1 /* Exception handling semantics and decomposition for trees.
2    Copyright (C) 2003-2013 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10 
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 GNU General Public License for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "flags.h"
26 #include "function.h"
27 #include "except.h"
28 #include "pointer-set.h"
29 #include "tree-flow.h"
30 #include "tree-inline.h"
31 #include "tree-pass.h"
32 #include "langhooks.h"
33 #include "ggc.h"
34 #include "diagnostic-core.h"
35 #include "gimple.h"
36 #include "target.h"
37 #include "cfgloop.h"
38 
39 /* In some instances a tree and a gimple need to be stored in a same table,
40    i.e. in hash tables. This is a structure to do this. */
41 typedef union {tree *tp; tree t; gimple g;} treemple;
42 
43 /* Nonzero if we are using EH to handle cleanups.  */
44 static int using_eh_for_cleanups_p = 0;
45 
46 void
using_eh_for_cleanups(void)47 using_eh_for_cleanups (void)
48 {
49   using_eh_for_cleanups_p = 1;
50 }
51 
52 /* Misc functions used in this file.  */
53 
54 /* Remember and lookup EH landing pad data for arbitrary statements.
55    Really this means any statement that could_throw_p.  We could
56    stuff this information into the stmt_ann data structure, but:
57 
58    (1) We absolutely rely on this information being kept until
59    we get to rtl.  Once we're done with lowering here, if we lose
60    the information there's no way to recover it!
61 
62    (2) There are many more statements that *cannot* throw as
63    compared to those that can.  We should be saving some amount
64    of space by only allocating memory for those that can throw.  */
65 
66 /* Add statement T in function IFUN to landing pad NUM.  */
67 
68 void
add_stmt_to_eh_lp_fn(struct function * ifun,gimple t,int num)69 add_stmt_to_eh_lp_fn (struct function *ifun, gimple t, int num)
70 {
71   struct throw_stmt_node *n;
72   void **slot;
73 
74   gcc_assert (num != 0);
75 
76   n = ggc_alloc_throw_stmt_node ();
77   n->stmt = t;
78   n->lp_nr = num;
79 
80   if (!get_eh_throw_stmt_table (ifun))
81     set_eh_throw_stmt_table (ifun, htab_create_ggc (31, struct_ptr_hash,
82 						    struct_ptr_eq,
83 						    ggc_free));
84 
85   slot = htab_find_slot (get_eh_throw_stmt_table (ifun), n, INSERT);
86   gcc_assert (!*slot);
87   *slot = n;
88 }
89 
90 /* Add statement T in the current function (cfun) to EH landing pad NUM.  */
91 
92 void
add_stmt_to_eh_lp(gimple t,int num)93 add_stmt_to_eh_lp (gimple t, int num)
94 {
95   add_stmt_to_eh_lp_fn (cfun, t, num);
96 }
97 
98 /* Add statement T to the single EH landing pad in REGION.  */
99 
100 static void
record_stmt_eh_region(eh_region region,gimple t)101 record_stmt_eh_region (eh_region region, gimple t)
102 {
103   if (region == NULL)
104     return;
105   if (region->type == ERT_MUST_NOT_THROW)
106     add_stmt_to_eh_lp_fn (cfun, t, -region->index);
107   else
108     {
109       eh_landing_pad lp = region->landing_pads;
110       if (lp == NULL)
111 	lp = gen_eh_landing_pad (region);
112       else
113 	gcc_assert (lp->next_lp == NULL);
114       add_stmt_to_eh_lp_fn (cfun, t, lp->index);
115     }
116 }
117 
118 
119 /* Remove statement T in function IFUN from its EH landing pad.  */
120 
121 bool
remove_stmt_from_eh_lp_fn(struct function * ifun,gimple t)122 remove_stmt_from_eh_lp_fn (struct function *ifun, gimple t)
123 {
124   struct throw_stmt_node dummy;
125   void **slot;
126 
127   if (!get_eh_throw_stmt_table (ifun))
128     return false;
129 
130   dummy.stmt = t;
131   slot = htab_find_slot (get_eh_throw_stmt_table (ifun), &dummy,
132                         NO_INSERT);
133   if (slot)
134     {
135       htab_clear_slot (get_eh_throw_stmt_table (ifun), slot);
136       return true;
137     }
138   else
139     return false;
140 }
141 
142 
143 /* Remove statement T in the current function (cfun) from its
144    EH landing pad.  */
145 
146 bool
remove_stmt_from_eh_lp(gimple t)147 remove_stmt_from_eh_lp (gimple t)
148 {
149   return remove_stmt_from_eh_lp_fn (cfun, t);
150 }
151 
152 /* Determine if statement T is inside an EH region in function IFUN.
153    Positive numbers indicate a landing pad index; negative numbers
154    indicate a MUST_NOT_THROW region index; zero indicates that the
155    statement is not recorded in the region table.  */
156 
157 int
lookup_stmt_eh_lp_fn(struct function * ifun,gimple t)158 lookup_stmt_eh_lp_fn (struct function *ifun, gimple t)
159 {
160   struct throw_stmt_node *p, n;
161 
162   if (ifun->eh->throw_stmt_table == NULL)
163     return 0;
164 
165   n.stmt = t;
166   p = (struct throw_stmt_node *) htab_find (ifun->eh->throw_stmt_table, &n);
167   return p ? p->lp_nr : 0;
168 }
169 
170 /* Likewise, but always use the current function.  */
171 
172 int
lookup_stmt_eh_lp(gimple t)173 lookup_stmt_eh_lp (gimple t)
174 {
175   /* We can get called from initialized data when -fnon-call-exceptions
176      is on; prevent crash.  */
177   if (!cfun)
178     return 0;
179   return lookup_stmt_eh_lp_fn (cfun, t);
180 }
181 
182 /* First pass of EH node decomposition.  Build up a tree of GIMPLE_TRY_FINALLY
183    nodes and LABEL_DECL nodes.  We will use this during the second phase to
184    determine if a goto leaves the body of a TRY_FINALLY_EXPR node.  */
185 
186 struct finally_tree_node
187 {
188   /* When storing a GIMPLE_TRY, we have to record a gimple.  However
189      when deciding whether a GOTO to a certain LABEL_DECL (which is a
190      tree) leaves the TRY block, its necessary to record a tree in
191      this field.  Thus a treemple is used. */
192   treemple child;
193   gimple parent;
194 };
195 
196 /* Note that this table is *not* marked GTY.  It is short-lived.  */
197 static htab_t finally_tree;
198 
199 static void
record_in_finally_tree(treemple child,gimple parent)200 record_in_finally_tree (treemple child, gimple parent)
201 {
202   struct finally_tree_node *n;
203   void **slot;
204 
205   n = XNEW (struct finally_tree_node);
206   n->child = child;
207   n->parent = parent;
208 
209   slot = htab_find_slot (finally_tree, n, INSERT);
210   gcc_assert (!*slot);
211   *slot = n;
212 }
213 
214 static void
215 collect_finally_tree (gimple stmt, gimple region);
216 
217 /* Go through the gimple sequence.  Works with collect_finally_tree to
218    record all GIMPLE_LABEL and GIMPLE_TRY statements. */
219 
220 static void
collect_finally_tree_1(gimple_seq seq,gimple region)221 collect_finally_tree_1 (gimple_seq seq, gimple region)
222 {
223   gimple_stmt_iterator gsi;
224 
225   for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
226     collect_finally_tree (gsi_stmt (gsi), region);
227 }
228 
229 static void
collect_finally_tree(gimple stmt,gimple region)230 collect_finally_tree (gimple stmt, gimple region)
231 {
232   treemple temp;
233 
234   switch (gimple_code (stmt))
235     {
236     case GIMPLE_LABEL:
237       temp.t = gimple_label_label (stmt);
238       record_in_finally_tree (temp, region);
239       break;
240 
241     case GIMPLE_TRY:
242       if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
243         {
244           temp.g = stmt;
245           record_in_finally_tree (temp, region);
246           collect_finally_tree_1 (gimple_try_eval (stmt), stmt);
247 	  collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
248         }
249       else if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH)
250         {
251           collect_finally_tree_1 (gimple_try_eval (stmt), region);
252           collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
253         }
254       break;
255 
256     case GIMPLE_CATCH:
257       collect_finally_tree_1 (gimple_catch_handler (stmt), region);
258       break;
259 
260     case GIMPLE_EH_FILTER:
261       collect_finally_tree_1 (gimple_eh_filter_failure (stmt), region);
262       break;
263 
264     case GIMPLE_EH_ELSE:
265       collect_finally_tree_1 (gimple_eh_else_n_body (stmt), region);
266       collect_finally_tree_1 (gimple_eh_else_e_body (stmt), region);
267       break;
268 
269     default:
270       /* A type, a decl, or some kind of statement that we're not
271 	 interested in.  Don't walk them.  */
272       break;
273     }
274 }
275 
276 
277 /* Use the finally tree to determine if a jump from START to TARGET
278    would leave the try_finally node that START lives in.  */
279 
280 static bool
outside_finally_tree(treemple start,gimple target)281 outside_finally_tree (treemple start, gimple target)
282 {
283   struct finally_tree_node n, *p;
284 
285   do
286     {
287       n.child = start;
288       p = (struct finally_tree_node *) htab_find (finally_tree, &n);
289       if (!p)
290 	return true;
291       start.g = p->parent;
292     }
293   while (start.g != target);
294 
295   return false;
296 }
297 
298 /* Second pass of EH node decomposition.  Actually transform the GIMPLE_TRY
299    nodes into a set of gotos, magic labels, and eh regions.
300    The eh region creation is straight-forward, but frobbing all the gotos
301    and such into shape isn't.  */
302 
303 /* The sequence into which we record all EH stuff.  This will be
304    placed at the end of the function when we're all done.  */
305 static gimple_seq eh_seq;
306 
307 /* Record whether an EH region contains something that can throw,
308    indexed by EH region number.  */
309 static bitmap eh_region_may_contain_throw_map;
310 
311 /* The GOTO_QUEUE is is an array of GIMPLE_GOTO and GIMPLE_RETURN
312    statements that are seen to escape this GIMPLE_TRY_FINALLY node.
