1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Expr class and subclasses.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/Expr.h"
14 #include "clang/AST/APValue.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/EvaluatedExprVisitor.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/Mangle.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/AST/StmtVisitor.h"
25 #include "clang/Basic/Builtins.h"
26 #include "clang/Basic/CharInfo.h"
27 #include "clang/Basic/SourceManager.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Lex/Lexer.h"
30 #include "clang/Lex/LiteralSupport.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include <algorithm>
34 #include <cstring>
35 using namespace clang;
36 
getBestDynamicClassTypeExpr() const37 const Expr *Expr::getBestDynamicClassTypeExpr() const {
38   const Expr *E = this;
39   while (true) {
40     E = E->ignoreParenBaseCasts();
41 
42     // Follow the RHS of a comma operator.
43     if (auto *BO = dyn_cast<BinaryOperator>(E)) {
44       if (BO->getOpcode() == BO_Comma) {
45         E = BO->getRHS();
46         continue;
47       }
48     }
49 
50     // Step into initializer for materialized temporaries.
51     if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
52       E = MTE->GetTemporaryExpr();
53       continue;
54     }
55 
56     break;
57   }
58 
59   return E;
60 }
61 
getBestDynamicClassType() const62 const CXXRecordDecl *Expr::getBestDynamicClassType() const {
63   const Expr *E = getBestDynamicClassTypeExpr();
64   QualType DerivedType = E->getType();
65   if (const PointerType *PTy = DerivedType->getAs<PointerType>())
66     DerivedType = PTy->getPointeeType();
67 
68   if (DerivedType->isDependentType())
69     return nullptr;
70 
71   const RecordType *Ty = DerivedType->castAs<RecordType>();
72   Decl *D = Ty->getDecl();
73   return cast<CXXRecordDecl>(D);
74 }
75 
skipRValueSubobjectAdjustments(SmallVectorImpl<const Expr * > & CommaLHSs,SmallVectorImpl<SubobjectAdjustment> & Adjustments) const76 const Expr *Expr::skipRValueSubobjectAdjustments(
77     SmallVectorImpl<const Expr *> &CommaLHSs,
78     SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
79   const Expr *E = this;
80   while (true) {
81     E = E->IgnoreParens();
82 
83     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
84       if ((CE->getCastKind() == CK_DerivedToBase ||
85            CE->getCastKind() == CK_UncheckedDerivedToBase) &&
86           E->getType()->isRecordType()) {
87         E = CE->getSubExpr();
88         CXXRecordDecl *Derived
89           = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
90         Adjustments.push_back(SubobjectAdjustment(CE, Derived));
91         continue;
92       }
93 
94       if (CE->getCastKind() == CK_NoOp) {
95         E = CE->getSubExpr();
96         continue;
97       }
98     } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
99       if (!ME->isArrow()) {
100         assert(ME->getBase()->getType()->isRecordType());
101         if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
102           if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
103             E = ME->getBase();
104             Adjustments.push_back(SubobjectAdjustment(Field));
105             continue;
106           }
107         }
108       }
109     } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
110       if (BO->getOpcode() == BO_PtrMemD) {
111         assert(BO->getRHS()->isRValue());
112         E = BO->getLHS();
113         const MemberPointerType *MPT =
114           BO->getRHS()->getType()->getAs<MemberPointerType>();
115         Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
116         continue;
117       } else if (BO->getOpcode() == BO_Comma) {
118         CommaLHSs.push_back(BO->getLHS());
119         E = BO->getRHS();
120         continue;
121       }
122     }
123 
124     // Nothing changed.
125     break;
126   }
127   return E;
128 }
129 
130 /// isKnownToHaveBooleanValue - Return true if this is an integer expression
131 /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
132 /// but also int expressions which are produced by things like comparisons in
133 /// C.
isKnownToHaveBooleanValue() const134 bool Expr::isKnownToHaveBooleanValue() const {
135   const Expr *E = IgnoreParens();
136 
137   // If this value has _Bool type, it is obvious 0/1.
138   if (E->getType()->isBooleanType()) return true;
139   // If this is a non-scalar-integer type, we don't care enough to try.
140   if (!E->getType()->isIntegralOrEnumerationType()) return false;
141 
142   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
143     switch (UO->getOpcode()) {
144     case UO_Plus:
145       return UO->getSubExpr()->isKnownToHaveBooleanValue();
146     case UO_LNot:
147       return true;
148     default:
149       return false;
150     }
151   }
152 
153   // Only look through implicit casts.  If the user writes
154   // '(int) (a && b)' treat it as an arbitrary int.
155   if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
156     return CE->getSubExpr()->isKnownToHaveBooleanValue();
157 
158   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
159     switch (BO->getOpcode()) {
160     default: return false;
161     case BO_LT:   // Relational operators.
162     case BO_GT:
163     case BO_LE:
164     case BO_GE:
165     case BO_EQ:   // Equality operators.
166     case BO_NE:
167     case BO_LAnd: // AND operator.
168     case BO_LOr:  // Logical OR operator.
169       return true;
170 
171     case BO_And:  // Bitwise AND operator.
172     case BO_Xor:  // Bitwise XOR operator.
173     case BO_Or:   // Bitwise OR operator.
174       // Handle things like (x==2)|(y==12).
175       return BO->getLHS()->isKnownToHaveBooleanValue() &&
176              BO->getRHS()->isKnownToHaveBooleanValue();
177 
178     case BO_Comma:
179     case BO_Assign:
180       return BO->getRHS()->isKnownToHaveBooleanValue();
181     }
182   }
183 
184   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
185     return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
186            CO->getFalseExpr()->isKnownToHaveBooleanValue();
187 
188   return false;
189 }
190 
191 // Amusing macro metaprogramming hack: check whether a class provides
192 // a more specific implementation of getExprLoc().
193 //
194 // See also Stmt.cpp:{getBeginLoc(),getEndLoc()}.
195 namespace {
196   /// This implementation is used when a class provides a custom
197   /// implementation of getExprLoc.
198   template <class E, class T>
getExprLocImpl(const Expr * expr,SourceLocation (T::* v)()const)199   SourceLocation getExprLocImpl(const Expr *expr,
200                                 SourceLocation (T::*v)() const) {
201     return static_cast<const E*>(expr)->getExprLoc();
202   }
203 
204   /// This implementation is used when a class doesn't provide
205   /// a custom implementation of getExprLoc.  Overload resolution
206   /// should pick it over the implementation above because it's
207   /// more specialized according to function template partial ordering.
208   template <class E>
getExprLocImpl(const Expr * expr,SourceLocation (Expr::* v)()const)209   SourceLocation getExprLocImpl(const Expr *expr,
210                                 SourceLocation (Expr::*v)() const) {
211     return static_cast<const E *>(expr)->getBeginLoc();
212   }
213 }
214 
getExprLoc() const215 SourceLocation Expr::getExprLoc() const {
216   switch (getStmtClass()) {
217   case Stmt::NoStmtClass: llvm_unreachable("statement without class");
218 #define ABSTRACT_STMT(type)
219 #define STMT(type, base) \
220   case Stmt::type##Class: break;
221 #define EXPR(type, base) \
222   case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
223 #include "clang/AST/StmtNodes.inc"
224   }
225   llvm_unreachable("unknown expression kind");
226 }
227 
228 //===----------------------------------------------------------------------===//
229 // Primary Expressions.
230 //===----------------------------------------------------------------------===//
231 
AssertResultStorageKind(ConstantExpr::ResultStorageKind Kind)232 static void AssertResultStorageKind(ConstantExpr::ResultStorageKind Kind) {
233   assert((Kind == ConstantExpr::RSK_APValue ||
234           Kind == ConstantExpr::RSK_Int64 || Kind == ConstantExpr::RSK_None) &&
235          "Invalid StorageKind Value");
236 }
237 
238 ConstantExpr::ResultStorageKind
getStorageKind(const APValue & Value)239 ConstantExpr::getStorageKind(const APValue &Value) {
240   switch (Value.getKind()) {
241   case APValue::None:
242   case APValue::Indeterminate:
243     return ConstantExpr::RSK_None;
244   case APValue::Int:
245     if (!Value.getInt().needsCleanup())
246       return ConstantExpr::RSK_Int64;
247     LLVM_FALLTHROUGH;
248   default:
249     return ConstantExpr::RSK_APValue;
250   }
251 }
252 
253 ConstantExpr::ResultStorageKind
getStorageKind(const Type * T,const ASTContext & Context)254 ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) {
255   if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64)
256     return ConstantExpr::RSK_Int64;
257   return ConstantExpr::RSK_APValue;
258 }
259 
DefaultInit(ResultStorageKind StorageKind)260 void ConstantExpr::DefaultInit(ResultStorageKind StorageKind) {
261   ConstantExprBits.ResultKind = StorageKind;
262   ConstantExprBits.APValueKind = APValue::None;
263   ConstantExprBits.HasCleanup = false;
264   if (StorageKind == ConstantExpr::RSK_APValue)
265     ::new (getTrailingObjects<APValue>()) APValue();
266 }
267 
ConstantExpr(Expr * subexpr,ResultStorageKind StorageKind)268 ConstantExpr::ConstantExpr(Expr *subexpr, ResultStorageKind StorageKind)
269     : FullExpr(ConstantExprClass, subexpr) {
270   DefaultInit(StorageKind);
271 }
272 
Create(const ASTContext & Context,Expr * E,ResultStorageKind StorageKind)273 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
274                                    ResultStorageKind StorageKind) {
275   assert(!isa<ConstantExpr>(E));
276   AssertResultStorageKind(StorageKind);
277   unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
278       StorageKind == ConstantExpr::RSK_APValue,
279       StorageKind == ConstantExpr::RSK_Int64);
280   void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
281   ConstantExpr *Self = new (Mem) ConstantExpr(E, StorageKind);
282   return Self;
283 }
284 
Create(const ASTContext & Context,Expr * E,const APValue & Result)285 ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
286                                    const APValue &Result) {
287   ResultStorageKind StorageKind = getStorageKind(Result);
288   ConstantExpr *Self = Create(Context, E, StorageKind);
289   Self->SetResult(Result, Context);
290   return Self;
291 }
292 
ConstantExpr(ResultStorageKind StorageKind,EmptyShell Empty)293 ConstantExpr::ConstantExpr(ResultStorageKind StorageKind, EmptyShell Empty)
294     : FullExpr(ConstantExprClass, Empty) {
295   DefaultInit(StorageKind);
296 }
297 
CreateEmpty(const ASTContext & Context,ResultStorageKind StorageKind,EmptyShell Empty)298 ConstantExpr *ConstantExpr::CreateEmpty(const ASTContext &Context,
299                                         ResultStorageKind StorageKind,
300                                         EmptyShell Empty) {
301   AssertResultStorageKind(StorageKind);
302   unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
303       StorageKind == ConstantExpr::RSK_APValue,
304       StorageKind == ConstantExpr::RSK_Int64);
305   void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
306   ConstantExpr *Self = new (Mem) ConstantExpr(StorageKind, Empty);
307   return Self;
308 }
309 
MoveIntoResult(APValue & Value,const ASTContext & Context)310 void ConstantExpr::MoveIntoResult(APValue &Value, const ASTContext &Context) {
311   assert(getStorageKind(Value) == ConstantExprBits.ResultKind &&
312          "Invalid storage for this value kind");
313   ConstantExprBits.APValueKind = Value.getKind();
314   switch (ConstantExprBits.ResultKind) {
315   case RSK_None:
316     return;
317   case RSK_Int64:
318     Int64Result() = *Value.getInt().getRawData();
319     ConstantExprBits.BitWidth = Value.getInt().getBitWidth();
320     ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned();
321     return;
322   case RSK_APValue:
323     if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) {
324       ConstantExprBits.HasCleanup = true;
325       Context.addDestruction(&APValueResult());
326     }
327     APValueResult() = std::move(Value);
328     return;
329   }
330   llvm_unreachable("Invalid ResultKind Bits");
331 }
332 
getResultAsAPSInt() const333 llvm::APSInt ConstantExpr::getResultAsAPSInt() const {
334   switch (ConstantExprBits.ResultKind) {
335   case ConstantExpr::RSK_APValue:
336     return APValueResult().getInt();
337   case ConstantExpr::RSK_Int64:
338     return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
339                         ConstantExprBits.IsUnsigned);
340   default:
341     llvm_unreachable("invalid Accessor");
342   }
343 }
344 
getAPValueResult() const345 APValue ConstantExpr::getAPValueResult() const {
346   switch (ConstantExprBits.ResultKind) {
347   case ConstantExpr::RSK_APValue:
348     return APValueResult();
349   case ConstantExpr::RSK_Int64:
350     return APValue(
351         llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
352                      ConstantExprBits.IsUnsigned));
353   case ConstantExpr::RSK_None:
354     return APValue();
355   }
356   llvm_unreachable("invalid ResultKind");
357 }
358 
359 /// Compute the type-, value-, and instantiation-dependence of a
360 /// declaration reference
361 /// based on the declaration being referenced.
computeDeclRefDependence(const ASTContext & Ctx,NamedDecl * D,QualType T,bool & TypeDependent,bool & ValueDependent,bool & InstantiationDependent)362 static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D,
363                                      QualType T, bool &TypeDependent,
364                                      bool &ValueDependent,
365                                      bool &InstantiationDependent) {
366   TypeDependent = false;
367   ValueDependent = false;
368   InstantiationDependent = false;
369 
370   // (TD) C++ [temp.dep.expr]p3:
371   //   An id-expression is type-dependent if it contains:
372   //
373   // and
374   //
375   // (VD) C++ [temp.dep.constexpr]p2:
376   //  An identifier is value-dependent if it is:
377 
378   //  (TD)  - an identifier that was declared with dependent type
379   //  (VD)  - a name declared with a dependent type,
380   if (T->isDependentType()) {
381     TypeDependent = true;
382     ValueDependent = true;
383     InstantiationDependent = true;
384     return;
385   } else if (T->isInstantiationDependentType()) {
386     InstantiationDependent = true;
387   }
388 
389   //  (TD)  - a conversion-function-id that specifies a dependent type
390   if (D->getDeclName().getNameKind()
391                                 == DeclarationName::CXXConversionFunctionName) {
392     QualType T = D->getDeclName().getCXXNameType();
393     if (T->isDependentType()) {
394       TypeDependent = true;
395       ValueDependent = true;
396       InstantiationDependent = true;
397       return;
398     }
399 
400     if (T->isInstantiationDependentType())
401       InstantiationDependent = true;
402   }
403 
404   //  (VD)  - the name of a non-type template parameter,
405   if (isa<NonTypeTemplateParmDecl>(D)) {
406     ValueDependent = true;
407     InstantiationDependent = true;
408     return;
409   }
410 
411   //  (VD) - a constant with integral or enumeration type and is
412   //         initialized with an expression that is value-dependent.
413   //  (VD) - a constant with literal type and is initialized with an
414   //         expression that is value-dependent [C++11].
415   //  (VD) - FIXME: Missing from the standard:
416   //       -  an entity with reference type and is initialized with an
417   //          expression that is value-dependent [C++11]
418   if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
419     if ((Ctx.getLangOpts().CPlusPlus11 ?
420            Var->getType()->isLiteralType(Ctx) :
421            Var->getType()->isIntegralOrEnumerationType()) &&
422         (Var->getType().isConstQualified() ||
423          Var->getType()->isReferenceType())) {
424       if (const Expr *Init = Var->getAnyInitializer())
425         if (Init->isValueDependent()) {
426           ValueDependent = true;
427           InstantiationDependent = true;
428         }
429     }
430 
431     // (VD) - FIXME: Missing from the standard:
432     //      -  a member function or a static data member of the current
433     //         instantiation
434     if (Var->isStaticDataMember() &&
435         Var->getDeclContext()->isDependentContext()) {
436       ValueDependent = true;
437       InstantiationDependent = true;
438       TypeSourceInfo *TInfo = Var->getFirstDecl()->getTypeSourceInfo();
439       if (TInfo->getType()->isIncompleteArrayType())
440         TypeDependent = true;
441     }
442 
443     return;
444   }
445 
446   // (VD) - FIXME: Missing from the standard:
447   //      -  a member function or a static data member of the current
448   //         instantiation
449   if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
450     ValueDependent = true;
451     InstantiationDependent = true;
452   }
453 }
454 
computeDependence(const ASTContext & Ctx)455 void DeclRefExpr::computeDependence(const ASTContext &Ctx) {
456   bool TypeDependent = false;
457   bool ValueDependent = false;
458   bool InstantiationDependent = false;
459   computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
460                            ValueDependent, InstantiationDependent);
461 
462   ExprBits.TypeDependent |= TypeDependent;
463   ExprBits.ValueDependent |= ValueDependent;
464   ExprBits.InstantiationDependent |= InstantiationDependent;
465 
466   // Is the declaration a parameter pack?
467   if (getDecl()->isParameterPack())
468     ExprBits.ContainsUnexpandedParameterPack = true;
469 }
470 
DeclRefExpr(const ASTContext & Ctx,ValueDecl * D,bool RefersToEnclosingVariableOrCapture,QualType T,ExprValueKind VK,SourceLocation L,const DeclarationNameLoc & LocInfo,NonOdrUseReason NOUR)471 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D,
472                          bool RefersToEnclosingVariableOrCapture, QualType T,
473                          ExprValueKind VK, SourceLocation L,
474                          const DeclarationNameLoc &LocInfo,
475                          NonOdrUseReason NOUR)
476     : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
477       D(D), DNLoc(LocInfo) {
478   DeclRefExprBits.HasQualifier = false;
479   DeclRefExprBits.HasTemplateKWAndArgsInfo = false;
480   DeclRefExprBits.HasFoundDecl = false;
481   DeclRefExprBits.HadMultipleCandidates = false;
482   DeclRefExprBits.RefersToEnclosingVariableOrCapture =
483       RefersToEnclosingVariableOrCapture;
484   DeclRefExprBits.NonOdrUseReason = NOUR;
485   DeclRefExprBits.Loc = L;
486   computeDependence(Ctx);
487 }
488 
DeclRefExpr(const ASTContext & Ctx,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * D,bool RefersToEnclosingVariableOrCapture,const DeclarationNameInfo & NameInfo,NamedDecl * FoundD,const TemplateArgumentListInfo * TemplateArgs,QualType T,ExprValueKind VK,NonOdrUseReason NOUR)489 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
490                          NestedNameSpecifierLoc QualifierLoc,
491                          SourceLocation TemplateKWLoc, ValueDecl *D,
492                          bool RefersToEnclosingVariableOrCapture,
493                          const DeclarationNameInfo &NameInfo, NamedDecl *FoundD,
494                          const TemplateArgumentListInfo *TemplateArgs,
495                          QualType T, ExprValueKind VK, NonOdrUseReason NOUR)
496     : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
497       D(D), DNLoc(NameInfo.getInfo()) {
498   DeclRefExprBits.Loc = NameInfo.getLoc();
499   DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
500   if (QualifierLoc) {
501     new (getTrailingObjects<NestedNameSpecifierLoc>())
502         NestedNameSpecifierLoc(QualifierLoc);
503     auto *NNS = QualifierLoc.getNestedNameSpecifier();
504     if (NNS->isInstantiationDependent())
505       ExprBits.InstantiationDependent = true;
506     if (NNS->containsUnexpandedParameterPack())
507       ExprBits.ContainsUnexpandedParameterPack = true;
508   }
509   DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
510   if (FoundD)
511     *getTrailingObjects<NamedDecl *>() = FoundD;
512   DeclRefExprBits.HasTemplateKWAndArgsInfo
513     = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
514   DeclRefExprBits.RefersToEnclosingVariableOrCapture =
515       RefersToEnclosingVariableOrCapture;
516   DeclRefExprBits.NonOdrUseReason = NOUR;
517   if (TemplateArgs) {
518     bool Dependent = false;
519     bool InstantiationDependent = false;
520     bool ContainsUnexpandedParameterPack = false;
521     getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
522         TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(),
523         Dependent, InstantiationDependent, ContainsUnexpandedParameterPack);
524     assert(!Dependent && "built a DeclRefExpr with dependent template args");
525     ExprBits.InstantiationDependent |= InstantiationDependent;
526     ExprBits.ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack;
527   } else if (TemplateKWLoc.isValid()) {
528     getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
529         TemplateKWLoc);
530   }
531   DeclRefExprBits.HadMultipleCandidates = 0;
532 
533   computeDependence(Ctx);
534 }
535 
Create(const ASTContext & Context,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * D,bool RefersToEnclosingVariableOrCapture,SourceLocation NameLoc,QualType T,ExprValueKind VK,NamedDecl * FoundD,const TemplateArgumentListInfo * TemplateArgs,NonOdrUseReason NOUR)536 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
537                                  NestedNameSpecifierLoc QualifierLoc,
538                                  SourceLocation TemplateKWLoc, ValueDecl *D,
539                                  bool RefersToEnclosingVariableOrCapture,
540                                  SourceLocation NameLoc, QualType T,
541                                  ExprValueKind VK, NamedDecl *FoundD,
542                                  const TemplateArgumentListInfo *TemplateArgs,
543                                  NonOdrUseReason NOUR) {
544   return Create(Context, QualifierLoc, TemplateKWLoc, D,
545                 RefersToEnclosingVariableOrCapture,
546                 DeclarationNameInfo(D->getDeclName(), NameLoc),
547                 T, VK, FoundD, TemplateArgs, NOUR);
548 }
549 
Create(const ASTContext & Context,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * D,bool RefersToEnclosingVariableOrCapture,const DeclarationNameInfo & NameInfo,QualType T,ExprValueKind VK,NamedDecl * FoundD,const TemplateArgumentListInfo * TemplateArgs,NonOdrUseReason NOUR)550 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
551                                  NestedNameSpecifierLoc QualifierLoc,
552                                  SourceLocation TemplateKWLoc, ValueDecl *D,
553                                  bool RefersToEnclosingVariableOrCapture,
554                                  const DeclarationNameInfo &NameInfo,
555                                  QualType T, ExprValueKind VK,
556                                  NamedDecl *FoundD,
557                                  const TemplateArgumentListInfo *TemplateArgs,
558                                  NonOdrUseReason NOUR) {
559   // Filter out cases where the found Decl is the same as the value refenenced.
