1 // backend.h -- Go frontend interface to backend  -*- C++ -*-
2 
3 // Copyright 2011 The Go Authors. All rights reserved.
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file.
6 
7 #ifndef GO_BACKEND_H
8 #define GO_BACKEND_H
9 
10 // Pointers to these types are created by the backend, passed to the
11 // frontend, and passed back to the backend.  The types must be
12 // defined by the backend using these names.
13 
14 // The backend representation of a type.
15 class Btype;
16 
17 // The backend represention of an expression.
18 class Bexpression;
19 
20 // The backend representation of a statement.
21 class Bstatement;
22 
23 // The backend representation of a function definition.
24 class Bfunction;
25 
26 // The backend representation of a block.
27 class Bblock;
28 
29 // The backend representation of a variable.
30 class Bvariable;
31 
32 // The backend representation of a label.
33 class Blabel;
34 
35 // The backend interface.  This is a pure abstract class that a
36 // specific backend will implement.
37 
38 class Backend
39 {
40  public:
~Backend()41   virtual ~Backend() { }
42 
43   // Name/type/location.  Used for function parameters, struct fields,
44   // interface methods.
45   struct Btyped_identifier
46   {
47     std::string name;
48     Btype* btype;
49     Location location;
50 
Btyped_identifierBtyped_identifier51     Btyped_identifier()
52       : name(), btype(NULL), location(UNKNOWN_LOCATION)
53     { }
54 
Btyped_identifierBtyped_identifier55     Btyped_identifier(const std::string& a_name, Btype* a_btype,
56 		     Location a_location)
57       : name(a_name), btype(a_btype), location(a_location)
58     { }
59   };
60 
61   // Types.
62 
63   // Produce an error type.  Actually the backend could probably just
64   // crash if this is called.
65   virtual Btype*
66   error_type() = 0;
67 
68   // Get a void type.  This is used in (at least) two ways: 1) as the
69   // return type of a function with no result parameters; 2)
70   // unsafe.Pointer is represented as *void.
71   virtual Btype*
72   void_type() = 0;
73 
74   // Get the unnamed boolean type.
75   virtual Btype*
76   bool_type() = 0;
77 
78   // Get an unnamed integer type with the given signedness and number
79   // of bits.
80   virtual Btype*
81   integer_type(bool is_unsigned, int bits) = 0;
82 
83   // Get an unnamed floating point type with the given number of bits
84   // (32 or 64).
85   virtual Btype*
86   float_type(int bits) = 0;
87 
88   // Get an unnamed complex type with the given number of bits (64 or 128).
89   virtual Btype*
90   complex_type(int bits) = 0;
91 
92   // Get a pointer type.
93   virtual Btype*
94   pointer_type(Btype* to_type) = 0;
95 
96   // Get a function type.  The receiver, parameter, and results are
97   // generated from the types in the Function_type.  The Function_type
98   // is provided so that the names are available.
99   virtual Btype*
100   function_type(const Btyped_identifier& receiver,
101 		const std::vector<Btyped_identifier>& parameters,
102 		const std::vector<Btyped_identifier>& results,
103 		Location location) = 0;
104 
105   // Get a struct type.
106   virtual Btype*
107   struct_type(const std::vector<Btyped_identifier>& fields) = 0;
108 
109   // Get an array type.
110   virtual Btype*
111   array_type(Btype* element_type, Bexpression* length) = 0;
112 
113   // Create a placeholder pointer type.  This is used for a named
114   // pointer type, since in Go a pointer type may refer to itself.
115   // NAME is the name of the type, and the location is where the named
116   // type is defined.  This function is also used for unnamed function
117   // types with multiple results, in which case the type has no name
118   // and NAME will be empty.  FOR_FUNCTION is true if this is for a Go
119   // function type, which corresponds to a C/C++ pointer to function
120   // type.  The return value will later be passed as the first
121   // parameter to set_placeholder_pointer_type or
122   // set_placeholder_function_type.
123   virtual Btype*
124   placeholder_pointer_type(const std::string& name, Location,
125 			   bool for_function) = 0;
126 
127   // Fill in a placeholder pointer type as a pointer.  This takes a
128   // type returned by placeholder_pointer_type and arranges for it to
129   // point to the type that TO_TYPE points to (that is, PLACEHOLDER
130   // becomes the same type as TO_TYPE).  Returns true on success,
131   // false on failure.
132   virtual bool
133   set_placeholder_pointer_type(Btype* placeholder, Btype* to_type) = 0;
134 
135   // Fill in a placeholder pointer type as a function.  This takes a
136   // type returned by placeholder_pointer_type and arranges for it to
137   // become a real Go function type (which corresponds to a C/C++
138   // pointer to function type).  FT will be something returned by the
139   // function_type method.  Returns true on success, false on failure.