313    The idea is to record a gimple statement for everything except for
314    the conditionals, which get their labels recorded. Since labels are
315    of type 'tree', we need this node to store both gimple and tree
316    objects.  REPL_STMT is the sequence used to replace the goto/return
317    statement.  CONT_STMT is used to store the statement that allows
318    the return/goto to jump to the original destination. */
319 
320 struct goto_queue_node
321 {
322   treemple stmt;
323   location_t location;
324   gimple_seq repl_stmt;
325   gimple cont_stmt;
326   int index;
327   /* This is used when index >= 0 to indicate that stmt is a label (as
328      opposed to a goto stmt).  */
329   int is_label;
330 };
331 
332 /* State of the world while lowering.  */
333 
334 struct leh_state
335 {
336   /* What's "current" while constructing the eh region tree.  These
337      correspond to variables of the same name in cfun->eh, which we
338      don't have easy access to.  */
339   eh_region cur_region;
340 
341   /* What's "current" for the purposes of __builtin_eh_pointer.  For
342      a CATCH, this is the associated TRY.  For an EH_FILTER, this is
343      the associated ALLOWED_EXCEPTIONS, etc.  */
344   eh_region ehp_region;
345 
346   /* Processing of TRY_FINALLY requires a bit more state.  This is
347      split out into a separate structure so that we don't have to
348      copy so much when processing other nodes.  */
349   struct leh_tf_state *tf;
350 };
351 
352 struct leh_tf_state
353 {
354   /* Pointer to the GIMPLE_TRY_FINALLY node under discussion.  The
355      try_finally_expr is the original GIMPLE_TRY_FINALLY.  We need to retain
356      this so that outside_finally_tree can reliably reference the tree used
357      in the collect_finally_tree data structures.  */
358   gimple try_finally_expr;
359   gimple top_p;
360 
361   /* While lowering a top_p usually it is expanded into multiple statements,
362      thus we need the following field to store them. */
363   gimple_seq top_p_seq;
364 
365   /* The state outside this try_finally node.  */
366   struct leh_state *outer;
367 
368   /* The exception region created for it.  */
369   eh_region region;
370 
371   /* The goto queue.  */
372   struct goto_queue_node *goto_queue;
373   size_t goto_queue_size;
374   size_t goto_queue_active;
375 
376   /* Pointer map to help in searching goto_queue when it is large.  */
377   struct pointer_map_t *goto_queue_map;
378 
379   /* The set of unique labels seen as entries in the goto queue.  */
380   vec<tree> dest_array;
381 
382   /* A label to be added at the end of the completed transformed
383      sequence.  It will be set if may_fallthru was true *at one time*,
384      though subsequent transformations may have cleared that flag.  */
385   tree fallthru_label;
386 
387   /* True if it is possible to fall out the bottom of the try block.
388      Cleared if the fallthru is converted to a goto.  */
389   bool may_fallthru;
390 
391   /* True if any entry in goto_queue is a GIMPLE_RETURN.  */
392   bool may_return;
393 
394   /* True if the finally block can receive an exception edge.
395      Cleared if the exception case is handled by code duplication.  */
396   bool may_throw;
397 };
398 
399 static gimple_seq lower_eh_must_not_throw (struct leh_state *, gimple);
400 
401 /* Search for STMT in the goto queue.  Return the replacement,
402    or null if the statement isn't in the queue.  */
403 
404 #define LARGE_GOTO_QUEUE 20
405 
406 static void lower_eh_constructs_1 (struct leh_state *state, gimple_seq *seq);
407 
408 static gimple_seq
find_goto_replacement(struct leh_tf_state * tf,treemple stmt)409 find_goto_replacement (struct leh_tf_state *tf, treemple stmt)
410 {
411   unsigned int i;
412   void **slot;
413 
414   if (tf->goto_queue_active < LARGE_GOTO_QUEUE)
415     {
416       for (i = 0; i < tf->goto_queue_active; i++)
417 	if ( tf->goto_queue[i].stmt.g == stmt.g)
418 	  return tf->goto_queue[i].repl_stmt;
419       return NULL;
420     }
421 
422   /* If we have a large number of entries in the goto_queue, create a
423      pointer map and use that for searching.  */
424 
425   if (!tf->goto_queue_map)
426     {
427       tf->goto_queue_map = pointer_map_create ();
428       for (i = 0; i < tf->goto_queue_active; i++)
429 	{
430 	  slot = pointer_map_insert (tf->goto_queue_map,
431                                      tf->goto_queue[i].stmt.g);
432           gcc_assert (*slot == NULL);
433 	  *slot = &tf->goto_queue[i];
434 	}
435     }
436 
437   slot = pointer_map_contains (tf->goto_queue_map, stmt.g);
438   if (slot != NULL)
439     return (((struct goto_queue_node *) *slot)->repl_stmt);
440 
441   return NULL;
442 }
443 
444 /* A subroutine of replace_goto_queue_1.  Handles the sub-clauses of a
445    lowered GIMPLE_COND.  If, by chance, the replacement is a simple goto,
446    then we can just splat it in, otherwise we add the new stmts immediately
447    after the GIMPLE_COND and redirect.  */
448 
449 static void
replace_goto_queue_cond_clause(tree * tp,struct leh_tf_state * tf,gimple_stmt_iterator * gsi)450 replace_goto_queue_cond_clause (tree *tp, struct leh_tf_state *tf,
451 				gimple_stmt_iterator *gsi)
452 {
453   tree label;
454   gimple_seq new_seq;
455   treemple temp;
456   location_t loc = gimple_location (gsi_stmt (*gsi));
457 
458   temp.tp = tp;
459   new_seq = find_goto_replacement (tf, temp);
460   if (!new_seq)
461     return;
462 
463   if (gimple_seq_singleton_p (new_seq)
464       && gimple_code (gimple_seq_first_stmt (new_seq)) == GIMPLE_GOTO)
465     {
466       *tp = gimple_goto_dest (gimple_seq_first_stmt (new_seq));
467       return;
468     }
469 
470   label = create_artificial_label (loc);
471   /* Set the new label for the GIMPLE_COND */
472   *tp = label;
473 
474   gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
475   gsi_insert_seq_after (gsi, gimple_seq_copy (new_seq), GSI_CONTINUE_LINKING);
476 }
477 
478 /* The real work of replace_goto_queue.  Returns with TSI updated to
479    point to the next statement.  */
480 
481 static void replace_goto_queue_stmt_list (gimple_seq *, struct leh_tf_state *);
482 
483 static void
replace_goto_queue_1(gimple stmt,struct leh_tf_state * tf,gimple_stmt_iterator * gsi)484 replace_goto_queue_1 (gimple stmt, struct leh_tf_state *tf,
485 		      gimple_stmt_iterator *gsi)
486 {
487   gimple_seq seq;
488   treemple temp;
489   temp.g = NULL;
490 
491   switch (gimple_code (stmt))
492     {
493     case GIMPLE_GOTO:
494     case GIMPLE_RETURN:
495       temp.g = stmt;
496       seq = find_goto_replacement (tf, temp);
497       if (seq)
498 	{
499 	  gsi_insert_seq_before (gsi, gimple_seq_copy (seq), GSI_SAME_STMT);
500 	  gsi_remove (gsi, false);
501 	  return;
502 	}
503       break;
504 
505     case GIMPLE_COND:
506       replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 2), tf, gsi);
507       replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 3), tf, gsi);
508       break;
509 
510     case GIMPLE_TRY:
511       replace_goto_queue_stmt_list (gimple_try_eval_ptr (stmt), tf);
512       replace_goto_queue_stmt_list (gimple_try_cleanup_ptr (stmt), tf);
513       break;
514     case GIMPLE_CATCH:
515       replace_goto_queue_stmt_list (gimple_catch_handler_ptr (stmt), tf);
516       break;
517     case GIMPLE_EH_FILTER:
518       replace_goto_queue_stmt_list (gimple_eh_filter_failure_ptr (stmt), tf);
519       break;
520     case GIMPLE_EH_ELSE:
521       replace_goto_queue_stmt_list (gimple_eh_else_n_body_ptr (stmt), tf);
522       replace_goto_queue_stmt_list (gimple_eh_else_e_body_ptr (stmt), tf);
523       break;
524 
525     default:
526       /* These won't have gotos in them.  */
527       break;
528     }
529 
530   gsi_next (gsi);
531 }
532 
533 /* A subroutine of replace_goto_queue.  Handles GIMPLE_SEQ.  */
534 
535 static void
replace_goto_queue_stmt_list(gimple_seq * seq,struct leh_tf_state * tf)536 replace_goto_queue_stmt_list (gimple_seq *seq, struct leh_tf_state *tf)
537 {
538   gimple_stmt_iterator gsi = gsi_start (*seq);
539 
540   while (!gsi_end_p (gsi))
541     replace_goto_queue_1 (gsi_stmt (gsi), tf, &gsi);
542 }
543 
544 /* Replace all goto queue members.  */
545 
546 static void
replace_goto_queue(struct leh_tf_state * tf)547 replace_goto_queue (struct leh_tf_state *tf)
548 {
549   if (tf->goto_queue_active == 0)
550     return;
551   replace_goto_queue_stmt_list (&tf->top_p_seq, tf);
552   replace_goto_queue_stmt_list (&eh_seq, tf);
553 }
554 
555 /* Add a new record to the goto queue contained in TF. NEW_STMT is the
556    data to be added, IS_LABEL indicates whether NEW_STMT is a label or
557    a gimple return. */
558 
559 static void
record_in_goto_queue(struct leh_tf_state * tf,treemple new_stmt,int index,bool is_label,location_t location)560 record_in_goto_queue (struct leh_tf_state *tf,
561                       treemple new_stmt,
562                       int index,
563                       bool is_label,
564 		      location_t location)
565 {
566   size_t active, size;
567   struct goto_queue_node *q;
568 
569   gcc_assert (!tf->goto_queue_map);
570 
571   active = tf->goto_queue_active;
572   size = tf->goto_queue_size;
573   if (active >= size)
574     {
575       size = (size ? size * 2 : 32);
576       tf->goto_queue_size = size;
577       tf->goto_queue
578          = XRESIZEVEC (struct goto_queue_node, tf->goto_queue, size);
579     }
580 
581   q = &tf->goto_queue[active];
582   tf->goto_queue_active = active + 1;
583 
584   memset (q, 0, sizeof (*q));
585   q->stmt = new_stmt;
586   q->index = index;
587   q->location = location;
588   q->is_label = is_label;
589 }
590 
591 /* Record the LABEL label in the goto queue contained in TF.