560   if (D == FoundD)
561     FoundD = nullptr;
562 
563   bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
564   std::size_t Size =
565       totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
566                        ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
567           QualifierLoc ? 1 : 0, FoundD ? 1 : 0,
568           HasTemplateKWAndArgsInfo ? 1 : 0,
569           TemplateArgs ? TemplateArgs->size() : 0);
570 
571   void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
572   return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
573                                RefersToEnclosingVariableOrCapture, NameInfo,
574                                FoundD, TemplateArgs, T, VK, NOUR);
575 }
576 
CreateEmpty(const ASTContext & Context,bool HasQualifier,bool HasFoundDecl,bool HasTemplateKWAndArgsInfo,unsigned NumTemplateArgs)577 DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
578                                       bool HasQualifier,
579                                       bool HasFoundDecl,
580                                       bool HasTemplateKWAndArgsInfo,
581                                       unsigned NumTemplateArgs) {
582   assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo);
583   std::size_t Size =
584       totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
585                        ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
586           HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo,
587           NumTemplateArgs);
588   void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
589   return new (Mem) DeclRefExpr(EmptyShell());
590 }
591 
getBeginLoc() const592 SourceLocation DeclRefExpr::getBeginLoc() const {
593   if (hasQualifier())
594     return getQualifierLoc().getBeginLoc();
595   return getNameInfo().getBeginLoc();
596 }
getEndLoc() const597 SourceLocation DeclRefExpr::getEndLoc() const {
598   if (hasExplicitTemplateArgs())
599     return getRAngleLoc();
600   return getNameInfo().getEndLoc();
601 }
602 
PredefinedExpr(SourceLocation L,QualType FNTy,IdentKind IK,StringLiteral * SL)603 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentKind IK,
604                                StringLiteral *SL)
605     : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary,
606            FNTy->isDependentType(), FNTy->isDependentType(),
607            FNTy->isInstantiationDependentType(),
608            /*ContainsUnexpandedParameterPack=*/false) {
609   PredefinedExprBits.Kind = IK;
610   assert((getIdentKind() == IK) &&
611          "IdentKind do not fit in PredefinedExprBitfields!");
612   bool HasFunctionName = SL != nullptr;
613   PredefinedExprBits.HasFunctionName = HasFunctionName;
614   PredefinedExprBits.Loc = L;
615   if (HasFunctionName)
616     setFunctionName(SL);
617 }
618 
PredefinedExpr(EmptyShell Empty,bool HasFunctionName)619 PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName)
620     : Expr(PredefinedExprClass, Empty) {
621   PredefinedExprBits.HasFunctionName = HasFunctionName;
622 }
623 
Create(const ASTContext & Ctx,SourceLocation L,QualType FNTy,IdentKind IK,StringLiteral * SL)624 PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L,
625                                        QualType FNTy, IdentKind IK,
626                                        StringLiteral *SL) {
627   bool HasFunctionName = SL != nullptr;
628   void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
629                            alignof(PredefinedExpr));
630   return new (Mem) PredefinedExpr(L, FNTy, IK, SL);
631 }
632 
CreateEmpty(const ASTContext & Ctx,bool HasFunctionName)633 PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx,
634                                             bool HasFunctionName) {
635   void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
636                            alignof(PredefinedExpr));
637   return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName);
638 }
639 
getIdentKindName(PredefinedExpr::IdentKind IK)640 StringRef PredefinedExpr::getIdentKindName(PredefinedExpr::IdentKind IK) {
641   switch (IK) {
642   case Func:
643     return "__func__";
644   case Function:
645     return "__FUNCTION__";
646   case FuncDName:
647     return "__FUNCDNAME__";
648   case LFunction:
649     return "L__FUNCTION__";
650   case PrettyFunction:
651     return "__PRETTY_FUNCTION__";
652   case FuncSig:
653     return "__FUNCSIG__";
654   case LFuncSig:
655     return "L__FUNCSIG__";
656   case PrettyFunctionNoVirtual:
657     break;
658   }
659   llvm_unreachable("Unknown ident kind for PredefinedExpr");
660 }
661 
662 // FIXME: Maybe this should use DeclPrinter with a special "print predefined
663 // expr" policy instead.
ComputeName(IdentKind IK,const Decl * CurrentDecl)664 std::string PredefinedExpr::ComputeName(IdentKind IK, const Decl *CurrentDecl) {
665   ASTContext &Context = CurrentDecl->getASTContext();
666 
667   if (IK == PredefinedExpr::FuncDName) {
668     if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
669       std::unique_ptr<MangleContext> MC;
670       MC.reset(Context.createMangleContext());
671 
672       if (MC->shouldMangleDeclName(ND)) {
673         SmallString<256> Buffer;
674         llvm::raw_svector_ostream Out(Buffer);
675         if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
676           MC->mangleCXXCtor(CD, Ctor_Base, Out);
677         else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
678           MC->mangleCXXDtor(DD, Dtor_Base, Out);
679         else
680           MC->mangleName(ND, Out);
681 
682         if (!Buffer.empty() && Buffer.front() == '\01')
683           return Buffer.substr(1);
684         return Buffer.str();
685       } else
686         return ND->getIdentifier()->getName();
687     }
688     return "";
689   }
690   if (isa<BlockDecl>(CurrentDecl)) {
691     // For blocks we only emit something if it is enclosed in a function
692     // For top-level block we'd like to include the name of variable, but we
693     // don't have it at this point.
694     auto DC = CurrentDecl->getDeclContext();
695     if (DC->isFileContext())
696       return "";
697 
698     SmallString<256> Buffer;
699     llvm::raw_svector_ostream Out(Buffer);
700     if (auto *DCBlock = dyn_cast<BlockDecl>(DC))
701       // For nested blocks, propagate up to the parent.
702       Out << ComputeName(IK, DCBlock);
703     else if (auto *DCDecl = dyn_cast<Decl>(DC))
704       Out << ComputeName(IK, DCDecl) << "_block_invoke";
705     return Out.str();
706   }
707   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
708     if (IK != PrettyFunction && IK != PrettyFunctionNoVirtual &&
709         IK != FuncSig && IK != LFuncSig)
710       return FD->getNameAsString();
711 
712     SmallString<256> Name;
713     llvm::raw_svector_ostream Out(Name);
714 
715     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
716       if (MD->isVirtual() && IK != PrettyFunctionNoVirtual)
717         Out << "virtual ";
718       if (MD->isStatic())
719         Out << "static ";
720     }
721 
722     PrintingPolicy Policy(Context.getLangOpts());
723     std::string Proto;
724     llvm::raw_string_ostream POut(Proto);
725 
726     const FunctionDecl *Decl = FD;
727     if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
728       Decl = Pattern;
729     const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
730     const FunctionProtoType *FT = nullptr;
731     if (FD->hasWrittenPrototype())
732       FT = dyn_cast<FunctionProtoType>(AFT);
733 
734     if (IK == FuncSig || IK == LFuncSig) {
735       switch (AFT->getCallConv()) {
736       case CC_C: POut << "__cdecl "; break;
737       case CC_X86StdCall: POut << "__stdcall "; break;
738       case CC_X86FastCall: POut << "__fastcall "; break;
739       case CC_X86ThisCall: POut << "__thiscall "; break;
740       case CC_X86VectorCall: POut << "__vectorcall "; break;
741       case CC_X86RegCall: POut << "__regcall "; break;
742       // Only bother printing the conventions that MSVC knows about.
743       default: break;
744       }
745     }
746 
747     FD->printQualifiedName(POut, Policy);
748 
749     POut << "(";
750     if (FT) {
751       for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
752         if (i) POut << ", ";
753         POut << Decl->getParamDecl(i)->getType().stream(Policy);
754       }
755 
756       if (FT->isVariadic()) {
757         if (FD->getNumParams()) POut << ", ";
758         POut << "...";
759       } else if ((IK == FuncSig || IK == LFuncSig ||
760                   !Context.getLangOpts().CPlusPlus) &&
761                  !Decl->getNumParams()) {
762         POut << "void";
763       }
764     }
765     POut << ")";
766 
767     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
768       assert(FT && "We must have a written prototype in this case.");
769       if (FT->isConst())
770         POut << " const";
771       if (FT->isVolatile())
772         POut << " volatile";
773       RefQualifierKind Ref = MD->getRefQualifier();
774       if (Ref == RQ_LValue)
775         POut << " &";
776       else if (Ref == RQ_RValue)
777         POut << " &&";
778     }
779 
780     typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
781     SpecsTy Specs;
782     const DeclContext *Ctx = FD->getDeclContext();
783     while (Ctx && isa<NamedDecl>(Ctx)) {
784       const ClassTemplateSpecializationDecl *Spec
785                                = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
786       if (Spec && !Spec->isExplicitSpecialization())
787         Specs.push_back(Spec);
788       Ctx = Ctx->getParent();
789     }
790 
791     std::string TemplateParams;
792     llvm::raw_string_ostream TOut(TemplateParams);
793     for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
794          I != E; ++I) {
795       const TemplateParameterList *Params
796                   = (*I)->getSpecializedTemplate()->getTemplateParameters();
797       const TemplateArgumentList &Args = (*I)->getTemplateArgs();
798       assert(Params->size() == Args.size());
799       for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
800         StringRef Param = Params->getParam(i)->getName();
801         if (Param.empty()) continue;
802         TOut << Param << " = ";
803         Args.get(i).print(Policy, TOut);
804         TOut << ", ";
805       }
806     }
807 
808     FunctionTemplateSpecializationInfo *FSI
809                                           = FD->getTemplateSpecializationInfo();
810     if (FSI && !FSI->isExplicitSpecialization()) {
811       const TemplateParameterList* Params
812                                   = FSI->getTemplate()->getTemplateParameters();
813       const TemplateArgumentList* Args = FSI->TemplateArguments;
814       assert(Params->size() == Args->size());
815       for (unsigned i = 0, e = Params->size(); i != e; ++i) {
816         StringRef Param = Params->getParam(i)->getName();
817         if (Param.empty()) continue;
818         TOut << Param << " = ";
819         Args->get(i).print(Policy, TOut);
820         TOut << ", ";
821       }
822     }
823 
824     TOut.flush();
825     if (!TemplateParams.empty()) {
826       // remove the trailing comma and space
827       TemplateParams.resize(TemplateParams.size() - 2);
828       POut << " [" << TemplateParams << "]";
829     }
830 
831     POut.flush();
832 
833     // Print "auto" for all deduced return types. This includes C++1y return
834     // type deduction and lambdas. For trailing return types resolve the
835     // decltype expression. Otherwise print the real type when this is
836     // not a constructor or destructor.
837     if (isa<CXXMethodDecl>(FD) &&
838          cast<CXXMethodDecl>(FD)->getParent()->isLambda())
839       Proto = "auto " + Proto;
840     else if (FT && FT->getReturnType()->getAs<DecltypeType>())
841       FT->getReturnType()
842           ->getAs<DecltypeType>()
843           ->getUnderlyingType()
844           .getAsStringInternal(Proto, Policy);
845     else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
846       AFT->getReturnType().getAsStringInternal(Proto, Policy);
847 
848     Out << Proto;
849 
850     return Name.str().str();
851   }
852   if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
853     for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
854       // Skip to its enclosing function or method, but not its enclosing
855       // CapturedDecl.
856       if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
857         const Decl *D = Decl::castFromDeclContext(DC);
858         return ComputeName(IK, D);
859       }
860     llvm_unreachable("CapturedDecl not inside a function or method");
861   }
862   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
863     SmallString<256> Name;
864     llvm::raw_svector_ostream Out(Name);
865     Out << (MD->isInstanceMethod() ? '-' : '+');
866     Out << '[';
867 
868     // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
869     // a null check to avoid a crash.
870     if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
871       Out << *ID;
872 
873     if (const ObjCCategoryImplDecl *CID =
874         dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
875       Out << '(' << *CID << ')';
876 
877     Out <<  ' ';
878     MD->getSelector().print(Out);
879     Out <<  ']';
880 
881     return Name.str().str();
882   }
883   if (isa<TranslationUnitDecl>(CurrentDecl) && IK == PrettyFunction) {
884     // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
885     return "top level";
886   }
887   return "";
888 }
889 
setIntValue(const ASTContext & C,const llvm::APInt & Val)890 void APNumericStorage::setIntValue(const ASTContext &C,
891                                    const llvm::APInt &Val) {
892   if (hasAllocation())
893     C.Deallocate(pVal);
894 
895   BitWidth = Val.getBitWidth();
896   unsigned NumWords = Val.getNumWords();
897   const uint64_t* Words = Val.getRawData();
898   if (NumWords > 1) {
899     pVal = new (C) uint64_t[NumWords];
900     std::copy(Words, Words + NumWords, pVal);
901   } else if (NumWords == 1)
902     VAL = Words[0];
903   else
904     VAL = 0;
905 }
906 
IntegerLiteral(const ASTContext & C,const llvm::APInt & V,QualType type,SourceLocation l)907 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
908                                QualType type, SourceLocation l)
909   : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
910          false, false),
911     Loc(l) {
912   assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
913   assert(V.getBitWidth() == C.getIntWidth(type) &&
914          "Integer type is not the correct size for constant.");
915   setValue(C, V);
916 }
917 
918 IntegerLiteral *
Create(const ASTContext & C,const llvm::APInt & V,QualType type,SourceLocation l)919 IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
920                        QualType type, SourceLocation l) {
921   return new (C) IntegerLiteral(C, V, type, l);
922 }
923 
924 IntegerLiteral *
Create(const ASTContext & C,EmptyShell Empty)925 IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) {
926   return new (C) IntegerLiteral(Empty);
927 }
928 
FixedPointLiteral(const ASTContext & C,const llvm::APInt & V,QualType type,SourceLocation l,unsigned Scale)929 FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V,
930                                      QualType type, SourceLocation l,
931                                      unsigned Scale)
932     : Expr(FixedPointLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
933            false, false),
934       Loc(l), Scale(Scale) {
935   assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral");
936   assert(V.getBitWidth() == C.getTypeInfo(type).Width &&
937          "Fixed point type is not the correct size for constant.");
938   setValue(C, V);
939 }
940 
CreateFromRawInt(const ASTContext & C,const llvm::APInt & V,QualType type,SourceLocation l,unsigned Scale)941 FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C,
942                                                        const llvm::APInt &V,
943                                                        QualType type,
944                                                        SourceLocation l,
945                                                        unsigned Scale) {
946   return new (C) FixedPointLiteral(C, V, type, l, Scale);
947 }
948 
getValueAsString(unsigned Radix) const949 std::string FixedPointLiteral::getValueAsString(unsigned Radix) const {
950   // Currently the longest decimal number that can be printed is the max for an
951   // unsigned long _Accum: 4294967295.99999999976716935634613037109375
952   // which is 43 characters.
953   SmallString<64> S;
954   FixedPointValueToString(
955       S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale);
956   return S.str();
957 }
958 
FloatingLiteral(const ASTContext & C,const llvm::APFloat & V,bool isexact,QualType Type,SourceLocation L)959 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
960                                  bool isexact, QualType Type, SourceLocation L)
961   : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
962          false, false), Loc(L) {
963   setSemantics(V.getSemantics());
964   FloatingLiteralBits.IsExact = isexact;
965   setValue(C, V);
966 }
967 
FloatingLiteral(const ASTContext & C,EmptyShell Empty)968 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
969   : Expr(FloatingLiteralClass, Empty) {
970   setRawSemantics(llvm::APFloatBase::S_IEEEhalf);
971   FloatingLiteralBits.IsExact = false;
972 }
973 
974 FloatingLiteral *
Create(const ASTContext & C,const llvm::APFloat & V,bool isexact,QualType Type,SourceLocation L)975 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
976                         bool isexact, QualType Type, SourceLocation L) {
977   return new (C) FloatingLiteral(C, V, isexact, Type, L);
978 }
979 
980 FloatingLiteral *
Create(const ASTContext & C,EmptyShell Empty)981 FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) {
982   return new (C) FloatingLiteral(C, Empty);
983 }
984 
985 /// getValueAsApproximateDouble - This returns the value as an inaccurate
986 /// double.  Note that this may cause loss of precision, but is useful for
987 /// debugging dumps, etc.
getValueAsApproximateDouble() const988 double FloatingLiteral::getValueAsApproximateDouble() const {
989   llvm::APFloat V = getValue();
990   bool ignored;
991   V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven,
992             &ignored);
993   return V.convertToDouble();
994 }
995 
mapCharByteWidth(TargetInfo const & Target,StringKind SK)996 unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target,
997                                          StringKind SK) {
998   unsigned CharByteWidth = 0;
999   switch (SK) {
1000   case Ascii:
1001   case UTF8:
1002     CharByteWidth = Target.getCharWidth();
1003     break;
1004   case Wide:
1005     CharByteWidth = Target.getWCharWidth();
1006     break;
1007   case UTF16:
1008     CharByteWidth = Target.getChar16Width();
1009     break;
1010   case UTF32:
1011     CharByteWidth = Target.getChar32Width();
1012     break;
1013   }
1014   assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
1015   CharByteWidth /= 8;
1016   assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
1017          "The only supported character byte widths are 1,2 and 4!");
1018   return CharByteWidth;
1019 }
1020 
StringLiteral(const ASTContext & Ctx,StringRef Str,StringKind Kind,bool Pascal,QualType Ty,const SourceLocation * Loc,unsigned NumConcatenated)1021 StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str,
1022                              StringKind Kind, bool Pascal, QualType Ty,
1023                              const SourceLocation *Loc,
1024                              unsigned NumConcatenated)
1025     : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
1026            false) {
1027   assert(Ctx.getAsConstantArrayType(Ty) &&
1028          "StringLiteral must be of constant array type!");
1029   unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind);
1030   unsigned ByteLength = Str.size();
1031   assert((ByteLength % CharByteWidth == 0) &&
1032          "The size of the data must be a multiple of CharByteWidth!");
1033 
1034   // Avoid the expensive division. The compiler should be able to figure it
1035   // out by itself. However as of clang 7, even with the appropriate
1036   // llvm_unreachable added just here, it is not able to do so.
1037   unsigned Length;
1038   switch (CharByteWidth) {
1039   case 1:
1040     Length = ByteLength;
1041     break;
1042   case 2:
1043     Length = ByteLength / 2;
1044     break;
1045   case 4:
1046     Length = ByteLength / 4;
1047     break;
1048   default:
1049     llvm_unreachable("Unsupported character width!");
1050   }
1051 
1052   StringLiteralBits.Kind = Kind;
1053   StringLiteralBits.CharByteWidth = CharByteWidth;
1054   StringLiteralBits.IsPascal = Pascal;
1055   StringLiteralBits.NumConcatenated = NumConcatenated;
1056   *getTrailingObjects<unsigned>() = Length;
1057 
1058   // Initialize the trailing array of SourceLocation.
1059   // This is safe since SourceLocation is POD-like.
1060   std::memcpy(getTrailingObjects<SourceLocation>(), Loc,
1061               NumConcatenated * sizeof(SourceLocation));
1062 
1063   // Initialize the trailing array of char holding the string data.
1064   std::memcpy(getTrailingObjects<char>(), Str.data(), ByteLength);
1065 }
1066 
StringLiteral(EmptyShell Empty,unsigned NumConcatenated,unsigned Length,unsigned CharByteWidth)1067 StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated,
1068                              unsigned Length, unsigned CharByteWidth)
1069     : Expr(StringLiteralClass, Empty) {
1070   StringLiteralBits.CharByteWidth = CharByteWidth;
1071   StringLiteralBits.NumConcatenated = NumConcatenated;
1072   *getTrailingObjects<unsigned>() = Length;
1073 }
1074 
Create(const ASTContext & Ctx,StringRef Str,StringKind Kind,bool Pascal,QualType Ty,const SourceLocation * Loc,unsigned NumConcatenated)1075 StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str,
1076                                      StringKind Kind, bool Pascal, QualType Ty,
1077                                      const SourceLocation *Loc,
1078                                      unsigned NumConcatenated) {
1079   void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
1080                                1, NumConcatenated, Str.size()),
1081                            alignof(StringLiteral));
1082   return new (Mem)
1083       StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated);
1084 }
1085 
CreateEmpty(const ASTContext & Ctx,unsigned NumConcatenated,unsigned Length,unsigned CharByteWidth)1086 StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx,
1087                                           unsigned NumConcatenated,
1088                                           unsigned Length,
1089                                           unsigned CharByteWidth) {
1090   void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
1091                                1, NumConcatenated, Length * CharByteWidth),
1092                            alignof(StringLiteral));
1093   return new (Mem)
1094       StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth);
1095 }
1096 
outputString(raw_ostream & OS) const1097 void StringLiteral::outputString(raw_ostream &OS) const {
1098   switch (getKind()) {
1099   case Ascii: break; // no prefix.
1100   case Wide:  OS << 'L'; break;
1101   case UTF8:  OS << "u8"; break;
1102   case UTF16: OS << 'u'; break;
1103   case UTF32: OS << 'U'; break;
1104   }
1105   OS << '"';
1106   static const char Hex[] = "0123456789ABCDEF";
1107 
1108   unsigned LastSlashX = getLength();
1109   for (unsigned I = 0, N = getLength(); I != N; ++I) {
1110     switch (uint32_t Char = getCodeUnit(I)) {
1111     default:
1112       // FIXME: Convert UTF-8 back to codepoints before rendering.
1113 
1114       // Convert UTF-16 surrogate pairs back to codepoints before rendering.
1115       // Leave invalid surrogates alone; we'll use \x for those.
1116       if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
1117           Char <= 0xdbff) {
1118         uint32_t Trail = getCodeUnit(I + 1);
1119         if (Trail >= 0xdc00 && Trail <= 0xdfff) {
1120           Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
1121           ++I;
1122         }
1123       }
1124 
1125       if (Char > 0xff) {
1126         // If this is a wide string, output characters over 0xff using \x
1127         // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
1128         // codepoint: use \x escapes for invalid codepoints.
1129         if (getKind() == Wide ||
1130             (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
1131           // FIXME: Is this the best way to print wchar_t?
1132           OS << "\\x";
1133           int Shift = 28;
1134           while ((Char >> Shift) == 0)
1135             Shift -= 4;
1136           for (/**/; Shift >= 0; Shift -= 4)
1137             OS << Hex[(Char >> Shift) & 15];
1138           LastSlashX = I;
1139           break;
1140         }
1141 
1142         if (Char > 0xffff)
1143           OS << "\\U00"
1144              << Hex[(Char >> 20) & 15]
1145              << Hex[(Char >> 16) & 15];
1146         else
1147           OS << "\\u";
1148         OS << Hex[(Char >> 12) & 15]
1149            << Hex[(Char >>  8) & 15]
1150            << Hex[(Char >>  4) & 15]
1151            << Hex[(Char >>  0) & 15];
1152         break;
1153       }
1154 
1155       // If we used \x... for the previous character, and this character is a
1156       // hexadecimal digit, prevent it being slurped as part of the \x.