140   virtual bool
141   set_placeholder_function_type(Btype* placeholder, Btype* ft) = 0;
142 
143   // Create a placeholder struct type.  This is used for a named
144   // struct type, as with placeholder_pointer_type.  It is also used
145   // for interface types, in which case NAME will be the empty string.
146   virtual Btype*
147   placeholder_struct_type(const std::string& name, Location) = 0;
148 
149   // Fill in a placeholder struct type.  This takes a type returned by
150   // placeholder_struct_type and arranges for it to become a real
151   // struct type.  The parameter is as for struct_type.  Returns true
152   // on success, false on failure.
153   virtual bool
154   set_placeholder_struct_type(Btype* placeholder,
155 			      const std::vector<Btyped_identifier>& fields)
156   			= 0;
157 
158   // Create a placeholder array type.  This is used for a named array
159   // type, as with placeholder_pointer_type, to handle cases like
160   // type A []*A.
161   virtual Btype*
162   placeholder_array_type(const std::string& name, Location) = 0;
163 
164   // Fill in a placeholder array type.  This takes a type returned by
165   // placeholder_array_type and arranges for it to become a real array
166   // type.  The parameters are as for array_type.  Returns true on
167   // success, false on failure.
168   virtual bool
169   set_placeholder_array_type(Btype* placeholder, Btype* element_type,
170 			     Bexpression* length) = 0;
171 
172   // Return a named version of a type.  The location is the location
173   // of the type definition.  This will not be called for a type
174   // created via placeholder_pointer_type, placeholder_struct_type, or
175   // placeholder_array_type..  (It may be called for a pointer,
176   // struct, or array type in a case like "type P *byte; type Q P".)
177   virtual Btype*
178   named_type(const std::string& name, Btype*, Location) = 0;
179 
180   // Create a marker for a circular pointer type.  Go pointer and
181   // function types can refer to themselves in ways that are not
182   // permitted in C/C++.  When a circular type is found, this function
183   // is called for the circular reference.  This permits the backend
184   // to decide how to handle such a type.  PLACEHOLDER is the
185   // placeholder type which has already been created; if the backend
186   // is prepared to handle a circular pointer type, it may simply
187   // return PLACEHOLDER.  FOR_FUNCTION is true if this is for a
188   // function type.
189   //
190   // For "type P *P" the sequence of calls will be
191   //   bt1 = placeholder_pointer_type();
192   //   bt2 = circular_pointer_type(bt1, false);
193   //   set_placeholder_pointer_type(bt1, bt2);
194   virtual Btype*
195   circular_pointer_type(Btype* placeholder, bool for_function) = 0;
196 
197   // Return whether the argument could be a special type created by
198   // circular_pointer_type.  This is used to introduce explicit type
199   // conversions where needed.  If circular_pointer_type returns its
200   // PLACEHOLDER parameter, this may safely always return false.
201   virtual bool
202   is_circular_pointer_type(Btype*) = 0;
203 
204   // Return the size of a type.
205   virtual size_t
206   type_size(Btype*) = 0;
207 
208   // Return the alignment of a type.
209   virtual size_t
210   type_alignment(Btype*) = 0;
211 
212   // Return the alignment of a struct field of this type.  This is
213   // normally the same as type_alignment, but not always.
214   virtual size_t
215   type_field_alignment(Btype*) = 0;
216 
217   // Return the offset of field INDEX in a struct type.  INDEX is the
218   // entry in the FIELDS std::vector parameter of struct_type or
219   // set_placeholder_struct_type.
220   virtual size_t
221   type_field_offset(Btype*, size_t index) = 0;
222 
223   // Expressions.
224 
225   // Return an expression for a zero value of the given type.  This is
226   // used for cases such as local variable initialization and
227   // converting nil to other types.
228   virtual Bexpression*
229   zero_expression(Btype*) = 0;
230 
231   // Statements.
232 
233   // Create an error statement.  This is used for cases which should
234   // not occur in a correct program, in order to keep the compilation
235   // going without crashing.
236   virtual Bstatement*
237   error_statement() = 0;
238 
239   // Create an expression statement.
240   virtual Bstatement*
241   expression_statement(Bexpression*) = 0;
242 
243   // Create a variable initialization statement.  This initializes a
244   // local variable at the point in the program flow where it is
245   // declared.
246   virtual Bstatement*
247   init_statement(Bvariable* var, Bexpression* init) = 0;
248 
249   // Create an assignment statement.
250   virtual Bstatement*
251   assignment_statement(Bexpression* lhs, Bexpression* rhs,
252 		       Location) = 0;
253 
254   // Create a return statement, passing the representation of the
255   // function and the list of values to return.
