0, 0b10, "w", int_arm_crc32w>;
4581def CRC32CW : AI_crc32<1, 0b10, "cw", int_arm_crc32cw>;
4582
4583//===----------------------------------------------------------------------===//
4584// ARMv8.1a Privilege Access Never extension
4585//
4586// SETPAN #imm1
4587
4588def SETPAN : AInoP<(outs), (ins imm0_1:$imm), MiscFrm, NoItinerary, "setpan",
4589                "\t$imm", []>, Requires<[IsARM, HasV8, HasV8_1a]> {
4590  bits<1> imm;
4591
4592  let Inst{31-28} = 0b1111;
4593  let Inst{27-20} = 0b00010001;
4594  let Inst{19-16} = 0b0000;
4595  let Inst{15-10} = 0b000000;
4596  let Inst{9} = imm;
4597  let Inst{8} = 0b0;
4598  let Inst{7-4} = 0b0000;
4599  let Inst{3-0} = 0b0000;
4600
4601  let Unpredictable{19-16} = 0b1111;
4602  let Unpredictable{15-10} = 0b111111;
4603  let Unpredictable{8} = 0b1;
4604  let Unpredictable{3-0} = 0b1111;
4605}
4606
4607//===----------------------------------------------------------------------===//
4608//  Comparison Instructions...
4609//
4610
4611defm CMP  : AI1_cmp_irs<0b1010, "cmp",
4612                        IIC_iCMPi, IIC_iCMPr, IIC_iCMPsr, ARMcmp>;
4613
4614// ARMcmpZ can re-use the above instruction definitions.
4615def : ARMPat<(ARMcmpZ GPR:$src, mod_imm:$imm),
4616             (CMPri   GPR:$src, mod_imm:$imm)>;
4617def : ARMPat<(ARMcmpZ GPR:$src, GPR:$rhs),
4618             (CMPrr   GPR:$src, GPR:$rhs)>;
4619def : ARMPat<(ARMcmpZ GPR:$src, so_reg_imm:$rhs),
4620             (CMPrsi   GPR:$src, so_reg_imm:$rhs)>;
4621def : ARMPat<(ARMcmpZ GPR:$src, so_reg_reg:$rhs),
4622             (CMPrsr   GPR:$src, so_reg_reg:$rhs)>;
4623
4624// CMN register-integer
4625let isCompare = 1, Defs = [CPSR] in {
4626def CMNri : AI1<0b1011, (outs), (ins GPR:$Rn, mod_imm:$imm), DPFrm, IIC_iCMPi,
4627                "cmn", "\t$Rn, $imm",
4628                [(ARMcmn GPR:$Rn, mod_imm:$imm)]>,
4629                Sched<[WriteCMP, ReadALU]> {
4630  bits<4> Rn;
4631  bits<12> imm;
4632  let Inst{25} = 1;
4633  let Inst{20} = 1;
4634  let Inst{19-16} = Rn;
4635  let Inst{15-12} = 0b0000;
4636  let Inst{11-0} = imm;
4637
4638  let Unpredictable{15-12} = 0b1111;
4639}
4640
4641// CMN register-register/shift
4642def CMNzrr : AI1<0b1011, (outs), (ins GPR:$Rn, GPR:$Rm), DPFrm, IIC_iCMPr,
4643                 "cmn", "\t$Rn, $Rm",
4644                 [(BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))>
4645                   GPR:$Rn, GPR:$Rm)]>, Sched<[WriteCMP, ReadALU, ReadALU]> {
4646  bits<4> Rn;
4647  bits<4> Rm;
4648  let isCommutable = 1;
4649  let Inst{25} = 0;
4650  let Inst{20} = 1;
4651  let Inst{19-16} = Rn;
4652  let Inst{15-12} = 0b0000;
4653  let Inst{11-4} = 0b00000000;
4654  let Inst{3-0} = Rm;
4655
4656  let Unpredictable{15-12} = 0b1111;
4657}
4658
4659def CMNzrsi : AI1<0b1011, (outs),
4660                  (ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm, IIC_iCMPsr,
4661                  "cmn", "\t$Rn, $shift",
4662                  [(BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))>
4663                    GPR:$Rn, so_reg_imm:$shift)]>,
4664                    Sched<[WriteCMPsi, ReadALU]> {
4665  bits<4> Rn;
4666  bits<12> shift;
4667  let Inst{25} = 0;
4668  let Inst{20} = 1;
4669  let Inst{19-16} = Rn;
4670  let Inst{15-12} = 0b0000;
4671  let Inst{11-5} = shift{11-5};
4672  let Inst{4} = 0;
4673  let Inst{3-0} = shift{3-0};
4674
4675  let Unpredictable{15-12} = 0b1111;
4676}
4677
4678def CMNzrsr : AI1<0b1011, (outs),
4679                  (ins GPRnopc:$Rn, so_reg_reg:$shift), DPSoRegRegFrm, IIC_iCMPsr,
4680                  "cmn", "\t$Rn, $shift",
4681                  [(BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))>
4682                    GPRnopc:$Rn, so_reg_reg:$shift)]>,
4683                    Sched<[WriteCMPsr, ReadALU]> {
4684  bits<4> Rn;
4685  bits<12> shift;
4686  let Inst{25} = 0;
4687  let Inst{20} = 1;
4688  let Inst{19-16} = Rn;
4689  let Inst{15-12} = 0b0000;
4690  let Inst{11-8} = shift{11-8};
4691  let Inst{7} = 0;
4692  let Inst{6-5} = shift{6-5};
4693  let Inst{4} = 1;
4694  let Inst{3-0} = shift{3-0};
4695
4696  let Unpredictable{15-12} = 0b1111;
4697}
4698
4699}
4700
4701def : ARMPat<(ARMcmp  GPR:$src, mod_imm_neg:$imm),
4702             (CMNri   GPR:$src, mod_imm_neg:$imm)>;
4703
4704def : ARMPat<(ARMcmpZ GPR:$src, mod_imm_neg:$imm),
4705             (CMNri   GPR:$src, mod_imm_neg:$imm)>;
4706
4707// Note that TST/TEQ don't set all the same flags that CMP does!
4708defm TST  : AI1_cmp_irs<0b1000, "tst",
4709                        IIC_iTSTi, IIC_iTSTr, IIC_iTSTsr,
4710                      BinOpFrag<(ARMcmpZ (and_su node:$LHS, node:$RHS), 0)>, 1,
4711                      "DecodeTSTInstruction">;
4712defm TEQ  : AI1_cmp_irs<0b1001, "teq",
4713                        IIC_iTSTi, IIC_iTSTr, IIC_iTSTsr,
4714                      BinOpFrag<(ARMcmpZ (xor_su node:$LHS, node:$RHS), 0)>, 1>;
4715
4716// Pseudo i64 compares for some floating point compares.
4717let usesCustomInserter = 1, isBranch = 1, isTerminator = 1,
4718    Defs = [CPSR] in {
4719def BCCi64 : PseudoInst<(outs),
4720    (ins i32imm:$cc, GPR:$lhs1, GPR:$lhs2, GPR:$rhs1, GPR:$rhs2, brtarget:$dst),
4721     IIC_Br,
4722    [(ARMBcci64 imm:$cc, GPR:$lhs1, GPR:$lhs2, GPR:$rhs1, GPR:$rhs2, bb:$dst)]>,
4723    Sched<[WriteBr]>;
4724
4725def BCCZi64 : PseudoInst<(outs),
4726     (ins i32imm:$cc, GPR:$lhs1, GPR:$lhs2, brtarget:$dst), IIC_Br,
4727    [(ARMBcci64 imm:$cc, GPR:$lhs1, GPR:$lhs2, 0, 0, bb:$dst)]>,
4728    Sched<[WriteBr]>;
4729} // usesCustomInserter
4730
4731
4732// Conditional moves
4733let hasSideEffects = 0 in {
4734
4735let isCommutable = 1, isSelect = 1 in
4736def MOVCCr : ARMPseudoInst<(outs GPR:$Rd),
4737                           (ins GPR:$false, GPR:$Rm, cmovpred:$p),
4738                           4, IIC_iCMOVr,
4739                           [(set GPR:$Rd, (ARMcmov GPR:$false, GPR:$Rm,
4740                                                   cmovpred:$p))]>,
4741             RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
4742
4743def MOVCCsi : ARMPseudoInst<(outs GPR:$Rd),
4744                            (ins GPR:$false, so_reg_imm:$shift, cmovpred:$p),
4745                            4, IIC_iCMOVsr,
4746                            [(set GPR:$Rd,
4747                                  (ARMcmov GPR:$false, so_reg_imm:$shift,
4748                                           cmovpred:$p))]>,
4749      RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
4750def MOVCCsr : ARMPseudoInst<(outs GPR:$Rd),
4751                            (ins GPR:$false, so_reg_reg:$shift, cmovpred:$p),
4752                           4, IIC_iCMOVsr,
4753  [(set GPR:$Rd, (ARMcmov GPR:$false, so_reg_reg:$shift,
4754                            cmovpred:$p))]>,
4755      RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
4756
4757
4758let isMoveImm = 1 in
4759def MOVCCi16
4760    : ARMPseudoInst<(outs GPR:$Rd),
4761                    (ins GPR:$false, imm0_65535_expr:$imm, cmovpred:$p),
4762                    4, IIC_iMOVi,
4763                    [(set GPR:$Rd, (ARMcmov GPR:$false, imm0_65535:$imm,
4764                                            cmovpred:$p))]>,
4765      RegConstraint<"$false = $Rd">, Requires<[IsARM, HasV6T2]>,
4766      Sched<[WriteALU]>;
4767
4768let isMoveImm = 1 in
4769def MOVCCi : ARMPseudoInst<(outs GPR:$Rd),
4770                           (ins GPR:$false, mod_imm:$imm, cmovpred:$p),
4771                           4, IIC_iCMOVi,
4772                           [(set GPR:$Rd, (ARMcmov GPR:$false, mod_imm:$imm,
4773                                                   cmovpred:$p))]>,
4774      RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
4775
4776// Two instruction predicate mov immediate.