1157       if (LastSlashX + 1 == I) {
1158         switch (Char) {
1159           case '0': case '1': case '2': case '3': case '4':
1160           case '5': case '6': case '7': case '8': case '9':
1161           case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
1162           case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
1163             OS << "\"\"";
1164         }
1165       }
1166 
1167       assert(Char <= 0xff &&
1168              "Characters above 0xff should already have been handled.");
1169 
1170       if (isPrintable(Char))
1171         OS << (char)Char;
1172       else  // Output anything hard as an octal escape.
1173         OS << '\\'
1174            << (char)('0' + ((Char >> 6) & 7))
1175            << (char)('0' + ((Char >> 3) & 7))
1176            << (char)('0' + ((Char >> 0) & 7));
1177       break;
1178     // Handle some common non-printable cases to make dumps prettier.
1179     case '\\': OS << "\\\\"; break;
1180     case '"': OS << "\\\""; break;
1181     case '\a': OS << "\\a"; break;
1182     case '\b': OS << "\\b"; break;
1183     case '\f': OS << "\\f"; break;
1184     case '\n': OS << "\\n"; break;
1185     case '\r': OS << "\\r"; break;
1186     case '\t': OS << "\\t"; break;
1187     case '\v': OS << "\\v"; break;
1188     }
1189   }
1190   OS << '"';
1191 }
1192 
1193 /// getLocationOfByte - Return a source location that points to the specified
1194 /// byte of this string literal.
1195 ///
1196 /// Strings are amazingly complex.  They can be formed from multiple tokens and
1197 /// can have escape sequences in them in addition to the usual trigraph and
1198 /// escaped newline business.  This routine handles this complexity.
1199 ///
1200 /// The *StartToken sets the first token to be searched in this function and
1201 /// the *StartTokenByteOffset is the byte offset of the first token. Before
1202 /// returning, it updates the *StartToken to the TokNo of the token being found
1203 /// and sets *StartTokenByteOffset to the byte offset of the token in the
1204 /// string.
1205 /// Using these two parameters can reduce the time complexity from O(n^2) to
1206 /// O(n) if one wants to get the location of byte for all the tokens in a
1207 /// string.
1208 ///
1209 SourceLocation
getLocationOfByte(unsigned ByteNo,const SourceManager & SM,const LangOptions & Features,const TargetInfo & Target,unsigned * StartToken,unsigned * StartTokenByteOffset) const1210 StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1211                                  const LangOptions &Features,
1212                                  const TargetInfo &Target, unsigned *StartToken,
1213                                  unsigned *StartTokenByteOffset) const {
1214   assert((getKind() == StringLiteral::Ascii ||
1215           getKind() == StringLiteral::UTF8) &&
1216          "Only narrow string literals are currently supported");
1217 
1218   // Loop over all of the tokens in this string until we find the one that
1219   // contains the byte we're looking for.
1220   unsigned TokNo = 0;
1221   unsigned StringOffset = 0;
1222   if (StartToken)
1223     TokNo = *StartToken;
1224   if (StartTokenByteOffset) {
1225     StringOffset = *StartTokenByteOffset;
1226     ByteNo -= StringOffset;
1227   }
1228   while (1) {
1229     assert(TokNo < getNumConcatenated() && "Invalid byte number!");
1230     SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
1231 
1232     // Get the spelling of the string so that we can get the data that makes up
1233     // the string literal, not the identifier for the macro it is potentially
1234     // expanded through.
1235     SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
1236 
1237     // Re-lex the token to get its length and original spelling.
1238     std::pair<FileID, unsigned> LocInfo =
1239         SM.getDecomposedLoc(StrTokSpellingLoc);
1240     bool Invalid = false;
1241     StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
1242     if (Invalid) {
1243       if (StartTokenByteOffset != nullptr)
1244         *StartTokenByteOffset = StringOffset;
1245       if (StartToken != nullptr)
1246         *StartToken = TokNo;
1247       return StrTokSpellingLoc;
1248     }
1249 
1250     const char *StrData = Buffer.data()+LocInfo.second;
1251 
1252     // Create a lexer starting at the beginning of this token.
1253     Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
1254                    Buffer.begin(), StrData, Buffer.end());
1255     Token TheTok;
1256     TheLexer.LexFromRawLexer(TheTok);
1257 
1258     // Use the StringLiteralParser to compute the length of the string in bytes.
1259     StringLiteralParser SLP(TheTok, SM, Features, Target);
1260     unsigned TokNumBytes = SLP.GetStringLength();
1261 
1262     // If the byte is in this token, return the location of the byte.
1263     if (ByteNo < TokNumBytes ||
1264         (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
1265       unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
1266 
1267       // Now that we know the offset of the token in the spelling, use the
1268       // preprocessor to get the offset in the original source.
1269       if (StartTokenByteOffset != nullptr)
1270         *StartTokenByteOffset = StringOffset;
1271       if (StartToken != nullptr)
1272         *StartToken = TokNo;
1273       return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
1274     }
1275 
1276     // Move to the next string token.
1277     StringOffset += TokNumBytes;
1278     ++TokNo;
1279     ByteNo -= TokNumBytes;
1280   }
1281 }
1282 
1283 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1284 /// corresponds to, e.g. "sizeof" or "[pre]++".
getOpcodeStr(Opcode Op)1285 StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
1286   switch (Op) {
1287 #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling;
1288 #include "clang/AST/OperationKinds.def"
1289   }
1290   llvm_unreachable("Unknown unary operator");
1291 }
1292 
1293 UnaryOperatorKind
getOverloadedOpcode(OverloadedOperatorKind OO,bool Postfix)1294 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
1295   switch (OO) {
1296   default: llvm_unreachable("No unary operator for overloaded function");
1297   case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
1298   case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
1299   case OO_Amp:        return UO_AddrOf;
1300   case OO_Star:       return UO_Deref;
1301   case OO_Plus:       return UO_Plus;
1302   case OO_Minus:      return UO_Minus;
1303   case OO_Tilde:      return UO_Not;
1304   case OO_Exclaim:    return UO_LNot;
1305   case OO_Coawait:    return UO_Coawait;
1306   }
1307 }
1308 
getOverloadedOperator(Opcode Opc)1309 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
1310   switch (Opc) {
1311   case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
1312   case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
1313   case UO_AddrOf: return OO_Amp;
1314   case UO_Deref: return OO_Star;
1315   case UO_Plus: return OO_Plus;
1316   case UO_Minus: return OO_Minus;
1317   case UO_Not: return OO_Tilde;
1318   case UO_LNot: return OO_Exclaim;
1319   case UO_Coawait: return OO_Coawait;
1320   default: return OO_None;
1321   }
1322 }
1323 
1324 
1325 //===----------------------------------------------------------------------===//
1326 // Postfix Operators.
1327 //===----------------------------------------------------------------------===//
1328 
CallExpr(StmtClass SC,Expr * Fn,ArrayRef<Expr * > PreArgs,ArrayRef<Expr * > Args,QualType Ty,ExprValueKind VK,SourceLocation RParenLoc,unsigned MinNumArgs,ADLCallKind UsesADL)1329 CallExpr::CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs,
1330                    ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
1331                    SourceLocation RParenLoc, unsigned MinNumArgs,
1332                    ADLCallKind UsesADL)
1333     : Expr(SC, Ty, VK, OK_Ordinary, Fn->isTypeDependent(),
1334            Fn->isValueDependent(), Fn->isInstantiationDependent(),
1335            Fn->containsUnexpandedParameterPack()),
1336       RParenLoc(RParenLoc) {
1337   NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
1338   unsigned NumPreArgs = PreArgs.size();
1339   CallExprBits.NumPreArgs = NumPreArgs;
1340   assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
1341 
1342   unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
1343   CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
1344   assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
1345          "OffsetToTrailingObjects overflow!");
1346 
1347   CallExprBits.UsesADL = static_cast<bool>(UsesADL);
1348 
1349   setCallee(Fn);
1350   for (unsigned I = 0; I != NumPreArgs; ++I) {
1351     updateDependenciesFromArg(PreArgs[I]);
1352     setPreArg(I, PreArgs[I]);
1353   }
1354   for (unsigned I = 0; I != Args.size(); ++I) {
1355     updateDependenciesFromArg(Args[I]);
1356     setArg(I, Args[I]);
1357   }
1358   for (unsigned I = Args.size(); I != NumArgs; ++I) {
1359     setArg(I, nullptr);
1360   }
1361 }
1362 
CallExpr(StmtClass SC,unsigned NumPreArgs,unsigned NumArgs,EmptyShell Empty)1363 CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs,
1364                    EmptyShell Empty)
1365     : Expr(SC, Empty), NumArgs(NumArgs) {
1366   CallExprBits.NumPreArgs = NumPreArgs;
1367   assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
1368 
1369   unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
1370   CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
1371   assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
1372          "OffsetToTrailingObjects overflow!");
1373 }
1374 
Create(const ASTContext & Ctx,Expr * Fn,ArrayRef<Expr * > Args,QualType Ty,ExprValueKind VK,SourceLocation RParenLoc,unsigned MinNumArgs,ADLCallKind UsesADL)1375 CallExpr *CallExpr::Create(const ASTContext &Ctx, Expr *Fn,
1376                            ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
1377                            SourceLocation RParenLoc, unsigned MinNumArgs,
1378                            ADLCallKind UsesADL) {
1379   unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
1380   unsigned SizeOfTrailingObjects =
1381       CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs);
1382   void *Mem =
1383       Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
1384   return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK,
1385                             RParenLoc, MinNumArgs, UsesADL);
1386 }
1387 
CreateTemporary(void * Mem,Expr * Fn,QualType Ty,ExprValueKind VK,SourceLocation RParenLoc,ADLCallKind UsesADL)1388 CallExpr *CallExpr::CreateTemporary(void *Mem, Expr *Fn, QualType Ty,
1389                                     ExprValueKind VK, SourceLocation RParenLoc,
1390                                     ADLCallKind UsesADL) {
1391   assert(!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) &&
1392          "Misaligned memory in CallExpr::CreateTemporary!");
1393   return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, /*Args=*/{}, Ty,
1394                             VK, RParenLoc, /*MinNumArgs=*/0, UsesADL);
1395 }
1396 
CreateEmpty(const ASTContext & Ctx,unsigned NumArgs,EmptyShell Empty)1397 CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs,
1398                                 EmptyShell Empty) {
1399   unsigned SizeOfTrailingObjects =
1400       CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs);
1401   void *Mem =
1402       Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
1403   return new (Mem) CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, Empty);
1404 }
1405 
offsetToTrailingObjects(StmtClass SC)1406 unsigned CallExpr::offsetToTrailingObjects(StmtClass SC) {
1407   switch (SC) {
1408   case CallExprClass:
1409     return sizeof(CallExpr);
1410   case CXXOperatorCallExprClass:
1411     return sizeof(CXXOperatorCallExpr);
1412   case CXXMemberCallExprClass:
1413     return sizeof(CXXMemberCallExpr);
1414   case UserDefinedLiteralClass:
1415     return sizeof(UserDefinedLiteral);
1416   case CUDAKernelCallExprClass:
1417     return sizeof(CUDAKernelCallExpr);
1418   default:
1419     llvm_unreachable("unexpected class deriving from CallExpr!");
1420   }
1421 }
1422 
updateDependenciesFromArg(Expr * Arg)1423 void CallExpr::updateDependenciesFromArg(Expr *Arg) {
1424   if (Arg->isTypeDependent())
1425     ExprBits.TypeDependent = true;
1426   if (Arg->isValueDependent())
1427     ExprBits.ValueDependent = true;
1428   if (Arg->isInstantiationDependent())
1429     ExprBits.InstantiationDependent = true;
1430   if (Arg->containsUnexpandedParameterPack())
1431     ExprBits.ContainsUnexpandedParameterPack = true;
1432 }
1433 
getReferencedDeclOfCallee()1434 Decl *Expr::getReferencedDeclOfCallee() {
1435   Expr *CEE = IgnoreParenImpCasts();
1436 
1437   while (SubstNonTypeTemplateParmExpr *NTTP
1438                                 = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
1439     CEE = NTTP->getReplacement()->IgnoreParenCasts();
1440   }
1441 
1442   // If we're calling a dereference, look at the pointer instead.
1443   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
1444     if (BO->isPtrMemOp())
1445       CEE = BO->getRHS()->IgnoreParenCasts();
1446   } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
1447     if (UO->getOpcode() == UO_Deref)
1448       CEE = UO->getSubExpr()->IgnoreParenCasts();
1449   }
1450   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
1451     return DRE->getDecl();
1452   if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
1453     return ME->getMemberDecl();
1454   if (auto *BE = dyn_cast<BlockExpr>(CEE))
1455     return BE->getBlockDecl();
1456 
1457   return nullptr;
1458 }
1459 
1460 /// getBuiltinCallee - If this is a call to a builtin, return the builtin ID. If
1461 /// not, return 0.
getBuiltinCallee() const1462 unsigned CallExpr::getBuiltinCallee() const {
1463   // All simple function calls (e.g. func()) are implicitly cast to pointer to
1464   // function. As a result, we try and obtain the DeclRefExpr from the
1465   // ImplicitCastExpr.
1466   const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
1467   if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
1468     return 0;
1469 
1470   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
1471   if (!DRE)
1472     return 0;
1473 
1474   const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
1475   if (!FDecl)
1476     return 0;
1477 
1478   if (!FDecl->getIdentifier())
1479     return 0;
1480 
1481   return FDecl->getBuiltinID();
1482 }
1483 
isUnevaluatedBuiltinCall(const ASTContext & Ctx) const1484 bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const {
1485   if (unsigned BI = getBuiltinCallee())
1486     return Ctx.BuiltinInfo.isUnevaluated(BI);
1487   return false;
1488 }
1489 
getCallReturnType(const ASTContext & Ctx) const1490 QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const {
1491   const Expr *Callee = getCallee();
1492   QualType CalleeType = Callee->getType();
1493   if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
1494     CalleeType = FnTypePtr->getPointeeType();
1495   } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
1496     CalleeType = BPT->getPointeeType();
1497   } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
1498     if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens()))
1499       return Ctx.VoidTy;
1500 
1501     // This should never be overloaded and so should never return null.
1502     CalleeType = Expr::findBoundMemberType(Callee);
1503   }
1504 
1505   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1506   return FnType->getReturnType();
1507 }
1508 
getUnusedResultAttr(const ASTContext & Ctx) const1509 const Attr *CallExpr::getUnusedResultAttr(const ASTContext &Ctx) const {
1510   // If the return type is a struct, union, or enum that is marked nodiscard,
1511   // then return the return type attribute.
1512   if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl())
1513     if (const auto *A = TD->getAttr<WarnUnusedResultAttr>())
1514       return A;
1515 
1516   // Otherwise, see if the callee is marked nodiscard and return that attribute
1517   // instead.
1518   const Decl *D = getCalleeDecl();
1519   return D ? D->getAttr<WarnUnusedResultAttr>() : nullptr;
1520 }
1521 
getBeginLoc() const1522 SourceLocation CallExpr::getBeginLoc() const {
1523   if (isa<CXXOperatorCallExpr>(this))
1524     return cast<CXXOperatorCallExpr>(this)->getBeginLoc();
1525 
1526   SourceLocation begin = getCallee()->getBeginLoc();
1527   if (begin.isInvalid() && getNumArgs() > 0 && getArg(0))
1528     begin = getArg(0)->getBeginLoc();
1529   return begin;
1530 }
getEndLoc() const1531 SourceLocation CallExpr::getEndLoc() const {
1532   if (isa<CXXOperatorCallExpr>(this))
1533     return cast<CXXOperatorCallExpr>(this)->getEndLoc();
1534 
1535   SourceLocation end = getRParenLoc();
1536   if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
1537     end = getArg(getNumArgs() - 1)->getEndLoc();
1538   return end;
1539 }
1540 
Create(const ASTContext & C,QualType type,SourceLocation OperatorLoc,TypeSourceInfo * tsi,ArrayRef<OffsetOfNode> comps,ArrayRef<Expr * > exprs,SourceLocation RParenLoc)1541 OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type,
1542                                    SourceLocation OperatorLoc,
1543                                    TypeSourceInfo *tsi,
1544                                    ArrayRef<OffsetOfNode> comps,
1545                                    ArrayRef<Expr*> exprs,
1546                                    SourceLocation RParenLoc) {
1547   void *Mem = C.Allocate(
1548       totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size()));
1549 
1550   return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
1551                                 RParenLoc);
1552 }
1553 
CreateEmpty(const ASTContext & C,unsigned numComps,unsigned numExprs)1554 OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C,
1555                                         unsigned numComps, unsigned numExprs) {
1556   void *Mem =
1557       C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs));
1558   return new (Mem) OffsetOfExpr(numComps, numExprs);
1559 }
1560 
OffsetOfExpr(const ASTContext & C,QualType type,SourceLocation OperatorLoc,TypeSourceInfo * tsi,ArrayRef<OffsetOfNode> comps,ArrayRef<Expr * > exprs,SourceLocation RParenLoc)1561 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
1562                            SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1563                            ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
1564                            SourceLocation RParenLoc)
1565   : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
1566          /*TypeDependent=*/false,
1567          /*ValueDependent=*/tsi->getType()->isDependentType(),
1568          tsi->getType()->isInstantiationDependentType(),
1569          tsi->getType()->containsUnexpandedParameterPack()),
1570     OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1571     NumComps(comps.size()), NumExprs(exprs.size())
1572 {
1573   for (unsigned i = 0; i != comps.size(); ++i) {
1574     setComponent(i, comps[i]);
1575   }
1576 
1577   for (unsigned i = 0; i != exprs.size(); ++i) {
1578     if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent())
1579       ExprBits.ValueDependent = true;
1580     if (exprs[i]->containsUnexpandedParameterPack())
1581       ExprBits.ContainsUnexpandedParameterPack = true;
1582 
1583     setIndexExpr(i, exprs[i]);
1584   }
1585 }
1586 
getFieldName() const1587 IdentifierInfo *OffsetOfNode::getFieldName() const {
1588   assert(getKind() == Field || getKind() == Identifier);
1589   if (getKind() == Field)
1590     return getField()->getIdentifier();
1591 
1592   return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1593 }
1594 
UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind,Expr * E,QualType resultType,SourceLocation op,SourceLocation rp)1595 UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr(
1596     UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
1597     SourceLocation op, SourceLocation rp)
1598     : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1599            false, // Never type-dependent (C++ [temp.dep.expr]p3).
1600            // Value-dependent if the argument is type-dependent.
1601            E->isTypeDependent(), E->isInstantiationDependent(),
1602            E->containsUnexpandedParameterPack()),
1603       OpLoc(op), RParenLoc(rp) {
1604   UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1605   UnaryExprOrTypeTraitExprBits.IsType = false;
1606   Argument.Ex = E;
1607 
1608   // Check to see if we are in the situation where alignof(decl) should be
1609   // dependent because decl's alignment is dependent.
1610   if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
1611     if (!isValueDependent() || !isInstantiationDependent()) {
1612       E = E->IgnoreParens();
1613 
1614       const ValueDecl *D = nullptr;
1615       if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
1616         D = DRE->getDecl();
1617       else if (const auto *ME = dyn_cast<MemberExpr>(E))
1618         D = ME->getMemberDecl();
1619 
1620       if (D) {
1621         for (const auto *I : D->specific_attrs<AlignedAttr>()) {
1622           if (I->isAlignmentDependent()) {
1623             setValueDependent(true);
1624             setInstantiationDependent(true);
1625             break;
1626           }
1627         }
1628       }
1629     }
1630   }
1631 }
1632 
MemberExpr(Expr * Base,bool IsArrow,SourceLocation OperatorLoc,ValueDecl * MemberDecl,const DeclarationNameInfo & NameInfo,QualType T,ExprValueKind VK,ExprObjectKind OK,NonOdrUseReason NOUR)1633 MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
1634                        ValueDecl *MemberDecl,
1635                        const DeclarationNameInfo &NameInfo, QualType T,
1636                        ExprValueKind VK, ExprObjectKind OK,
1637                        NonOdrUseReason NOUR)
1638     : Expr(MemberExprClass, T, VK, OK, Base->isTypeDependent(),
1639            Base->isValueDependent(), Base->isInstantiationDependent(),
1640            Base->containsUnexpandedParameterPack()),
1641       Base(Base), MemberDecl(MemberDecl), MemberDNLoc(NameInfo.getInfo()),
1642       MemberLoc(NameInfo.getLoc()) {
1643   assert(!NameInfo.getName() ||
1644          MemberDecl->getDeclName() == NameInfo.getName());
1645   MemberExprBits.IsArrow = IsArrow;
1646   MemberExprBits.HasQualifierOrFoundDecl = false;
1647   MemberExprBits.HasTemplateKWAndArgsInfo = false;
1648   MemberExprBits.HadMultipleCandidates = false;
1649   MemberExprBits.NonOdrUseReason = NOUR;
1650   MemberExprBits.OperatorLoc = OperatorLoc;
1651 }
1652 
Create(const ASTContext & C,Expr * Base,bool IsArrow,SourceLocation OperatorLoc,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * MemberDecl,DeclAccessPair FoundDecl,DeclarationNameInfo NameInfo,const TemplateArgumentListInfo * TemplateArgs,QualType T,ExprValueKind VK,ExprObjectKind OK,NonOdrUseReason NOUR)1653 MemberExpr *MemberExpr::Create(
1654     const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
1655     NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
1656     ValueDecl *MemberDecl, DeclAccessPair FoundDecl,
1657     DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs,
1658     QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR) {
1659   bool HasQualOrFound = QualifierLoc || FoundDecl.getDecl() != MemberDecl ||
1660                         FoundDecl.getAccess() != MemberDecl->getAccess();
1661   bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
1662   std::size_t Size =
1663       totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
1664                        TemplateArgumentLoc>(
1665           HasQualOrFound ? 1 : 0, HasTemplateKWAndArgsInfo ? 1 : 0,
1666           TemplateArgs ? TemplateArgs->size() : 0);
1667 
1668   void *Mem = C.Allocate(Size, alignof(MemberExpr));
1669   MemberExpr *E = new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, MemberDecl,
1670                                        NameInfo, T, VK, OK, NOUR);
1671 
1672   if (HasQualOrFound) {
1673     // FIXME: Wrong. We should be looking at the member declaration we found.