256   virtual Bstatement*
257   return_statement(Bfunction*, const std::vector<Bexpression*>&,
258 		   Location) = 0;
259 
260   // Create an if statement.  ELSE_BLOCK may be NULL.
261   virtual Bstatement*
262   if_statement(Bexpression* condition, Bblock* then_block, Bblock* else_block,
263 	       Location) = 0;
264 
265   // Create a switch statement where the case values are constants.
266   // CASES and STATEMENTS must have the same number of entries.  If
267   // VALUE matches any of the list in CASES[i], which will all be
268   // integers, then STATEMENTS[i] is executed.  STATEMENTS[i] will
269   // either end with a goto statement or will fall through into
270   // STATEMENTS[i + 1].  CASES[i] is empty for the default clause,
271   // which need not be last.
272   virtual Bstatement*
273   switch_statement(Bexpression* value,
274 		   const std::vector<std::vector<Bexpression*> >& cases,
275 		   const std::vector<Bstatement*>& statements,
276 		   Location) = 0;
277 
278   // Create a single statement from two statements.
279   virtual Bstatement*
280   compound_statement(Bstatement*, Bstatement*) = 0;
281 
282   // Create a single statement from a list of statements.
283   virtual Bstatement*
284   statement_list(const std::vector<Bstatement*>&) = 0;
285 
286   // Blocks.
287 
288   // Create a block.  The frontend will call this function when it
289   // starts converting a block within a function.  FUNCTION is the
290   // current function.  ENCLOSING is the enclosing block; it will be
291   // NULL for the top-level block in a function.  VARS is the list of
292   // local variables defined within this block; each entry will be
293   // created by the local_variable function.  START_LOCATION is the
294   // location of the start of the block, more or less the location of
295   // the initial curly brace.  END_LOCATION is the location of the end
296   // of the block, more or less the location of the final curly brace.
297   // The statements will be added after the block is created.
298   virtual Bblock*
299   block(Bfunction* function, Bblock* enclosing,
300 	const std::vector<Bvariable*>& vars,
301 	Location start_location, Location end_location) = 0;
302 
303   // Add the statements to a block.  The block is created first.  Then
304   // the statements are created.  Then the statements are added to the
305   // block.  This will called exactly once per block.  The vector may
306   // be empty if there are no statements.
307   virtual void
308   block_add_statements(Bblock*, const std::vector<Bstatement*>&) = 0;
309 
310   // Return the block as a statement.  This is used to include a block
311   // in a list of statements.
312   virtual Bstatement*
313   block_statement(Bblock*) = 0;
314 
315   // Variables.
316 
317   // Create an error variable.  This is used for cases which should
318   // not occur in a correct program, in order to keep the compilation
319   // going without crashing.
320   virtual Bvariable*
321   error_variable() = 0;
322 
323   // Create a global variable.  PACKAGE_NAME is the name of the
324   // package where the variable is defined.  PKGPATH is the package
325   // path for that package, from the -fgo-pkgpath or -fgo-prefix
326   // option.  NAME is the name of the variable.  BTYPE is the type of
327   // the variable.  IS_EXTERNAL is true if the variable is defined in
328   // some other package.  IS_HIDDEN is true if the variable is not
329   // exported (name begins with a lower case letter).
330   // IN_UNIQUE_SECTION is true if the variable should be put into a
331   // unique section if possible; this is intended to permit the linker
332   // to garbage collect the variable if it is not referenced.
333   // LOCATION is where the variable was defined.
334   virtual Bvariable*
335   global_variable(const std::string& package_name,
336 		  const std::string& pkgpath,
337 		  const std::string& name,
338 		  Btype* btype,
339 		  bool is_external,
340 		  bool is_hidden,
341 		  bool in_unique_section,
342 		  Location location) = 0;
343 
344   // A global variable will 1) be initialized to zero, or 2) be
345   // initialized to a constant value, or 3) be initialized in the init
346   // function.  In case 2, the frontend will call
347   // global_variable_set_init to set the initial value.  If this is
348   // not called, the backend should initialize a global variable to 0.
349   // The init function may then assign a value to it.
350   virtual void
351   global_variable_set_init(Bvariable*, Bexpression*) = 0;
352 
353   // Create a local variable.  The frontend will create the local
354   // variables first, and then create the block which contains them.
355   // FUNCTION is the function in which the variable is defined.  NAME
356   // is the name of the variable.  TYPE is the type.  IS_ADDRESS_TAKEN
357   // is true if the address of this variable is taken (this implies
358   // that the address does not escape the function, as otherwise the
359   // variable would be on the heap).  LOCATION is where the variable
360   // is defined.  For each local variable the frontend will call
361   // init_statement to set the initial value.
362   virtual Bvariable*
363   local_variable(Bfunction* function, const std::string& name, Btype* type,
364 		 bool is_address_taken, Location location) = 0;
365 
366   // Create a function parameter.  This is an incoming parameter, not
367   // a result parameter (result parameters are treated as local
368   // variables).  The arguments are as for local_variable.