4777let isMoveImm = 1 in
4778def MOVCCi32imm
4779    : ARMPseudoInst<(outs GPR:$Rd),
4780                    (ins GPR:$false, i32imm:$src, cmovpred:$p),
4781                    8, IIC_iCMOVix2,
4782                    [(set GPR:$Rd, (ARMcmov GPR:$false, imm:$src,
4783                                            cmovpred:$p))]>,
4784      RegConstraint<"$false = $Rd">, Requires<[IsARM, HasV6T2]>;
4785
4786let isMoveImm = 1 in
4787def MVNCCi : ARMPseudoInst<(outs GPR:$Rd),
4788                           (ins GPR:$false, mod_imm:$imm, cmovpred:$p),
4789                           4, IIC_iCMOVi,
4790                           [(set GPR:$Rd, (ARMcmov GPR:$false, mod_imm_not:$imm,
4791                                                   cmovpred:$p))]>,
4792                RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
4793
4794} // hasSideEffects
4795
4796
4797//===----------------------------------------------------------------------===//
4798// Atomic operations intrinsics
4799//
4800
4801def MemBarrierOptOperand : AsmOperandClass {
4802  let Name = "MemBarrierOpt";
4803  let ParserMethod = "parseMemBarrierOptOperand";
4804}
4805def memb_opt : Operand<i32> {
4806  let PrintMethod = "printMemBOption";
4807  let ParserMatchClass = MemBarrierOptOperand;
4808  let DecoderMethod = "DecodeMemBarrierOption";
4809}
4810
4811def InstSyncBarrierOptOperand : AsmOperandClass {
4812  let Name = "InstSyncBarrierOpt";
4813  let ParserMethod = "parseInstSyncBarrierOptOperand";
4814}
4815def instsyncb_opt : Operand<i32> {
4816  let PrintMethod = "printInstSyncBOption";
4817  let ParserMatchClass = InstSyncBarrierOptOperand;
4818  let DecoderMethod = "DecodeInstSyncBarrierOption";
4819}
4820
4821def TraceSyncBarrierOptOperand : AsmOperandClass {
4822  let Name = "TraceSyncBarrierOpt";
4823  let ParserMethod = "parseTraceSyncBarrierOptOperand";
4824}
4825def tsb_opt : Operand<i32> {
4826  let PrintMethod = "printTraceSyncBOption";
4827  let ParserMatchClass = TraceSyncBarrierOptOperand;
4828}
4829
4830// Memory barriers protect the atomic sequences
4831let hasSideEffects = 1 in {
4832def DMB : AInoP<(outs), (ins memb_opt:$opt), MiscFrm, NoItinerary,
4833                "dmb", "\t$opt", [(int_arm_dmb (i32 imm0_15:$opt))]>,
4834                Requires<[IsARM, HasDB]> {
4835  bits<4> opt;
4836  let Inst{31-4} = 0xf57ff05;
4837  let Inst{3-0} = opt;
4838}
4839
4840def DSB : AInoP<(outs), (ins memb_opt:$opt), MiscFrm, NoItinerary,
4841                "dsb", "\t$opt", [(int_arm_dsb (i32 imm0_15:$opt))]>,
4842                Requires<[IsARM, HasDB]> {
4843  bits<4> opt;
4844  let Inst{31-4} = 0xf57ff04;
4845  let Inst{3-0} = opt;
4846}
4847
4848// ISB has only full system option
4849def ISB : AInoP<(outs), (ins instsyncb_opt:$opt), MiscFrm, NoItinerary,
4850                "isb", "\t$opt", [(int_arm_isb (i32 imm0_15:$opt))]>,
4851                Requires<[IsARM, HasDB]> {
4852  bits<4> opt;
4853  let Inst{31-4} = 0xf57ff06;
4854  let Inst{3-0} = opt;
4855}
4856
4857let hasNoSchedulingInfo = 1 in
4858def TSB : AInoP<(outs), (ins tsb_opt:$opt), MiscFrm, NoItinerary,
4859                "tsb", "\t$opt", []>, Requires<[IsARM, HasV8_4a]> {
4860  let Inst{31-0} = 0xe320f012;
4861}
4862
4863}
4864
4865// Armv8.5-A speculation barrier
4866def SB : AInoP<(outs), (ins), MiscFrm, NoItinerary, "sb", "", []>,
4867         Requires<[IsARM, HasSB]>, Sched<[]> {
4868  let Inst{31-0} = 0xf57ff070;
4869  let Unpredictable = 0x000fff0f;
4870  let hasSideEffects = 1;
4871}
4872
4873let usesCustomInserter = 1, Defs = [CPSR] in {
4874
4875// Pseudo instruction that combines movs + predicated rsbmi
4876// to implement integer ABS
4877  def ABS : ARMPseudoInst<(outs GPR:$dst), (ins GPR:$src), 8, NoItinerary, []>;
4878}
4879
4880let usesCustomInserter = 1, Defs = [CPSR] in {
4881    def COPY_STRUCT_BYVAL_I32 : PseudoInst<
4882      (outs), (ins GPR:$dst, GPR:$src, i32imm:$size, i32imm:$alignment),
4883      NoItinerary,
4884      [(ARMcopystructbyval GPR:$dst, GPR:$src, imm:$size, imm:$alignment)]>;
4885}
4886
4887let hasPostISelHook = 1, Constraints = "$newdst = $dst, $newsrc = $src" in {
4888    // %newsrc, %newdst = MEMCPY %dst, %src, N, ...N scratch regs...
4889    // Copies N registers worth of memory from address %src to address %dst
4890    // and returns the incremented addresses.  N scratch register will
4891    // be attached for the copy to use.
4892    def MEMCPY : PseudoInst<
4893      (outs GPR:$newdst, GPR:$newsrc),
4894      (ins GPR:$dst, GPR:$src, i32imm:$nreg, variable_ops),
4895      NoItinerary,
4896      [(set GPR:$newdst, GPR:$newsrc,
4897            (ARMmemcopy GPR:$dst, GPR:$src, imm:$nreg))]>;
4898}
4899
4900def ldrex_1 : PatFrag<(ops node:$ptr), (int_arm_ldrex node:$ptr), [{
4901  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
4902}]>;
4903
4904def ldrex_2 : PatFrag<(ops node:$ptr), (int_arm_ldrex node:$ptr), [{
4905  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
4906}]>;
4907
4908def ldrex_4 : PatFrag<(ops node:$ptr), (int_arm_ldrex node:$ptr), [{
4909  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
4910}]>;
4911
4912def strex_1 : PatFrag<(ops node:$val, node:$ptr),
4913                      (int_arm_strex node:$val, node:$ptr), [{
4914  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
4915}]>;
4916
4917def strex_2 : PatFrag<(ops node:$val, node:$ptr),
4918                      (int_arm_strex node:$val, node:$ptr), [{
4919  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
4920}]>;
4921
4922def strex_4 : PatFrag<(ops node:$val, node:$ptr),
4923                      (int_arm_strex node:$val, node:$ptr), [{
4924  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
4925}]>;
4926
4927def ldaex_1 : PatFrag<(ops node:$ptr), (int_arm_ldaex node:$ptr), [{
4928  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
4929}]>;
4930
4931def ldaex_2 : PatFrag<(ops node:$ptr), (int_arm_ldaex node:$ptr), [{
4932  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
4933}]>;
4934
4935def ldaex_4 : PatFrag<(ops node:$ptr), (int_arm_ldaex node:$ptr), [{
4936  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
4937}]>;
4938
4939def stlex_1 : PatFrag<(ops node:$val, node:$ptr),
4940                      (int_arm_stlex node:$val, node:$ptr), [{
4941  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
4942}]>;
4943
4944def stlex_2 : PatFrag<(ops node:$val, node:$ptr),
4945                      (int_arm_stlex node:$val, node:$ptr), [{
4946  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
4947}]>;
4948
4949def stlex_4 : PatFrag<(ops node:$val, node:$ptr),
4950                      (int_arm_stlex node:$val, node:$ptr), [{
4951  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
4952}]>;
4953
4954let mayLoad = 1 in {
4955def LDREXB : AIldrex<0b10, (outs GPR:$Rt), (ins addr_offset_none:$addr),
4956                     NoItinerary, "ldrexb", "\t$Rt, $addr",
4957                     [(set GPR:$Rt, (ldrex_1 addr_offset_none:$addr))]>;
4958def LDREXH : AIldrex<0b11, (outs GPR:$Rt), (ins addr_offset_none:$addr),
4959                     NoItinerary, "ldrexh", "\t$Rt, $addr",
4960                     [(set GPR:$Rt, (ldrex_2 addr_offset_none:$addr))]>;
4961def LDREX  : AIldrex<0b00, (outs GPR:$Rt), (ins addr_offset_none:$addr),
4962                     NoItinerary, "ldrex", "\t$Rt, $addr",
4963                     [(set GPR:$Rt, (ldrex_4 addr_offset_none:$addr))]>;
4964let hasExtraDefRegAllocReq = 1 in
4965def LDREXD : AIldrex<0b01, (outs GPRPairOp:$Rt),(ins addr_offset_none:$addr),
4966                      NoItinerary, "ldrexd", "\t$Rt, $addr", []> {
4967  let DecoderMethod = "DecodeDoubleRegLoad";
4968}
4969
4970def LDAEXB : AIldaex<0b10, (outs GPR:$Rt), (ins addr_offset_none:$addr),
4971                     NoItinerary, "ldaexb", "\t$Rt, $addr",
4972                     [(set GPR:$Rt, (ldaex_1 addr_offset_none:$addr))]>;
4973def LDAEXH : AIldaex<0b11, (outs GPR:$Rt), (ins addr_offset_none:$addr),
4974                     NoItinerary, "ldaexh", "\t$Rt, $addr",
4975                    [(set GPR:$Rt, (ldaex_2 addr_offset_none:$addr))]>;
4976def LDAEX  : AIldaex<0b00, (outs GPR:$Rt), (ins addr_offset_none:$addr),
4977                     NoItinerary, "ldaex", "\t$Rt, $addr",
4978                    [(set GPR:$Rt, (ldaex_4 addr_offset_none:$addr))]>;
4979let hasExtraDefRegAllocReq = 1 in
4980def LDAEXD : AIldaex<0b01, (outs GPRPairOp:$Rt),(ins addr_offset_none:$addr),
4981                      NoItinerary, "ldaexd", "\t$Rt, $addr", []> {
4982  let DecoderMethod = "DecodeDoubleRegLoad";
4983}
4984}
4985
4986let mayStore = 1, Constraints = "@earlyclobber $Rd" in {
4987def STREXB: AIstrex<0b10, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
4988                    NoItinerary, "strexb", "\t$Rd, $Rt, $addr",
4989                    [(set GPR:$Rd, (strex_1 GPR:$Rt,
4990                                            addr_offset_none:$addr))]>;
4991def STREXH: AIstrex<0b11, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
4992                    NoItinerary, "strexh", "\t$Rd, $Rt, $addr",
4993                    [(set GPR:$Rd, (strex_2 GPR:$Rt,
4994                                            addr_offset_none:$addr))]>;
4995def STREX : AIstrex<0b00, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
4996                    NoItinerary, "strex", "\t$Rd, $Rt, $addr",
4997                    [(set GPR:$Rd, (strex_4 GPR:$Rt,
4998                                            addr_offset_none:$addr))]>;
4999let hasExtraSrcRegAllocReq = 1 in
5000def STREXD : AIstrex<0b01, (outs GPR:$Rd),
5001                    (ins GPRPairOp:$Rt, addr_offset_none:$addr),
5002                    NoItinerary, "strexd", "\t$Rd, $Rt, $addr", []> {
5003  let DecoderMethod = "DecodeDoubleRegStore";
5004}
5005def STLEXB: AIstlex<0b10, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