592    TF is not null.  */
593 
594 static void
record_in_goto_queue_label(struct leh_tf_state * tf,treemple stmt,tree label,location_t location)595 record_in_goto_queue_label (struct leh_tf_state *tf, treemple stmt, tree label,
596 			    location_t location)
597 {
598   int index;
599   treemple temp, new_stmt;
600 
601   if (!label)
602     return;
603 
604   /* Computed and non-local gotos do not get processed.  Given
605      their nature we can neither tell whether we've escaped the
606      finally block nor redirect them if we knew.  */
607   if (TREE_CODE (label) != LABEL_DECL)
608     return;
609 
610   /* No need to record gotos that don't leave the try block.  */
611   temp.t = label;
612   if (!outside_finally_tree (temp, tf->try_finally_expr))
613     return;
614 
615   if (! tf->dest_array.exists ())
616     {
617       tf->dest_array.create (10);
618       tf->dest_array.quick_push (label);
619       index = 0;
620     }
621   else
622     {
623       int n = tf->dest_array.length ();
624       for (index = 0; index < n; ++index)
625         if (tf->dest_array[index] == label)
626           break;
627       if (index == n)
628         tf->dest_array.safe_push (label);
629     }
630 
631   /* In the case of a GOTO we want to record the destination label,
632      since with a GIMPLE_COND we have an easy access to the then/else
633      labels. */
634   new_stmt = stmt;
635   record_in_goto_queue (tf, new_stmt, index, true, location);
636 }
637 
638 /* For any GIMPLE_GOTO or GIMPLE_RETURN, decide whether it leaves a try_finally
639    node, and if so record that fact in the goto queue associated with that
640    try_finally node.  */
641 
642 static void
maybe_record_in_goto_queue(struct leh_state * state,gimple stmt)643 maybe_record_in_goto_queue (struct leh_state *state, gimple stmt)
644 {
645   struct leh_tf_state *tf = state->tf;
646   treemple new_stmt;
647 
648   if (!tf)
649     return;
650 
651   switch (gimple_code (stmt))
652     {
653     case GIMPLE_COND:
654       new_stmt.tp = gimple_op_ptr (stmt, 2);
655       record_in_goto_queue_label (tf, new_stmt, gimple_cond_true_label (stmt),
656 				  EXPR_LOCATION (*new_stmt.tp));
657       new_stmt.tp = gimple_op_ptr (stmt, 3);
658       record_in_goto_queue_label (tf, new_stmt, gimple_cond_false_label (stmt),
659 				  EXPR_LOCATION (*new_stmt.tp));
660       break;
661     case GIMPLE_GOTO:
662       new_stmt.g = stmt;
663       record_in_goto_queue_label (tf, new_stmt, gimple_goto_dest (stmt),
664 				  gimple_location (stmt));
665       break;
666 
667     case GIMPLE_RETURN:
668       tf->may_return = true;
669       new_stmt.g = stmt;
670       record_in_goto_queue (tf, new_stmt, -1, false, gimple_location (stmt));
671       break;
672 
673     default:
674       gcc_unreachable ();
675     }
676 }
677 
678 
679 #ifdef ENABLE_CHECKING
680 /* We do not process GIMPLE_SWITCHes for now.  As long as the original source
681    was in fact structured, and we've not yet done jump threading, then none
682    of the labels will leave outer GIMPLE_TRY_FINALLY nodes. Verify this.  */
683 
684 static void
verify_norecord_switch_expr(struct leh_state * state,gimple switch_expr)685 verify_norecord_switch_expr (struct leh_state *state, gimple switch_expr)
686 {
687   struct leh_tf_state *tf = state->tf;
688   size_t i, n;
689 
690   if (!tf)
691     return;
692 
693   n = gimple_switch_num_labels (switch_expr);
694 
695   for (i = 0; i < n; ++i)
696     {
697       treemple temp;
698       tree lab = CASE_LABEL (gimple_switch_label (switch_expr, i));
699       temp.t = lab;
700       gcc_assert (!outside_finally_tree (temp, tf->try_finally_expr));
701     }
702 }
703 #else
704 #define verify_norecord_switch_expr(state, switch_expr)
705 #endif
706 
707 /* Redirect a RETURN_EXPR pointed to by Q to FINLAB.  If MOD is
708    non-null, insert it before the new branch.  */
709 
710 static void
do_return_redirection(struct goto_queue_node * q,tree finlab,gimple_seq mod)711 do_return_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod)
712 {
713   gimple x;
714 
715   /* In the case of a return, the queue node must be a gimple statement.  */
716   gcc_assert (!q->is_label);
717 
718   /* Note that the return value may have already been computed, e.g.,
719 
720 	int x;
721 	int foo (void)
722 	{
723 	  x = 0;
724 	  try {
725 	    return x;
726 	  } finally {
727 	    x++;
728 	  }
729 	}
730 
731      should return 0, not 1.  We don't have to do anything to make
732      this happens because the return value has been placed in the
733      RESULT_DECL already.  */
734 
735   q->cont_stmt = q->stmt.g;
736 
737   if (mod)
738     gimple_seq_add_seq (&q->repl_stmt, mod);
739 
740   x = gimple_build_goto (finlab);
741   gimple_set_location (x, q->location);
742   gimple_seq_add_stmt (&q->repl_stmt, x);
743 }
744 
745 /* Similar, but easier, for GIMPLE_GOTO.  */
746 
747 static void
do_goto_redirection(struct goto_queue_node * q,tree finlab,gimple_seq mod,struct leh_tf_state * tf)748 do_goto_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
749 		     struct leh_tf_state *tf)
750 {
751   gimple x;
752 
753   gcc_assert (q->is_label);
754 
755   q->cont_stmt = gimple_build_goto (tf->dest_array[q->index]);
756 
757   if (mod)
758     gimple_seq_add_seq (&q->repl_stmt, mod);
759 
760   x = gimple_build_goto (finlab);
761   gimple_set_location (x, q->location);
762   gimple_seq_add_stmt (&q->repl_stmt, x);
763 }
764 
765 /* Emit a standard landing pad sequence into SEQ for REGION.  */
766 
767 static void
emit_post_landing_pad(gimple_seq * seq,eh_region region)768 emit_post_landing_pad (gimple_seq *seq, eh_region region)
769 {
770   eh_landing_pad lp = region->landing_pads;
771   gimple x;
772 
773   if (lp == NULL)
774     lp = gen_eh_landing_pad (region);
775 
776   lp->post_landing_pad = create_artificial_label (UNKNOWN_LOCATION);
777   EH_LANDING_PAD_NR (lp->post_landing_pad) = lp->index;
778 
779   x = gimple_build_label (lp->post_landing_pad);
780   gimple_seq_add_stmt (seq, x);
781 }
782 
783 /* Emit a RESX statement into SEQ for REGION.  */
784 
785 static void
emit_resx(gimple_seq * seq,eh_region region)786 emit_resx (gimple_seq *seq, eh_region region)
787 {
788   gimple x = gimple_build_resx (region->index);
789   gimple_seq_add_stmt (seq, x);
790   if (region->outer)
791     record_stmt_eh_region (region->outer, x);
792 }
793 
794 /* Emit an EH_DISPATCH statement into SEQ for REGION.  */
795 
796 static void
emit_eh_dispatch(gimple_seq * seq,eh_region region)797 emit_eh_dispatch (gimple_seq *seq, eh_region region)
798 {
799   gimple x = gimple_build_eh_dispatch (region->index);
800   gimple_seq_add_stmt (seq, x);
801 }
802 
803 /* Note that the current EH region may contain a throw, or a
804    call to a function which itself may contain a throw.  */
805 
806 static void
note_eh_region_may_contain_throw(eh_region region)807 note_eh_region_may_contain_throw (eh_region region)
808 {
809   while (bitmap_set_bit (eh_region_may_contain_throw_map, region->index))
810     {
811       if (region->type == ERT_MUST_NOT_THROW)
812 	break;
813       region = region->outer;
814       if (region == NULL)
815 	break;
816     }
817 }
818 
819 /* Check if REGION has been marked as containing a throw.  If REGION is
820    NULL, this predicate is false.  */
821 
822 static inline bool
eh_region_may_contain_throw(eh_region r)823 eh_region_may_contain_throw (eh_region r)
824 {
825   return r && bitmap_bit_p (eh_region_may_contain_throw_map, r->index);
826 }
827 
828 /* We want to transform
829 	try { body; } catch { stuff; }
830    to
831 	normal_seqence:
832 	  body;
833 	  over:
834 	eh_seqence:
835 	  landing_pad:
836 	  stuff;
837 	  goto over;
838 
839    TP is a GIMPLE_TRY node.  REGION is the region whose post_landing_pad
840    should be placed before the second operand, or NULL.  OVER is
841    an existing label that should be put at the exit, or NULL.  */
842 
843 static gimple_seq
frob_into_branch_around(gimple tp,eh_region region,tree over)844 frob_into_branch_around (gimple tp, eh_region region, tree over)
845 {
846   gimple x;
847   gimple_seq cleanup, result;
848   location_t loc = gimple_location (tp);
849 
850   cleanup = gimple_try_cleanup (tp);
851   result = gimple_try_eval (tp);
852 
853   if (region)
854     emit_post_landing_pad (&eh_seq, region);
855 
856   if (gimple_seq_may_fallthru (cleanup))
857     {
858       if (!over)
859 	over = create_artificial_label (loc);
860       x = gimple_build_goto (over);
861       gimple_set_location (x, loc);
862       gimple_seq_add_stmt (&cleanup, x);
863     }
864   gimple_seq_add_seq (&eh_seq, cleanup);
865 
866   if (over)
867     {
868       x = gimple_build_label (over);
869       gimple_seq_add_stmt (&result, x);
870     }
871   return result;
872 }
873 
874 /* A subroutine of lower_try_finally.  Duplicate the tree rooted at T.
875    Make sure to record all new labels found.  */
876 
877 static gimple_seq
lower_try_finally_dup_block(gimple_seq seq,struct leh_state * outer_state,location_t loc)878 lower_try_finally_dup_block (gimple_seq seq, struct leh_state *outer_state,
879 			     location_t loc)
880 {
881   gimple region = NULL;
882   gimple_seq new_seq;
883   gimple_stmt_iterator gsi;
884 
885   new_seq = copy_gimple_seq_and_replace_locals (seq);
886 
887   for (gsi = gsi_start (new_seq); !gsi_end_p (gsi); gsi_next (&gsi))
888     {
889       gimple stmt = gsi_stmt (gsi);
890       if (LOCATION_LOCUS (gimple_location (stmt)) == UNKNOWN_LOCATION)
891 	{
892 	  tree block = gimple_block (stmt);
893 	  gimple_set_location (stmt, loc);
894 	  gimple_set_block (stmt, block);
895 	}
896     }
897 
898   if (outer_state->tf)
899     region = outer_state->tf->try_finally_expr;
900   collect_finally_tree_1 (new_seq, region);
901 
902   return new_seq;
903 }
904 
905 /* A subroutine of lower_try_finally.  Create a fallthru label for
906    the given try_finally state.  The only tricky bit here is that
907    we have to make sure to record the label in our outer context.  */
908 
909 static tree
lower_try_finally_fallthru_label(struct leh_tf_state * tf)910 lower_try_finally_fallthru_label (struct leh_tf_state *tf)
911 {
912   tree label = tf->fallthru_label;
913   treemple temp;
914 
915   if (!label)
916     {
917       label = create_artificial_label (gimple_location (tf->try_finally_expr));
918       tf->fallthru_label = label;
919       if (tf->outer->tf)
920         {
921           temp.t = label;
922           record_in_finally_tree (temp, tf->outer->tf->try_finally_expr);
923         }
924     }
925   return label;
926 }
927 
928 /* A subroutine of lower_try_finally.  If FINALLY consits of a
929    GIMPLE_EH_ELSE node, return it.  */
930 
931 static inline gimple
get_eh_else(gimple_seq finally)932 get_eh_else (gimple_seq finally)
933 {
934   gimple x = gimple_seq_first_stmt (finally);
935   if (gimple_code (x) == GIMPLE_EH_ELSE)
936     {
937       gcc_assert (gimple_seq_singleton_p (finally));
938       return x;
939     }
940   return NULL;
941 }
942 
943 /* A subroutine of lower_try_finally.  If the eh_protect_cleanup_actions
944    langhook returns non-null, then the language requires that the exception
945    path out of a try_finally be treated specially.  To wit: the code within
946    the finally block may not itself throw an exception.  We have two choices
947    here. First we can duplicate the finally block and wrap it in a
948    must_not_throw region.  Second, we can generate code like
949 
950 	try {
951 	  finally_block;
952 	} catch {
953 	  if (fintmp == eh_edge)
954 	    protect_cleanup_actions;
955 	}
956 
957    where "fintmp" is the temporary used in the switch statement generation
958    alternative considered below.  For the nonce, we always choose the first
959    option.