369   virtual Bvariable*
370   parameter_variable(Bfunction* function, const std::string& name,
371 		     Btype* type, bool is_address_taken,
372 		     Location location) = 0;
373 
374   // Create a temporary variable.  A temporary variable has no name,
375   // just a type.  We pass in FUNCTION and BLOCK in case they are
376   // needed.  If INIT is not NULL, the variable should be initialized
377   // to that value.  Otherwise the initial value is irrelevant--the
378   // backend does not have to explicitly initialize it to zero.
379   // ADDRESS_IS_TAKEN is true if the programs needs to take the
380   // address of this temporary variable.  LOCATION is the location of
381   // the statement or expression which requires creating the temporary
382   // variable, and may not be very useful.  This function should
383   // return a variable which can be referenced later and should set
384   // *PSTATEMENT to a statement which initializes the variable.
385   virtual Bvariable*
386   temporary_variable(Bfunction*, Bblock*, Btype*, Bexpression* init,
387 		     bool address_is_taken, Location location,
388 		     Bstatement** pstatement) = 0;
389 
390   // Create a named immutable initialized data structure.  This is
391   // used for type descriptors and map descriptors.  This returns a
392   // Bvariable because it corresponds to an initialized const global
393   // variable in C.
394   //
395   // NAME is the name to use for the initialized global variable which
396   // this call will create.
397   //
398   // IS_COMMON is true if NAME may be defined by several packages, and
399   // the linker should merge all such definitions.  If IS_COMMON is
400   // false, NAME should be defined in only one file.  In general
401   // IS_COMMON will be true for the type descriptor of an unnamed type
402   // or a builtin type.
403   //
404   // TYPE will be a struct type; the type of the returned expression
405   // must be a pointer to this struct type.
406   //
407   // We must create the named structure before we know its
408   // initializer, because the initializer may refer to its own
409   // address.  After calling this the frontend will call
410   // immutable_struct_set_init.
411   virtual Bvariable*
412   immutable_struct(const std::string& name, bool is_common, Btype* type,
413 		   Location) = 0;
414 
415   // Set the initial value of a variable created by immutable_struct.
416   // The NAME, IS_COMMON, TYPE, and location parameters are the same
417   // ones passed to immutable_struct.  INITIALIZER will be a composite
418   // literal of type TYPE.  It will not contain any function calls or
419   // anything else which can not be put into a read-only data section.
420   // It may contain the address of variables created by
421   // immutable_struct.
422   virtual void
423   immutable_struct_set_init(Bvariable*, const std::string& name,
424 			    bool is_common, Btype* type, Location,
425 			    Bexpression* initializer) = 0;
426 
427   // Create a reference to a named immutable initialized data
428   // structure defined in some other package.  This will be a
429   // structure created by a call to immutable_struct with the same
430   // NAME and TYPE and with IS_COMMON passed as false.  This
431   // corresponds to an extern const global variable in C.
432   virtual Bvariable*
433   immutable_struct_reference(const std::string& name, Btype* type,
434 			     Location) = 0;
435 
436   // Labels.
437 
438   // Create a new label.  NAME will be empty if this is a label
439   // created by the frontend for a loop construct.  The location is
440   // where the the label is defined.
441   virtual Blabel*
442   label(Bfunction*, const std::string& name, Location) = 0;
443 
444   // Create a statement which defines a label.  This statement will be
445   // put into the codestream at the point where the label should be
446   // defined.
447   virtual Bstatement*
448   label_definition_statement(Blabel*) = 0;
449 
450   // Create a goto statement to a label.
451   virtual Bstatement*
452   goto_statement(Blabel*, Location) = 0;
453 
454   // Create an expression for the address of a label.  This is used to
455   // get the return address of a deferred function which may call
456   // recover.
457   virtual Bexpression*
458   label_address(Blabel*, Location) = 0;
459 };
460 
461 // The backend interface has to define this function.
462 
463 extern Backend* go_get_backend();
464 
465 // FIXME: Temporary helper functions while converting to new backend
466 // interface.
467 
468 extern Btype* tree_to_type(tree);
469 extern Bexpression* tree_to_expr(tree);
470 extern Bstatement* tree_to_stat(tree);
471 extern Bfunction* tree_to_function(tree);
472 extern Bblock* tree_to_block(tree);
473 extern tree type_to_tree(Btype*);
474 extern tree expr_to_tree(Bexpression*);
475 extern tree stat_to_tree(Bstatement*);
476 extern tree block_to_tree(Bblock*);
477 extern tree var_to_tree(Bvariable*);
478 
479 #endif // !defined(GO_BACKEND_H)
480