5006                    NoItinerary, "stlexb", "\t$Rd, $Rt, $addr",
5007                    [(set GPR:$Rd,
5008                          (stlex_1 GPR:$Rt, addr_offset_none:$addr))]>;
5009def STLEXH: AIstlex<0b11, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
5010                    NoItinerary, "stlexh", "\t$Rd, $Rt, $addr",
5011                    [(set GPR:$Rd,
5012                          (stlex_2 GPR:$Rt, addr_offset_none:$addr))]>;
5013def STLEX : AIstlex<0b00, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
5014                    NoItinerary, "stlex", "\t$Rd, $Rt, $addr",
5015                    [(set GPR:$Rd,
5016                          (stlex_4 GPR:$Rt, addr_offset_none:$addr))]>;
5017let hasExtraSrcRegAllocReq = 1 in
5018def STLEXD : AIstlex<0b01, (outs GPR:$Rd),
5019                    (ins GPRPairOp:$Rt, addr_offset_none:$addr),
5020                    NoItinerary, "stlexd", "\t$Rd, $Rt, $addr", []> {
5021  let DecoderMethod = "DecodeDoubleRegStore";
5022}
5023}
5024
5025def CLREX : AXI<(outs), (ins), MiscFrm, NoItinerary, "clrex",
5026                [(int_arm_clrex)]>,
5027            Requires<[IsARM, HasV6K]>  {
5028  let Inst{31-0} = 0b11110101011111111111000000011111;
5029}
5030
5031def : ARMPat<(strex_1 (and GPR:$Rt, 0xff), addr_offset_none:$addr),
5032             (STREXB GPR:$Rt, addr_offset_none:$addr)>;
5033def : ARMPat<(strex_2 (and GPR:$Rt, 0xffff), addr_offset_none:$addr),
5034             (STREXH GPR:$Rt, addr_offset_none:$addr)>;
5035
5036def : ARMPat<(stlex_1 (and GPR:$Rt, 0xff), addr_offset_none:$addr),
5037             (STLEXB GPR:$Rt, addr_offset_none:$addr)>;
5038def : ARMPat<(stlex_2 (and GPR:$Rt, 0xffff), addr_offset_none:$addr),
5039             (STLEXH GPR:$Rt, addr_offset_none:$addr)>;
5040
5041class acquiring_load<PatFrag base>
5042  : PatFrag<(ops node:$ptr), (base node:$ptr), [{
5043  AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getOrdering();
5044  return isAcquireOrStronger(Ordering);
5045}]>;
5046
5047def atomic_load_acquire_8  : acquiring_load<atomic_load_8>;
5048def atomic_load_acquire_16 : acquiring_load<atomic_load_16>;
5049def atomic_load_acquire_32 : acquiring_load<atomic_load_32>;
5050
5051class releasing_store<PatFrag base>
5052  : PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val), [{
5053  AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getOrdering();
5054  return isReleaseOrStronger(Ordering);
5055}]>;
5056
5057def atomic_store_release_8  : releasing_store<atomic_store_8>;
5058def atomic_store_release_16 : releasing_store<atomic_store_16>;
5059def atomic_store_release_32 : releasing_store<atomic_store_32>;
5060
5061let AddedComplexity = 8 in {
5062  def : ARMPat<(atomic_load_acquire_8 addr_offset_none:$addr),  (LDAB addr_offset_none:$addr)>;
5063  def : ARMPat<(atomic_load_acquire_16 addr_offset_none:$addr), (LDAH addr_offset_none:$addr)>;
5064  def : ARMPat<(atomic_load_acquire_32 addr_offset_none:$addr), (LDA  addr_offset_none:$addr)>;
5065  def : ARMPat<(atomic_store_release_8 addr_offset_none:$addr, GPR:$val),  (STLB GPR:$val, addr_offset_none:$addr)>;
5066  def : ARMPat<(atomic_store_release_16 addr_offset_none:$addr, GPR:$val), (STLH GPR:$val, addr_offset_none:$addr)>;
5067  def : ARMPat<(atomic_store_release_32 addr_offset_none:$addr, GPR:$val), (STL  GPR:$val, addr_offset_none:$addr)>;
5068}
5069
5070// SWP/SWPB are deprecated in V6/V7 and optional in v7VE.
5071// FIXME Use InstAlias to generate LDREX/STREX pairs instead.
5072let mayLoad = 1, mayStore = 1 in {
5073def SWP : AIswp<0, (outs GPRnopc:$Rt),
5074                (ins GPRnopc:$Rt2, addr_offset_none:$addr), "swp", []>,
5075                Requires<[IsARM,PreV8]>;
5076def SWPB: AIswp<1, (outs GPRnopc:$Rt),
5077                (ins GPRnopc:$Rt2, addr_offset_none:$addr), "swpb", []>,
5078                Requires<[IsARM,PreV8]>;
5079}
5080
5081//===----------------------------------------------------------------------===//
5082// Coprocessor Instructions.
5083//
5084
5085def CDP : ABI<0b1110, (outs), (ins p_imm:$cop, imm0_15:$opc1,
5086            c_imm:$CRd, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2),
5087            NoItinerary, "cdp", "\t$cop, $opc1, $CRd, $CRn, $CRm, $opc2",
5088            [(int_arm_cdp imm:$cop, imm:$opc1, imm:$CRd, imm:$CRn,
5089                          imm:$CRm, imm:$opc2)]>,
5090            Requires<[IsARM,PreV8]> {
5091  bits<4> opc1;
5092  bits<4> CRn;
5093  bits<4> CRd;
5094  bits<4> cop;
5095  bits<3> opc2;
5096  bits<4> CRm;
5097
5098  let Inst{3-0}   = CRm;
5099  let Inst{4}     = 0;
5100  let Inst{7-5}   = opc2;
5101  let Inst{11-8}  = cop;
5102  let Inst{15-12} = CRd;
5103  let Inst{19-16} = CRn;
5104  let Inst{23-20} = opc1;
5105
5106  let DecoderNamespace = "CoProc";
5107}
5108
5109def CDP2 : ABXI<0b1110, (outs), (ins p_imm:$cop, imm0_15:$opc1,
5110               c_imm:$CRd, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2),
5111               NoItinerary, "cdp2\t$cop, $opc1, $CRd, $CRn, $CRm, $opc2",
5112               [(int_arm_cdp2 imm:$cop, imm:$opc1, imm:$CRd, imm:$CRn,
5113                              imm:$CRm, imm:$opc2)]>,
5114               Requires<[IsARM,PreV8]> {
5115  let Inst{31-28} = 0b1111;
5116  bits<4> opc1;
5117  bits<4> CRn;
5118  bits<4> CRd;
5119  bits<4> cop;
5120  bits<3> opc2;
5121  bits<4> CRm;
5122
5123  let Inst{3-0}   = CRm;
5124  let Inst{4}     = 0;
5125  let Inst{7-5}   = opc2;
5126  let Inst{11-8}  = cop;
5127  let Inst{15-12} = CRd;
5128  let Inst{19-16} = CRn;
5129  let Inst{23-20} = opc1;
5130
5131  let DecoderNamespace = "CoProc";
5132}
5133
5134class ACI<dag oops, dag iops, string opc, string asm,
5135            list<dag> pattern, IndexMode im = IndexModeNone>
5136  : I<oops, iops, AddrModeNone, 4, im, BrFrm, NoItinerary,
5137      opc, asm, "", pattern> {
5138  let Inst{27-25} = 0b110;
5139}
5140class ACInoP<dag oops, dag iops, string opc, string asm,
5141          list<dag> pattern, IndexMode im = IndexModeNone>
5142  : InoP<oops, iops, AddrModeNone, 4, im, BrFrm, NoItinerary,
5143         opc, asm, "", pattern> {
5144  let Inst{31-28} = 0b1111;
5145  let Inst{27-25} = 0b110;
5146}
5147
5148let DecoderNamespace = "CoProc" in {
5149multiclass LdStCop<bit load, bit Dbit, string asm, list<dag> pattern> {
5150  def _OFFSET : ACI<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5:$addr),
5151                    asm, "\t$cop, $CRd, $addr", pattern> {
5152    bits<13> addr;
5153    bits<4> cop;
5154    bits<4> CRd;
5155    let Inst{24} = 1; // P = 1
5156    let Inst{23} = addr{8};
5157    let Inst{22} = Dbit;
5158    let Inst{21} = 0; // W = 0
5159    let Inst{20} = load;
5160    let Inst{19-16} = addr{12-9};
5161    let Inst{15-12} = CRd;
5162    let Inst{11-8} = cop;
5163    let Inst{7-0} = addr{7-0};
5164    let DecoderMethod = "DecodeCopMemInstruction";
5165  }
5166  def _PRE : ACI<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5_pre:$addr),
5167                 asm, "\t$cop, $CRd, $addr!", [], IndexModePre> {
5168    bits<13> addr;
5169    bits<4> cop;
5170    bits<4> CRd;
5171    let Inst{24} = 1; // P = 1
5172    let Inst{23} = addr{8};
5173    let Inst{22} = Dbit;
5174    let Inst{21} = 1; // W = 1
5175    let Inst{20} = load;
5176    let Inst{19-16} = addr{12-9};
5177    let Inst{15-12} = CRd;
5178    let Inst{11-8} = cop;
5179    let Inst{7-0} = addr{7-0};
5180    let DecoderMethod = "DecodeCopMemInstruction";
5181  }
5182  def _POST: ACI<(outs), (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr,
5183                              postidx_imm8s4:$offset),
5184                 asm, "\t$cop, $CRd, $addr, $offset", [], IndexModePost> {
5185    bits<9> offset;
5186    bits<4> addr;
5187    bits<4> cop;
5188    bits<4> CRd;
5189    let Inst{24} = 0; // P = 0
5190    let Inst{23} = offset{8};
5191    let Inst{22} = Dbit;
5192    let Inst{21} = 1; // W = 1
5193    let Inst{20} = load;
5194    let Inst{19-16} = addr;
5195    let Inst{15-12} = CRd;
5196    let Inst{11-8} = cop;
5197    let Inst{7-0} = offset{7-0};
5198    let DecoderMethod = "DecodeCopMemInstruction";
5199  }
5200  def _OPTION : ACI<(outs),
5201                    (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr,
5202                         coproc_option_imm:$option),
5203      asm, "\t$cop, $CRd, $addr, $option", []> {
5204    bits<8> option;
5205    bits<4> addr;
5206    bits<4> cop;
5207    bits<4> CRd;
5208    let Inst{24} = 0; // P = 0
5209    let Inst{23} = 1; // U = 1
5210    let Inst{22} = Dbit;
5211    let Inst{21} = 0; // W = 0
5212    let Inst{20} = load;
5213    let Inst{19-16} = addr;
5214    let Inst{15-12} = CRd;
5215    let Inst{11-8} = cop;
5216    let Inst{7-0} = option;
5217    let DecoderMethod = "DecodeCopMemInstruction";
5218  }
5219}
5220multiclass LdSt2Cop<bit load, bit Dbit, string asm, list<dag> pattern> {
5221  def _OFFSET : ACInoP<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5:$addr),
5222                       asm, "\t$cop, $CRd, $addr", pattern> {
5223    bits<13> addr;
5224    bits<4> cop;
5225    bits<4> CRd;
5226    let Inst{24} = 1; // P = 1
5227    let Inst{23} = addr{8};
5228    let Inst{22} = Dbit;
5229    let Inst{21} = 0; // W = 0
5230    let Inst{20} = load;
5231    let Inst{19-16} = addr{12-9};
5232    let Inst{15-12} = CRd;
5233    let Inst{11-8} = cop;
5234    let Inst{7-0} = addr{7-0};
5235    let DecoderMethod = "DecodeCopMemInstruction";
5236  }
5237  def _PRE : ACInoP<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5_pre:$addr),
5238                    asm, "\t$cop, $CRd, $addr!", [], IndexModePre> {
5239    bits<13> addr;
5240    bits<4> cop;
5241    bits<4> CRd;
5242    let Inst{24} = 1; // P = 1
5243    let Inst{23} = addr{8};
5244    let Inst{22} = Dbit;
5245    let Inst{21} = 1; // W = 1
5246    let Inst{20} = load;