960 
961    THIS_STATE may be null if this is a try-cleanup, not a try-finally.  */
962 
963 static void
honor_protect_cleanup_actions(struct leh_state * outer_state,struct leh_state * this_state,struct leh_tf_state * tf)964 honor_protect_cleanup_actions (struct leh_state *outer_state,
965 			       struct leh_state *this_state,
966 			       struct leh_tf_state *tf)
967 {
968   tree protect_cleanup_actions;
969   gimple_stmt_iterator gsi;
970   bool finally_may_fallthru;
971   gimple_seq finally;
972   gimple x, eh_else;
973 
974   /* First check for nothing to do.  */
975   if (lang_hooks.eh_protect_cleanup_actions == NULL)
976     return;
977   protect_cleanup_actions = lang_hooks.eh_protect_cleanup_actions ();
978   if (protect_cleanup_actions == NULL)
979     return;
980 
981   finally = gimple_try_cleanup (tf->top_p);
982   eh_else = get_eh_else (finally);
983 
984   /* Duplicate the FINALLY block.  Only need to do this for try-finally,
985      and not for cleanups.  If we've got an EH_ELSE, extract it now.  */
986   if (eh_else)
987     {
988       finally = gimple_eh_else_e_body (eh_else);
989       gimple_try_set_cleanup (tf->top_p, gimple_eh_else_n_body (eh_else));
990     }
991   else if (this_state)
992     finally = lower_try_finally_dup_block (finally, outer_state,
993 	gimple_location (tf->try_finally_expr));
994   finally_may_fallthru = gimple_seq_may_fallthru (finally);
995 
996   /* If this cleanup consists of a TRY_CATCH_EXPR with TRY_CATCH_IS_CLEANUP
997      set, the handler of the TRY_CATCH_EXPR is another cleanup which ought
998      to be in an enclosing scope, but needs to be implemented at this level
999      to avoid a nesting violation (see wrap_temporary_cleanups in
1000      cp/decl.c).  Since it's logically at an outer level, we should call
1001      terminate before we get to it, so strip it away before adding the
1002      MUST_NOT_THROW filter.  */
1003   gsi = gsi_start (finally);
1004   x = gsi_stmt (gsi);
1005   if (gimple_code (x) == GIMPLE_TRY
1006       && gimple_try_kind (x) == GIMPLE_TRY_CATCH
1007       && gimple_try_catch_is_cleanup (x))
1008     {
1009       gsi_insert_seq_before (&gsi, gimple_try_eval (x), GSI_SAME_STMT);
1010       gsi_remove (&gsi, false);
1011     }
1012 
1013   /* Wrap the block with protect_cleanup_actions as the action.  */
1014   x = gimple_build_eh_must_not_throw (protect_cleanup_actions);
1015   x = gimple_build_try (finally, gimple_seq_alloc_with_stmt (x),
1016 			GIMPLE_TRY_CATCH);
1017   finally = lower_eh_must_not_throw (outer_state, x);
1018 
1019   /* Drop all of this into the exception sequence.  */
1020   emit_post_landing_pad (&eh_seq, tf->region);
1021   gimple_seq_add_seq (&eh_seq, finally);
1022   if (finally_may_fallthru)
1023     emit_resx (&eh_seq, tf->region);
1024 
1025   /* Having now been handled, EH isn't to be considered with
1026      the rest of the outgoing edges.  */
1027   tf->may_throw = false;
1028 }
1029 
1030 /* A subroutine of lower_try_finally.  We have determined that there is
1031    no fallthru edge out of the finally block.  This means that there is
1032    no outgoing edge corresponding to any incoming edge.  Restructure the
1033    try_finally node for this special case.  */
1034 
1035 static void
lower_try_finally_nofallthru(struct leh_state * state,struct leh_tf_state * tf)1036 lower_try_finally_nofallthru (struct leh_state *state,
1037 			      struct leh_tf_state *tf)
1038 {
1039   tree lab;
1040   gimple x, eh_else;
1041   gimple_seq finally;
1042   struct goto_queue_node *q, *qe;
1043 
1044   lab = create_artificial_label (gimple_location (tf->try_finally_expr));
1045 
1046   /* We expect that tf->top_p is a GIMPLE_TRY. */
1047   finally = gimple_try_cleanup (tf->top_p);
1048   tf->top_p_seq = gimple_try_eval (tf->top_p);
1049 
1050   x = gimple_build_label (lab);
1051   gimple_seq_add_stmt (&tf->top_p_seq, x);
1052 
1053   q = tf->goto_queue;
1054   qe = q + tf->goto_queue_active;
1055   for (; q < qe; ++q)
1056     if (q->index < 0)
1057       do_return_redirection (q, lab, NULL);
1058     else
1059       do_goto_redirection (q, lab, NULL, tf);
1060 
1061   replace_goto_queue (tf);
1062 
1063   /* Emit the finally block into the stream.  Lower EH_ELSE at this time.  */
1064   eh_else = get_eh_else (finally);
1065   if (eh_else)
1066     {
1067       finally = gimple_eh_else_n_body (eh_else);
1068       lower_eh_constructs_1 (state, &finally);
1069       gimple_seq_add_seq (&tf->top_p_seq, finally);
1070 
1071       if (tf->may_throw)
1072 	{
1073 	  finally = gimple_eh_else_e_body (eh_else);
1074 	  lower_eh_constructs_1 (state, &finally);
1075 
1076 	  emit_post_landing_pad (&eh_seq, tf->region);
1077 	  gimple_seq_add_seq (&eh_seq, finally);
1078 	}
1079     }
1080   else
1081     {
1082       lower_eh_constructs_1 (state, &finally);
1083       gimple_seq_add_seq (&tf->top_p_seq, finally);
1084 
1085       if (tf->may_throw)
1086 	{
1087 	  emit_post_landing_pad (&eh_seq, tf->region);
1088 
1089 	  x = gimple_build_goto (lab);
1090 	  gimple_set_location (x, gimple_location (tf->try_finally_expr));
1091 	  gimple_seq_add_stmt (&eh_seq, x);
1092 	}
1093     }
1094 }
1095 
1096 /* A subroutine of lower_try_finally.  We have determined that there is
1097    exactly one destination of the finally block.  Restructure the
1098    try_finally node for this special case.  */
1099 
1100 static void
lower_try_finally_onedest(struct leh_state * state,struct leh_tf_state * tf)1101 lower_try_finally_onedest (struct leh_state *state, struct leh_tf_state *tf)
1102 {
1103   struct goto_queue_node *q, *qe;
1104   gimple x;
1105   gimple_seq finally;
1106   gimple_stmt_iterator gsi;
1107   tree finally_label;
1108   location_t loc = gimple_location (tf->try_finally_expr);
1109 
1110   finally = gimple_try_cleanup (tf->top_p);
1111   tf->top_p_seq = gimple_try_eval (tf->top_p);
1112 
1113   /* Since there's only one destination, and the destination edge can only
1114      either be EH or non-EH, that implies that all of our incoming edges
1115      are of the same type.  Therefore we can lower EH_ELSE immediately.  */
1116   x = get_eh_else (finally);
1117   if (x)
1118     {
1119       if (tf->may_throw)
1120 	finally = gimple_eh_else_e_body (x);
1121       else
1122 	finally = gimple_eh_else_n_body (x);
1123     }
1124 
1125   lower_eh_constructs_1 (state, &finally);
1126 
1127   for (gsi = gsi_start (finally); !gsi_end_p (gsi); gsi_next (&gsi))
1128     {
1129       gimple stmt = gsi_stmt (gsi);
1130       if (LOCATION_LOCUS (gimple_location (stmt)) == UNKNOWN_LOCATION)
1131 	{
1132 	  tree block = gimple_block (stmt);
1133 	  gimple_set_location (stmt, gimple_location (tf->try_finally_expr));
1134 	  gimple_set_block (stmt, block);
1135 	}
1136     }
1137 
1138   if (tf->may_throw)
1139     {
1140       /* Only reachable via the exception edge.  Add the given label to
1141          the head of the FINALLY block.  Append a RESX at the end.  */
1142       emit_post_landing_pad (&eh_seq, tf->region);
1143       gimple_seq_add_seq (&eh_seq, finally);
1144       emit_resx (&eh_seq, tf->region);
1145       return;
1146     }
1147 
1148   if (tf->may_fallthru)
1149     {
1150       /* Only reachable via the fallthru edge.  Do nothing but let
1151 	 the two blocks run together; we'll fall out the bottom.  */
1152       gimple_seq_add_seq (&tf->top_p_seq, finally);
1153       return;
1154     }
1155 
1156   finally_label = create_artificial_label (loc);
1157   x = gimple_build_label (finally_label);
1158   gimple_seq_add_stmt (&tf->top_p_seq, x);
1159 
1160   gimple_seq_add_seq (&tf->top_p_seq, finally);
1161 
1162   q = tf->goto_queue;
1163   qe = q + tf->goto_queue_active;
1164 
1165   if (tf->may_return)
1166     {
1167       /* Reachable by return expressions only.  Redirect them.  */
1168       for (; q < qe; ++q)
1169 	do_return_redirection (q, finally_label, NULL);
1170       replace_goto_queue (tf);
1171     }
1172   else
1173     {
1174       /* Reachable by goto expressions only.  Redirect them.  */
1175       for (; q < qe; ++q)
1176 	do_goto_redirection (q, finally_label, NULL, tf);
1177       replace_goto_queue (tf);
1178 
1179       if (tf->dest_array[0] == tf->fallthru_label)
1180 	{
1181 	  /* Reachable by goto to fallthru label only.  Redirect it
1182 	     to the new label (already created, sadly), and do not
1183 	     emit the final branch out, or the fallthru label.  */
1184 	  tf->fallthru_label = NULL;
1185 	  return;
1186 	}
1187     }
1188 
1189   /* Place the original return/goto to the original destination
1190      immediately after the finally block. */
1191   x = tf->goto_queue[0].cont_stmt;
1192   gimple_seq_add_stmt (&tf->top_p_seq, x);
1193   maybe_record_in_goto_queue (state, x);
1194 }
1195 
1196 /* A subroutine of lower_try_finally.  There are multiple edges incoming
1197    and outgoing from the finally block.  Implement this by duplicating the
1198    finally block for every destination.  */
1199 
1200 static void
lower_try_finally_copy(struct leh_state * state,struct leh_tf_state * tf)1201 lower_try_finally_copy (struct leh_state *state, struct leh_tf_state *tf)
1202 {
1203   gimple_seq finally;
1204   gimple_seq new_stmt;
1205   gimple_seq seq;
1206   gimple x, eh_else;
1207   tree tmp;
1208   location_t tf_loc = gimple_location (tf->try_finally_expr);
1209 
1210   finally = gimple_try_cleanup (tf->top_p);
1211 
1212   /* Notice EH_ELSE, and simplify some of the remaining code
1213      by considering FINALLY to be the normal return path only.  */
1214   eh_else = get_eh_else (finally);
1215   if (eh_else)
1216     finally = gimple_eh_else_n_body (eh_else);
1217 
1218   tf->top_p_seq = gimple_try_eval (tf->top_p);
1219   new_stmt = NULL;
1220 
1221   if (tf->may_fallthru)
1222     {
1223       seq = lower_try_finally_dup_block (finally, state, tf_loc);
1224       lower_eh_constructs_1 (state, &seq);
1225       gimple_seq_add_seq (&new_stmt, seq);
1226 
1227       tmp = lower_try_finally_fallthru_label (tf);
1228       x = gimple_build_goto (tmp);
1229       gimple_set_location (x, tf_loc);