1674     if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
1675       E->setValueDependent(true);
1676       E->setTypeDependent(true);
1677       E->setInstantiationDependent(true);
1678     }
1679     else if (QualifierLoc &&
1680              QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
1681       E->setInstantiationDependent(true);
1682 
1683     E->MemberExprBits.HasQualifierOrFoundDecl = true;
1684 
1685     MemberExprNameQualifier *NQ =
1686         E->getTrailingObjects<MemberExprNameQualifier>();
1687     NQ->QualifierLoc = QualifierLoc;
1688     NQ->FoundDecl = FoundDecl;
1689   }
1690 
1691   E->MemberExprBits.HasTemplateKWAndArgsInfo =
1692       TemplateArgs || TemplateKWLoc.isValid();
1693 
1694   if (TemplateArgs) {
1695     bool Dependent = false;
1696     bool InstantiationDependent = false;
1697     bool ContainsUnexpandedParameterPack = false;
1698     E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1699         TemplateKWLoc, *TemplateArgs,
1700         E->getTrailingObjects<TemplateArgumentLoc>(), Dependent,
1701         InstantiationDependent, ContainsUnexpandedParameterPack);
1702     if (InstantiationDependent)
1703       E->setInstantiationDependent(true);
1704   } else if (TemplateKWLoc.isValid()) {
1705     E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1706         TemplateKWLoc);
1707   }
1708 
1709   return E;
1710 }
1711 
CreateEmpty(const ASTContext & Context,bool HasQualifier,bool HasFoundDecl,bool HasTemplateKWAndArgsInfo,unsigned NumTemplateArgs)1712 MemberExpr *MemberExpr::CreateEmpty(const ASTContext &Context,
1713                                     bool HasQualifier, bool HasFoundDecl,
1714                                     bool HasTemplateKWAndArgsInfo,
1715                                     unsigned NumTemplateArgs) {
1716   assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) &&
1717          "template args but no template arg info?");
1718   bool HasQualOrFound = HasQualifier || HasFoundDecl;
1719   std::size_t Size =
1720       totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
1721                        TemplateArgumentLoc>(HasQualOrFound ? 1 : 0,
1722                                             HasTemplateKWAndArgsInfo ? 1 : 0,
1723                                             NumTemplateArgs);
1724   void *Mem = Context.Allocate(Size, alignof(MemberExpr));
1725   return new (Mem) MemberExpr(EmptyShell());
1726 }
1727 
getBeginLoc() const1728 SourceLocation MemberExpr::getBeginLoc() const {
1729   if (isImplicitAccess()) {
1730     if (hasQualifier())
1731       return getQualifierLoc().getBeginLoc();
1732     return MemberLoc;
1733   }
1734 
1735   // FIXME: We don't want this to happen. Rather, we should be able to
1736   // detect all kinds of implicit accesses more cleanly.
1737   SourceLocation BaseStartLoc = getBase()->getBeginLoc();
1738   if (BaseStartLoc.isValid())
1739     return BaseStartLoc;
1740   return MemberLoc;
1741 }
getEndLoc() const1742 SourceLocation MemberExpr::getEndLoc() const {
1743   SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
1744   if (hasExplicitTemplateArgs())
1745     EndLoc = getRAngleLoc();
1746   else if (EndLoc.isInvalid())
1747     EndLoc = getBase()->getEndLoc();
1748   return EndLoc;
1749 }
1750 
CastConsistency() const1751 bool CastExpr::CastConsistency() const {
1752   switch (getCastKind()) {
1753   case CK_DerivedToBase:
1754   case CK_UncheckedDerivedToBase:
1755   case CK_DerivedToBaseMemberPointer:
1756   case CK_BaseToDerived:
1757   case CK_BaseToDerivedMemberPointer:
1758     assert(!path_empty() && "Cast kind should have a base path!");
1759     break;
1760 
1761   case CK_CPointerToObjCPointerCast:
1762     assert(getType()->isObjCObjectPointerType());
1763     assert(getSubExpr()->getType()->isPointerType());
1764     goto CheckNoBasePath;
1765 
1766   case CK_BlockPointerToObjCPointerCast:
1767     assert(getType()->isObjCObjectPointerType());
1768     assert(getSubExpr()->getType()->isBlockPointerType());
1769     goto CheckNoBasePath;
1770 
1771   case CK_ReinterpretMemberPointer:
1772     assert(getType()->isMemberPointerType());
1773     assert(getSubExpr()->getType()->isMemberPointerType());
1774     goto CheckNoBasePath;
1775 
1776   case CK_BitCast:
1777     // Arbitrary casts to C pointer types count as bitcasts.
1778     // Otherwise, we should only have block and ObjC pointer casts
1779     // here if they stay within the type kind.
1780     if (!getType()->isPointerType()) {
1781       assert(getType()->isObjCObjectPointerType() ==
1782              getSubExpr()->getType()->isObjCObjectPointerType());
1783       assert(getType()->isBlockPointerType() ==
1784              getSubExpr()->getType()->isBlockPointerType());
1785     }
1786     goto CheckNoBasePath;
1787 
1788   case CK_AnyPointerToBlockPointerCast:
1789     assert(getType()->isBlockPointerType());
1790     assert(getSubExpr()->getType()->isAnyPointerType() &&
1791            !getSubExpr()->getType()->isBlockPointerType());
1792     goto CheckNoBasePath;
1793 
1794   case CK_CopyAndAutoreleaseBlockObject:
1795     assert(getType()->isBlockPointerType());
1796     assert(getSubExpr()->getType()->isBlockPointerType());
1797     goto CheckNoBasePath;
1798 
1799   case CK_FunctionToPointerDecay:
1800     assert(getType()->isPointerType());
1801     assert(getSubExpr()->getType()->isFunctionType());
1802     goto CheckNoBasePath;
1803 
1804   case CK_AddressSpaceConversion: {
1805     auto Ty = getType();
1806     auto SETy = getSubExpr()->getType();
1807     assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy));
1808     if (/*isRValue()*/ !Ty->getPointeeType().isNull()) {
1809       Ty = Ty->getPointeeType();
1810       SETy = SETy->getPointeeType();
1811     }
1812     assert(!Ty.isNull() && !SETy.isNull() &&
1813            Ty.getAddressSpace() != SETy.getAddressSpace());
1814     goto CheckNoBasePath;
1815   }
1816   // These should not have an inheritance path.
1817   case CK_Dynamic:
1818   case CK_ToUnion:
1819   case CK_ArrayToPointerDecay:
1820   case CK_NullToMemberPointer:
1821   case CK_NullToPointer:
1822   case CK_ConstructorConversion:
1823   case CK_IntegralToPointer:
1824   case CK_PointerToIntegral:
1825   case CK_ToVoid:
1826   case CK_VectorSplat:
1827   case CK_IntegralCast:
1828   case CK_BooleanToSignedIntegral:
1829   case CK_IntegralToFloating:
1830   case CK_FloatingToIntegral:
1831   case CK_FloatingCast:
1832   case CK_ObjCObjectLValueCast:
1833   case CK_FloatingRealToComplex:
1834   case CK_FloatingComplexToReal:
1835   case CK_FloatingComplexCast:
1836   case CK_FloatingComplexToIntegralComplex:
1837   case CK_IntegralRealToComplex:
1838   case CK_IntegralComplexToReal:
1839   case CK_IntegralComplexCast:
1840   case CK_IntegralComplexToFloatingComplex:
1841   case CK_ARCProduceObject:
1842   case CK_ARCConsumeObject:
1843   case CK_ARCReclaimReturnedObject:
1844   case CK_ARCExtendBlockObject:
1845   case CK_ZeroToOCLOpaqueType:
1846   case CK_IntToOCLSampler:
1847   case CK_FixedPointCast:
1848   case CK_FixedPointToIntegral:
1849   case CK_IntegralToFixedPoint:
1850     assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1851     goto CheckNoBasePath;
1852 
1853   case CK_Dependent:
1854   case CK_LValueToRValue:
1855   case CK_NoOp:
1856   case CK_AtomicToNonAtomic:
1857   case CK_NonAtomicToAtomic:
1858   case CK_PointerToBoolean:
1859   case CK_IntegralToBoolean:
1860   case CK_FloatingToBoolean:
1861   case CK_MemberPointerToBoolean:
1862   case CK_FloatingComplexToBoolean:
1863   case CK_IntegralComplexToBoolean:
1864   case CK_LValueBitCast:            // -> bool&
1865   case CK_LValueToRValueBitCast:
1866   case CK_UserDefinedConversion:    // operator bool()
1867   case CK_BuiltinFnToFnPtr:
1868   case CK_FixedPointToBoolean:
1869   CheckNoBasePath:
1870     assert(path_empty() && "Cast kind should not have a base path!");
1871     break;
1872   }
1873   return true;
1874 }
1875 
getCastKindName(CastKind CK)1876 const char *CastExpr::getCastKindName(CastKind CK) {
1877   switch (CK) {
1878 #define CAST_OPERATION(Name) case CK_##Name: return #Name;
1879 #include "clang/AST/OperationKinds.def"
1880   }
1881   llvm_unreachable("Unhandled cast kind!");
1882 }
1883 
1884 namespace {
skipImplicitTemporary(const Expr * E)1885   const Expr *skipImplicitTemporary(const Expr *E) {
1886     // Skip through reference binding to temporary.
1887     if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E))
1888       E = Materialize->GetTemporaryExpr();
1889 
1890     // Skip any temporary bindings; they're implicit.
1891     if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E))
1892       E = Binder->getSubExpr();
1893 
1894     return E;
1895   }
1896 }
1897 
getSubExprAsWritten()1898 Expr *CastExpr::getSubExprAsWritten() {
1899   const Expr *SubExpr = nullptr;
1900   const CastExpr *E = this;
1901   do {
1902     SubExpr = skipImplicitTemporary(E->getSubExpr());
1903 
1904     // Conversions by constructor and conversion functions have a
1905     // subexpression describing the call; strip it off.
1906     if (E->getCastKind() == CK_ConstructorConversion)
1907       SubExpr =
1908         skipImplicitTemporary(cast<CXXConstructExpr>(SubExpr)->getArg(0));
1909     else if (E->getCastKind() == CK_UserDefinedConversion) {
1910       assert((isa<CXXMemberCallExpr>(SubExpr) ||
1911               isa<BlockExpr>(SubExpr)) &&
1912              "Unexpected SubExpr for CK_UserDefinedConversion.");
1913       if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
1914         SubExpr = MCE->getImplicitObjectArgument();
1915     }
1916 
1917     // If the subexpression we're left with is an implicit cast, look
1918     // through that, too.
1919   } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
1920 
1921   return const_cast<Expr*>(SubExpr);
1922 }
1923 
getConversionFunction() const1924 NamedDecl *CastExpr::getConversionFunction() const {
1925   const Expr *SubExpr = nullptr;
1926 
1927   for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) {
1928     SubExpr = skipImplicitTemporary(E->getSubExpr());
1929 
1930     if (E->getCastKind() == CK_ConstructorConversion)
1931       return cast<CXXConstructExpr>(SubExpr)->getConstructor();
1932 
1933     if (E->getCastKind() == CK_UserDefinedConversion) {
1934       if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
1935         return MCE->getMethodDecl();
1936     }
1937   }
1938 
1939   return nullptr;
1940 }
1941 
path_buffer()1942 CXXBaseSpecifier **CastExpr::path_buffer() {
1943   switch (getStmtClass()) {
1944 #define ABSTRACT_STMT(x)
1945 #define CASTEXPR(Type, Base)                                                   \
1946   case Stmt::Type##Class:                                                      \
1947     return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>();
1948 #define STMT(Type, Base)
1949 #include "clang/AST/StmtNodes.inc"
1950   default:
1951     llvm_unreachable("non-cast expressions not possible here");
1952   }
1953 }
1954 
getTargetFieldForToUnionCast(QualType unionType,QualType opType)1955 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType,
1956                                                         QualType opType) {
1957   auto RD = unionType->castAs<RecordType>()->getDecl();
1958   return getTargetFieldForToUnionCast(RD, opType);
1959 }
1960 
getTargetFieldForToUnionCast(const RecordDecl * RD,QualType OpType)1961 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD,
1962                                                         QualType OpType) {
1963   auto &Ctx = RD->getASTContext();
1964   RecordDecl::field_iterator Field, FieldEnd;
1965   for (Field = RD->field_begin(), FieldEnd = RD->field_end();
1966        Field != FieldEnd; ++Field) {
1967     if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) &&
1968         !Field->isUnnamedBitfield()) {
1969       return *Field;
1970     }
1971   }
1972   return nullptr;
1973 }
1974 
Create(const ASTContext & C,QualType T,CastKind Kind,Expr * Operand,const CXXCastPath * BasePath,ExprValueKind VK)1975 ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T,
1976                                            CastKind Kind, Expr *Operand,
1977                                            const CXXCastPath *BasePath,
1978                                            ExprValueKind VK) {
1979   unsigned PathSize = (BasePath ? BasePath->size() : 0);
1980   void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
1981   // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and
1982   // std::nullptr_t have special semantics not captured by CK_LValueToRValue.
1983   assert((Kind != CK_LValueToRValue ||
1984           !(T->isNullPtrType() || T->getAsCXXRecordDecl())) &&
1985          "invalid type for lvalue-to-rvalue conversion");
1986   ImplicitCastExpr *E =
1987     new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
1988   if (PathSize)
1989     std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
1990                               E->getTrailingObjects<CXXBaseSpecifier *>());
1991   return E;
1992 }
1993 
CreateEmpty(const ASTContext & C,unsigned PathSize)1994 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C,
1995                                                 unsigned PathSize) {
1996   void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
1997   return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
1998 }
1999 
2000 
Create(const ASTContext & C,QualType T,ExprValueKind VK,CastKind K,Expr * Op,const CXXCastPath * BasePath,TypeSourceInfo * WrittenTy,SourceLocation L,SourceLocation R)2001 CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T,
2002                                        ExprValueKind VK, CastKind K, Expr *Op,
2003                                        const CXXCastPath *BasePath,
2004                                        TypeSourceInfo *WrittenTy,
2005                                        SourceLocation L, SourceLocation R) {
2006   unsigned PathSize = (BasePath ? BasePath->size() : 0);
2007   void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
2008   CStyleCastExpr *E =
2009     new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
2010   if (PathSize)
2011     std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
2012                               E->getTrailingObjects<CXXBaseSpecifier *>());
2013   return E;
2014 }
2015 
CreateEmpty(const ASTContext & C,unsigned PathSize)2016 CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C,
2017                                             unsigned PathSize) {
2018   void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
2019   return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
2020 }
2021 
2022 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2023 /// corresponds to, e.g. "<<=".
getOpcodeStr(Opcode Op)2024 StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
2025   switch (Op) {
2026 #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling;
2027 #include "clang/AST/OperationKinds.def"
2028   }
2029   llvm_unreachable("Invalid OpCode!");
2030 }
2031 
2032 BinaryOperatorKind
getOverloadedOpcode(OverloadedOperatorKind OO)2033 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
2034   switch (OO) {
2035   default: llvm_unreachable("Not an overloadable binary operator");
2036   case OO_Plus: return BO_Add;
2037   case OO_Minus: return BO_Sub;
2038   case OO_Star: return BO_Mul;
2039   case OO_Slash: return BO_Div;
2040   case OO_Percent: return BO_Rem;
2041   case OO_Caret: return BO_Xor;
2042   case OO_Amp: return BO_And;
2043   case OO_Pipe: return BO_Or;
2044   case OO_Equal: return BO_Assign;
2045   case OO_Spaceship: return BO_Cmp;
2046   case OO_Less: return BO_LT;
2047   case OO_Greater: return BO_GT;
2048   case OO_PlusEqual: return BO_AddAssign;
2049   case OO_MinusEqual: return BO_SubAssign;
2050   case OO_StarEqual: return BO_MulAssign;
2051   case OO_SlashEqual: return BO_DivAssign;
2052   case OO_PercentEqual: return BO_RemAssign;
2053   case OO_CaretEqual: return BO_XorAssign;
2054   case OO_AmpEqual: return BO_AndAssign;
2055   case OO_PipeEqual: return BO_OrAssign;
2056   case OO_LessLess: return BO_Shl;
2057   case OO_GreaterGreater: return BO_Shr;
2058   case OO_LessLessEqual: return BO_ShlAssign;
2059   case OO_GreaterGreaterEqual: return BO_ShrAssign;
2060   case OO_EqualEqual: return BO_EQ;
2061   case OO_ExclaimEqual: return BO_NE;
2062   case OO_LessEqual: return BO_LE;
2063   case OO_GreaterEqual: return BO_GE;
2064   case OO_AmpAmp: return BO_LAnd;
2065   case OO_PipePipe: return BO_LOr;
2066   case OO_Comma: return BO_Comma;
2067   case OO_ArrowStar: return BO_PtrMemI;
2068   }
2069 }
2070 
getOverloadedOperator(Opcode Opc)2071 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
2072   static const OverloadedOperatorKind OverOps[] = {
2073     /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
2074     OO_Star, OO_Slash, OO_Percent,
2075     OO_Plus, OO_Minus,
2076     OO_LessLess, OO_GreaterGreater,
2077     OO_Spaceship,
2078     OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
2079     OO_EqualEqual, OO_ExclaimEqual,
2080     OO_Amp,
2081     OO_Caret,
2082     OO_Pipe,
2083     OO_AmpAmp,
2084     OO_PipePipe,
2085     OO_Equal, OO_StarEqual,
2086     OO_SlashEqual, OO_PercentEqual,
2087     OO_PlusEqual, OO_MinusEqual,
2088     OO_LessLessEqual, OO_GreaterGreaterEqual,
2089     OO_AmpEqual, OO_CaretEqual,
2090     OO_PipeEqual,
2091     OO_Comma
2092   };
2093   return OverOps[Opc];
2094 }
2095 
isNullPointerArithmeticExtension(ASTContext & Ctx,Opcode Opc,Expr * LHS,Expr * RHS)2096 bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx,
2097                                                       Opcode Opc,
2098                                                       Expr *LHS, Expr *RHS) {
2099   if (Opc != BO_Add)
2100     return false;
2101 
2102   // Check that we have one pointer and one integer operand.
2103   Expr *PExp;
2104   if (LHS->getType()->isPointerType()) {
2105     if (!RHS->getType()->isIntegerType())
2106       return false;
2107     PExp = LHS;
2108   } else if (RHS->getType()->isPointerType()) {
2109     if (!LHS->getType()->isIntegerType())
2110       return false;
2111     PExp = RHS;
2112   } else {
2113     return false;
2114   }
2115 
2116   // Check that the pointer is a nullptr.
2117   if (!PExp->IgnoreParenCasts()
2118           ->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull))
2119     return false;
2120 
2121   // Check that the pointee type is char-sized.
2122   const PointerType *PTy = PExp->getType()->getAs<PointerType>();
2123   if (!PTy || !PTy->getPointeeType()->isCharType())
2124     return false;
2125 
2126   return true;
2127 }
2128 
getDecayedSourceLocExprType(const ASTContext & Ctx,SourceLocExpr::IdentKind Kind)2129 static QualType getDecayedSourceLocExprType(const ASTContext &Ctx,
2130                                             SourceLocExpr::IdentKind Kind) {
2131   switch (Kind) {
2132   case SourceLocExpr::File:
2133   case SourceLocExpr::Function: {
2134     QualType ArrTy = Ctx.getStringLiteralArrayType(Ctx.CharTy, 0);
2135     return Ctx.getPointerType(ArrTy->getAsArrayTypeUnsafe()->getElementType());
2136   }
2137   case SourceLocExpr::Line:
2138   case SourceLocExpr::Column:
2139     return Ctx.UnsignedIntTy;
2140   }
2141   llvm_unreachable("unhandled case");
2142 }
2143 
SourceLocExpr(const ASTContext & Ctx,IdentKind Kind,SourceLocation BLoc,SourceLocation RParenLoc,DeclContext * ParentContext)2144 SourceLocExpr::SourceLocExpr(const ASTContext &Ctx, IdentKind Kind,
2145                              SourceLocation BLoc, SourceLocation RParenLoc,
2146                              DeclContext *ParentContext)
2147     : Expr(SourceLocExprClass, getDecayedSourceLocExprType(Ctx, Kind),
2148            VK_RValue, OK_Ordinary, false, false, false, false),
2149       BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) {
2150   SourceLocExprBits.Kind = Kind;
2151 }
2152 
getBuiltinStr() const2153 StringRef SourceLocExpr::getBuiltinStr() const {
2154   switch (getIdentKind()) {
2155   case File:
2156     return "__builtin_FILE";
2157   case Function:
2158     return "__builtin_FUNCTION";
2159   case Line:
2160     return "__builtin_LINE";
2161   case Column:
2162     return "__builtin_COLUMN";
2163   }
2164   llvm_unreachable("unexpected IdentKind!");
2165 }
2166 
EvaluateInContext(const ASTContext & Ctx,const Expr * DefaultExpr) const2167 APValue SourceLocExpr::EvaluateInContext(const ASTContext &Ctx,
2168                                          const Expr *DefaultExpr) const {
2169   SourceLocation Loc;
2170   const DeclContext *Context;
2171 
2172   std::tie(Loc,
2173            Context) = [&]() -> std::pair<SourceLocation, const DeclContext *> {
2174     if (auto *DIE = dyn_cast_or_null<CXXDefaultInitExpr>(DefaultExpr))
2175       return {DIE->getUsedLocation(), DIE->getUsedContext()};
2176     if (auto *DAE = dyn_cast_or_null<CXXDefaultArgExpr>(DefaultExpr))
2177       return {DAE->getUsedLocation(), DAE->getUsedContext()};
2178     return {this->getLocation(), this->getParentContext()};
2179   }();
2180 
2181   PresumedLoc PLoc = Ctx.getSourceManager().getPresumedLoc(
2182       Ctx.getSourceManager().getExpansionRange(Loc).getEnd());
2183 
2184   auto MakeStringLiteral = [&](StringRef Tmp) {
2185     using LValuePathEntry = APValue::LValuePathEntry;
2186     StringLiteral *Res = Ctx.getPredefinedStringLiteralFromCache(Tmp);
2187     // Decay the string to a pointer to the first character.