5247    let Inst{19-16} = addr{12-9};
5248    let Inst{15-12} = CRd;
5249    let Inst{11-8} = cop;
5250    let Inst{7-0} = addr{7-0};
5251    let DecoderMethod = "DecodeCopMemInstruction";
5252  }
5253  def _POST: ACInoP<(outs), (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr,
5254                                 postidx_imm8s4:$offset),
5255                 asm, "\t$cop, $CRd, $addr, $offset", [], IndexModePost> {
5256    bits<9> offset;
5257    bits<4> addr;
5258    bits<4> cop;
5259    bits<4> CRd;
5260    let Inst{24} = 0; // P = 0
5261    let Inst{23} = offset{8};
5262    let Inst{22} = Dbit;
5263    let Inst{21} = 1; // W = 1
5264    let Inst{20} = load;
5265    let Inst{19-16} = addr;
5266    let Inst{15-12} = CRd;
5267    let Inst{11-8} = cop;
5268    let Inst{7-0} = offset{7-0};
5269    let DecoderMethod = "DecodeCopMemInstruction";
5270  }
5271  def _OPTION : ACInoP<(outs),
5272                       (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr,
5273                            coproc_option_imm:$option),
5274      asm, "\t$cop, $CRd, $addr, $option", []> {
5275    bits<8> option;
5276    bits<4> addr;
5277    bits<4> cop;
5278    bits<4> CRd;
5279    let Inst{24} = 0; // P = 0
5280    let Inst{23} = 1; // U = 1
5281    let Inst{22} = Dbit;
5282    let Inst{21} = 0; // W = 0
5283    let Inst{20} = load;
5284    let Inst{19-16} = addr;
5285    let Inst{15-12} = CRd;
5286    let Inst{11-8} = cop;
5287    let Inst{7-0} = option;
5288    let DecoderMethod = "DecodeCopMemInstruction";
5289  }
5290}
5291
5292defm LDC   : LdStCop <1, 0, "ldc", [(int_arm_ldc imm:$cop, imm:$CRd, addrmode5:$addr)]>;
5293defm LDCL  : LdStCop <1, 1, "ldcl", [(int_arm_ldcl imm:$cop, imm:$CRd, addrmode5:$addr)]>;
5294defm LDC2  : LdSt2Cop<1, 0, "ldc2", [(int_arm_ldc2 imm:$cop, imm:$CRd, addrmode5:$addr)]>, Requires<[IsARM,PreV8]>;
5295defm LDC2L : LdSt2Cop<1, 1, "ldc2l", [(int_arm_ldc2l imm:$cop, imm:$CRd, addrmode5:$addr)]>, Requires<[IsARM,PreV8]>;
5296
5297defm STC   : LdStCop <0, 0, "stc", [(int_arm_stc imm:$cop, imm:$CRd, addrmode5:$addr)]>;
5298defm STCL  : LdStCop <0, 1, "stcl", [(int_arm_stcl imm:$cop, imm:$CRd, addrmode5:$addr)]>;
5299defm STC2  : LdSt2Cop<0, 0, "stc2", [(int_arm_stc2 imm:$cop, imm:$CRd, addrmode5:$addr)]>, Requires<[IsARM,PreV8]>;
5300defm STC2L : LdSt2Cop<0, 1, "stc2l", [(int_arm_stc2l imm:$cop, imm:$CRd, addrmode5:$addr)]>, Requires<[IsARM,PreV8]>;
5301
5302} // DecoderNamespace = "CoProc"
5303
5304//===----------------------------------------------------------------------===//
5305// Move between coprocessor and ARM core register.
5306//
5307
5308class MovRCopro<string opc, bit direction, dag oops, dag iops,
5309                list<dag> pattern>
5310  : ABI<0b1110, oops, iops, NoItinerary, opc,
5311        "\t$cop, $opc1, $Rt, $CRn, $CRm, $opc2", pattern> {
5312  let Inst{20} = direction;
5313  let Inst{4} = 1;
5314
5315  bits<4> Rt;
5316  bits<4> cop;
5317  bits<3> opc1;
5318  bits<3> opc2;
5319  bits<4> CRm;
5320  bits<4> CRn;
5321
5322  let Inst{15-12} = Rt;
5323  let Inst{11-8}  = cop;
5324  let Inst{23-21} = opc1;
5325  let Inst{7-5}   = opc2;
5326  let Inst{3-0}   = CRm;
5327  let Inst{19-16} = CRn;
5328
5329  let DecoderNamespace = "CoProc";
5330}
5331
5332def MCR : MovRCopro<"mcr", 0 /* from ARM core register to coprocessor */,
5333                    (outs),
5334                    (ins p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn,
5335                         c_imm:$CRm, imm0_7:$opc2),
5336                    [(int_arm_mcr imm:$cop, imm:$opc1, GPR:$Rt, imm:$CRn,
5337                                  imm:$CRm, imm:$opc2)]>,
5338                    ComplexDeprecationPredicate<"MCR">;
5339def : ARMInstAlias<"mcr${p} $cop, $opc1, $Rt, $CRn, $CRm",
5340                   (MCR p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn,
5341                        c_imm:$CRm, 0, pred:$p)>;
5342def MRC : MovRCopro<"mrc", 1 /* from coprocessor to ARM core register */,
5343                    (outs GPRwithAPSR:$Rt),
5344                    (ins p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, c_imm:$CRm,
5345                         imm0_7:$opc2), []>;
5346def : ARMInstAlias<"mrc${p} $cop, $opc1, $Rt, $CRn, $CRm",
5347                   (MRC GPRwithAPSR:$Rt, p_imm:$cop, imm0_7:$opc1, c_imm:$CRn,
5348                        c_imm:$CRm, 0, pred:$p)>;
5349
5350def : ARMPat<(int_arm_mrc imm:$cop, imm:$opc1, imm:$CRn, imm:$CRm, imm:$opc2),
5351             (MRC imm:$cop, imm:$opc1, imm:$CRn, imm:$CRm, imm:$opc2)>;
5352
5353class MovRCopro2<string opc, bit direction, dag oops, dag iops,
5354                 list<dag> pattern>
5355  : ABXI<0b1110, oops, iops, NoItinerary,
5356         !strconcat(opc, "\t$cop, $opc1, $Rt, $CRn, $CRm, $opc2"), pattern> {
5357  let Inst{31-24} = 0b11111110;
5358  let Inst{20} = direction;
5359  let Inst{4} = 1;
5360
5361  bits<4> Rt;
5362  bits<4> cop;
5363  bits<3> opc1;
5364  bits<3> opc2;
5365  bits<4> CRm;
5366  bits<4> CRn;
5367
5368  let Inst{15-12} = Rt;
5369  let Inst{11-8}  = cop;
5370  let Inst{23-21} = opc1;
5371  let Inst{7-5}   = opc2;
5372  let Inst{3-0}   = CRm;
5373  let Inst{19-16} = CRn;
5374
5375  let DecoderNamespace = "CoProc";
5376}
5377
5378def MCR2 : MovRCopro2<"mcr2", 0 /* from ARM core register to coprocessor */,
5379                      (outs),
5380                      (ins p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn,
5381                           c_imm:$CRm, imm0_7:$opc2),
5382                      [(int_arm_mcr2 imm:$cop, imm:$opc1, GPR:$Rt, imm:$CRn,
5383                                     imm:$CRm, imm:$opc2)]>,
5384                      Requires<[IsARM,PreV8]>;
5385def : ARMInstAlias<"mcr2 $cop, $opc1, $Rt, $CRn, $CRm",
5386                   (MCR2 p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn,
5387                         c_imm:$CRm, 0)>;
5388def MRC2 : MovRCopro2<"mrc2", 1 /* from coprocessor to ARM core register */,
5389                      (outs GPRwithAPSR:$Rt),
5390                      (ins p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, c_imm:$CRm,
5391                           imm0_7:$opc2), []>,
5392                      Requires<[IsARM,PreV8]>;
5393def : ARMInstAlias<"mrc2 $cop, $opc1, $Rt, $CRn, $CRm",
5394                   (MRC2 GPRwithAPSR:$Rt, p_imm:$cop, imm0_7:$opc1, c_imm:$CRn,
5395                         c_imm:$CRm, 0)>;
5396
5397def : ARMV5TPat<(int_arm_mrc2 imm:$cop, imm:$opc1, imm:$CRn,
5398                              imm:$CRm, imm:$opc2),
5399                (MRC2 imm:$cop, imm:$opc1, imm:$CRn, imm:$CRm, imm:$opc2)>;
5400
5401class MovRRCopro<string opc, bit direction, dag oops, dag iops, list<dag>
5402                 pattern = []>
5403  : ABI<0b1100, oops, iops, NoItinerary, opc, "\t$cop, $opc1, $Rt, $Rt2, $CRm",
5404        pattern> {
5405
5406  let Inst{23-21} = 0b010;
5407  let Inst{20} = direction;
5408
5409  bits<4> Rt;
5410  bits<4> Rt2;
5411  bits<4> cop;
5412  bits<4> opc1;
5413  bits<4> CRm;
5414
5415  let Inst{15-12} = Rt;
5416  let Inst{19-16} = Rt2;
5417  let Inst{11-8}  = cop;
5418  let Inst{7-4}   = opc1;
5419  let Inst{3-0}   = CRm;
5420}
5421
5422def MCRR : MovRRCopro<"mcrr", 0 /* from ARM core register to coprocessor */,
5423                      (outs), (ins p_imm:$cop, imm0_15:$opc1, GPRnopc:$Rt,
5424                      GPRnopc:$Rt2, c_imm:$CRm),
5425                      [(int_arm_mcrr imm:$cop, imm:$opc1, GPRnopc:$Rt,
5426                                     GPRnopc:$Rt2, imm:$CRm)]>;
5427def MRRC : MovRRCopro<"mrrc", 1 /* from coprocessor to ARM core register */,
5428                      (outs GPRnopc:$Rt, GPRnopc:$Rt2),
5429                      (ins p_imm:$cop, imm0_15:$opc1, c_imm:$CRm), []>;
5430
5431class MovRRCopro2<string opc, bit direction, dag oops, dag iops,
5432                  list<dag> pattern = []>
5433  : ABXI<0b1100, oops, iops, NoItinerary,
5434         !strconcat(opc, "\t$cop, $opc1, $Rt, $Rt2, $CRm"), pattern>,
5435    Requires<[IsARM,PreV8]> {
5436  let Inst{31-28} = 0b1111;
5437  let Inst{23-21} = 0b010;
5438  let Inst{20} = direction;
5439
5440  bits<4> Rt;
5441  bits<4> Rt2;
5442  bits<4> cop;
5443  bits<4> opc1;
5444  bits<4> CRm;
5445
5446  let Inst{15-12} = Rt;
5447  let Inst{19-16} = Rt2;
5448  let Inst{11-8}  = cop;
5449  let Inst{7-4}   = opc1;
5450  let Inst{3-0}   = CRm;
5451
5452  let DecoderMethod = "DecoderForMRRC2AndMCRR2";
5453}
5454
5455def MCRR2 : MovRRCopro2<"mcrr2", 0 /* from ARM core register to coprocessor */,
5456                        (outs), (ins p_imm:$cop, imm0_15:$opc1, GPRnopc:$Rt,
5457                        GPRnopc:$Rt2, c_imm:$CRm),
5458                        [(int_arm_mcrr2 imm:$cop, imm:$opc1, GPRnopc:$Rt,
5459                                        GPRnopc:$Rt2, imm:$CRm)]>;
5460
5461def MRRC2 : MovRRCopro2<"mrrc2", 1 /* from coprocessor to ARM core register */,
5462                       (outs GPRnopc:$Rt, GPRnopc:$Rt2),
5463                       (ins p_imm:$cop, imm0_15:$opc1, c_imm:$CRm), []>;
5464
5465//===----------------------------------------------------------------------===//
5466// Move between special register and ARM core register
5467//
5468
5469// Move to ARM core register from Special Register
5470def MRS : ABI<0b0001, (outs GPRnopc:$Rd), (ins), NoItinerary,
5471              "mrs", "\t$Rd, apsr", []> {
5472  bits<4> Rd;
5473  let Inst{23-16} = 0b00001111;
5474  let Unpredictable{19-17} = 0b111;
5475
5476  let Inst{15-12} = Rd;
5477
5478  let Inst{11-0} = 0b000000000000;
5479  let Unpredictable{11-0} = 0b110100001111;
5480}
5481
5482def : InstAlias<"mrs${p} $Rd, cpsr", (MRS GPRnopc:$Rd, pred:$p), 0>,
5483         Requires<[IsARM]>;
5484
5485// The MRSsys instruction is the MRS instruction from the ARM ARM,
5486// section B9.3.9, with the R bit set to 1.