1230       gimple_seq_add_stmt (&new_stmt, x);
1231     }
1232 
1233   if (tf->may_throw)
1234     {
1235       /* We don't need to copy the EH path of EH_ELSE,
1236 	 since it is only emitted once.  */
1237       if (eh_else)
1238 	seq = gimple_eh_else_e_body (eh_else);
1239       else
1240 	seq = lower_try_finally_dup_block (finally, state, tf_loc);
1241       lower_eh_constructs_1 (state, &seq);
1242 
1243       emit_post_landing_pad (&eh_seq, tf->region);
1244       gimple_seq_add_seq (&eh_seq, seq);
1245       emit_resx (&eh_seq, tf->region);
1246     }
1247 
1248   if (tf->goto_queue)
1249     {
1250       struct goto_queue_node *q, *qe;
1251       int return_index, index;
1252       struct labels_s
1253       {
1254 	struct goto_queue_node *q;
1255 	tree label;
1256       } *labels;
1257 
1258       return_index = tf->dest_array.length ();
1259       labels = XCNEWVEC (struct labels_s, return_index + 1);
1260 
1261       q = tf->goto_queue;
1262       qe = q + tf->goto_queue_active;
1263       for (; q < qe; q++)
1264 	{
1265 	  index = q->index < 0 ? return_index : q->index;
1266 
1267 	  if (!labels[index].q)
1268 	    labels[index].q = q;
1269 	}
1270 
1271       for (index = 0; index < return_index + 1; index++)
1272 	{
1273 	  tree lab;
1274 
1275 	  q = labels[index].q;
1276 	  if (! q)
1277 	    continue;
1278 
1279 	  lab = labels[index].label
1280 	    = create_artificial_label (tf_loc);
1281 
1282 	  if (index == return_index)
1283 	    do_return_redirection (q, lab, NULL);
1284 	  else
1285 	    do_goto_redirection (q, lab, NULL, tf);
1286 
1287 	  x = gimple_build_label (lab);
1288           gimple_seq_add_stmt (&new_stmt, x);
1289 
1290 	  seq = lower_try_finally_dup_block (finally, state, q->location);
1291 	  lower_eh_constructs_1 (state, &seq);
1292           gimple_seq_add_seq (&new_stmt, seq);
1293 
1294           gimple_seq_add_stmt (&new_stmt, q->cont_stmt);
1295 	  maybe_record_in_goto_queue (state, q->cont_stmt);
1296 	}
1297 
1298       for (q = tf->goto_queue; q < qe; q++)
1299 	{
1300 	  tree lab;
1301 
1302 	  index = q->index < 0 ? return_index : q->index;
1303 
1304 	  if (labels[index].q == q)
1305 	    continue;
1306 
1307 	  lab = labels[index].label;
1308 
1309 	  if (index == return_index)
1310 	    do_return_redirection (q, lab, NULL);
1311 	  else
1312 	    do_goto_redirection (q, lab, NULL, tf);
1313 	}
1314 
1315       replace_goto_queue (tf);
1316       free (labels);
1317     }
1318 
1319   /* Need to link new stmts after running replace_goto_queue due
1320      to not wanting to process the same goto stmts twice.  */
1321   gimple_seq_add_seq (&tf->top_p_seq, new_stmt);
1322 }
1323 
1324 /* A subroutine of lower_try_finally.  There are multiple edges incoming
1325    and outgoing from the finally block.  Implement this by instrumenting
1326    each incoming edge and creating a switch statement at the end of the
1327    finally block that branches to the appropriate destination.  */
1328 
1329 static void
lower_try_finally_switch(struct leh_state * state,struct leh_tf_state * tf)1330 lower_try_finally_switch (struct leh_state *state, struct leh_tf_state *tf)
1331 {
1332   struct goto_queue_node *q, *qe;
1333   tree finally_tmp, finally_label;
1334   int return_index, eh_index, fallthru_index;
1335   int nlabels, ndests, j, last_case_index;
1336   tree last_case;
1337   vec<tree> case_label_vec;
1338   gimple_seq switch_body = NULL;
1339   gimple x, eh_else;
1340   tree tmp;
1341   gimple switch_stmt;
1342   gimple_seq finally;
1343   struct pointer_map_t *cont_map = NULL;
1344   /* The location of the TRY_FINALLY stmt.  */
1345   location_t tf_loc = gimple_location (tf->try_finally_expr);
1346   /* The location of the finally block.  */
1347   location_t finally_loc;
1348 
1349   finally = gimple_try_cleanup (tf->top_p);
1350   eh_else = get_eh_else (finally);
1351 
1352   /* Mash the TRY block to the head of the chain.  */
1353   tf->top_p_seq = gimple_try_eval (tf->top_p);
1354 
1355   /* The location of the finally is either the last stmt in the finally
1356      block or the location of the TRY_FINALLY itself.  */
1357   x = gimple_seq_last_stmt (finally);
1358   finally_loc = x ? gimple_location (x) : tf_loc;
1359 
1360   /* Lower the finally block itself.  */
1361   lower_eh_constructs_1 (state, &finally);
1362 
1363   /* Prepare for switch statement generation.  */
1364   nlabels = tf->dest_array.length ();
1365   return_index = nlabels;
1366   eh_index = return_index + tf->may_return;
1367   fallthru_index = eh_index + (tf->may_throw && !eh_else);
1368   ndests = fallthru_index + tf->may_fallthru;
1369 
1370   finally_tmp = create_tmp_var (integer_type_node, "finally_tmp");
1371   finally_label = create_artificial_label (finally_loc);
1372 
1373   /* We use vec::quick_push on case_label_vec throughout this function,
1374      since we know the size in advance and allocate precisely as muce
1375      space as needed.  */
1376   case_label_vec.create (ndests);
1377   last_case = NULL;
1378   last_case_index = 0;
1379 
1380   /* Begin inserting code for getting to the finally block.  Things
1381      are done in this order to correspond to the sequence the code is
1382      laid out.  */
1383 
1384   if (tf->may_fallthru)
1385     {
1386       x = gimple_build_assign (finally_tmp,
1387 			       build_int_cst (integer_type_node,
1388 					      fallthru_index));
1389       gimple_seq_add_stmt (&tf->top_p_seq, x);
1390 
1391       tmp = build_int_cst (integer_type_node, fallthru_index);
1392       last_case = build_case_label (tmp, NULL,
1393 				    create_artificial_label (tf_loc));
1394       case_label_vec.quick_push (last_case);
1395       last_case_index++;
1396 
1397       x = gimple_build_label (CASE_LABEL (last_case));
1398       gimple_seq_add_stmt (&switch_body, x);
1399 
1400       tmp = lower_try_finally_fallthru_label (tf);
1401       x = gimple_build_goto (tmp);
1402       gimple_set_location (x, tf_loc);
1403       gimple_seq_add_stmt (&switch_body, x);
1404     }
1405 
1406   /* For EH_ELSE, emit the exception path (plus resx) now, then
1407      subsequently we only need consider the normal path.  */
1408   if (eh_else)
1409     {
1410       if (tf->may_throw)
1411 	{
1412 	  finally = gimple_eh_else_e_body (eh_else);
1413 	  lower_eh_constructs_1 (state, &finally);
1414 
1415 	  emit_post_landing_pad (&eh_seq, tf->region);
1416 	  gimple_seq_add_seq (&eh_seq, finally);
1417 	  emit_resx (&eh_seq, tf->region);
1418 	}
1419 
1420       finally = gimple_eh_else_n_body (eh_else);
1421     }
1422   else if (tf->may_throw)
1423     {
1424       emit_post_landing_pad (&eh_seq, tf->region);
1425 
1426       x = gimple_build_assign (finally_tmp,
1427 			       build_int_cst (integer_type_node, eh_index));
1428       gimple_seq_add_stmt (&eh_seq, x);
1429 
1430       x = gimple_build_goto (finally_label);
1431       gimple_set_location (x, tf_loc);
1432       gimple_seq_add_stmt (&eh_seq, x);
1433 
1434       tmp = build_int_cst (integer_type_node, eh_index);
1435       last_case = build_case_label (tmp, NULL,
1436 				    create_artificial_label (tf_loc));
1437       case_label_vec.quick_push (last_case);
1438       last_case_index++;
1439 
1440       x = gimple_build_label (CASE_LABEL (last_case));
1441       gimple_seq_add_stmt (&eh_seq, x);
1442       emit_resx (&eh_seq, tf->region);
1443     }
1444 
1445   x = gimple_build_label (finally_label);
1446   gimple_seq_add_stmt (&tf->top_p_seq, x);
1447 
1448   gimple_seq_add_seq (&tf->top_p_seq, finally);
1449 
1450   /* Redirect each incoming goto edge.  */
1451   q = tf->goto_queue;
1452   qe = q + tf->goto_queue_active;
1453   j = last_case_index + tf->may_return;
1454   /* Prepare the assignments to finally_tmp that are executed upon the
1455      entrance through a particular edge. */
1456   for (; q < qe; ++q)
1457     {
1458       gimple_seq mod = NULL;
1459       int switch_id;
1460       unsigned int case_index;
1461 
1462       if (q->index < 0)
1463 	{
1464 	  x = gimple_build_assign (finally_tmp,
1465 				   build_int_cst (integer_type_node,
1466 						  return_index));
1467 	  gimple_seq_add_stmt (&mod, x);
1468 	  do_return_redirection (q, finally_label, mod);
1469 	  switch_id = return_index;
1470 	}
1471       else
1472 	{
1473 	  x = gimple_build_assign (finally_tmp,
1474 				   build_int_cst (integer_type_node, q->index));
1475 	  gimple_seq_add_stmt (&mod, x);
1476 	  do_goto_redirection (q, finally_label, mod, tf);
1477 	  switch_id = q->index;
1478 	}
1479 
1480       case_index = j + q->index;
1481       if (case_label_vec.length () <= case_index || !case_label_vec[case_index])
1482         {
1483           tree case_lab;
1484           void **slot;
1485 	  tmp = build_int_cst (integer_type_node, switch_id);
1486           case_lab = build_case_label (tmp, NULL,
1487 				       create_artificial_label (tf_loc));
1488           /* We store the cont_stmt in the pointer map, so that we can recover
1489              it in the loop below.  */
1490           if (!cont_map)
1491             cont_map = pointer_map_create ();
1492           slot = pointer_map_insert (cont_map, case_lab);
1493           *slot = q->cont_stmt;
1494           case_label_vec.quick_push (case_lab);
1495         }
1496     }
1497   for (j = last_case_index; j < last_case_index + nlabels; j++)
1498     {
1499       gimple cont_stmt;
1500       void **slot;
1501 
1502       last_case = case_label_vec[j];
1503 
1504       gcc_assert (last_case);
1505       gcc_assert (cont_map);
1506 
1507       slot = pointer_map_contains (cont_map, last_case);
1508       gcc_assert (slot);
1509       cont_stmt = *(gimple *) slot;
1510 
1511       x = gimple_build_label (CASE_LABEL (last_case));
1512       gimple_seq_add_stmt (&switch_body, x);
1513       gimple_seq_add_stmt (&switch_body, cont_stmt);
1514       maybe_record_in_goto_queue (state, cont_stmt);
1515     }
1516   if (cont_map)
1517     pointer_map_destroy (cont_map);
1518 
1519   replace_goto_queue (tf);
1520 
1521   /* Make sure that the last case is the default label, as one is required.