2188     LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(0)};
2189     return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false);
2190   };
2191 
2192   switch (getIdentKind()) {
2193   case SourceLocExpr::File:
2194     return MakeStringLiteral(PLoc.getFilename());
2195   case SourceLocExpr::Function: {
2196     const Decl *CurDecl = dyn_cast_or_null<Decl>(Context);
2197     return MakeStringLiteral(
2198         CurDecl ? PredefinedExpr::ComputeName(PredefinedExpr::Function, CurDecl)
2199                 : std::string(""));
2200   }
2201   case SourceLocExpr::Line:
2202   case SourceLocExpr::Column: {
2203     llvm::APSInt IntVal(Ctx.getIntWidth(Ctx.UnsignedIntTy),
2204                         /*isUnsigned=*/true);
2205     IntVal = getIdentKind() == SourceLocExpr::Line ? PLoc.getLine()
2206                                                    : PLoc.getColumn();
2207     return APValue(IntVal);
2208   }
2209   }
2210   llvm_unreachable("unhandled case");
2211 }
2212 
InitListExpr(const ASTContext & C,SourceLocation lbraceloc,ArrayRef<Expr * > initExprs,SourceLocation rbraceloc)2213 InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
2214                            ArrayRef<Expr*> initExprs, SourceLocation rbraceloc)
2215   : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
2216          false, false),
2217     InitExprs(C, initExprs.size()),
2218     LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(nullptr, true)
2219 {
2220   sawArrayRangeDesignator(false);
2221   for (unsigned I = 0; I != initExprs.size(); ++I) {
2222     if (initExprs[I]->isTypeDependent())
2223       ExprBits.TypeDependent = true;
2224     if (initExprs[I]->isValueDependent())
2225       ExprBits.ValueDependent = true;
2226     if (initExprs[I]->isInstantiationDependent())
2227       ExprBits.InstantiationDependent = true;
2228     if (initExprs[I]->containsUnexpandedParameterPack())
2229       ExprBits.ContainsUnexpandedParameterPack = true;
2230   }
2231 
2232   InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
2233 }
2234 
reserveInits(const ASTContext & C,unsigned NumInits)2235 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
2236   if (NumInits > InitExprs.size())
2237     InitExprs.reserve(C, NumInits);
2238 }
2239 
resizeInits(const ASTContext & C,unsigned NumInits)2240 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
2241   InitExprs.resize(C, NumInits, nullptr);
2242 }
2243 
updateInit(const ASTContext & C,unsigned Init,Expr * expr)2244 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
2245   if (Init >= InitExprs.size()) {
2246     InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
2247     setInit(Init, expr);
2248     return nullptr;
2249   }
2250 
2251   Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
2252   setInit(Init, expr);
2253   return Result;
2254 }
2255 
setArrayFiller(Expr * filler)2256 void InitListExpr::setArrayFiller(Expr *filler) {
2257   assert(!hasArrayFiller() && "Filler already set!");
2258   ArrayFillerOrUnionFieldInit = filler;
2259   // Fill out any "holes" in the array due to designated initializers.
2260   Expr **inits = getInits();
2261   for (unsigned i = 0, e = getNumInits(); i != e; ++i)
2262     if (inits[i] == nullptr)
2263       inits[i] = filler;
2264 }
2265 
isStringLiteralInit() const2266 bool InitListExpr::isStringLiteralInit() const {
2267   if (getNumInits() != 1)
2268     return false;
2269   const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
2270   if (!AT || !AT->getElementType()->isIntegerType())
2271     return false;
2272   // It is possible for getInit() to return null.
2273   const Expr *Init = getInit(0);
2274   if (!Init)
2275     return false;
2276   Init = Init->IgnoreParens();
2277   return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
2278 }
2279 
isTransparent() const2280 bool InitListExpr::isTransparent() const {
2281   assert(isSemanticForm() && "syntactic form never semantically transparent");
2282 
2283   // A glvalue InitListExpr is always just sugar.
2284   if (isGLValue()) {
2285     assert(getNumInits() == 1 && "multiple inits in glvalue init list");
2286     return true;
2287   }
2288 
2289   // Otherwise, we're sugar if and only if we have exactly one initializer that
2290   // is of the same type.
2291   if (getNumInits() != 1 || !getInit(0))
2292     return false;
2293 
2294   // Don't confuse aggregate initialization of a struct X { X &x; }; with a
2295   // transparent struct copy.
2296   if (!getInit(0)->isRValue() && getType()->isRecordType())
2297     return false;
2298 
2299   return getType().getCanonicalType() ==
2300          getInit(0)->getType().getCanonicalType();
2301 }
2302 
isIdiomaticZeroInitializer(const LangOptions & LangOpts) const2303 bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const {
2304   assert(isSyntacticForm() && "only test syntactic form as zero initializer");
2305 
2306   if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(0)) {
2307     return false;
2308   }
2309 
2310   const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0)->IgnoreImplicit());
2311   return Lit && Lit->getValue() == 0;
2312 }
2313 
getBeginLoc() const2314 SourceLocation InitListExpr::getBeginLoc() const {
2315   if (InitListExpr *SyntacticForm = getSyntacticForm())
2316     return SyntacticForm->getBeginLoc();
2317   SourceLocation Beg = LBraceLoc;
2318   if (Beg.isInvalid()) {
2319     // Find the first non-null initializer.
2320     for (InitExprsTy::const_iterator I = InitExprs.begin(),
2321                                      E = InitExprs.end();
2322       I != E; ++I) {
2323       if (Stmt *S = *I) {
2324         Beg = S->getBeginLoc();
2325         break;
2326       }
2327     }
2328   }
2329   return Beg;
2330 }
2331 
getEndLoc() const2332 SourceLocation InitListExpr::getEndLoc() const {
2333   if (InitListExpr *SyntacticForm = getSyntacticForm())
2334     return SyntacticForm->getEndLoc();
2335   SourceLocation End = RBraceLoc;
2336   if (End.isInvalid()) {
2337     // Find the first non-null initializer from the end.
2338     for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
2339          E = InitExprs.rend();
2340          I != E; ++I) {
2341       if (Stmt *S = *I) {
2342         End = S->getEndLoc();
2343         break;
2344       }
2345     }
2346   }
2347   return End;
2348 }
2349 
2350 /// getFunctionType - Return the underlying function type for this block.
2351 ///
getFunctionType() const2352 const FunctionProtoType *BlockExpr::getFunctionType() const {
2353   // The block pointer is never sugared, but the function type might be.
2354   return cast<BlockPointerType>(getType())
2355            ->getPointeeType()->castAs<FunctionProtoType>();
2356 }
2357 
getCaretLocation() const2358 SourceLocation BlockExpr::getCaretLocation() const {
2359   return TheBlock->getCaretLocation();
2360 }
getBody() const2361 const Stmt *BlockExpr::getBody() const {
2362   return TheBlock->getBody();
2363 }
getBody()2364 Stmt *BlockExpr::getBody() {
2365   return TheBlock->getBody();
2366 }
2367 
2368 
2369 //===----------------------------------------------------------------------===//
2370 // Generic Expression Routines
2371 //===----------------------------------------------------------------------===//
2372 
2373 /// isUnusedResultAWarning - Return true if this immediate expression should
2374 /// be warned about if the result is unused.  If so, fill in Loc and Ranges
2375 /// with location to warn on and the source range[s] to report with the
2376 /// warning.
isUnusedResultAWarning(const Expr * & WarnE,SourceLocation & Loc,SourceRange & R1,SourceRange & R2,ASTContext & Ctx) const2377 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
2378                                   SourceRange &R1, SourceRange &R2,
2379                                   ASTContext &Ctx) const {
2380   // Don't warn if the expr is type dependent. The type could end up
2381   // instantiating to void.
2382   if (isTypeDependent())
2383     return false;
2384 
2385   switch (getStmtClass()) {
2386   default:
2387     if (getType()->isVoidType())
2388       return false;
2389     WarnE = this;
2390     Loc = getExprLoc();
2391     R1 = getSourceRange();
2392     return true;
2393   case ParenExprClass:
2394     return cast<ParenExpr>(this)->getSubExpr()->
2395       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2396   case GenericSelectionExprClass:
2397     return cast<GenericSelectionExpr>(this)->getResultExpr()->
2398       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2399   case CoawaitExprClass:
2400   case CoyieldExprClass:
2401     return cast<CoroutineSuspendExpr>(this)->getResumeExpr()->
2402       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2403   case ChooseExprClass:
2404     return cast<ChooseExpr>(this)->getChosenSubExpr()->
2405       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2406   case UnaryOperatorClass: {
2407     const UnaryOperator *UO = cast<UnaryOperator>(this);
2408 
2409     switch (UO->getOpcode()) {
2410     case UO_Plus:
2411     case UO_Minus:
2412     case UO_AddrOf:
2413     case UO_Not:
2414     case UO_LNot:
2415     case UO_Deref:
2416       break;
2417     case UO_Coawait:
2418       // This is just the 'operator co_await' call inside the guts of a
2419       // dependent co_await call.
2420     case UO_PostInc:
2421     case UO_PostDec:
2422     case UO_PreInc:
2423     case UO_PreDec:                 // ++/--
2424       return false;  // Not a warning.
2425     case UO_Real:
2426     case UO_Imag:
2427       // accessing a piece of a volatile complex is a side-effect.
2428       if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
2429           .isVolatileQualified())
2430         return false;
2431       break;
2432     case UO_Extension:
2433       return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2434     }
2435     WarnE = this;
2436     Loc = UO->getOperatorLoc();
2437     R1 = UO->getSubExpr()->getSourceRange();
2438     return true;
2439   }
2440   case BinaryOperatorClass: {
2441     const BinaryOperator *BO = cast<BinaryOperator>(this);
2442     switch (BO->getOpcode()) {
2443       default:
2444         break;
2445       // Consider the RHS of comma for side effects. LHS was checked by
2446       // Sema::CheckCommaOperands.
2447       case BO_Comma:
2448         // ((foo = <blah>), 0) is an idiom for hiding the result (and
2449         // lvalue-ness) of an assignment written in a macro.
2450         if (IntegerLiteral *IE =
2451               dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
2452           if (IE->getValue() == 0)
2453             return false;
2454         return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2455       // Consider '||', '&&' to have side effects if the LHS or RHS does.
2456       case BO_LAnd:
2457       case BO_LOr:
2458         if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
2459             !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2460           return false;
2461         break;
2462     }
2463     if (BO->isAssignmentOp())
2464       return false;
2465     WarnE = this;
2466     Loc = BO->getOperatorLoc();
2467     R1 = BO->getLHS()->getSourceRange();
2468     R2 = BO->getRHS()->getSourceRange();
2469     return true;
2470   }
2471   case CompoundAssignOperatorClass:
2472   case VAArgExprClass:
2473   case AtomicExprClass:
2474     return false;
2475 
2476   case ConditionalOperatorClass: {
2477     // If only one of the LHS or RHS is a warning, the operator might
2478     // be being used for control flow. Only warn if both the LHS and
2479     // RHS are warnings.
2480     const auto *Exp = cast<ConditionalOperator>(this);
2481     return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) &&
2482            Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2483   }
2484   case BinaryConditionalOperatorClass: {
2485     const auto *Exp = cast<BinaryConditionalOperator>(this);
2486     return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2487   }
2488 
2489   case MemberExprClass:
2490     WarnE = this;
2491     Loc = cast<MemberExpr>(this)->getMemberLoc();
2492     R1 = SourceRange(Loc, Loc);
2493     R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
2494     return true;
2495 
2496   case ArraySubscriptExprClass:
2497     WarnE = this;
2498     Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
2499     R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
2500     R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
2501     return true;
2502 
2503   case CXXOperatorCallExprClass: {
2504     // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
2505     // overloads as there is no reasonable way to define these such that they
2506     // have non-trivial, desirable side-effects. See the -Wunused-comparison
2507     // warning: operators == and != are commonly typo'ed, and so warning on them
2508     // provides additional value as well. If this list is updated,
2509     // DiagnoseUnusedComparison should be as well.
2510     const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
2511     switch (Op->getOperator()) {
2512     default:
2513       break;
2514     case OO_EqualEqual:
2515     case OO_ExclaimEqual:
2516     case OO_Less:
2517     case OO_Greater:
2518     case OO_GreaterEqual:
2519     case OO_LessEqual:
2520       if (Op->getCallReturnType(Ctx)->isReferenceType() ||
2521           Op->getCallReturnType(Ctx)->isVoidType())
2522         break;
2523       WarnE = this;
2524       Loc = Op->getOperatorLoc();
2525       R1 = Op->getSourceRange();
2526       return true;
2527     }
2528 
2529     // Fallthrough for generic call handling.
2530     LLVM_FALLTHROUGH;
2531   }
2532   case CallExprClass:
2533   case CXXMemberCallExprClass:
2534   case UserDefinedLiteralClass: {
2535     // If this is a direct call, get the callee.
2536     const CallExpr *CE = cast<CallExpr>(this);
2537     if (const Decl *FD = CE->getCalleeDecl()) {
2538       // If the callee has attribute pure, const, or warn_unused_result, warn
2539       // about it. void foo() { strlen("bar"); } should warn.
2540       //
2541       // Note: If new cases are added here, DiagnoseUnusedExprResult should be
2542       // updated to match for QoI.
2543       if (CE->hasUnusedResultAttr(Ctx) ||
2544           FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
2545         WarnE = this;
2546         Loc = CE->getCallee()->getBeginLoc();
2547         R1 = CE->getCallee()->getSourceRange();
2548 
2549         if (unsigned NumArgs = CE->getNumArgs())
2550           R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
2551                            CE->getArg(NumArgs - 1)->getEndLoc());
2552         return true;
2553       }
2554     }
2555     return false;
2556   }
2557 
2558   // If we don't know precisely what we're looking at, let's not warn.
2559   case UnresolvedLookupExprClass:
2560   case CXXUnresolvedConstructExprClass:
2561     return false;
2562 
2563   case CXXTemporaryObjectExprClass:
2564   case CXXConstructExprClass: {
2565     if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
2566       if (Type->hasAttr<WarnUnusedAttr>()) {
2567         WarnE = this;
2568         Loc = getBeginLoc();
2569         R1 = getSourceRange();
2570         return true;
2571       }
2572     }
2573     return false;
2574   }
2575 
2576   case ObjCMessageExprClass: {
2577     const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
2578     if (Ctx.getLangOpts().ObjCAutoRefCount &&
2579         ME->isInstanceMessage() &&
2580         !ME->getType()->isVoidType() &&
2581         ME->getMethodFamily() == OMF_init) {
2582       WarnE = this;
2583       Loc = getExprLoc();
2584       R1 = ME->getSourceRange();
2585       return true;
2586     }
2587 
2588     if (const ObjCMethodDecl *MD = ME->getMethodDecl())
2589       if (MD->hasAttr<WarnUnusedResultAttr>()) {
2590         WarnE = this;
2591         Loc = getExprLoc();
2592         return true;
2593       }
2594 
2595     return false;
2596   }
2597 
2598   case ObjCPropertyRefExprClass:
2599     WarnE = this;
2600     Loc = getExprLoc();
2601     R1 = getSourceRange();
2602     return true;
2603 
2604   case PseudoObjectExprClass: {
2605     const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
2606 
2607     // Only complain about things that have the form of a getter.
2608     if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
2609         isa<BinaryOperator>(PO->getSyntacticForm()))
2610       return false;
2611 
2612     WarnE = this;
2613     Loc = getExprLoc();
2614     R1 = getSourceRange();
2615     return true;
2616   }
2617 
2618   case StmtExprClass: {
2619     // Statement exprs don't logically have side effects themselves, but are
2620     // sometimes used in macros in ways that give them a type that is unused.
2621     // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2622     // however, if the result of the stmt expr is dead, we don't want to emit a
2623     // warning.
2624     const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
2625     if (!CS->body_empty()) {
2626       if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
2627         return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2628       if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
2629         if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
2630           return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2631     }
2632 
2633     if (getType()->isVoidType())
2634       return false;
2635     WarnE = this;
2636     Loc = cast<StmtExpr>(this)->getLParenLoc();
2637     R1 = getSourceRange();
2638     return true;
2639   }
2640   case CXXFunctionalCastExprClass:
2641   case CStyleCastExprClass: {
2642     // Ignore an explicit cast to void unless the operand is a non-trivial
2643     // volatile lvalue.
2644     const CastExpr *CE = cast<CastExpr>(this);
2645     if (CE->getCastKind() == CK_ToVoid) {
2646       if (CE->getSubExpr()->isGLValue() &&
2647           CE->getSubExpr()->getType().isVolatileQualified()) {
2648         const DeclRefExpr *DRE =
2649             dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens());
2650         if (!(DRE && isa<VarDecl>(DRE->getDecl()) &&
2651               cast<VarDecl>(DRE->getDecl())->hasLocalStorage()) &&
2652             !isa<CallExpr>(CE->getSubExpr()->IgnoreParens())) {
2653           return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc,
2654                                                           R1, R2, Ctx);
2655         }
2656       }
2657       return false;
2658     }
2659 
2660     // If this is a cast to a constructor conversion, check the operand.
2661     // Otherwise, the result of the cast is unused.
2662     if (CE->getCastKind() == CK_ConstructorConversion)
2663       return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2664 
2665     WarnE = this;
2666     if (const CXXFunctionalCastExpr *CXXCE =
2667             dyn_cast<CXXFunctionalCastExpr>(this)) {
2668       Loc = CXXCE->getBeginLoc();
2669       R1 = CXXCE->getSubExpr()->getSourceRange();
2670     } else {
2671       const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
2672       Loc = CStyleCE->getLParenLoc();
2673       R1 = CStyleCE->getSubExpr()->getSourceRange();
2674     }
2675     return true;
2676   }
2677   case ImplicitCastExprClass: {
2678     const CastExpr *ICE = cast<ImplicitCastExpr>(this);
2679 
2680     // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2681     if (ICE->getCastKind() == CK_LValueToRValue &&
2682         ICE->getSubExpr()->getType().isVolatileQualified())
2683       return false;
2684 
2685     return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2686   }
2687   case CXXDefaultArgExprClass:
2688     return (cast<CXXDefaultArgExpr>(this)
2689             ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2690   case CXXDefaultInitExprClass:
2691     return (cast<CXXDefaultInitExpr>(this)
2692             ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2693 
2694   case CXXNewExprClass:
2695     // FIXME: In theory, there might be new expressions that don't have side
2696     // effects (e.g. a placement new with an uninitialized POD).
2697   case CXXDeleteExprClass:
2698     return false;
2699   case MaterializeTemporaryExprClass:
2700     return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
2701                ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2702   case CXXBindTemporaryExprClass:
2703     return cast<CXXBindTemporaryExpr>(this)->getSubExpr()
2704                ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2705   case ExprWithCleanupsClass:
2706     return cast<ExprWithCleanups>(this)->getSubExpr()
2707                ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2708   }
2709 }
2710 
2711 /// isOBJCGCCandidate - Check if an expression is objc gc'able.
2712 /// returns true, if it is; false otherwise.
isOBJCGCCandidate(ASTContext & Ctx) const2713 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
2714   const Expr *E = IgnoreParens();
2715   switch (E->getStmtClass()) {
2716   default:
2717     return false;
2718   case ObjCIvarRefExprClass:
2719     return true;
2720   case Expr::UnaryOperatorClass:
2721     return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2722   case ImplicitCastExprClass:
2723     return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2724   case MaterializeTemporaryExprClass:
2725     return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
2726                                                       ->isOBJCGCCandidate(Ctx);
2727   case CStyleCastExprClass:
2728     return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2729   case DeclRefExprClass: {
2730     const Decl *D = cast<DeclRefExpr>(E)->getDecl();
2731 
2732     if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2733       if (VD->hasGlobalStorage())
2734         return true;
2735       QualType T = VD->getType();
2736       // dereferencing to a  pointer is always a gc'able candidate,
2737       // unless it is __weak.
2738       return T->isPointerType() &&
2739              (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
2740     }
2741     return false;
2742   }
2743   case MemberExprClass: {
2744     const MemberExpr *M = cast<MemberExpr>(E);
2745     return M->getBase()->isOBJCGCCandidate(Ctx);
2746   }
2747   case ArraySubscriptExprClass:
2748     return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
2749   }
2750 }
2751 
isBoundMemberFunction(ASTContext & Ctx) const2752 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
2753   if (isTypeDependent())
2754     return false;
2755   return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
2756 }
2757 
findBoundMemberType(const Expr * expr)2758 QualType Expr::findBoundMemberType(const Expr *expr) {
2759   assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
2760 
2761   // Bound member expressions are always one of these possibilities:
2762   //   x->m      x.m      x->*y      x.*y
2763   // (possibly parenthesized)
2764 
2765   expr = expr->IgnoreParens();
2766   if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
2767     assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
2768     return mem->getMemberDecl()->getType();
2769   }
2770 
2771   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
2772     QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
2773                       ->getPointeeType();
2774     assert(type->isFunctionType());
2775     return type;
2776   }
2777 
2778   assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr));
2779   return QualType();
2780 }
2781 
IgnoreImpCastsSingleStep(Expr * E)2782 static Expr *IgnoreImpCastsSingleStep(Expr *E) {
2783   if (auto *ICE = dyn_cast<ImplicitCastExpr>(E))
2784     return ICE->getSubExpr();
2785 
2786   if (auto *FE = dyn_cast<FullExpr>(E))
2787     return FE->getSubExpr();
2788 
2789   return E;
2790 }
2791 
IgnoreImpCastsExtraSingleStep(Expr * E)2792 static Expr *IgnoreImpCastsExtraSingleStep(Expr *E) {
2793   // FIXME: Skip MaterializeTemporaryExpr and SubstNonTypeTemplateParmExpr in
2794   // addition to what IgnoreImpCasts() skips to account for the current
2795   // behaviour of IgnoreParenImpCasts().
2796   Expr *SubE = IgnoreImpCastsSingleStep(E);
2797   if (SubE != E)
2798     return SubE;
2799 
2800   if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E))
2801     return MTE->GetTemporaryExpr();
2802 
2803   if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
2804     return NTTP->getReplacement();
2805 
2806   return E;
2807 }
2808 
IgnoreCastsSingleStep(Expr * E)2809 static Expr *IgnoreCastsSingleStep(Expr *E) {
2810   if (auto *CE = dyn_cast<CastExpr>(E))
2811     return CE->getSubExpr();
2812 
2813   if (auto *FE = dyn_cast<FullExpr>(E))
2814     return FE->getSubExpr();
2815 
2816   if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E))
2817     return MTE->GetTemporaryExpr();
2818 
2819   if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
2820     return NTTP->getReplacement();
2821 
2822   return E;
2823 }
2824 
IgnoreLValueCastsSingleStep(Expr * E)2825 static Expr *IgnoreLValueCastsSingleStep(Expr *E) {
2826   // Skip what IgnoreCastsSingleStep skips, except that only
2827   // lvalue-to-rvalue casts are skipped.