5487def MRSsys : ABI<0b0001, (outs GPRnopc:$Rd), (ins), NoItinerary,
5488                 "mrs", "\t$Rd, spsr", []> {
5489  bits<4> Rd;
5490  let Inst{23-16} = 0b01001111;
5491  let Unpredictable{19-16} = 0b1111;
5492
5493  let Inst{15-12} = Rd;
5494
5495  let Inst{11-0} = 0b000000000000;
5496  let Unpredictable{11-0} = 0b110100001111;
5497}
5498
5499// However, the MRS (banked register) system instruction (ARMv7VE) *does* have a
5500// separate encoding (distinguished by bit 5.
5501def MRSbanked : ABI<0b0001, (outs GPRnopc:$Rd), (ins banked_reg:$banked),
5502                    NoItinerary, "mrs", "\t$Rd, $banked", []>,
5503                Requires<[IsARM, HasVirtualization]> {
5504  bits<6> banked;
5505  bits<4> Rd;
5506
5507  let Inst{23} = 0;
5508  let Inst{22} = banked{5}; // R bit
5509  let Inst{21-20} = 0b00;
5510  let Inst{19-16} = banked{3-0};
5511  let Inst{15-12} = Rd;
5512  let Inst{11-9} = 0b001;
5513  let Inst{8} = banked{4};
5514  let Inst{7-0} = 0b00000000;
5515}
5516
5517// Move from ARM core register to Special Register
5518//
5519// No need to have both system and application versions of MSR (immediate) or
5520// MSR (register), the encodings are the same and the assembly parser has no way
5521// to distinguish between them. The mask operand contains the special register
5522// (R Bit) in bit 4 and bits 3-0 contains the mask with the fields to be
5523// accessed in the special register.
5524let Defs = [CPSR] in
5525def MSR : ABI<0b0001, (outs), (ins msr_mask:$mask, GPR:$Rn), NoItinerary,
5526              "msr", "\t$mask, $Rn", []> {
5527  bits<5> mask;
5528  bits<4> Rn;
5529
5530  let Inst{23} = 0;
5531  let Inst{22} = mask{4}; // R bit
5532  let Inst{21-20} = 0b10;
5533  let Inst{19-16} = mask{3-0};
5534  let Inst{15-12} = 0b1111;
5535  let Inst{11-4} = 0b00000000;
5536  let Inst{3-0} = Rn;
5537}
5538
5539let Defs = [CPSR] in
5540def MSRi : ABI<0b0011, (outs), (ins msr_mask:$mask,  mod_imm:$imm), NoItinerary,
5541               "msr", "\t$mask, $imm", []> {
5542  bits<5> mask;
5543  bits<12> imm;
5544
5545  let Inst{23} = 0;
5546  let Inst{22} = mask{4}; // R bit
5547  let Inst{21-20} = 0b10;
5548  let Inst{19-16} = mask{3-0};
5549  let Inst{15-12} = 0b1111;
5550  let Inst{11-0} = imm;
5551}
5552
5553// However, the MSR (banked register) system instruction (ARMv7VE) *does* have a
5554// separate encoding (distinguished by bit 5.
5555def MSRbanked : ABI<0b0001, (outs), (ins banked_reg:$banked, GPRnopc:$Rn),
5556                    NoItinerary, "msr", "\t$banked, $Rn", []>,
5557                Requires<[IsARM, HasVirtualization]> {
5558  bits<6> banked;
5559  bits<4> Rn;
5560
5561  let Inst{23} = 0;
5562  let Inst{22} = banked{5}; // R bit
5563  let Inst{21-20} = 0b10;
5564  let Inst{19-16} = banked{3-0};
5565  let Inst{15-12} = 0b1111;
5566  let Inst{11-9} = 0b001;
5567  let Inst{8} = banked{4};
5568  let Inst{7-4} = 0b0000;
5569  let Inst{3-0} = Rn;
5570}
5571
5572// Dynamic stack allocation yields a _chkstk for Windows targets.  These calls
5573// are needed to probe the stack when allocating more than
5574// 4k bytes in one go. Touching the stack at 4K increments is necessary to
5575// ensure that the guard pages used by the OS virtual memory manager are
5576// allocated in correct sequence.
5577// The main point of having separate instruction are extra unmodelled effects
5578// (compared to ordinary calls) like stack pointer change.
5579
5580def win__chkstk : SDNode<"ARMISD::WIN__CHKSTK", SDTNone,
5581                      [SDNPHasChain, SDNPSideEffect]>;
5582let usesCustomInserter = 1, Uses = [R4], Defs = [R4, SP] in
5583  def WIN__CHKSTK : PseudoInst<(outs), (ins), NoItinerary, [(win__chkstk)]>;
5584
5585def win__dbzchk : SDNode<"ARMISD::WIN__DBZCHK", SDT_WIN__DBZCHK,
5586                         [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>;
5587let usesCustomInserter = 1, Defs = [CPSR] in
5588  def WIN__DBZCHK : PseudoInst<(outs), (ins tGPR:$divisor), NoItinerary,
5589                               [(win__dbzchk tGPR:$divisor)]>;
5590
5591//===----------------------------------------------------------------------===//
5592// TLS Instructions
5593//
5594
5595// __aeabi_read_tp preserves the registers r1-r3.
5596// This is a pseudo inst so that we can get the encoding right,
5597// complete with fixup for the aeabi_read_tp function.
5598// TPsoft is valid for ARM mode only, in case of Thumb mode a tTPsoft pattern
5599// is defined in "ARMInstrThumb.td".
5600let isCall = 1,
5601  Defs = [R0, R12, LR, CPSR], Uses = [SP] in {
5602  def TPsoft : ARMPseudoInst<(outs), (ins), 4, IIC_Br,
5603               [(set R0, ARMthread_pointer)]>, Sched<[WriteBr]>,
5604               Requires<[IsARM, IsReadTPSoft]>;
5605}
5606
5607// Reading thread pointer from coprocessor register
5608def : ARMPat<(ARMthread_pointer), (MRC 15, 0, 13, 0, 3)>,
5609      Requires<[IsARM, IsReadTPHard]>;
5610
5611//===----------------------------------------------------------------------===//
5612// SJLJ Exception handling intrinsics
5613//   eh_sjlj_setjmp() is an instruction sequence to store the return
5614//   address and save #0 in R0 for the non-longjmp case.
5615//   Since by its nature we may be coming from some other function to get
5616//   here, and we're using the stack frame for the containing function to
5617//   save/restore registers, we can't keep anything live in regs across
5618//   the eh_sjlj_setjmp(), else it will almost certainly have been tromped upon
5619//   when we get here from a longjmp(). We force everything out of registers
5620//   except for our own input by listing the relevant registers in Defs. By
5621//   doing so, we also cause the prologue/epilogue code to actively preserve
5622//   all of the callee-saved resgisters, which is exactly what we want.
5623//   A constant value is passed in $val, and we use the location as a scratch.
5624//
5625// These are pseudo-instructions and are lowered to individual MC-insts, so
5626// no encoding information is necessary.
5627let Defs =
5628  [ R0,  R1,  R2,  R3,  R4,  R5,  R6,  R7,  R8,  R9,  R10, R11, R12, LR, CPSR,
5629    Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15 ],
5630  hasSideEffects = 1, isBarrier = 1, usesCustomInserter = 1 in {
5631  def Int_eh_sjlj_setjmp : PseudoInst<(outs), (ins GPR:$src, GPR:$val),
5632                               NoItinerary,
5633                         [(set R0, (ARMeh_sjlj_setjmp GPR:$src, GPR:$val))]>,
5634                           Requires<[IsARM, HasVFP2]>;
5635}
5636
5637let Defs =
5638  [ R0,  R1,  R2,  R3,  R4,  R5,  R6,  R7,  R8,  R9,  R10, R11, R12, LR, CPSR ],
5639  hasSideEffects = 1, isBarrier = 1, usesCustomInserter = 1 in {
5640  def Int_eh_sjlj_setjmp_nofp : PseudoInst<(outs), (ins GPR:$src, GPR:$val),
5641                                   NoItinerary,
5642                         [(set R0, (ARMeh_sjlj_setjmp GPR:$src, GPR:$val))]>,
5643                                Requires<[IsARM, NoVFP]>;
5644}
5645
5646// FIXME: Non-IOS version(s)
5647let isBarrier = 1, hasSideEffects = 1, isTerminator = 1,
5648    Defs = [ R7, LR, SP ] in {
5649def Int_eh_sjlj_longjmp : PseudoInst<(outs), (ins GPR:$src, GPR:$scratch),
5650                             NoItinerary,
5651                         [(ARMeh_sjlj_longjmp GPR:$src, GPR:$scratch)]>,
5652                                Requires<[IsARM]>;
5653}
5654
5655let isBarrier = 1, hasSideEffects = 1, usesCustomInserter = 1 in
5656def Int_eh_sjlj_setup_dispatch : PseudoInst<(outs), (ins), NoItinerary,
5657            [(ARMeh_sjlj_setup_dispatch)]>;
5658
5659// eh.sjlj.dispatchsetup pseudo-instruction.