1522      Then sort the labels, which is also required in GIMPLE.  */
1523   CASE_LOW (last_case) = NULL;
1524   sort_case_labels (case_label_vec);
1525 
1526   /* Build the switch statement, setting last_case to be the default
1527      label.  */
1528   switch_stmt = gimple_build_switch (finally_tmp, last_case,
1529 				     case_label_vec);
1530   gimple_set_location (switch_stmt, finally_loc);
1531 
1532   /* Need to link SWITCH_STMT after running replace_goto_queue
1533      due to not wanting to process the same goto stmts twice.  */
1534   gimple_seq_add_stmt (&tf->top_p_seq, switch_stmt);
1535   gimple_seq_add_seq (&tf->top_p_seq, switch_body);
1536 }
1537 
1538 /* Decide whether or not we are going to duplicate the finally block.
1539    There are several considerations.
1540 
1541    First, if this is Java, then the finally block contains code
1542    written by the user.  It has line numbers associated with it,
1543    so duplicating the block means it's difficult to set a breakpoint.
1544    Since controlling code generation via -g is verboten, we simply
1545    never duplicate code without optimization.
1546 
1547    Second, we'd like to prevent egregious code growth.  One way to
1548    do this is to estimate the size of the finally block, multiply
1549    that by the number of copies we'd need to make, and compare against
1550    the estimate of the size of the switch machinery we'd have to add.  */
1551 
1552 static bool
decide_copy_try_finally(int ndests,bool may_throw,gimple_seq finally)1553 decide_copy_try_finally (int ndests, bool may_throw, gimple_seq finally)
1554 {
1555   int f_estimate, sw_estimate;
1556   gimple eh_else;
1557 
1558   /* If there's an EH_ELSE involved, the exception path is separate
1559      and really doesn't come into play for this computation.  */
1560   eh_else = get_eh_else (finally);
1561   if (eh_else)
1562     {
1563       ndests -= may_throw;
1564       finally = gimple_eh_else_n_body (eh_else);
1565     }
1566 
1567   if (!optimize)
1568     {
1569       gimple_stmt_iterator gsi;
1570 
1571       if (ndests == 1)
1572         return true;
1573 
1574       for (gsi = gsi_start (finally); !gsi_end_p (gsi); gsi_next (&gsi))
1575 	{
1576 	  gimple stmt = gsi_stmt (gsi);
1577 	  if (!is_gimple_debug (stmt) && !gimple_clobber_p (stmt))
1578 	    return false;
1579 	}
1580       return true;
1581     }
1582 
1583   /* Finally estimate N times, plus N gotos.  */
1584   f_estimate = count_insns_seq (finally, &eni_size_weights);
1585   f_estimate = (f_estimate + 1) * ndests;
1586 
1587   /* Switch statement (cost 10), N variable assignments, N gotos.  */
1588   sw_estimate = 10 + 2 * ndests;
1589 
1590   /* Optimize for size clearly wants our best guess.  */
1591   if (optimize_function_for_size_p (cfun))
1592     return f_estimate < sw_estimate;
1593 
1594   /* ??? These numbers are completely made up so far.  */
1595   if (optimize > 1)
1596     return f_estimate < 100 || f_estimate < sw_estimate * 2;
1597   else
1598     return f_estimate < 40 || f_estimate * 2 < sw_estimate * 3;
1599 }
1600 
1601 /* REG is the enclosing region for a possible cleanup region, or the region
1602    itself.  Returns TRUE if such a region would be unreachable.
1603 
1604    Cleanup regions within a must-not-throw region aren't actually reachable
1605    even if there are throwing stmts within them, because the personality
1606    routine will call terminate before unwinding.  */
1607 
1608 static bool
cleanup_is_dead_in(eh_region reg)1609 cleanup_is_dead_in (eh_region reg)
1610 {
1611   while (reg && reg->type == ERT_CLEANUP)
1612     reg = reg->outer;
1613   return (reg && reg->type == ERT_MUST_NOT_THROW);
1614 }
1615 
1616 /* A subroutine of lower_eh_constructs_1.  Lower a GIMPLE_TRY_FINALLY nodes
1617    to a sequence of labels and blocks, plus the exception region trees
1618    that record all the magic.  This is complicated by the need to
1619    arrange for the FINALLY block to be executed on all exits.  */
1620 
1621 static gimple_seq
lower_try_finally(struct leh_state * state,gimple tp)1622 lower_try_finally (struct leh_state *state, gimple tp)
1623 {
1624   struct leh_tf_state this_tf;
1625   struct leh_state this_state;
1626   int ndests;
1627   gimple_seq old_eh_seq;
1628 
1629   /* Process the try block.  */
1630 
1631   memset (&this_tf, 0, sizeof (this_tf));
1632   this_tf.try_finally_expr = tp;
1633   this_tf.top_p = tp;
1634   this_tf.outer = state;
1635   if (using_eh_for_cleanups_p && !cleanup_is_dead_in (state->cur_region))
1636     {
1637       this_tf.region = gen_eh_region_cleanup (state->cur_region);
1638       this_state.cur_region = this_tf.region;
1639     }
1640   else
1641     {
1642       this_tf.region = NULL;
1643       this_state.cur_region = state->cur_region;
1644     }
1645 
1646   this_state.ehp_region = state->ehp_region;
1647   this_state.tf = &this_tf;
1648 
1649   old_eh_seq = eh_seq;
1650   eh_seq = NULL;
1651 
1652   lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1653 
1654   /* Determine if the try block is escaped through the bottom.  */
1655   this_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1656 
1657   /* Determine if any exceptions are possible within the try block.  */
1658   if (this_tf.region)
1659     this_tf.may_throw = eh_region_may_contain_throw (this_tf.region);
1660   if (this_tf.may_throw)
1661     honor_protect_cleanup_actions (state, &this_state, &this_tf);
1662 
1663   /* Determine how many edges (still) reach the finally block.  Or rather,
1664      how many destinations are reached by the finally block.  Use this to
1665      determine how we process the finally block itself.  */
1666 
1667   ndests = this_tf.dest_array.length ();
1668   ndests += this_tf.may_fallthru;
1669   ndests += this_tf.may_return;
1670   ndests += this_tf.may_throw;
1671 
1672   /* If the FINALLY block is not reachable, dike it out.  */
1673   if (ndests == 0)
1674     {
1675       gimple_seq_add_seq (&this_tf.top_p_seq, gimple_try_eval (tp));
1676       gimple_try_set_cleanup (tp, NULL);
1677     }
1678   /* If the finally block doesn't fall through, then any destination
1679      we might try to impose there isn't reached either.  There may be
1680      some minor amount of cleanup and redirection still needed.  */
1681   else if (!gimple_seq_may_fallthru (gimple_try_cleanup (tp)))
1682     lower_try_finally_nofallthru (state, &this_tf);
1683 
1684   /* We can easily special-case redirection to a single destination.  */
1685   else if (ndests == 1)
1686     lower_try_finally_onedest (state, &this_tf);
1687   else if (decide_copy_try_finally (ndests, this_tf.may_throw,
1688 				    gimple_try_cleanup (tp)))
1689     lower_try_finally_copy (state, &this_tf);
1690   else
1691     lower_try_finally_switch (state, &this_tf);
1692 
1693   /* If someone requested we add a label at the end of the transformed
1694      block, do so.  */
1695   if (this_tf.fallthru_label)
1696     {
1697       /* This must be reached only if ndests == 0. */
1698       gimple x = gimple_build_label (this_tf.fallthru_label);
1699       gimple_seq_add_stmt (&this_tf.top_p_seq, x);
1700     }
1701 
1702   this_tf.dest_array.release ();
1703   free (this_tf.goto_queue);
1704   if (this_tf.goto_queue_map)
1705     pointer_map_destroy (this_tf.goto_queue_map);
1706 
1707   /* If there was an old (aka outer) eh_seq, append the current eh_seq.