2828   if (auto *CE = dyn_cast<CastExpr>(E))
2829     if (CE->getCastKind() != CK_LValueToRValue)
2830       return E;
2831 
2832   return IgnoreCastsSingleStep(E);
2833 }
2834 
IgnoreBaseCastsSingleStep(Expr * E)2835 static Expr *IgnoreBaseCastsSingleStep(Expr *E) {
2836   if (auto *CE = dyn_cast<CastExpr>(E))
2837     if (CE->getCastKind() == CK_DerivedToBase ||
2838         CE->getCastKind() == CK_UncheckedDerivedToBase ||
2839         CE->getCastKind() == CK_NoOp)
2840       return CE->getSubExpr();
2841 
2842   return E;
2843 }
2844 
IgnoreImplicitSingleStep(Expr * E)2845 static Expr *IgnoreImplicitSingleStep(Expr *E) {
2846   Expr *SubE = IgnoreImpCastsSingleStep(E);
2847   if (SubE != E)
2848     return SubE;
2849 
2850   if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E))
2851     return MTE->GetTemporaryExpr();
2852 
2853   if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(E))
2854     return BTE->getSubExpr();
2855 
2856   return E;
2857 }
2858 
IgnoreParensSingleStep(Expr * E)2859 static Expr *IgnoreParensSingleStep(Expr *E) {
2860   if (auto *PE = dyn_cast<ParenExpr>(E))
2861     return PE->getSubExpr();
2862 
2863   if (auto *UO = dyn_cast<UnaryOperator>(E)) {
2864     if (UO->getOpcode() == UO_Extension)
2865       return UO->getSubExpr();
2866   }
2867 
2868   else if (auto *GSE = dyn_cast<GenericSelectionExpr>(E)) {
2869     if (!GSE->isResultDependent())
2870       return GSE->getResultExpr();
2871   }
2872 
2873   else if (auto *CE = dyn_cast<ChooseExpr>(E)) {
2874     if (!CE->isConditionDependent())
2875       return CE->getChosenSubExpr();
2876   }
2877 
2878   else if (auto *CE = dyn_cast<ConstantExpr>(E))
2879     return CE->getSubExpr();
2880 
2881   return E;
2882 }
2883 
IgnoreNoopCastsSingleStep(const ASTContext & Ctx,Expr * E)2884 static Expr *IgnoreNoopCastsSingleStep(const ASTContext &Ctx, Expr *E) {
2885   if (auto *CE = dyn_cast<CastExpr>(E)) {
2886     // We ignore integer <-> casts that are of the same width, ptr<->ptr and
2887     // ptr<->int casts of the same width. We also ignore all identity casts.
2888     Expr *SubExpr = CE->getSubExpr();
2889     bool IsIdentityCast =
2890         Ctx.hasSameUnqualifiedType(E->getType(), SubExpr->getType());
2891     bool IsSameWidthCast =
2892         (E->getType()->isPointerType() || E->getType()->isIntegralType(Ctx)) &&
2893         (SubExpr->getType()->isPointerType() ||
2894          SubExpr->getType()->isIntegralType(Ctx)) &&
2895         (Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SubExpr->getType()));
2896 
2897     if (IsIdentityCast || IsSameWidthCast)
2898       return SubExpr;
2899   }
2900 
2901   else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
2902     return NTTP->getReplacement();
2903 
2904   return E;
2905 }
2906 
IgnoreExprNodesImpl(Expr * E)2907 static Expr *IgnoreExprNodesImpl(Expr *E) { return E; }
2908 template <typename FnTy, typename... FnTys>
IgnoreExprNodesImpl(Expr * E,FnTy && Fn,FnTys &&...Fns)2909 static Expr *IgnoreExprNodesImpl(Expr *E, FnTy &&Fn, FnTys &&... Fns) {
2910   return IgnoreExprNodesImpl(Fn(E), std::forward<FnTys>(Fns)...);
2911 }
2912 
2913 /// Given an expression E and functions Fn_1,...,Fn_n : Expr * -> Expr *,
2914 /// Recursively apply each of the functions to E until reaching a fixed point.
2915 /// Note that a null E is valid; in this case nothing is done.
2916 template <typename... FnTys>
IgnoreExprNodes(Expr * E,FnTys &&...Fns)2917 static Expr *IgnoreExprNodes(Expr *E, FnTys &&... Fns) {
2918   Expr *LastE = nullptr;
2919   while (E != LastE) {
2920     LastE = E;
2921     E = IgnoreExprNodesImpl(E, std::forward<FnTys>(Fns)...);
2922   }
2923   return E;
2924 }
2925 
IgnoreImpCasts()2926 Expr *Expr::IgnoreImpCasts() {
2927   return IgnoreExprNodes(this, IgnoreImpCastsSingleStep);
2928 }
2929 
IgnoreCasts()2930 Expr *Expr::IgnoreCasts() {
2931   return IgnoreExprNodes(this, IgnoreCastsSingleStep);
2932 }
2933 
IgnoreImplicit()2934 Expr *Expr::IgnoreImplicit() {
2935   return IgnoreExprNodes(this, IgnoreImplicitSingleStep);
2936 }
2937 
IgnoreParens()2938 Expr *Expr::IgnoreParens() {
2939   return IgnoreExprNodes(this, IgnoreParensSingleStep);
2940 }
2941 
IgnoreParenImpCasts()2942 Expr *Expr::IgnoreParenImpCasts() {
2943   return IgnoreExprNodes(this, IgnoreParensSingleStep,
2944                          IgnoreImpCastsExtraSingleStep);
2945 }
2946 
IgnoreParenCasts()2947 Expr *Expr::IgnoreParenCasts() {
2948   return IgnoreExprNodes(this, IgnoreParensSingleStep, IgnoreCastsSingleStep);
2949 }
2950 
IgnoreConversionOperator()2951 Expr *Expr::IgnoreConversionOperator() {
2952   if (auto *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
2953     if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
2954       return MCE->getImplicitObjectArgument();
2955   }
2956   return this;
2957 }
2958 
IgnoreParenLValueCasts()2959 Expr *Expr::IgnoreParenLValueCasts() {
2960   return IgnoreExprNodes(this, IgnoreParensSingleStep,
2961                          IgnoreLValueCastsSingleStep);
2962 }
2963 
ignoreParenBaseCasts()2964 Expr *Expr::ignoreParenBaseCasts() {
2965   return IgnoreExprNodes(this, IgnoreParensSingleStep,
2966                          IgnoreBaseCastsSingleStep);
2967 }
2968 
IgnoreParenNoopCasts(const ASTContext & Ctx)2969 Expr *Expr::IgnoreParenNoopCasts(const ASTContext &Ctx) {
2970   return IgnoreExprNodes(this, IgnoreParensSingleStep, [&Ctx](Expr *E) {
2971     return IgnoreNoopCastsSingleStep(Ctx, E);
2972   });
2973 }
2974 
isDefaultArgument() const2975 bool Expr::isDefaultArgument() const {
2976   const Expr *E = this;
2977   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2978     E = M->GetTemporaryExpr();
2979 
2980   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
2981     E = ICE->getSubExprAsWritten();
2982 
2983   return isa<CXXDefaultArgExpr>(E);
2984 }
2985 
2986 /// Skip over any no-op casts and any temporary-binding
2987 /// expressions.
skipTemporaryBindingsNoOpCastsAndParens(const Expr * E)2988 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
2989   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2990     E = M->GetTemporaryExpr();
2991 
2992   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2993     if (ICE->getCastKind() == CK_NoOp)
2994       E = ICE->getSubExpr();
2995     else
2996       break;
2997   }
2998 
2999   while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
3000     E = BE->getSubExpr();
3001 
3002   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3003     if (ICE->getCastKind() == CK_NoOp)
3004       E = ICE->getSubExpr();
3005     else
3006       break;
3007   }
3008 
3009   return E->IgnoreParens();
3010 }
3011 
3012 /// isTemporaryObject - Determines if this expression produces a
3013 /// temporary of the given class type.
isTemporaryObject(ASTContext & C,const CXXRecordDecl * TempTy) const3014 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
3015   if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
3016     return false;
3017 
3018   const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
3019 
3020   // Temporaries are by definition pr-values of class type.
3021   if (!E->Classify(C).isPRValue()) {
3022     // In this context, property reference is a message call and is pr-value.
3023     if (!isa<ObjCPropertyRefExpr>(E))
3024       return false;
3025   }
3026 
3027   // Black-list a few cases which yield pr-values of class type that don't
3028   // refer to temporaries of that type:
3029 
3030   // - implicit derived-to-base conversions
3031   if (isa<ImplicitCastExpr>(E)) {
3032     switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
3033     case CK_DerivedToBase:
3034     case CK_UncheckedDerivedToBase:
3035       return false;
3036     default:
3037       break;
3038     }
3039   }
3040 
3041   // - member expressions (all)
3042   if (isa<MemberExpr>(E))
3043     return false;
3044 
3045   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
3046     if (BO->isPtrMemOp())
3047       return false;
3048 
3049   // - opaque values (all)
3050   if (isa<OpaqueValueExpr>(E))
3051     return false;
3052 
3053   return true;
3054 }
3055 
isImplicitCXXThis() const3056 bool Expr::isImplicitCXXThis() const {
3057   const Expr *E = this;
3058 
3059   // Strip away parentheses and casts we don't care about.
3060   while (true) {
3061     if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
3062       E = Paren->getSubExpr();
3063       continue;
3064     }
3065 
3066     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3067       if (ICE->getCastKind() == CK_NoOp ||
3068           ICE->getCastKind() == CK_LValueToRValue ||
3069           ICE->getCastKind() == CK_DerivedToBase ||
3070           ICE->getCastKind() == CK_UncheckedDerivedToBase) {
3071         E = ICE->getSubExpr();
3072         continue;
3073       }
3074     }
3075 
3076     if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
3077       if (UnOp->getOpcode() == UO_Extension) {
3078         E = UnOp->getSubExpr();
3079         continue;
3080       }
3081     }
3082 
3083     if (const MaterializeTemporaryExpr *M
3084                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
3085       E = M->GetTemporaryExpr();
3086       continue;
3087     }
3088 
3089     break;
3090   }
3091 
3092   if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
3093     return This->isImplicit();
3094 
3095   return false;
3096 }
3097 
3098 /// hasAnyTypeDependentArguments - Determines if any of the expressions
3099 /// in Exprs is type-dependent.
hasAnyTypeDependentArguments(ArrayRef<Expr * > Exprs)3100 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
3101   for (unsigned I = 0; I < Exprs.size(); ++I)
3102     if (Exprs[I]->isTypeDependent())
3103       return true;
3104 
3105   return false;
3106 }
3107 
isConstantInitializer(ASTContext & Ctx,bool IsForRef,const Expr ** Culprit) const3108 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
3109                                  const Expr **Culprit) const {
3110   assert(!isValueDependent() &&
3111          "Expression evaluator can't be called on a dependent expression.");
3112 
3113   // This function is attempting whether an expression is an initializer
3114   // which can be evaluated at compile-time. It very closely parallels
3115   // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
3116   // will lead to unexpected results.  Like ConstExprEmitter, it falls back
3117   // to isEvaluatable most of the time.
3118   //
3119   // If we ever capture reference-binding directly in the AST, we can
3120   // kill the second parameter.
3121 
3122   if (IsForRef) {
3123     EvalResult Result;
3124     if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
3125       return true;
3126     if (Culprit)
3127       *Culprit = this;
3128     return false;
3129   }
3130 
3131   switch (getStmtClass()) {
3132   default: break;
3133   case StringLiteralClass:
3134   case ObjCEncodeExprClass:
3135     return true;
3136   case CXXTemporaryObjectExprClass:
3137   case CXXConstructExprClass: {
3138     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3139 
3140     if (CE->getConstructor()->isTrivial() &&
3141         CE->getConstructor()->getParent()->hasTrivialDestructor()) {
3142       // Trivial default constructor
3143       if (!CE->getNumArgs()) return true;
3144 
3145       // Trivial copy constructor
3146       assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
3147       return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit);
3148     }
3149 
3150     break;
3151   }
3152   case ConstantExprClass: {
3153     // FIXME: We should be able to return "true" here, but it can lead to extra
3154     // error messages. E.g. in Sema/array-init.c.
3155     const Expr *Exp = cast<ConstantExpr>(this)->getSubExpr();
3156     return Exp->isConstantInitializer(Ctx, false, Culprit);
3157   }
3158   case CompoundLiteralExprClass: {
3159     // This handles gcc's extension that allows global initializers like
3160     // "struct x {int x;} x = (struct x) {};".
3161     // FIXME: This accepts other cases it shouldn't!
3162     const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
3163     return Exp->isConstantInitializer(Ctx, false, Culprit);
3164   }
3165   case DesignatedInitUpdateExprClass: {
3166     const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this);
3167     return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) &&
3168            DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit);
3169   }
3170   case InitListExprClass: {
3171     const InitListExpr *ILE = cast<InitListExpr>(this);
3172     assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form");
3173     if (ILE->getType()->isArrayType()) {
3174       unsigned numInits = ILE->getNumInits();
3175       for (unsigned i = 0; i < numInits; i++) {
3176         if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit))
3177           return false;
3178       }
3179       return true;
3180     }
3181 
3182     if (ILE->getType()->isRecordType()) {
3183       unsigned ElementNo = 0;
3184       RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
3185       for (const auto *Field : RD->fields()) {
3186         // If this is a union, skip all the fields that aren't being initialized.
3187         if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
3188           continue;
3189 
3190         // Don't emit anonymous bitfields, they just affect layout.
3191         if (Field->isUnnamedBitfield())
3192           continue;
3193 
3194         if (ElementNo < ILE->getNumInits()) {
3195           const Expr *Elt = ILE->getInit(ElementNo++);
3196           if (Field->isBitField()) {
3197             // Bitfields have to evaluate to an integer.
3198             EvalResult Result;
3199             if (!Elt->EvaluateAsInt(Result, Ctx)) {
3200               if (Culprit)
3201                 *Culprit = Elt;
3202               return false;
3203             }
3204           } else {
3205             bool RefType = Field->getType()->isReferenceType();
3206             if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
3207               return false;
3208           }
3209         }
3210       }
3211       return true;
3212     }
3213 
3214     break;
3215   }
3216   case ImplicitValueInitExprClass:
3217   case NoInitExprClass:
3218     return true;
3219   case ParenExprClass:
3220     return cast<ParenExpr>(this)->getSubExpr()
3221       ->isConstantInitializer(Ctx, IsForRef, Culprit);
3222   case GenericSelectionExprClass:
3223     return cast<GenericSelectionExpr>(this)->getResultExpr()
3224       ->isConstantInitializer(Ctx, IsForRef, Culprit);
3225   case ChooseExprClass:
3226     if (cast<ChooseExpr>(this)->isConditionDependent()) {
3227       if (Culprit)
3228         *Culprit = this;
3229       return false;
3230     }
3231     return cast<ChooseExpr>(this)->getChosenSubExpr()
3232       ->isConstantInitializer(Ctx, IsForRef, Culprit);
3233   case UnaryOperatorClass: {
3234     const UnaryOperator* Exp = cast<UnaryOperator>(this);
3235     if (Exp->getOpcode() == UO_Extension)
3236       return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3237     break;
3238   }
3239   case CXXFunctionalCastExprClass:
3240   case CXXStaticCastExprClass:
3241   case ImplicitCastExprClass:
3242   case CStyleCastExprClass:
3243   case ObjCBridgedCastExprClass:
3244   case CXXDynamicCastExprClass:
3245   case CXXReinterpretCastExprClass:
3246   case CXXConstCastExprClass: {
3247     const CastExpr *CE = cast<CastExpr>(this);
3248 
3249     // Handle misc casts we want to ignore.
3250     if (CE->getCastKind() == CK_NoOp ||
3251         CE->getCastKind() == CK_LValueToRValue ||
3252         CE->getCastKind() == CK_ToUnion ||
3253         CE->getCastKind() == CK_ConstructorConversion ||
3254         CE->getCastKind() == CK_NonAtomicToAtomic ||
3255         CE->getCastKind() == CK_AtomicToNonAtomic ||
3256         CE->getCastKind() == CK_IntToOCLSampler)
3257       return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
3258 
3259     break;
3260   }
3261   case MaterializeTemporaryExprClass:
3262     return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
3263       ->isConstantInitializer(Ctx, false, Culprit);
3264 
3265   case SubstNonTypeTemplateParmExprClass:
3266     return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
3267       ->isConstantInitializer(Ctx, false, Culprit);
3268   case CXXDefaultArgExprClass:
3269     return cast<CXXDefaultArgExpr>(this)->getExpr()
3270       ->isConstantInitializer(Ctx, false, Culprit);
3271   case CXXDefaultInitExprClass:
3272     return cast<CXXDefaultInitExpr>(this)->getExpr()
3273       ->isConstantInitializer(Ctx, false, Culprit);
3274   }
3275   // Allow certain forms of UB in constant initializers: signed integer
3276   // overflow and floating-point division by zero. We'll give a warning on
3277   // these, but they're common enough that we have to accept them.
3278   if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior))
3279     return true;
3280   if (Culprit)
3281     *Culprit = this;
3282   return false;
3283 }
3284 
isBuiltinAssumeFalse(const ASTContext & Ctx) const3285 bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const {
3286   const FunctionDecl* FD = getDirectCallee();
3287   if (!FD || (FD->getBuiltinID() != Builtin::BI__assume &&
3288               FD->getBuiltinID() != Builtin::BI__builtin_assume))
3289     return false;
3290 
3291   const Expr* Arg = getArg(0);
3292   bool ArgVal;
3293   return !Arg->isValueDependent() &&
3294          Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal;
3295 }
3296 
3297 namespace {
3298   /// Look for any side effects within a Stmt.
3299   class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> {
3300     typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited;
3301     const bool IncludePossibleEffects;
3302     bool HasSideEffects;
3303 
3304   public:
SideEffectFinder(const ASTContext & Context,bool IncludePossible)3305     explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible)
3306       : Inherited(Context),
3307         IncludePossibleEffects(IncludePossible), HasSideEffects(false) { }
3308 
hasSideEffects() const3309     bool hasSideEffects() const { return HasSideEffects; }
3310 
VisitExpr(const Expr * E)3311     void VisitExpr(const Expr *E) {
3312       if (!HasSideEffects &&
3313           E->HasSideEffects(Context, IncludePossibleEffects))
3314         HasSideEffects = true;
3315     }
3316   };
3317 }
3318 
HasSideEffects(const ASTContext & Ctx,bool IncludePossibleEffects) const3319 bool Expr::HasSideEffects(const ASTContext &Ctx,
3320                           bool IncludePossibleEffects) const {
3321   // In circumstances where we care about definite side effects instead of
3322   // potential side effects, we want to ignore expressions that are part of a
3323   // macro expansion as a potential side effect.
3324   if (!IncludePossibleEffects && getExprLoc().isMacroID())
3325     return false;
3326 
3327   if (isInstantiationDependent())
3328     return IncludePossibleEffects;
3329 
3330   switch (getStmtClass()) {
3331   case NoStmtClass:
3332   #define ABSTRACT_STMT(Type)
3333   #define STMT(Type, Base) case Type##Class:
3334   #define EXPR(Type, Base)
3335   #include "clang/AST/StmtNodes.inc"
3336     llvm_unreachable("unexpected Expr kind");
3337 
3338   case DependentScopeDeclRefExprClass:
3339   case CXXUnresolvedConstructExprClass:
3340   case CXXDependentScopeMemberExprClass:
3341   case UnresolvedLookupExprClass:
3342   case UnresolvedMemberExprClass:
3343   case PackExpansionExprClass:
3344   case SubstNonTypeTemplateParmPackExprClass:
3345   case FunctionParmPackExprClass:
3346   case TypoExprClass:
3347   case CXXFoldExprClass:
3348     llvm_unreachable("shouldn't see dependent / unresolved nodes here");
3349 
3350   case DeclRefExprClass:
3351   case ObjCIvarRefExprClass:
3352   case PredefinedExprClass:
3353   case IntegerLiteralClass:
3354   case FixedPointLiteralClass:
3355   case FloatingLiteralClass:
3356   case ImaginaryLiteralClass:
3357   case StringLiteralClass:
3358   case CharacterLiteralClass:
3359   case OffsetOfExprClass:
3360   case ImplicitValueInitExprClass:
3361   case UnaryExprOrTypeTraitExprClass:
3362   case AddrLabelExprClass:
3363   case GNUNullExprClass:
3364   case ArrayInitIndexExprClass:
3365   case NoInitExprClass:
3366   case CXXBoolLiteralExprClass:
3367   case CXXNullPtrLiteralExprClass:
3368   case CXXThisExprClass:
3369   case CXXScalarValueInitExprClass:
3370   case TypeTraitExprClass:
3371   case ArrayTypeTraitExprClass:
3372   case ExpressionTraitExprClass:
3373   case CXXNoexceptExprClass:
3374   case SizeOfPackExprClass:
3375   case ObjCStringLiteralClass:
3376   case ObjCEncodeExprClass:
3377   case ObjCBoolLiteralExprClass:
3378   case ObjCAvailabilityCheckExprClass:
3379   case CXXUuidofExprClass:
3380   case OpaqueValueExprClass:
3381   case SourceLocExprClass:
3382     // These never have a side-effect.
3383     return false;
3384 
3385   case ConstantExprClass:
3386     // FIXME: Move this into the "return false;" block above.
3387     return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects(
3388         Ctx, IncludePossibleEffects);
3389 
3390   case CallExprClass:
3391   case CXXOperatorCallExprClass:
3392   case CXXMemberCallExprClass:
3393   case CUDAKernelCallExprClass:
3394   case UserDefinedLiteralClass: {
3395     // We don't know a call definitely has side effects, except for calls
3396     // to pure/const functions that definitely don't.
3397     // If the call itself is considered side-effect free, check the operands.
3398     const Decl *FD = cast<CallExpr>(this)->getCalleeDecl();
3399     bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>());
3400     if (IsPure || !IncludePossibleEffects)
3401       break;
3402     return true;
3403   }
3404 
3405   case BlockExprClass:
3406   case CXXBindTemporaryExprClass:
3407     if (!IncludePossibleEffects)
3408       break;
3409     return true;
3410 
3411   case MSPropertyRefExprClass:
3412   case MSPropertySubscriptExprClass:
3413   case CompoundAssignOperatorClass:
3414   case VAArgExprClass:
3415   case AtomicExprClass:
3416   case CXXThrowExprClass:
3417   case CXXNewExprClass:
3418   case CXXDeleteExprClass:
3419   case CoawaitExprClass:
3420   case DependentCoawaitExprClass:
3421   case CoyieldExprClass:
3422     // These always have a side-effect.