5660// This pseudo is used for both ARM and Thumb. Any differences are handled when
5661// the pseudo is expanded (which happens before any passes that need the
5662// instruction size).
5663let isBarrier = 1 in
5664def Int_eh_sjlj_dispatchsetup : PseudoInst<(outs), (ins), NoItinerary, []>;
5665
5666
5667//===----------------------------------------------------------------------===//
5668// Non-Instruction Patterns
5669//
5670
5671// ARMv4 indirect branch using (MOVr PC, dst)
5672let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in
5673  def MOVPCRX : ARMPseudoExpand<(outs), (ins GPR:$dst),
5674                    4, IIC_Br, [(brind GPR:$dst)],
5675                    (MOVr PC, GPR:$dst, (ops 14, zero_reg), zero_reg)>,
5676                  Requires<[IsARM, NoV4T]>, Sched<[WriteBr]>;
5677
5678let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [SP] in
5679  def TAILJMPr4 : ARMPseudoExpand<(outs), (ins GPR:$dst),
5680                    4, IIC_Br, [],
5681                    (MOVr PC, GPR:$dst, (ops 14, zero_reg), zero_reg)>,
5682                  Requires<[IsARM, NoV4T]>, Sched<[WriteBr]>;
5683
5684// Large immediate handling.
5685
5686// 32-bit immediate using two piece mod_imms or movw + movt.
5687// This is a single pseudo instruction, the benefit is that it can be remat'd
5688// as a single unit instead of having to handle reg inputs.
5689// FIXME: Remove this when we can do generalized remat.
5690let isReMaterializable = 1, isMoveImm = 1 in
5691def MOVi32imm : PseudoInst<(outs GPR:$dst), (ins i32imm:$src), IIC_iMOVix2,
5692                           [(set GPR:$dst, (arm_i32imm:$src))]>,
5693                           Requires<[IsARM]>;
5694
5695def LDRLIT_ga_abs : PseudoInst<(outs GPR:$dst), (ins i32imm:$src), IIC_iLoad_i,
5696                               [(set GPR:$dst, (ARMWrapper tglobaladdr:$src))]>,
5697                    Requires<[IsARM, DontUseMovt]>;
5698
5699// Pseudo instruction that combines movw + movt + add pc (if PIC).
5700// It also makes it possible to rematerialize the instructions.
5701// FIXME: Remove this when we can do generalized remat and when machine licm
5702// can properly the instructions.
5703let isReMaterializable = 1 in {
5704def MOV_ga_pcrel : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr),
5705                              IIC_iMOVix2addpc,
5706                        [(set GPR:$dst, (ARMWrapperPIC tglobaladdr:$addr))]>,
5707                        Requires<[IsARM, UseMovtInPic]>;
5708
5709def LDRLIT_ga_pcrel : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr),
5710                                 IIC_iLoadiALU,
5711                                 [(set GPR:$dst,
5712                                       (ARMWrapperPIC tglobaladdr:$addr))]>,
5713                      Requires<[IsARM, DontUseMovtInPic]>;
5714
5715let AddedComplexity = 10 in
5716def LDRLIT_ga_pcrel_ldr : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr),
5717                              NoItinerary,
5718                              [(set GPR:$dst,
5719                                    (load (ARMWrapperPIC tglobaladdr:$addr)))]>,
5720                          Requires<[IsARM, DontUseMovtInPic]>;
5721
5722let AddedComplexity = 10 in
5723def MOV_ga_pcrel_ldr : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr),
5724                                IIC_iMOVix2ld,
5725                    [(set GPR:$dst, (load (ARMWrapperPIC tglobaladdr:$addr)))]>,
5726                    Requires<[IsARM, UseMovtInPic]>;
5727} // isReMaterializable
5728
5729// The many different faces of TLS access.
5730def : ARMPat<(ARMWrapper tglobaltlsaddr :$dst),
5731             (MOVi32imm tglobaltlsaddr :$dst)>,
5732      Requires<[IsARM, UseMovt]>;
5733
5734def : Pat<(ARMWrapper tglobaltlsaddr:$src),
5735          (LDRLIT_ga_abs tglobaltlsaddr:$src)>,
5736      Requires<[IsARM, DontUseMovt]>;
5737
5738def : Pat<(ARMWrapperPIC tglobaltlsaddr:$addr),
5739          (MOV_ga_pcrel tglobaltlsaddr:$addr)>, Requires<[IsARM, UseMovtInPic]>;
5740
5741def : Pat<(ARMWrapperPIC tglobaltlsaddr:$addr),
5742          (LDRLIT_ga_pcrel tglobaltlsaddr:$addr)>,
5743      Requires<[IsARM, DontUseMovtInPic]>;
5744let AddedComplexity = 10 in
5745def : Pat<(load (ARMWrapperPIC tglobaltlsaddr:$addr)),
5746          (MOV_ga_pcrel_ldr tglobaltlsaddr:$addr)>,
5747      Requires<[IsARM, UseMovtInPic]>;
5748
5749
5750// ConstantPool, GlobalAddress, and JumpTable
5751def : ARMPat<(ARMWrapper  tconstpool  :$dst), (LEApcrel tconstpool  :$dst)>;
5752def : ARMPat<(ARMWrapper  tglobaladdr :$dst), (MOVi32imm tglobaladdr :$dst)>,
5753            Requires<[IsARM, UseMovt]>;
5754def : ARMPat<(ARMWrapper texternalsym :$dst), (MOVi32imm texternalsym :$dst)>,
5755            Requires<[IsARM, UseMovt]>;
5756def : ARMPat<(ARMWrapperJT tjumptable:$dst),
5757             (LEApcrelJT tjumptable:$dst)>;
5758
5759// TODO: add,sub,and, 3-instr forms?
5760
5761// Tail calls. These patterns also apply to Thumb mode.
5762def : Pat<(ARMtcret tcGPR:$dst), (TCRETURNri tcGPR:$dst)>;
5763def : Pat<(ARMtcret (i32 tglobaladdr:$dst)), (TCRETURNdi texternalsym:$dst)>;
5764def : Pat<(ARMtcret (i32 texternalsym:$dst)), (TCRETURNdi texternalsym:$dst)>;
5765
5766// Direct calls
5767def : ARMPat<(ARMcall texternalsym:$func), (BL texternalsym:$func)>;
5768def : ARMPat<(ARMcall_nolink texternalsym:$func),
5769             (BMOVPCB_CALL texternalsym:$func)>;
5770
5771// zextload i1 -> zextload i8
5772def : ARMPat<(zextloadi1 addrmode_imm12:$addr), (LDRBi12 addrmode_imm12:$addr)>;
5773def : ARMPat<(zextloadi1 ldst_so_reg:$addr),    (LDRBrs ldst_so_reg:$addr)>;
5774
5775// extload -> zextload
5776def : ARMPat<(extloadi1 addrmode_imm12:$addr),  (LDRBi12 addrmode_imm12:$addr)>;
5777def : ARMPat<(extloadi1 ldst_so_reg:$addr),     (LDRBrs ldst_so_reg:$addr)>;
5778def : ARMPat<(extloadi8 addrmode_imm12:$addr),  (LDRBi12 addrmode_imm12:$addr)>;
5779def : ARMPat<(extloadi8 ldst_so_reg:$addr),     (LDRBrs ldst_so_reg:$addr)>;
5780
5781def : ARMPat<(extloadi16 addrmode3:$addr),  (LDRH addrmode3:$addr)>;
5782
5783def : ARMPat<(extloadi8  addrmodepc:$addr), (PICLDRB addrmodepc:$addr)>;
5784def : ARMPat<(extloadi16 addrmodepc:$addr), (PICLDRH addrmodepc:$addr)>;
5785
5786// smul* and smla*
5787def : ARMV5TEPat<(mul sext_16_node:$a, sext_16_node:$b),
5788                 (SMULBB GPR:$a, GPR:$b)>;
5789def : ARMV5TEPat<(mul sext_16_node:$a, (sext_bottom_16 GPR:$b)),
5790                 (SMULBB GPR:$a, GPR:$b)>;
5791def : ARMV5TEPat<(mul sext_16_node:$a, (sext_top_16 GPR:$b)),
5792                 (SMULBT GPR:$a, GPR:$b)>;
5793def : ARMV5TEPat<(mul (sext_top_16 GPR:$a), sext_16_node:$b),
5794                 (SMULTB GPR:$a, GPR:$b)>;
5795def : ARMV5MOPat<(add GPR:$acc, (mul sext_16_node:$a, sext_16_node:$b)),
5796                 (SMLABB GPR:$a, GPR:$b, GPR:$acc)>;
5797def : ARMV5MOPat<(add GPR:$acc, (mul sext_16_node:$a, (sext_bottom_16 GPR:$b))),
5798                 (SMLABB GPR:$a, GPR:$b, GPR:$acc)>;
5799def : ARMV5MOPat<(add GPR:$acc, (mul sext_16_node:$a, (sext_top_16 GPR:$b))),
5800                 (SMLABT GPR:$a, GPR:$b, GPR:$acc)>;
5801def : ARMV5MOPat<(add GPR:$acc, (mul (sext_top_16 GPR:$a), sext_16_node:$b)),
5802                 (SMLATB GPR:$a, GPR:$b, GPR:$acc)>;
5803
5804def : ARMV5TEPat<(int_arm_smulbb GPR:$a, GPR:$b),
5805                 (SMULBB GPR:$a, GPR:$b)>;
5806def : ARMV5TEPat<(int_arm_smulbt GPR:$a, GPR:$b),
5807                 (SMULBT GPR:$a, GPR:$b)>;
5808def : ARMV5TEPat<(int_arm_smultb GPR:$a, GPR:$b),
5809                 (SMULTB GPR:$a, GPR:$b)>;
5810def : ARMV5TEPat<(int_arm_smultt GPR:$a, GPR:$b),
5811                 (SMULTT GPR:$a, GPR:$b)>;
5812def : ARMV5TEPat<(int_arm_smulwb GPR:$a, GPR:$b),
5813                 (SMULWB GPR:$a, GPR:$b)>;
5814def : ARMV5TEPat<(int_arm_smulwt GPR:$a, GPR:$b),
5815                 (SMULWT GPR:$a, GPR:$b)>;
5816
5817def : ARMV5TEPat<(int_arm_smlabb GPR:$a, GPR:$b, GPR:$acc),
5818                 (SMLABB GPR:$a, GPR:$b, GPR:$acc)>;
5819def : ARMV5TEPat<(int_arm_smlabt GPR:$a, GPR:$b, GPR:$acc),
5820                 (SMLABT GPR:$a, GPR:$b, GPR:$acc)>;
5821def : ARMV5TEPat<(int_arm_smlatb GPR:$a, GPR:$b, GPR:$acc),
5822                 (SMLATB GPR:$a, GPR:$b, GPR:$acc)>;
5823def : ARMV5TEPat<(int_arm_smlatt GPR:$a, GPR:$b, GPR:$acc),
5824                 (SMLATT GPR:$a, GPR:$b, GPR:$acc)>;
5825def : ARMV5TEPat<(int_arm_smlawb GPR:$a, GPR:$b, GPR:$acc),
5826                 (SMLAWB GPR:$a, GPR:$b, GPR:$acc)>;
5827def : ARMV5TEPat<(int_arm_smlawt GPR:$a, GPR:$b, GPR:$acc),
5828                 (SMLAWT GPR:$a, GPR:$b, GPR:$acc)>;
5829
5830// Pre-v7 uses MCR for synchronization barriers.