1708      If there was no old eh_seq, then the append is trivially already done.  */
1709   if (old_eh_seq)
1710     {
1711       if (eh_seq == NULL)
1712 	eh_seq = old_eh_seq;
1713       else
1714 	{
1715 	  gimple_seq new_eh_seq = eh_seq;
1716 	  eh_seq = old_eh_seq;
1717 	  gimple_seq_add_seq(&eh_seq, new_eh_seq);
1718 	}
1719     }
1720 
1721   return this_tf.top_p_seq;
1722 }
1723 
1724 /* A subroutine of lower_eh_constructs_1.  Lower a GIMPLE_TRY_CATCH with a
1725    list of GIMPLE_CATCH to a sequence of labels and blocks, plus the
1726    exception region trees that records all the magic.  */
1727 
1728 static gimple_seq
lower_catch(struct leh_state * state,gimple tp)1729 lower_catch (struct leh_state *state, gimple tp)
1730 {
1731   eh_region try_region = NULL;
1732   struct leh_state this_state = *state;
1733   gimple_stmt_iterator gsi;
1734   tree out_label;
1735   gimple_seq new_seq, cleanup;
1736   gimple x;
1737   location_t try_catch_loc = gimple_location (tp);
1738 
1739   if (flag_exceptions)
1740     {
1741       try_region = gen_eh_region_try (state->cur_region);
1742       this_state.cur_region = try_region;
1743     }
1744 
1745   lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1746 
1747   if (!eh_region_may_contain_throw (try_region))
1748     return gimple_try_eval (tp);
1749 
1750   new_seq = NULL;
1751   emit_eh_dispatch (&new_seq, try_region);
1752   emit_resx (&new_seq, try_region);
1753 
1754   this_state.cur_region = state->cur_region;
1755   this_state.ehp_region = try_region;
1756 
1757   out_label = NULL;
1758   cleanup = gimple_try_cleanup (tp);
1759   for (gsi = gsi_start (cleanup);
1760        !gsi_end_p (gsi);
1761        gsi_next (&gsi))
1762     {
1763       eh_catch c;
1764       gimple gcatch;
1765       gimple_seq handler;
1766 
1767       gcatch = gsi_stmt (gsi);
1768       c = gen_eh_region_catch (try_region, gimple_catch_types (gcatch));
1769 
1770       handler = gimple_catch_handler (gcatch);
1771       lower_eh_constructs_1 (&this_state, &handler);
1772 
1773       c->label = create_artificial_label (UNKNOWN_LOCATION);
1774       x = gimple_build_label (c->label);
1775       gimple_seq_add_stmt (&new_seq, x);
1776 
1777       gimple_seq_add_seq (&new_seq, handler);
1778 
1779       if (gimple_seq_may_fallthru (new_seq))
1780 	{
1781 	  if (!out_label)
1782 	    out_label = create_artificial_label (try_catch_loc);
1783 
1784 	  x = gimple_build_goto (out_label);
1785 	  gimple_seq_add_stmt (&new_seq, x);
1786 	}
1787       if (!c->type_list)
1788 	break;
1789     }
1790 
1791   gimple_try_set_cleanup (tp, new_seq);
1792 
1793   return frob_into_branch_around (tp, try_region, out_label);
1794 }
1795 
1796 /* A subroutine of lower_eh_constructs_1.  Lower a GIMPLE_TRY with a
1797    GIMPLE_EH_FILTER to a sequence of labels and blocks, plus the exception
1798    region trees that record all the magic.  */
1799 
1800 static gimple_seq
lower_eh_filter(struct leh_state * state,gimple tp)1801 lower_eh_filter (struct leh_state *state, gimple tp)
1802 {
1803   struct leh_state this_state = *state;
1804   eh_region this_region = NULL;
1805   gimple inner, x;
1806   gimple_seq new_seq;
1807 
1808   inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1809 
1810   if (flag_exceptions)
1811     {
1812       this_region = gen_eh_region_allowed (state->cur_region,
1813 				           gimple_eh_filter_types (inner));
1814       this_state.cur_region = this_region;
1815     }
1816 
1817   lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1818 
1819   if (!eh_region_may_contain_throw (this_region))
1820     return gimple_try_eval (tp);
1821 
1822   new_seq = NULL;
1823   this_state.cur_region = state->cur_region;
1824   this_state.ehp_region = this_region;
1825 
1826   emit_eh_dispatch (&new_seq, this_region);
1827   emit_resx (&new_seq, this_region);
1828 
1829   this_region->u.allowed.label = create_artificial_label (UNKNOWN_LOCATION);
1830   x = gimple_build_label (this_region->u.allowed.label);
1831   gimple_seq_add_stmt (&new_seq, x);
1832 
1833   lower_eh_constructs_1 (&this_state, gimple_eh_filter_failure_ptr (inner));
1834   gimple_seq_add_seq (&new_seq, gimple_eh_filter_failure (inner));
1835 
1836   gimple_try_set_cleanup (tp, new_seq);
1837 
1838   return frob_into_branch_around (tp, this_region, NULL);
1839 }
1840 
1841 /* A subroutine of lower_eh_constructs_1.  Lower a GIMPLE_TRY with
1842    an GIMPLE_EH_MUST_NOT_THROW to a sequence of labels and blocks,
1843    plus the exception region trees that record all the magic.  */
1844 
1845 static gimple_seq
lower_eh_must_not_throw(struct leh_state * state,gimple tp)1846 lower_eh_must_not_throw (struct leh_state *state, gimple tp)
1847 {
1848   struct leh_state this_state = *state;
1849 
1850   if (flag_exceptions)
1851     {
1852       gimple inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1853       eh_region this_region;
1854 
1855       this_region = gen_eh_region_must_not_throw (state->cur_region);
1856       this_region->u.must_not_throw.failure_decl
1857 	= gimple_eh_must_not_throw_fndecl (inner);
1858       this_region->u.must_not_throw.failure_loc
1859 	= LOCATION_LOCUS (gimple_location (tp));
1860 
1861       /* In order to get mangling applied to this decl, we must mark it
1862 	 used now.  Otherwise, pass_ipa_free_lang_data won't think it
1863 	 needs to happen.  */
1864       TREE_USED (this_region->u.must_not_throw.failure_decl) = 1;
1865 
1866       this_state.cur_region = this_region;
1867     }
1868 
1869   lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1870 
1871   return gimple_try_eval (tp);
1872 }
1873 
1874 /* Implement a cleanup expression.  This is similar to try-finally,
1875    except that we only execute the cleanup block for exception edges.  */
1876 
1877 static gimple_seq
lower_cleanup(struct leh_state * state,gimple tp)1878 lower_cleanup (struct leh_state *state, gimple tp)
1879 {
1880   struct leh_state this_state = *state;
1881   eh_region this_region = NULL;
1882   struct leh_tf_state fake_tf;
1883   gimple_seq result;
1884   bool cleanup_dead = cleanup_is_dead_in (state->cur_region);
1885 
1886   if (flag_exceptions && !cleanup_dead)
1887     {
1888       this_region = gen_eh_region_cleanup (state->cur_region);
1889       this_state.cur_region = this_region;
1890     }
1891 
1892   lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1893 
1894   if (cleanup_dead || !eh_region_may_contain_throw (this_region))
1895     return gimple_try_eval (tp);
1896 
1897   /* Build enough of a try-finally state so that we can reuse
1898      honor_protect_cleanup_actions.  */
1899   memset (&fake_tf, 0, sizeof (fake_tf));
1900   fake_tf.top_p = fake_tf.try_finally_expr = tp;
1901   fake_tf.outer = state;
1902   fake_tf.region = this_region;
1903   fake_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1904   fake_tf.may_throw = true;
1905 
1906   honor_protect_cleanup_actions (state, NULL, &fake_tf);
1907 
1908   if (fake_tf.may_throw)
1909     {
1910       /* In this case honor_protect_cleanup_actions had nothing to do,
1911 	 and we should process this normally.  */
1912       lower_eh_constructs_1 (state, gimple_try_cleanup_ptr (tp));
1913       result = frob_into_branch_around (tp, this_region,
1914                                         fake_tf.fallthru_label);
1915     }
1916   else
1917     {
1918       /* In this case honor_protect_cleanup_actions did nearly all of
1919 	 the work.  All we have left is to append the fallthru_label.  */
1920 
1921       result = gimple_try_eval (tp);
1922       if (fake_tf.fallthru_label)
1923 	{
1924 	  gimple x = gimple_build_label (fake_tf.fallthru_label);
1925 	  gimple_seq_add_stmt (&result, x);
1926 	}
1927     }
1928   return result;
1929 }
1930 
1931 /* Main loop for lowering eh constructs. Also moves gsi to the next
1932    statement. */
1933 
1934 static void
lower_eh_constructs_2(struct leh_state * state,gimple_stmt_iterator * gsi)1935 lower_eh_constructs_2 (struct leh_state *state, gimple_stmt_iterator *gsi)
1936 {
1937   gimple_seq replace;
1938   gimple x;
1939   gimple stmt = gsi_stmt (*gsi);
1940 
1941   switch (gimple_code (stmt))
1942     {
1943     case GIMPLE_CALL:
1944       {
1945 	tree fndecl = gimple_call_fndecl (stmt);
1946 	tree rhs, lhs;
1947 
1948 	if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1949 	  switch (DECL_FUNCTION_CODE (fndecl))
1950 	    {
1951 	    case BUILT_IN_EH_POINTER:
1952 	      /* The front end may have generated a call to
1953 		 __builtin_eh_pointer (0) within a catch region.  Replace
1954 		 this zero argument with the current catch region number.  */
1955 	      if (state->ehp_region)
1956 		{
1957 		  tree nr = build_int_cst (integer_type_node,
1958 					   state->ehp_region->index);
1959 		  gimple_call_set_arg (stmt, 0, nr);
1960 		}
1961 	      else
1962 		{
1963 		  /* The user has dome something silly.  Remove it.  */
1964 		  rhs = null_pointer_node;
1965 		  goto do_replace;
1966 		}
1967 	      break;
1968 
1969 	    case BUILT_IN_EH_FILTER:
1970 	      /* ??? This should never appear, but since it's a builtin it
1971 		 is accessible to abuse by users.  Just remove it and
1972 		 replace the use with the arbitrary value zero.  */
1973 	      rhs = build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
1974 	    do_replace:
1975 	      lhs = gimple_call_lhs (stmt);
1976 	      x = gimple_build_assign (lhs, rhs);
1977 	      gsi_insert_before (gsi, x, GSI_SAME_STMT);
1978 	      /* FALLTHRU */
1979 
1980 	    case BUILT_IN_EH_COPY_VALUES:
1981 	      /* Likewise this should not appear.  Remove it.  */
1982 	      gsi_remove (gsi, true);
1983 	      return;
1984 
1985 	    default:
1986 	      break;
1987 	    }
1988       }
1989       /* FALLTHRU */
1990 
1991     case GIMPLE_ASSIGN:
1992       /* If the stmt can throw use a new temporary for the assignment
1993          to a LHS.  This makes sure the old value of the LHS is
1994 	 available on the EH edge.  Only do so for statements that
1995 	 potentially fall through (no noreturn calls e.g.), otherwise