3423     return true;
3424 
3425   case StmtExprClass: {
3426     // StmtExprs have a side-effect if any substatement does.
3427     SideEffectFinder Finder(Ctx, IncludePossibleEffects);
3428     Finder.Visit(cast<StmtExpr>(this)->getSubStmt());
3429     return Finder.hasSideEffects();
3430   }
3431 
3432   case ExprWithCleanupsClass:
3433     if (IncludePossibleEffects)
3434       if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects())
3435         return true;
3436     break;
3437 
3438   case ParenExprClass:
3439   case ArraySubscriptExprClass:
3440   case OMPArraySectionExprClass:
3441   case MemberExprClass:
3442   case ConditionalOperatorClass:
3443   case BinaryConditionalOperatorClass:
3444   case CompoundLiteralExprClass:
3445   case ExtVectorElementExprClass:
3446   case DesignatedInitExprClass:
3447   case DesignatedInitUpdateExprClass:
3448   case ArrayInitLoopExprClass:
3449   case ParenListExprClass:
3450   case CXXPseudoDestructorExprClass:
3451   case CXXStdInitializerListExprClass:
3452   case SubstNonTypeTemplateParmExprClass:
3453   case MaterializeTemporaryExprClass:
3454   case ShuffleVectorExprClass:
3455   case ConvertVectorExprClass:
3456   case AsTypeExprClass:
3457     // These have a side-effect if any subexpression does.
3458     break;
3459 
3460   case UnaryOperatorClass:
3461     if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
3462       return true;
3463     break;
3464 
3465   case BinaryOperatorClass:
3466     if (cast<BinaryOperator>(this)->isAssignmentOp())
3467       return true;
3468     break;
3469 
3470   case InitListExprClass:
3471     // FIXME: The children for an InitListExpr doesn't include the array filler.
3472     if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
3473       if (E->HasSideEffects(Ctx, IncludePossibleEffects))
3474         return true;
3475     break;
3476 
3477   case GenericSelectionExprClass:
3478     return cast<GenericSelectionExpr>(this)->getResultExpr()->
3479         HasSideEffects(Ctx, IncludePossibleEffects);
3480 
3481   case ChooseExprClass:
3482     return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(
3483         Ctx, IncludePossibleEffects);
3484 
3485   case CXXDefaultArgExprClass:
3486     return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(
3487         Ctx, IncludePossibleEffects);
3488 
3489   case CXXDefaultInitExprClass: {
3490     const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField();
3491     if (const Expr *E = FD->getInClassInitializer())
3492       return E->HasSideEffects(Ctx, IncludePossibleEffects);
3493     // If we've not yet parsed the initializer, assume it has side-effects.
3494     return true;
3495   }
3496 
3497   case CXXDynamicCastExprClass: {
3498     // A dynamic_cast expression has side-effects if it can throw.
3499     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
3500     if (DCE->getTypeAsWritten()->isReferenceType() &&
3501         DCE->getCastKind() == CK_Dynamic)
3502       return true;
3503     }
3504     LLVM_FALLTHROUGH;
3505   case ImplicitCastExprClass:
3506   case CStyleCastExprClass:
3507   case CXXStaticCastExprClass:
3508   case CXXReinterpretCastExprClass:
3509   case CXXConstCastExprClass:
3510   case CXXFunctionalCastExprClass:
3511   case BuiltinBitCastExprClass: {
3512     // While volatile reads are side-effecting in both C and C++, we treat them
3513     // as having possible (not definite) side-effects. This allows idiomatic
3514     // code to behave without warning, such as sizeof(*v) for a volatile-
3515     // qualified pointer.
3516     if (!IncludePossibleEffects)
3517       break;
3518 
3519     const CastExpr *CE = cast<CastExpr>(this);
3520     if (CE->getCastKind() == CK_LValueToRValue &&
3521         CE->getSubExpr()->getType().isVolatileQualified())
3522       return true;
3523     break;
3524   }
3525 
3526   case CXXTypeidExprClass:
3527     // typeid might throw if its subexpression is potentially-evaluated, so has
3528     // side-effects in that case whether or not its subexpression does.
3529     return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
3530 
3531   case CXXConstructExprClass:
3532   case CXXTemporaryObjectExprClass: {
3533     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3534     if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
3535       return true;
3536     // A trivial constructor does not add any side-effects of its own. Just look
3537     // at its arguments.
3538     break;
3539   }
3540 
3541   case CXXInheritedCtorInitExprClass: {
3542     const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this);
3543     if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects)
3544       return true;
3545     break;
3546   }
3547 
3548   case LambdaExprClass: {
3549     const LambdaExpr *LE = cast<LambdaExpr>(this);
3550     for (Expr *E : LE->capture_inits())
3551       if (E->HasSideEffects(Ctx, IncludePossibleEffects))
3552         return true;
3553     return false;
3554   }
3555 
3556   case PseudoObjectExprClass: {
3557     // Only look for side-effects in the semantic form, and look past
3558     // OpaqueValueExpr bindings in that form.
3559     const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
3560     for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
3561                                                     E = PO->semantics_end();
3562          I != E; ++I) {
3563       const Expr *Subexpr = *I;
3564       if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
3565         Subexpr = OVE->getSourceExpr();
3566       if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
3567         return true;
3568     }
3569     return false;
3570   }
3571 
3572   case ObjCBoxedExprClass:
3573   case ObjCArrayLiteralClass:
3574   case ObjCDictionaryLiteralClass:
3575   case ObjCSelectorExprClass:
3576   case ObjCProtocolExprClass:
3577   case ObjCIsaExprClass:
3578   case ObjCIndirectCopyRestoreExprClass:
3579   case ObjCSubscriptRefExprClass:
3580   case ObjCBridgedCastExprClass:
3581   case ObjCMessageExprClass:
3582   case ObjCPropertyRefExprClass:
3583   // FIXME: Classify these cases better.
3584     if (IncludePossibleEffects)
3585       return true;
3586     break;
3587   }
3588 
3589   // Recurse to children.
3590   for (const Stmt *SubStmt : children())
3591     if (SubStmt &&
3592         cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects))
3593       return true;
3594 
3595   return false;
3596 }
3597 
3598 namespace {
3599   /// Look for a call to a non-trivial function within an expression.
3600   class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder>
3601   {
3602     typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
3603 
3604     bool NonTrivial;
3605 
3606   public:
NonTrivialCallFinder(const ASTContext & Context)3607     explicit NonTrivialCallFinder(const ASTContext &Context)
3608       : Inherited(Context), NonTrivial(false) { }
3609 
hasNonTrivialCall() const3610     bool hasNonTrivialCall() const { return NonTrivial; }
3611 
VisitCallExpr(const CallExpr * E)3612     void VisitCallExpr(const CallExpr *E) {
3613       if (const CXXMethodDecl *Method
3614           = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) {
3615         if (Method->isTrivial()) {
3616           // Recurse to children of the call.
3617           Inherited::VisitStmt(E);
3618           return;
3619         }
3620       }
3621 
3622       NonTrivial = true;
3623     }
3624 
VisitCXXConstructExpr(const CXXConstructExpr * E)3625     void VisitCXXConstructExpr(const CXXConstructExpr *E) {
3626       if (E->getConstructor()->isTrivial()) {
3627         // Recurse to children of the call.
3628         Inherited::VisitStmt(E);
3629         return;
3630       }
3631 
3632       NonTrivial = true;
3633     }
3634 
VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr * E)3635     void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
3636       if (E->getTemporary()->getDestructor()->isTrivial()) {
3637         Inherited::VisitStmt(E);
3638         return;
3639       }
3640 
3641       NonTrivial = true;
3642     }
3643   };
3644 }
3645 
hasNonTrivialCall(const ASTContext & Ctx) const3646 bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const {
3647   NonTrivialCallFinder Finder(Ctx);
3648   Finder.Visit(this);
3649   return Finder.hasNonTrivialCall();
3650 }
3651 
3652 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
3653 /// pointer constant or not, as well as the specific kind of constant detected.
3654 /// Null pointer constants can be integer constant expressions with the
3655 /// value zero, casts of zero to void*, nullptr (C++0X), or __null
3656 /// (a GNU extension).
3657 Expr::NullPointerConstantKind
isNullPointerConstant(ASTContext & Ctx,NullPointerConstantValueDependence NPC) const3658 Expr::isNullPointerConstant(ASTContext &Ctx,
3659                             NullPointerConstantValueDependence NPC) const {
3660   if (isValueDependent() &&
3661       (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
3662     switch (NPC) {
3663     case NPC_NeverValueDependent:
3664       llvm_unreachable("Unexpected value dependent expression!");
3665     case NPC_ValueDependentIsNull:
3666       if (isTypeDependent() || getType()->isIntegralType(Ctx))
3667         return NPCK_ZeroExpression;
3668       else
3669         return NPCK_NotNull;
3670 
3671     case NPC_ValueDependentIsNotNull:
3672       return NPCK_NotNull;
3673     }
3674   }
3675 
3676   // Strip off a cast to void*, if it exists. Except in C++.
3677   if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
3678     if (!Ctx.getLangOpts().CPlusPlus) {
3679       // Check that it is a cast to void*.
3680       if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
3681         QualType Pointee = PT->getPointeeType();
3682         Qualifiers Qs = Pointee.getQualifiers();
3683         // Only (void*)0 or equivalent are treated as nullptr. If pointee type
3684         // has non-default address space it is not treated as nullptr.
3685         // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr
3686         // since it cannot be assigned to a pointer to constant address space.
3687         if ((Ctx.getLangOpts().OpenCLVersion >= 200 &&
3688              Pointee.getAddressSpace() == LangAS::opencl_generic) ||
3689             (Ctx.getLangOpts().OpenCL &&
3690              Ctx.getLangOpts().OpenCLVersion < 200 &&
3691              Pointee.getAddressSpace() == LangAS::opencl_private))
3692           Qs.removeAddressSpace();
3693 
3694         if (Pointee->isVoidType() && Qs.empty() && // to void*
3695             CE->getSubExpr()->getType()->isIntegerType()) // from int
3696           return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3697       }
3698     }
3699   } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
3700     // Ignore the ImplicitCastExpr type entirely.
3701     return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3702   } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
3703     // Accept ((void*)0) as a null pointer constant, as many other
3704     // implementations do.
3705     return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3706   } else if (const GenericSelectionExpr *GE =
3707                dyn_cast<GenericSelectionExpr>(this)) {
3708     if (GE->isResultDependent())
3709       return NPCK_NotNull;
3710     return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
3711   } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
3712     if (CE->isConditionDependent())
3713       return NPCK_NotNull;
3714     return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
3715   } else if (const CXXDefaultArgExpr *DefaultArg
3716                = dyn_cast<CXXDefaultArgExpr>(this)) {
3717     // See through default argument expressions.
3718     return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
3719   } else if (const CXXDefaultInitExpr *DefaultInit
3720                = dyn_cast<CXXDefaultInitExpr>(this)) {
3721     // See through default initializer expressions.
3722     return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
3723   } else if (isa<GNUNullExpr>(this)) {
3724     // The GNU __null extension is always a null pointer constant.
3725     return NPCK_GNUNull;
3726   } else if (const MaterializeTemporaryExpr *M
3727                                    = dyn_cast<MaterializeTemporaryExpr>(this)) {
3728     return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
3729   } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
3730     if (const Expr *Source = OVE->getSourceExpr())
3731       return Source->isNullPointerConstant(Ctx, NPC);
3732   }
3733 
3734   // C++11 nullptr_t is always a null pointer constant.
3735   if (getType()->isNullPtrType())
3736     return NPCK_CXX11_nullptr;
3737 
3738   if (const RecordType *UT = getType()->getAsUnionType())
3739     if (!Ctx.getLangOpts().CPlusPlus11 &&
3740         UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
3741       if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
3742         const Expr *InitExpr = CLE->getInitializer();
3743         if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
3744           return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
3745       }
3746   // This expression must be an integer type.
3747   if (!getType()->isIntegerType() ||
3748       (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
3749     return NPCK_NotNull;
3750 
3751   if (Ctx.getLangOpts().CPlusPlus11) {
3752     // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
3753     // value zero or a prvalue of type std::nullptr_t.
3754     // Microsoft mode permits C++98 rules reflecting MSVC behavior.
3755     const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
3756     if (Lit && !Lit->getValue())
3757       return NPCK_ZeroLiteral;
3758     else if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
3759       return NPCK_NotNull;
3760   } else {
3761     // If we have an integer constant expression, we need to *evaluate* it and
3762     // test for the value 0.
3763     if (!isIntegerConstantExpr(Ctx))
3764       return NPCK_NotNull;
3765   }
3766 
3767   if (EvaluateKnownConstInt(Ctx) != 0)
3768     return NPCK_NotNull;
3769 
3770   if (isa<IntegerLiteral>(this))
3771     return NPCK_ZeroLiteral;
3772   return NPCK_ZeroExpression;
3773 }
3774 
3775 /// If this expression is an l-value for an Objective C
3776 /// property, find the underlying property reference expression.
getObjCProperty() const3777 const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
3778   const Expr *E = this;
3779   while (true) {
3780     assert((E->getValueKind() == VK_LValue &&
3781             E->getObjectKind() == OK_ObjCProperty) &&
3782            "expression is not a property reference");
3783     E = E->IgnoreParenCasts();
3784     if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3785       if (BO->getOpcode() == BO_Comma) {
3786         E = BO->getRHS();
3787         continue;
3788       }
3789     }
3790 
3791     break;
3792   }
3793 
3794   return cast<ObjCPropertyRefExpr>(E);
3795 }
3796 
isObjCSelfExpr() const3797 bool Expr::isObjCSelfExpr() const {
3798   const Expr *E = IgnoreParenImpCasts();
3799 
3800   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
3801   if (!DRE)
3802     return false;
3803 
3804   const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
3805   if (!Param)
3806     return false;
3807 
3808   const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
3809   if (!M)
3810     return false;
3811 
3812   return M->getSelfDecl() == Param;
3813 }
3814 
getSourceBitField()3815 FieldDecl *Expr::getSourceBitField() {
3816   Expr *E = this->IgnoreParens();
3817 
3818   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3819     if (ICE->getCastKind() == CK_LValueToRValue ||
3820         (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
3821       E = ICE->getSubExpr()->IgnoreParens();
3822     else
3823       break;
3824   }
3825 
3826   if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
3827     if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
3828       if (Field->isBitField())
3829         return Field;
3830 
3831   if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) {
3832     FieldDecl *Ivar = IvarRef->getDecl();
3833     if (Ivar->isBitField())
3834       return Ivar;
3835   }
3836 
3837   if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) {
3838     if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
3839       if (Field->isBitField())
3840         return Field;
3841 
3842     if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl()))
3843       if (Expr *E = BD->getBinding())
3844         return E->getSourceBitField();
3845   }
3846 
3847   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
3848     if (BinOp->isAssignmentOp() && BinOp->getLHS())
3849       return BinOp->getLHS()->getSourceBitField();
3850 
3851     if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
3852       return BinOp->getRHS()->getSourceBitField();
3853   }
3854 
3855   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E))
3856     if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
3857       return UnOp->getSubExpr()->getSourceBitField();
3858 
3859   return nullptr;
3860 }
3861 
refersToVectorElement() const3862 bool Expr::refersToVectorElement() const {
3863   // FIXME: Why do we not just look at the ObjectKind here?
3864   const Expr *E = this->IgnoreParens();
3865 
3866   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3867     if (ICE->getValueKind() != VK_RValue &&
3868         ICE->getCastKind() == CK_NoOp)
3869       E = ICE->getSubExpr()->IgnoreParens();
3870     else
3871       break;
3872   }
3873 
3874   if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
3875     return ASE->getBase()->getType()->isVectorType();
3876 
3877   if (isa<ExtVectorElementExpr>(E))
3878     return true;
3879 
3880   if (auto *DRE = dyn_cast<DeclRefExpr>(E))
3881     if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl()))
3882       if (auto *E = BD->getBinding())
3883         return E->refersToVectorElement();
3884 
3885   return false;
3886 }
3887 
refersToGlobalRegisterVar() const3888 bool Expr::refersToGlobalRegisterVar() const {
3889   const Expr *E = this->IgnoreParenImpCasts();
3890 
3891   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
3892     if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
3893       if (VD->getStorageClass() == SC_Register &&
3894           VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
3895         return true;
3896 
3897   return false;
3898 }
3899 
3900 /// isArrow - Return true if the base expression is a pointer to vector,
3901 /// return false if the base expression is a vector.
isArrow() const3902 bool ExtVectorElementExpr::isArrow() const {
3903   return getBase()->getType()->isPointerType();
3904 }
3905 
getNumElements() const3906 unsigned ExtVectorElementExpr::getNumElements() const {
3907   if (const VectorType *VT = getType()->getAs<VectorType>())
3908     return VT->getNumElements();
3909   return 1;
3910 }
3911 
3912 /// containsDuplicateElements - Return true if any element access is repeated.
containsDuplicateElements() const3913 bool ExtVectorElementExpr::containsDuplicateElements() const {
3914   // FIXME: Refactor this code to an accessor on the AST node which returns the
3915   // "type" of component access, and share with code below and in Sema.
3916   StringRef Comp = Accessor->getName();
3917 
3918   // Halving swizzles do not contain duplicate elements.
3919   if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
3920     return false;
3921 
3922   // Advance past s-char prefix on hex swizzles.
3923   if (Comp[0] == 's' || Comp[0] == 'S')
3924     Comp = Comp.substr(1);
3925 
3926   for (unsigned i = 0, e = Comp.size(); i != e; ++i)
3927     if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
3928         return true;
3929 
3930   return false;
3931 }
3932 
3933 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
getEncodedElementAccess(SmallVectorImpl<uint32_t> & Elts) const3934 void ExtVectorElementExpr::getEncodedElementAccess(
3935     SmallVectorImpl<uint32_t> &Elts) const {
3936   StringRef Comp = Accessor->getName();
3937   bool isNumericAccessor = false;
3938   if (Comp[0] == 's' || Comp[0] == 'S') {
3939     Comp = Comp.substr(1);
3940     isNumericAccessor = true;
3941   }
3942 
3943   bool isHi =   Comp == "hi";
3944   bool isLo =   Comp == "lo";
3945   bool isEven = Comp == "even";
3946   bool isOdd  = Comp == "odd";
3947 
3948   for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
3949     uint64_t Index;
3950 
3951     if (isHi)
3952       Index = e + i;
3953     else if (isLo)
3954       Index = i;
3955     else if (isEven)
3956       Index = 2 * i;
3957     else if (isOdd)
3958       Index = 2 * i + 1;
3959     else
3960       Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor);
3961 
3962     Elts.push_back(Index);
3963   }
3964 }
3965 
ShuffleVectorExpr(const ASTContext & C,ArrayRef<Expr * > args,QualType Type,SourceLocation BLoc,SourceLocation RP)3966 ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args,
3967                                      QualType Type, SourceLocation BLoc,
3968                                      SourceLocation RP)
3969    : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
3970           Type->isDependentType(), Type->isDependentType(),
3971           Type->isInstantiationDependentType(),
3972           Type->containsUnexpandedParameterPack()),
3973      BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size())
3974 {
3975   SubExprs = new (C) Stmt*[args.size()];
3976   for (unsigned i = 0; i != args.size(); i++) {
3977     if (args[i]->isTypeDependent())
3978       ExprBits.TypeDependent = true;
3979     if (args[i]->isValueDependent())
3980       ExprBits.ValueDependent = true;
3981     if (args[i]->isInstantiationDependent())
3982       ExprBits.InstantiationDependent = true;
3983     if (args[i]->containsUnexpandedParameterPack())
3984       ExprBits.ContainsUnexpandedParameterPack = true;
3985 
3986     SubExprs[i] = args[i];
3987   }
3988 }
3989 
setExprs(const ASTContext & C,ArrayRef<Expr * > Exprs)3990 void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) {
3991   if (SubExprs) C.Deallocate(SubExprs);
3992 
3993   this->NumExprs = Exprs.size();
3994   SubExprs = new (C) Stmt*[NumExprs];
3995   memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
3996 }
3997 
GenericSelectionExpr(const ASTContext &,SourceLocation GenericLoc,Expr * ControllingExpr,ArrayRef<TypeSourceInfo * > AssocTypes,ArrayRef<Expr * > AssocExprs,SourceLocation DefaultLoc,SourceLocation RParenLoc,bool ContainsUnexpandedParameterPack,unsigned ResultIndex)3998 GenericSelectionExpr::GenericSelectionExpr(
3999     const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr,
4000     ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4001     SourceLocation DefaultLoc, SourceLocation RParenLoc,
4002     bool ContainsUnexpandedParameterPack, unsigned ResultIndex)
4003     : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(),
4004            AssocExprs[ResultIndex]->getValueKind(),
4005            AssocExprs[ResultIndex]->getObjectKind(),
4006            AssocExprs[ResultIndex]->isTypeDependent(),
4007            AssocExprs[ResultIndex]->isValueDependent(),
4008            AssocExprs[ResultIndex]->isInstantiationDependent(),
4009            ContainsUnexpandedParameterPack),
4010       NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
4011       DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4012   assert(AssocTypes.size() == AssocExprs.size() &&
4013          "Must have the same number of association expressions"
4014          " and TypeSourceInfo!");
4015   assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!");
4016 
4017   GenericSelectionExprBits.GenericLoc = GenericLoc;
4018   getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr;
4019   std::copy(AssocExprs.begin(), AssocExprs.end(),
4020             getTrailingObjects<Stmt *>() + AssocExprStartIndex);
4021   std::copy(AssocTypes.begin(), AssocTypes.end(),
4022             getTrailingObjects<TypeSourceInfo *>());
4023 }
4024 
GenericSelectionExpr(const ASTContext & Context,SourceLocation GenericLoc,Expr * ControllingExpr,ArrayRef<TypeSourceInfo * > AssocTypes,ArrayRef<Expr * > AssocExprs,SourceLocation DefaultLoc,SourceLocation RParenLoc,bool ContainsUnexpandedParameterPack)4025 GenericSelectionExpr::GenericSelectionExpr(
4026     const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4027     ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4028     SourceLocation DefaultLoc, SourceLocation RParenLoc,
4029     bool ContainsUnexpandedParameterPack)
4030     : Expr(GenericSelectionExprClass, Context.DependentTy, VK_RValue,
4031            OK_Ordinary,
4032            /*isTypeDependent=*/true,
4033            /*isValueDependent=*/true,
4034            /*isInstantiationDependent=*/true, ContainsUnexpandedParameterPack),
4035       NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex),
4036       DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4037   assert(AssocTypes.size() == AssocExprs.size() &&
4038          "Must have the same number of association expressions"
4039          " and TypeSourceInfo!");
4040 
4041   GenericSelectionExprBits.GenericLoc = GenericLoc;
4042   getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr;
4043   std::copy(AssocExprs.begin(), AssocExprs.end(),
4044             getTrailingObjects<Stmt *>() + AssocExprStartIndex);
4045   std::copy(AssocTypes.begin(), AssocTypes.end(),
4046             getTrailingObjects<TypeSourceInfo *>());
4047 }
4048 
GenericSelectionExpr(EmptyShell Empty,unsigned NumAssocs)4049 GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs)
4050     : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {}
4051 
Create(const ASTContext & Context,SourceLocation GenericLoc,Expr * ControllingExpr,ArrayRef<TypeSourceInfo * > AssocTypes,ArrayRef<Expr * > AssocExprs,SourceLocation DefaultLoc,SourceLocation RParenLoc,bool ContainsUnexpandedParameterPack,unsigned ResultIndex)4052 GenericSelectionExpr *GenericSelectionExpr::Create(
4053     const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4054     ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4055     SourceLocation DefaultLoc, SourceLocation RParenLoc,
4056     bool ContainsUnexpandedParameterPack, unsigned ResultIndex) {
4057   unsigned NumAssocs = AssocExprs.size();
4058   void *Mem = Context.Allocate(
4059       totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4060       alignof(GenericSelectionExpr));
4061   return new (Mem) GenericSelectionExpr(
4062       Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
4063       RParenLoc, ContainsUnexpandedParameterPack, ResultIndex);
4064 }
4065 
Create(const ASTContext & Context,SourceLocation GenericLoc,Expr * ControllingExpr,ArrayRef<TypeSourceInfo * > AssocTypes,ArrayRef<Expr * > AssocExprs,SourceLocation DefaultLoc,SourceLocation RParenLoc,bool ContainsUnexpandedParameterPack)4066 GenericSelectionExpr *GenericSelectionExpr::Create(
4067     const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4068     ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4069     SourceLocation DefaultLoc, SourceLocation RParenLoc,
4070     bool ContainsUnexpandedParameterPack) {
4071   unsigned NumAssocs = AssocExprs.size();
4072   void *Mem = Context.Allocate(
4073       totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4074       alignof(GenericSelectionExpr));
4075   return new (Mem) GenericSelectionExpr(
4076       Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
4077       RParenLoc, ContainsUnexpandedParameterPack);
4078 }
4079 
4080 GenericSelectionExpr *
CreateEmpty(const ASTContext & Context,unsigned NumAssocs)4081 GenericSelectionExpr::CreateEmpty(const ASTContext &Context,
4082                                   unsigned NumAssocs) {
4083   void *Mem = Context.Allocate(
4084       totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
4085       alignof(GenericSelectionExpr));
4086   return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs);
4087 }
4088 
4089 //===----------------------------------------------------------------------===//
4090 //  DesignatedInitExpr
4091 //===----------------------------------------------------------------------===//
4092 
getFieldName() const4093 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
4094   assert(Kind == FieldDesignator && "Only valid on a field designator");
4095   if (Field.NameOrField & 0x01)
4096     return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
4097   else
4098     return getField()->getIdentifier();
4099 }
4100 
DesignatedInitExpr(const ASTContext & C,QualType Ty,llvm::ArrayRef<Designator> Designators,SourceLocation EqualOrColonLoc,bool GNUSyntax,ArrayRef<Expr * > IndexExprs,Expr * Init)4101 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
4102                                        llvm::ArrayRef<Designator> Designators,
4103                                        SourceLocation EqualOrColonLoc,
4104                                        bool GNUSyntax,
4105                                        ArrayRef<Expr*> IndexExprs,
4106                                        Expr *Init)
4107   : Expr(DesignatedInitExprClass, Ty,
4108          Init->getValueKind(), Init->getObjectKind(),
4109          Init->isTypeDependent(), Init->isValueDependent(),
4110          Init->isInstantiationDependent(),
4111          Init->containsUnexpandedParameterPack()),
4112     EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
4113     NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) {
4114   this->Designators = new (C) Designator[NumDesignators];
4115 
4116   // Record the initializer itself.