5831def : ARMPat<(ARMMemBarrierMCR GPR:$zero), (MCR 15, 0, GPR:$zero, 7, 10, 5)>,
5832         Requires<[IsARM, HasV6]>;
5833
5834// SXT/UXT with no rotate
5835let AddedComplexity = 16 in {
5836def : ARMV6Pat<(and GPR:$Src, 0x000000FF), (UXTB GPR:$Src, 0)>;
5837def : ARMV6Pat<(and GPR:$Src, 0x0000FFFF), (UXTH GPR:$Src, 0)>;
5838def : ARMV6Pat<(and GPR:$Src, 0x00FF00FF), (UXTB16 GPR:$Src, 0)>;
5839def : ARMV6Pat<(add GPR:$Rn, (and GPR:$Rm, 0x00FF)),
5840               (UXTAB GPR:$Rn, GPR:$Rm, 0)>;
5841def : ARMV6Pat<(add GPR:$Rn, (and GPR:$Rm, 0xFFFF)),
5842               (UXTAH GPR:$Rn, GPR:$Rm, 0)>;
5843}
5844
5845def : ARMV6Pat<(sext_inreg GPR:$Src, i8),  (SXTB GPR:$Src, 0)>;
5846def : ARMV6Pat<(sext_inreg GPR:$Src, i16), (SXTH GPR:$Src, 0)>;
5847
5848def : ARMV6Pat<(add GPR:$Rn, (sext_inreg GPRnopc:$Rm, i8)),
5849               (SXTAB GPR:$Rn, GPRnopc:$Rm, 0)>;
5850def : ARMV6Pat<(add GPR:$Rn, (sext_inreg GPRnopc:$Rm, i16)),
5851               (SXTAH GPR:$Rn, GPRnopc:$Rm, 0)>;
5852
5853// Atomic load/store patterns
5854def : ARMPat<(atomic_load_8 ldst_so_reg:$src),
5855             (LDRBrs ldst_so_reg:$src)>;
5856def : ARMPat<(atomic_load_8 addrmode_imm12:$src),
5857             (LDRBi12 addrmode_imm12:$src)>;
5858def : ARMPat<(atomic_load_16 addrmode3:$src),
5859             (LDRH addrmode3:$src)>;
5860def : ARMPat<(atomic_load_32 ldst_so_reg:$src),
5861             (LDRrs ldst_so_reg:$src)>;
5862def : ARMPat<(atomic_load_32 addrmode_imm12:$src),
5863             (LDRi12 addrmode_imm12:$src)>;
5864def : ARMPat<(atomic_store_8 ldst_so_reg:$ptr, GPR:$val),
5865             (STRBrs GPR:$val, ldst_so_reg:$ptr)>;
5866def : ARMPat<(atomic_store_8 addrmode_imm12:$ptr, GPR:$val),
5867             (STRBi12 GPR:$val, addrmode_imm12:$ptr)>;
5868def : ARMPat<(atomic_store_16 addrmode3:$ptr, GPR:$val),
5869             (STRH GPR:$val, addrmode3:$ptr)>;
5870def : ARMPat<(atomic_store_32 ldst_so_reg:$ptr, GPR:$val),
5871             (STRrs GPR:$val, ldst_so_reg:$ptr)>;
5872def : ARMPat<(atomic_store_32 addrmode_imm12:$ptr, GPR:$val),
5873             (STRi12 GPR:$val, addrmode_imm12:$ptr)>;
5874
5875
5876//===----------------------------------------------------------------------===//
5877// Thumb Support
5878//
5879
5880include "ARMInstrThumb.td"
5881
5882//===----------------------------------------------------------------------===//
5883// Thumb2 Support
5884//
5885
5886include "ARMInstrThumb2.td"
5887
5888//===----------------------------------------------------------------------===//
5889// Floating Point Support
5890//
5891
5892include "ARMInstrVFP.td"
5893
5894//===----------------------------------------------------------------------===//
5895// Advanced SIMD (NEON) Support
5896//
5897
5898include "ARMInstrNEON.td"
5899
5900//===----------------------------------------------------------------------===//
5901// MVE Support
5902//
5903
5904include "ARMInstrMVE.td"
5905
5906//===----------------------------------------------------------------------===//
5907// Assembler aliases
5908//
5909
5910// Memory barriers
5911def : InstAlias<"dmb", (DMB 0xf), 0>, Requires<[IsARM, HasDB]>;
5912def : InstAlias<"dsb", (DSB 0xf), 0>, Requires<[IsARM, HasDB]>;
5913def : InstAlias<"ssbb", (DSB 0x0), 1>, Requires<[IsARM, HasDB]>;
5914def : InstAlias<"pssbb", (DSB 0x4), 1>, Requires<[IsARM, HasDB]>;
5915def : InstAlias<"isb", (ISB 0xf), 0>, Requires<[IsARM, HasDB]>;
5916// Armv8-R 'Data Full Barrier'
5917def : InstAlias<"dfb", (DSB 0xc), 1>, Requires<[IsARM, HasDFB]>;
5918
5919// System instructions
5920def : MnemonicAlias<"swi", "svc">;
5921
5922// Load / Store Multiple
5923def : MnemonicAlias<"ldmfd", "ldm">;
5924def : MnemonicAlias<"ldmia", "ldm">;
5925def : MnemonicAlias<"ldmea", "ldmdb">;
5926def : MnemonicAlias<"stmfd", "stmdb">;
5927def : MnemonicAlias<"stmia", "stm">;
5928def : MnemonicAlias<"stmea", "stm">;
5929
5930// PKHBT/PKHTB with default shift amount. PKHTB is equivalent to PKHBT with the
5931// input operands swapped when the shift amount is zero (i.e., unspecified).
5932def : InstAlias<"pkhbt${p} $Rd, $Rn, $Rm",
5933                (PKHBT GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, 0, pred:$p), 0>,
5934        Requires<[IsARM, HasV6]>;
5935def : InstAlias<"pkhtb${p} $Rd, $Rn, $Rm",
5936                (PKHBT GPRnopc:$Rd, GPRnopc:$Rm, GPRnopc:$Rn, 0, pred:$p), 0>,
5937        Requires<[IsARM, HasV6]>;
5938
5939// PUSH/POP aliases for STM/LDM
5940def : ARMInstAlias<"push${p} $regs", (STMDB_UPD SP, pred:$p, reglist:$regs)>;
5941def : ARMInstAlias<"pop${p} $regs", (LDMIA_UPD SP, pred:$p, reglist:$regs)>;
5942
5943// SSAT/USAT optional shift operand.
5944def : ARMInstAlias<"ssat${p} $Rd, $sat_imm, $Rn",
5945                (SSAT GPRnopc:$Rd, imm1_32:$sat_imm, GPRnopc:$Rn, 0, pred:$p)>;
5946def : ARMInstAlias<"usat${p} $Rd, $sat_imm, $Rn",
5947                (USAT GPRnopc:$Rd, imm0_31:$sat_imm, GPRnopc:$Rn, 0, pred:$p)>;
5948
5949
5950// Extend instruction optional rotate operand.
5951def : ARMInstAlias<"sxtab${p} $Rd, $Rn, $Rm",
5952                (SXTAB GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
5953def : ARMInstAlias<"sxtah${p} $Rd, $Rn, $Rm",
5954                (SXTAH GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
5955def : ARMInstAlias<"sxtab16${p} $Rd, $Rn, $Rm",
5956                (SXTAB16 GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
5957def : ARMInstAlias<"sxtb${p} $Rd, $Rm",
5958                (SXTB GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
5959def : ARMInstAlias<"sxtb16${p} $Rd, $Rm",
5960                (SXTB16 GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
5961def : ARMInstAlias<"sxth${p} $Rd, $Rm",
5962                (SXTH GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
5963
5964def : ARMInstAlias<"uxtab${p} $Rd, $Rn, $Rm",
5965                (UXTAB GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
5966def : ARMInstAlias<"uxtah${p} $Rd, $Rn, $Rm",
5967                (UXTAH GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
5968def : ARMInstAlias<"uxtab16${p} $Rd, $Rn, $Rm",
5969                (UXTAB16 GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
5970def : ARMInstAlias<"uxtb${p} $Rd, $Rm",
5971                (UXTB GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
5972def : ARMInstAlias<"uxtb16${p} $Rd, $Rm",
5973                (UXTB16 GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
5974def : ARMInstAlias<"uxth${p} $Rd, $Rm",
5975                (UXTH GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
5976
5977
5978// RFE aliases
5979def : MnemonicAlias<"rfefa", "rfeda">;
5980def : MnemonicAlias<"rfeea", "rfedb">;
5981def : MnemonicAlias<"rfefd", "rfeia">;
5982def : MnemonicAlias<"rfeed", "rfeib">;
5983def : MnemonicAlias<"rfe", "rfeia">;
5984
5985// SRS aliases
5986def : MnemonicAlias<"srsfa", "srsib">;
5987def : MnemonicAlias<"srsea", "srsia">;
5988def : MnemonicAlias<"srsfd", "srsdb">;
5989def : MnemonicAlias<"srsed", "srsda">;
5990def : MnemonicAlias<"srs", "srsia">;
5991
5992// QSAX == QSUBADDX
5993def : MnemonicAlias<"qsubaddx", "qsax">;
5994// SASX == SADDSUBX
5995def : MnemonicAlias<"saddsubx", "sasx">;
5996// SHASX == SHADDSUBX
5997def : MnemonicAlias<"shaddsubx", "shasx">;
5998// SHSAX == SHSUBADDX
5999def : MnemonicAlias<"shsubaddx", "shsax">;
6000// SSAX == SSUBADDX
6001def : MnemonicAlias<"ssubaddx", "ssax">;
6002// UASX == UADDSUBX
6003def : MnemonicAlias<"uaddsubx", "uasx">;
6004// UHASX == UHADDSUBX
6005def : MnemonicAlias<"uhaddsubx", "uhasx">;
6006// UHSAX == UHSUBADDX
6007def : MnemonicAlias<"uhsubaddx", "uhsax">;
6008// UQASX == UQADDSUBX
6009def : MnemonicAlias<"uqaddsubx", "uqasx">;
6010// UQSAX == UQSUBADDX
6011def : MnemonicAlias<"uqsubaddx", "uqsax">;
6012// USAX == USUBADDX
6013def : MnemonicAlias<"usubaddx", "usax">;
6014
6015// "mov Rd, mod_imm_not" can be handled via "mvn" in assembly, just like
6016// for isel.
6017def : ARMInstSubst<"mov${s}${p} $Rd, $imm",
6018                   (MVNi rGPR:$Rd, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
6019def : ARMInstSubst<"mvn${s}${p} $Rd, $imm",
6020                   (MOVi rGPR:$Rd, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
6021// Same for AND <--> BIC
6022def : ARMInstSubst<"bic${s}${p} $Rd, $Rn, $imm",
6023                   (ANDri GPR:$Rd, GPR:$Rn, mod_imm_not:$imm,
6024                          pred:$p, cc_out:$s)>;
6025def : ARMInstSubst<"bic${s}${p} $Rdn, $imm",
6026                   (ANDri GPR:$Rdn, GPR:$Rdn, mod_imm_not:$imm,
6027                          pred:$p, cc_out:$s)>;
6028def : ARMInstSubst<"and${s}${p} $Rd, $Rn, $imm",
6029                   (BICri GPR:$Rd, GPR:$Rn, mod_imm_not:$imm,
6030                          pred:$p, cc_out:$s)>;
6031def : ARMInstSubst<"and${s}${p} $Rdn, $imm",
6032                   (BICri GPR:$Rdn, GPR:$Rdn, mod_imm_not:$imm,
6033                          pred:$p, cc_out:$s)>;
6034
6035// Likewise, "add Rd, mod_imm_neg" -> sub
6036def : ARMInstSubst<"add${s}${p} $Rd, $Rn, $imm",
6037                 (SUBri GPR:$Rd, GPR:$Rn, mod_imm_neg:$imm, pred:$p, cc_out:$s)>;
6038def : ARMInstSubst<"add${s}${p} $Rd, $imm",
6039                 (SUBri GPR:$Rd, GPR:$Rd, mod_imm_neg:$imm, pred:$p, cc_out:$s)>;
6040// Likewise, "sub Rd, mod_imm_neg" -> add
6041def : ARMInstSubst<"sub${s}${p} $Rd, $Rn, $imm",
6042                 (ADDri GPR:$Rd, GPR:$Rn, mod_imm_neg:$imm, pred:$p, cc_out:$s)>;
6043def : ARMInstSubst<"sub${s}${p} $Rd, $imm",
6044                 (ADDri GPR:$Rd, GPR:$Rd, mod_imm_neg:$imm, pred:$p, cc_out:$s)>;
6045
6046
6047def : ARMInstSubst<"adc${s}${p} $Rd, $Rn, $imm",
6048                 (SBCri GPR:$Rd, GPR:$Rn, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
6049def : ARMInstSubst<"adc${s}${p} $Rdn, $imm",
6050                 (SBCri GPR:$Rdn, GPR:$Rdn, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
6051def : ARMInstSubst<"sbc${s}${p} $Rd, $Rn, $imm",
6052                 (ADCri GPR:$Rd, GPR:$Rn, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
6053def : ARMInstSubst<"sbc${s}${p} $Rdn, $imm",
6054                 (ADCri GPR:$Rdn, GPR:$Rdn, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
6055
6056// Same for CMP <--> CMN via mod_imm_neg
6057def : ARMInstSubst<"cmp${p} $Rd, $imm",
6058                   (CMNri rGPR:$Rd, mod_imm_neg:$imm, pred:$p)>;
6059def : ARMInstSubst<"cmn${p} $Rd, $imm",
6060                   (CMPri rGPR:$Rd, mod_imm_neg:$imm, pred:$p)>;
6061
6062// The shifter forms of the MOV instruction are aliased to the ASR, LSL,
6063// LSR, ROR, and RRX instructions.
6064// FIXME: We need C++ parser hooks to map the alias to the MOV
6065//        encoding. It seems we should be able to do that sort of thing
6066//        in tblgen, but it could get ugly.
6067let TwoOperandAliasConstraint = "$Rm = $Rd" in {
6068def ASRi : ARMAsmPseudo<"asr${s}${p} $Rd, $Rm, $imm",
6069                        (ins GPR:$Rd, GPR:$Rm, imm0_32:$imm, pred:$p,
6070                             cc_out:$s)>;
6071def LSRi : ARMAsmPseudo<"lsr${s}${p} $Rd, $Rm, $imm",
6072                        (ins GPR:$Rd, GPR:$Rm, imm0_32:$imm, pred:$p,
6073                             cc_out:$s)>;
6074def LSLi : ARMAsmPseudo<"lsl${s}${p} $Rd, $Rm, $imm",
6075                        (ins GPR:$Rd, GPR:$Rm, imm0_31:$imm, pred:$p,
6076                             cc_out:$s)>;
6077def RORi : ARMAsmPseudo<"ror${s}${p} $Rd, $Rm, $imm",
6078                        (ins GPR:$Rd, GPR:$Rm, imm0_31:$imm, pred:$p,
6079                             cc_out:$s)>;
6080}
6081def RRXi : ARMAsmPseudo<"rrx${s}${p} $Rd, $Rm",
6082                        (ins GPR:$Rd, GPR:$Rm, pred:$p, cc_out:$s)>;
6083let TwoOperandAliasConstraint = "$Rn = $Rd" in {
6084def ASRr : ARMAsmPseudo<"asr${s}${p} $Rd, $Rn, $Rm",
6085                        (ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p,
6086                             cc_out:$s)>;
6087def LSRr : ARMAsmPseudo<"lsr${s}${p} $Rd, $Rn, $Rm",
6088                        (ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p,
6089                             cc_out:$s)>;
6090def LSLr : ARMAsmPseudo<"lsl${s}${p} $Rd, $Rn, $Rm",
6091                        (ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p,
6092                             cc_out:$s)>;
6093def RORr : ARMAsmPseudo<"ror${s}${p} $Rd, $Rn, $Rm",
6094                        (ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p,
6095                             cc_out:$s)>;
6096}
6097
6098// "neg" is and alias for "rsb rd, rn, #0"
6099def : ARMInstAlias<"neg${s}${p} $Rd, $Rm",
6100                   (RSBri GPR:$Rd, GPR:$Rm, 0, pred:$p, cc_out:$s)>;
6101
6102// Pre-v6, 'mov r0, r0' was used as a NOP encoding.
6103def : InstAlias<"nop${p}", (MOVr R0, R0, pred:$p, zero_reg)>,
6104         Requires<[IsARM, NoV6]>;
6105
6106// MUL/UMLAL/SMLAL/UMULL/SMULL are available on all arches, but
6107// the instruction definitions need difference constraints pre-v6.
6108// Use these aliases for the assembly parsing on pre-v6.
6109def : InstAlias<"mul${s}${p} $Rd, $Rn, $Rm",
6110            (MUL GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p, cc_out:$s), 0>,
6111         Requires<[IsARM, NoV6]>;
6112def : InstAlias<"mla${s}${p} $Rd, $Rn, $Rm, $Ra",
6113            (MLA GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra,
6114             pred:$p, cc_out:$s), 0>,
6115         Requires<[IsARM, NoV6]>;
6116def : InstAlias<"smlal${s}${p} $RdLo, $RdHi, $Rn, $Rm",
6117            (SMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 0>,
6118         Requires<[IsARM, NoV6]>;
6119def : InstAlias<"umlal${s}${p} $RdLo, $RdHi, $Rn, $Rm",
6120            (UMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 0>,
6121         Requires<[IsARM, NoV6]>;
6122def : InstAlias<"smull${s}${p} $RdLo, $RdHi, $Rn, $Rm",
6123            (SMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 0>,
6124         Requires<[IsARM, NoV6]>;
6125def : InstAlias<"umull${s}${p} $RdLo, $RdHi, $Rn, $Rm",
6126            (UMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 0>,
6127         Requires<[IsARM, NoV6]>;
6128
6129// 'it' blocks in ARM mode just validate the predicates. The IT itself
6130// is discarded.
6131def ITasm : ARMAsmPseudo<"it$mask $cc", (ins it_pred:$cc, it_mask:$mask)>,
6132         ComplexDeprecationPredicate<"IT">;
6133
6134let mayLoad = 1, mayStore =1, hasSideEffects = 1 in
6135def SPACE : PseudoInst<(outs GPR:$Rd), (ins i32imm:$size, GPR:$Rn),
6136                       NoItinerary,
6137                       [(set GPR:$Rd, (int_arm_space imm:$size, GPR:$Rn))]>;
6138
6139//===----------------------------------
6140// Atomic cmpxchg for -O0
6141//===----------------------------------
6142
6143// The fast register allocator used during -O0 inserts spills to cover any VRegs
6144// live across basic block boundaries. When this happens between an LDXR and an
6145// STXR it can clear the exclusive monitor, causing all cmpxchg attempts to
6146// fail.
6147
6148// Unfortunately, this means we have to have an alternative (expanded
6149// post-regalloc) path for -O0 compilations. Fortunately this path can be
6150// significantly more naive than the standard expansion: we conservatively
6151// assume seq_cst, strong cmpxchg and omit clrex on failure.
6152
6153let Constraints = "@earlyclobber $Rd,@earlyclobber $temp",
6154    mayLoad = 1, mayStore = 1 in {
6155def CMP_SWAP_8 : PseudoInst<(outs GPR:$Rd, GPR:$temp),
6156                            (ins GPR:$addr, GPR:$desired, GPR:$new),
6157                            NoItinerary, []>, Sched<[]>;
6158
6159def CMP_SWAP_16 : PseudoInst<(outs GPR:$Rd, GPR:$temp),
6160                             (ins GPR:$addr, GPR:$desired, GPR:$new),
6161                             NoItinerary, []>, Sched<[]>;
6162
6163def CMP_SWAP_32 : PseudoInst<(outs GPR:$Rd, GPR:$temp),
6164                             (ins GPR:$addr, GPR:$desired, GPR:$new),
6165                             NoItinerary, []>, Sched<[]>;
6166
6167def CMP_SWAP_64 : PseudoInst<(outs GPRPair:$Rd, GPR:$temp),
6168                             (ins GPR:$addr, GPRPair:$desired, GPRPair:$new),
6169                             NoItinerary, []>, Sched<[]>;
6170}
6171
6172def CompilerBarrier : PseudoInst<(outs), (ins i32imm:$ordering), NoItinerary,
6173                                 [(atomic_fence imm:$ordering, 0)]> {
6174  let hasSideEffects = 1;
6175  let Size = 0;
6176  let AsmString = "@ COMPILER BARRIER";
6177}
6178