4117   child_iterator Child = child_begin();
4118   *Child++ = Init;
4119 
4120   // Copy the designators and their subexpressions, computing
4121   // value-dependence along the way.
4122   unsigned IndexIdx = 0;
4123   for (unsigned I = 0; I != NumDesignators; ++I) {
4124     this->Designators[I] = Designators[I];
4125 
4126     if (this->Designators[I].isArrayDesignator()) {
4127       // Compute type- and value-dependence.
4128       Expr *Index = IndexExprs[IndexIdx];
4129       if (Index->isTypeDependent() || Index->isValueDependent())
4130         ExprBits.TypeDependent = ExprBits.ValueDependent = true;
4131       if (Index->isInstantiationDependent())
4132         ExprBits.InstantiationDependent = true;
4133       // Propagate unexpanded parameter packs.
4134       if (Index->containsUnexpandedParameterPack())
4135         ExprBits.ContainsUnexpandedParameterPack = true;
4136 
4137       // Copy the index expressions into permanent storage.
4138       *Child++ = IndexExprs[IndexIdx++];
4139     } else if (this->Designators[I].isArrayRangeDesignator()) {
4140       // Compute type- and value-dependence.
4141       Expr *Start = IndexExprs[IndexIdx];
4142       Expr *End = IndexExprs[IndexIdx + 1];
4143       if (Start->isTypeDependent() || Start->isValueDependent() ||
4144           End->isTypeDependent() || End->isValueDependent()) {
4145         ExprBits.TypeDependent = ExprBits.ValueDependent = true;
4146         ExprBits.InstantiationDependent = true;
4147       } else if (Start->isInstantiationDependent() ||
4148                  End->isInstantiationDependent()) {
4149         ExprBits.InstantiationDependent = true;
4150       }
4151 
4152       // Propagate unexpanded parameter packs.
4153       if (Start->containsUnexpandedParameterPack() ||
4154           End->containsUnexpandedParameterPack())
4155         ExprBits.ContainsUnexpandedParameterPack = true;
4156 
4157       // Copy the start/end expressions into permanent storage.
4158       *Child++ = IndexExprs[IndexIdx++];
4159       *Child++ = IndexExprs[IndexIdx++];
4160     }
4161   }
4162 
4163   assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
4164 }
4165 
4166 DesignatedInitExpr *
Create(const ASTContext & C,llvm::ArrayRef<Designator> Designators,ArrayRef<Expr * > IndexExprs,SourceLocation ColonOrEqualLoc,bool UsesColonSyntax,Expr * Init)4167 DesignatedInitExpr::Create(const ASTContext &C,
4168                            llvm::ArrayRef<Designator> Designators,
4169                            ArrayRef<Expr*> IndexExprs,
4170                            SourceLocation ColonOrEqualLoc,
4171                            bool UsesColonSyntax, Expr *Init) {
4172   void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1),
4173                          alignof(DesignatedInitExpr));
4174   return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators,
4175                                       ColonOrEqualLoc, UsesColonSyntax,
4176                                       IndexExprs, Init);
4177 }
4178 
CreateEmpty(const ASTContext & C,unsigned NumIndexExprs)4179 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C,
4180                                                     unsigned NumIndexExprs) {
4181   void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1),
4182                          alignof(DesignatedInitExpr));
4183   return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
4184 }
4185 
setDesignators(const ASTContext & C,const Designator * Desigs,unsigned NumDesigs)4186 void DesignatedInitExpr::setDesignators(const ASTContext &C,
4187                                         const Designator *Desigs,
4188                                         unsigned NumDesigs) {
4189   Designators = new (C) Designator[NumDesigs];
4190   NumDesignators = NumDesigs;
4191   for (unsigned I = 0; I != NumDesigs; ++I)
4192     Designators[I] = Desigs[I];
4193 }
4194 
getDesignatorsSourceRange() const4195 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
4196   DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
4197   if (size() == 1)
4198     return DIE->getDesignator(0)->getSourceRange();
4199   return SourceRange(DIE->getDesignator(0)->getBeginLoc(),
4200                      DIE->getDesignator(size() - 1)->getEndLoc());
4201 }
4202 
getBeginLoc() const4203 SourceLocation DesignatedInitExpr::getBeginLoc() const {
4204   SourceLocation StartLoc;
4205   auto *DIE = const_cast<DesignatedInitExpr *>(this);
4206   Designator &First = *DIE->getDesignator(0);
4207   if (First.isFieldDesignator()) {
4208     if (GNUSyntax)
4209       StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
4210     else
4211       StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
4212   } else
4213     StartLoc =
4214       SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
4215   return StartLoc;
4216 }
4217 
getEndLoc() const4218 SourceLocation DesignatedInitExpr::getEndLoc() const {
4219   return getInit()->getEndLoc();
4220 }
4221 
getArrayIndex(const Designator & D) const4222 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
4223   assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
4224   return getSubExpr(D.ArrayOrRange.Index + 1);
4225 }
4226 
getArrayRangeStart(const Designator & D) const4227 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
4228   assert(D.Kind == Designator::ArrayRangeDesignator &&
4229          "Requires array range designator");
4230   return getSubExpr(D.ArrayOrRange.Index + 1);
4231 }
4232 
getArrayRangeEnd(const Designator & D) const4233 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
4234   assert(D.Kind == Designator::ArrayRangeDesignator &&
4235          "Requires array range designator");
4236   return getSubExpr(D.ArrayOrRange.Index + 2);
4237 }
4238 
4239 /// Replaces the designator at index @p Idx with the series
4240 /// of designators in [First, Last).
ExpandDesignator(const ASTContext & C,unsigned Idx,const Designator * First,const Designator * Last)4241 void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx,
4242                                           const Designator *First,
4243                                           const Designator *Last) {
4244   unsigned NumNewDesignators = Last - First;
4245   if (NumNewDesignators == 0) {
4246     std::copy_backward(Designators + Idx + 1,
4247                        Designators + NumDesignators,
4248                        Designators + Idx);
4249     --NumNewDesignators;
4250     return;
4251   } else if (NumNewDesignators == 1) {
4252     Designators[Idx] = *First;
4253     return;
4254   }
4255 
4256   Designator *NewDesignators
4257     = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
4258   std::copy(Designators, Designators + Idx, NewDesignators);
4259   std::copy(First, Last, NewDesignators + Idx);
4260   std::copy(Designators + Idx + 1, Designators + NumDesignators,
4261             NewDesignators + Idx + NumNewDesignators);
4262   Designators = NewDesignators;
4263   NumDesignators = NumDesignators - 1 + NumNewDesignators;
4264 }
4265 
DesignatedInitUpdateExpr(const ASTContext & C,SourceLocation lBraceLoc,Expr * baseExpr,SourceLocation rBraceLoc)4266 DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C,
4267     SourceLocation lBraceLoc, Expr *baseExpr, SourceLocation rBraceLoc)
4268   : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_RValue,
4269          OK_Ordinary, false, false, false, false) {
4270   BaseAndUpdaterExprs[0] = baseExpr;
4271 
4272   InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, None, rBraceLoc);
4273   ILE->setType(baseExpr->getType());
4274   BaseAndUpdaterExprs[1] = ILE;
4275 }
4276 
getBeginLoc() const4277 SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const {
4278   return getBase()->getBeginLoc();
4279 }
4280 
getEndLoc() const4281 SourceLocation DesignatedInitUpdateExpr::getEndLoc() const {
4282   return getBase()->getEndLoc();
4283 }
4284 
ParenListExpr(SourceLocation LParenLoc,ArrayRef<Expr * > Exprs,SourceLocation RParenLoc)4285 ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs,
4286                              SourceLocation RParenLoc)
4287     : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
4288            false, false),
4289       LParenLoc(LParenLoc), RParenLoc(RParenLoc) {
4290   ParenListExprBits.NumExprs = Exprs.size();
4291 
4292   for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
4293     if (Exprs[I]->isTypeDependent())
4294       ExprBits.TypeDependent = true;
4295     if (Exprs[I]->isValueDependent())
4296       ExprBits.ValueDependent = true;
4297     if (Exprs[I]->isInstantiationDependent())
4298       ExprBits.InstantiationDependent = true;
4299     if (Exprs[I]->containsUnexpandedParameterPack())
4300       ExprBits.ContainsUnexpandedParameterPack = true;
4301 
4302     getTrailingObjects<Stmt *>()[I] = Exprs[I];
4303   }
4304 }
4305 
ParenListExpr(EmptyShell Empty,unsigned NumExprs)4306 ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs)
4307     : Expr(ParenListExprClass, Empty) {
4308   ParenListExprBits.NumExprs = NumExprs;
4309 }
4310 
Create(const ASTContext & Ctx,SourceLocation LParenLoc,ArrayRef<Expr * > Exprs,SourceLocation RParenLoc)4311 ParenListExpr *ParenListExpr::Create(const ASTContext &Ctx,
4312                                      SourceLocation LParenLoc,
4313                                      ArrayRef<Expr *> Exprs,
4314                                      SourceLocation RParenLoc) {
4315   void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(Exprs.size()),
4316                            alignof(ParenListExpr));
4317   return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc);
4318 }
4319 
CreateEmpty(const ASTContext & Ctx,unsigned NumExprs)4320 ParenListExpr *ParenListExpr::CreateEmpty(const ASTContext &Ctx,
4321                                           unsigned NumExprs) {
4322   void *Mem =
4323       Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumExprs), alignof(ParenListExpr));
4324   return new (Mem) ParenListExpr(EmptyShell(), NumExprs);
4325 }
4326 
findInCopyConstruct(const Expr * e)4327 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
4328   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
4329     e = ewc->getSubExpr();
4330   if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
4331     e = m->GetTemporaryExpr();
4332   e = cast<CXXConstructExpr>(e)->getArg(0);
4333   while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
4334     e = ice->getSubExpr();
4335   return cast<OpaqueValueExpr>(e);
4336 }
4337 
Create(const ASTContext & Context,EmptyShell sh,unsigned numSemanticExprs)4338 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context,
4339                                            EmptyShell sh,
4340                                            unsigned numSemanticExprs) {
4341   void *buffer =
4342       Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs),
4343                        alignof(PseudoObjectExpr));
4344   return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
4345 }
4346 
PseudoObjectExpr(EmptyShell shell,unsigned numSemanticExprs)4347 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
4348   : Expr(PseudoObjectExprClass, shell) {
4349   PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
4350 }
4351 
Create(const ASTContext & C,Expr * syntax,ArrayRef<Expr * > semantics,unsigned resultIndex)4352 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax,
4353                                            ArrayRef<Expr*> semantics,
4354                                            unsigned resultIndex) {
4355   assert(syntax && "no syntactic expression!");
4356   assert(semantics.size() && "no semantic expressions!");
4357 
4358   QualType type;
4359   ExprValueKind VK;
4360   if (resultIndex == NoResult) {
4361     type = C.VoidTy;
4362     VK = VK_RValue;
4363   } else {
4364     assert(resultIndex < semantics.size());
4365     type = semantics[resultIndex]->getType();
4366     VK = semantics[resultIndex]->getValueKind();
4367     assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
4368   }
4369 
4370   void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1),
4371                             alignof(PseudoObjectExpr));
4372   return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
4373                                       resultIndex);
4374 }
4375 
PseudoObjectExpr(QualType type,ExprValueKind VK,Expr * syntax,ArrayRef<Expr * > semantics,unsigned resultIndex)4376 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
4377                                    Expr *syntax, ArrayRef<Expr*> semantics,
4378                                    unsigned resultIndex)
4379   : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
4380          /*filled in at end of ctor*/ false, false, false, false) {
4381   PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
4382   PseudoObjectExprBits.ResultIndex = resultIndex + 1;
4383 
4384   for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
4385     Expr *E = (i == 0 ? syntax : semantics[i-1]);
4386     getSubExprsBuffer()[i] = E;
4387 
4388     if (E->isTypeDependent())
4389       ExprBits.TypeDependent = true;
4390     if (E->isValueDependent())
4391       ExprBits.ValueDependent = true;
4392     if (E->isInstantiationDependent())
4393       ExprBits.InstantiationDependent = true;
4394     if (E->containsUnexpandedParameterPack())
4395       ExprBits.ContainsUnexpandedParameterPack = true;
4396 
4397     if (isa<OpaqueValueExpr>(E))
4398       assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&
4399              "opaque-value semantic expressions for pseudo-object "
4400              "operations must have sources");
4401   }
4402 }
4403 
4404 //===----------------------------------------------------------------------===//
4405 //  Child Iterators for iterating over subexpressions/substatements
4406 //===----------------------------------------------------------------------===//
4407 
4408 // UnaryExprOrTypeTraitExpr
children()4409 Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
4410   const_child_range CCR =
4411       const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children();
4412   return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end()));
4413 }
4414 
children() const4415 Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const {
4416   // If this is of a type and the type is a VLA type (and not a typedef), the
4417   // size expression of the VLA needs to be treated as an executable expression.
4418   // Why isn't this weirdness documented better in StmtIterator?
4419   if (isArgumentType()) {
4420     if (const VariableArrayType *T =
4421             dyn_cast<VariableArrayType>(getArgumentType().getTypePtr()))
4422       return const_child_range(const_child_iterator(T), const_child_iterator());
4423     return const_child_range(const_child_iterator(), const_child_iterator());
4424   }
4425   return const_child_range(&Argument.Ex, &Argument.Ex + 1);
4426 }
4427 
AtomicExpr(SourceLocation BLoc,ArrayRef<Expr * > args,QualType t,AtomicOp op,SourceLocation RP)4428 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args,
4429                        QualType t, AtomicOp op, SourceLocation RP)
4430   : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
4431          false, false, false, false),
4432     NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
4433 {
4434   assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
4435   for (unsigned i = 0; i != args.size(); i++) {
4436     if (args[i]->isTypeDependent())
4437       ExprBits.TypeDependent = true;
4438     if (args[i]->isValueDependent())
4439       ExprBits.ValueDependent = true;
4440     if (args[i]->isInstantiationDependent())
4441       ExprBits.InstantiationDependent = true;
4442     if (args[i]->containsUnexpandedParameterPack())
4443       ExprBits.ContainsUnexpandedParameterPack = true;
4444 
4445     SubExprs[i] = args[i];
4446   }
4447 }
4448 
getNumSubExprs(AtomicOp Op)4449 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
4450   switch (Op) {
4451   case AO__c11_atomic_init:
4452   case AO__opencl_atomic_init:
4453   case AO__c11_atomic_load:
4454   case AO__atomic_load_n:
4455     return 2;
4456 
4457   case AO__opencl_atomic_load:
4458   case AO__c11_atomic_store:
4459   case AO__c11_atomic_exchange:
4460   case AO__atomic_load:
4461   case AO__atomic_store:
4462   case AO__atomic_store_n:
4463   case AO__atomic_exchange_n:
4464   case AO__c11_atomic_fetch_add:
4465   case AO__c11_atomic_fetch_sub:
4466   case AO__c11_atomic_fetch_and:
4467   case AO__c11_atomic_fetch_or:
4468   case AO__c11_atomic_fetch_xor:
4469   case AO__atomic_fetch_add:
4470   case AO__atomic_fetch_sub:
4471   case AO__atomic_fetch_and:
4472   case AO__atomic_fetch_or:
4473   case AO__atomic_fetch_xor:
4474   case AO__atomic_fetch_nand:
4475   case AO__atomic_add_fetch:
4476   case AO__atomic_sub_fetch:
4477   case AO__atomic_and_fetch:
4478   case AO__atomic_or_fetch:
4479   case AO__atomic_xor_fetch:
4480   case AO__atomic_nand_fetch:
4481   case AO__atomic_fetch_min:
4482   case AO__atomic_fetch_max:
4483     return 3;
4484 
4485   case AO__opencl_atomic_store:
4486   case AO__opencl_atomic_exchange:
4487   case AO__opencl_atomic_fetch_add:
4488   case AO__opencl_atomic_fetch_sub:
4489   case AO__opencl_atomic_fetch_and:
4490   case AO__opencl_atomic_fetch_or:
4491   case AO__opencl_atomic_fetch_xor:
4492   case AO__opencl_atomic_fetch_min:
4493   case AO__opencl_atomic_fetch_max:
4494   case AO__atomic_exchange:
4495     return 4;
4496 
4497   case AO__c11_atomic_compare_exchange_strong:
4498   case AO__c11_atomic_compare_exchange_weak:
4499     return 5;
4500 
4501   case AO__opencl_atomic_compare_exchange_strong:
4502   case AO__opencl_atomic_compare_exchange_weak:
4503   case AO__atomic_compare_exchange:
4504   case AO__atomic_compare_exchange_n:
4505     return 6;
4506   }
4507   llvm_unreachable("unknown atomic op");
4508 }
4509 
getValueType() const4510 QualType AtomicExpr::getValueType() const {
4511   auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType();
4512   if (auto AT = T->getAs<AtomicType>())
4513     return AT->getValueType();
4514   return T;
4515 }
4516 
getBaseOriginalType(const Expr * Base)4517 QualType OMPArraySectionExpr::getBaseOriginalType(const Expr *Base) {
4518   unsigned ArraySectionCount = 0;
4519   while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) {
4520     Base = OASE->getBase();
4521     ++ArraySectionCount;
4522   }
4523   while (auto *ASE =
4524              dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) {
4525     Base = ASE->getBase();
4526     ++ArraySectionCount;
4527   }
4528   Base = Base->IgnoreParenImpCasts();
4529   auto OriginalTy = Base->getType();
4530   if (auto *DRE = dyn_cast<DeclRefExpr>(Base))
4531     if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
4532       OriginalTy = PVD->getOriginalType().getNonReferenceType();
4533 
4534   for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) {
4535     if (OriginalTy->isAnyPointerType())
4536       OriginalTy = OriginalTy->getPointeeType();
4537     else {
4538       assert (OriginalTy->isArrayType());
4539       OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType();
4540     }
4541   }
4542   return OriginalTy;
4543 }
4544