1996 	 this new assignment might create fake fallthru regions.  */
1997       if (stmt_could_throw_p (stmt)
1998 	  && gimple_has_lhs (stmt)
1999 	  && gimple_stmt_may_fallthru (stmt)
2000 	  && !tree_could_throw_p (gimple_get_lhs (stmt))
2001 	  && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
2002 	{
2003 	  tree lhs = gimple_get_lhs (stmt);
2004 	  tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
2005 	  gimple s = gimple_build_assign (lhs, tmp);
2006 	  gimple_set_location (s, gimple_location (stmt));
2007 	  gimple_set_block (s, gimple_block (stmt));
2008 	  gimple_set_lhs (stmt, tmp);
2009 	  if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
2010 	      || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
2011 	    DECL_GIMPLE_REG_P (tmp) = 1;
2012 	  gsi_insert_after (gsi, s, GSI_SAME_STMT);
2013 	}
2014       /* Look for things that can throw exceptions, and record them.  */
2015       if (state->cur_region && stmt_could_throw_p (stmt))
2016 	{
2017 	  record_stmt_eh_region (state->cur_region, stmt);
2018 	  note_eh_region_may_contain_throw (state->cur_region);
2019 	}
2020       break;
2021 
2022     case GIMPLE_COND:
2023     case GIMPLE_GOTO:
2024     case GIMPLE_RETURN:
2025       maybe_record_in_goto_queue (state, stmt);
2026       break;
2027 
2028     case GIMPLE_SWITCH:
2029       verify_norecord_switch_expr (state, stmt);
2030       break;
2031 
2032     case GIMPLE_TRY:
2033       if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
2034 	replace = lower_try_finally (state, stmt);
2035       else
2036 	{
2037 	  x = gimple_seq_first_stmt (gimple_try_cleanup (stmt));
2038 	  if (!x)
2039 	    {
2040 	      replace = gimple_try_eval (stmt);
2041 	      lower_eh_constructs_1 (state, &replace);
2042 	    }
2043 	  else
2044 	    switch (gimple_code (x))
2045 	      {
2046 		case GIMPLE_CATCH:
2047 		    replace = lower_catch (state, stmt);
2048 		    break;
2049 		case GIMPLE_EH_FILTER:
2050 		    replace = lower_eh_filter (state, stmt);
2051 		    break;
2052 		case GIMPLE_EH_MUST_NOT_THROW:
2053 		    replace = lower_eh_must_not_throw (state, stmt);
2054 		    break;
2055 		case GIMPLE_EH_ELSE:
2056 		    /* This code is only valid with GIMPLE_TRY_FINALLY.  */
2057 		    gcc_unreachable ();
2058 		default:
2059 		    replace = lower_cleanup (state, stmt);
2060 		    break;
2061 	      }
2062 	}
2063 
2064       /* Remove the old stmt and insert the transformed sequence
2065 	 instead. */
2066       gsi_insert_seq_before (gsi, replace, GSI_SAME_STMT);
2067       gsi_remove (gsi, true);
2068 
2069       /* Return since we don't want gsi_next () */
2070       return;
2071 
2072     case GIMPLE_EH_ELSE:
2073       /* We should be eliminating this in lower_try_finally et al.  */
2074       gcc_unreachable ();
2075 
2076     default:
2077       /* A type, a decl, or some kind of statement that we're not
2078 	 interested in.  Don't walk them.  */
2079       break;
2080     }
2081 
2082   gsi_next (gsi);
2083 }
2084 
2085 /* A helper to unwrap a gimple_seq and feed stmts to lower_eh_constructs_2. */
2086 
2087 static void
lower_eh_constructs_1(struct leh_state * state,gimple_seq * pseq)2088 lower_eh_constructs_1 (struct leh_state *state, gimple_seq *pseq)
2089 {
2090   gimple_stmt_iterator gsi;
2091   for (gsi = gsi_start (*pseq); !gsi_end_p (gsi);)
2092     lower_eh_constructs_2 (state, &gsi);
2093 }
2094 
2095 static unsigned int
lower_eh_constructs(void)2096 lower_eh_constructs (void)
2097 {
2098   struct leh_state null_state;
2099   gimple_seq bodyp;
2100 
2101   bodyp = gimple_body (current_function_decl);
2102   if (bodyp == NULL)
2103     return 0;
2104 
2105   finally_tree = htab_create (31, struct_ptr_hash, struct_ptr_eq, free);
2106   eh_region_may_contain_throw_map = BITMAP_ALLOC (NULL);
2107   memset (&null_state, 0, sizeof (null_state));
2108 
2109   collect_finally_tree_1 (bodyp, NULL);
2110   lower_eh_constructs_1 (&null_state, &bodyp);
2111   gimple_set_body (current_function_decl, bodyp);
2112 
2113   /* We assume there's a return statement, or something, at the end of
2114      the function, and thus ploping the EH sequence afterward won't
2115      change anything.  */
2116   gcc_assert (!gimple_seq_may_fallthru (bodyp));
2117   gimple_seq_add_seq (&bodyp, eh_seq);
2118 
2119   /* We assume that since BODYP already existed, adding EH_SEQ to it
2120      didn't change its value, and we don't have to re-set the function.  */
2121   gcc_assert (bodyp == gimple_body (current_function_decl));
2122 
2123   htab_delete (finally_tree);
2124   BITMAP_FREE (eh_region_may_contain_throw_map);
2125   eh_seq = NULL;
2126 
2127   /* If this function needs a language specific EH personality routine
2128      and the frontend didn't already set one do so now.  */
2129   if (function_needs_eh_personality (cfun) == eh_personality_lang
2130       && !DECL_FUNCTION_PERSONALITY (current_function_decl))
2131     DECL_FUNCTION_PERSONALITY (current_function_decl)
2132       = lang_hooks.eh_personality ();
2133 
2134   return 0;
2135 }
2136 
2137 struct gimple_opt_pass pass_lower_eh =
2138 {
2139  {
2140   GIMPLE_PASS,
2141   "eh",					/* name */
2142   OPTGROUP_NONE,                        /* optinfo_flags */
2143   NULL,					/* gate */
2144   lower_eh_constructs,			/* execute */
2145   NULL,					/* sub */
2146   NULL,					/* next */
2147   0,					/* static_pass_number */
2148   TV_TREE_EH,				/* tv_id */
2149   PROP_gimple_lcf,			/* properties_required */
2150   PROP_gimple_leh,			/* properties_provided */
2151   0,					/* properties_destroyed */
2152   0,					/* todo_flags_start */
2153   0             			/* todo_flags_finish */
2154  }
2155 };
2156 
2157 /* Create the multiple edges from an EH_DISPATCH statement to all of
2158    the possible handlers for its EH region.  Return true if there's
2159    no fallthru edge; false if there is.  */
2160 
2161 bool
make_eh_dispatch_edges(gimple stmt)2162 make_eh_dispatch_edges (gimple stmt)
2163 {
2164   eh_region r;
2165   eh_catch c;
2166   basic_block src, dst;
2167 
2168   r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2169   src = gimple_bb (stmt);
2170 
2171   switch (r->type)
2172     {
2173     case ERT_TRY:
2174       for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2175 	{
2176 	  dst = label_to_block (c->label);
2177 	  make_edge (src, dst, 0);
2178 
2179 	  /* A catch-all handler doesn't have a fallthru.  */
2180 	  if (c->type_list == NULL)
2181 	    return false;
2182 	}
2183       break;
2184 
2185     case ERT_ALLOWED_EXCEPTIONS:
2186       dst = label_to_block (r->u.allowed.label);
2187       make_edge (src, dst, 0);
2188       break;
2189 
2190     default:
2191       gcc_unreachable ();
2192     }
2193 
2194   return true;
2195 }
2196 
2197 /* Create the single EH edge from STMT to its nearest landing pad,
2198    if there is such a landing pad within the current function.  */
2199 
2200 void
make_eh_edges(gimple stmt)2201 make_eh_edges (gimple stmt)
2202 {
2203   basic_block src, dst;
2204   eh_landing_pad lp;
2205   int lp_nr;
2206 
2207   lp_nr = lookup_stmt_eh_lp (stmt);
2208   if (lp_nr <= 0)
2209     return;
2210 
2211   lp = get_eh_landing_pad_from_number (lp_nr);
2212   gcc_assert (lp != NULL);
2213 
2214   src = gimple_bb (stmt);
2215   dst = label_to_block (lp->post_landing_pad);
2216   make_edge (src, dst, EDGE_EH);
2217 }
2218 
2219 /* Do the work in redirecting EDGE_IN to NEW_BB within the EH region tree;
2220    do not actually perform the final edge redirection.
2221 
2222    CHANGE_REGION is true when we're being called from cleanup_empty_eh and
2223    we intend to change the destination EH region as well; this means
2224    EH_LANDING_PAD_NR must already be set on the destination block label.
2225    If false, we're being called from generic cfg manipulation code and we
2226    should preserve our place within the region tree.  */
2227 
2228 static void
redirect_eh_edge_1(edge edge_in,basic_block new_bb,bool change_region)2229 redirect_eh_edge_1 (edge edge_in, basic_block new_bb, bool change_region)
2230 {
2231   eh_landing_pad old_lp, new_lp;
2232   basic_block old_bb;
2233   gimple throw_stmt;
2234   int old_lp_nr, new_lp_nr;
2235   tree old_label, new_label;
2236   edge_iterator ei;
2237   edge e;
2238 
2239   old_bb = edge_in->dest;
2240   old_label = gimple_block_label (old_bb);
2241   old_lp_nr = EH_LANDING_PAD_NR (old_label);
2242   gcc_assert (old_lp_nr > 0);
2243   old_lp = get_eh_landing_pad_from_number (old_lp_nr);
2244 
2245   throw_stmt = last_stmt (edge_in->src);
2246   gcc_assert (lookup_stmt_eh_lp (throw_stmt) == old_lp_nr);
2247 
2248   new_label = gimple_block_label (new_bb);
2249 
2250   /* Look for an existing region that might be using NEW_BB already.  */
2251   new_lp_nr = EH_LANDING_PAD_NR (new_label);
2252   if (new_lp_nr)
2253     {
2254       new_lp = get_eh_landing_pad_from_number (new_lp_nr);
2255       gcc_assert (new_lp);
2256 
2257       /* Unless CHANGE_REGION is true, the new and old landing pad
2258 	 had better be associated with the same EH region.  */
2259       gcc_assert (change_region || new_lp->region == old_lp->region);
2260     }
2261   else
2262     {
2263       new_lp = NULL;
2264       gcc_assert (!change_region);
2265     }
2266 
2267   /* Notice when we redirect the last EH edge away from OLD_BB.  */
2268   FOR_EACH_EDGE (e, ei, old_bb->preds)
2269     if (e != edge_in && (e->flags & EDGE_EH))
2270       break;
2271 
2272   if (new_lp)
2273     {
2274       /* NEW_LP already exists.  If there are still edges into OLD_LP,
2275 	 there's nothing to do with the EH tree.  If there are no more
2276 	 edges into OLD_LP, then we want to remove OLD_LP as it is unused.
2277 	 If CHANGE_REGION is true, then our caller is expecting to remove
2278 	 the landing pad.  */
2279       if (e == NULL && !change_region)
2280 	remove_eh_landing_pad (old_lp);
2281     }
2282   else
2283     {
2284       /* No correct landing pad exists.  If there are no more edges
2285 	 into OLD_LP, then we can simply re-use the existing landing pad.
2286 	 Otherwise, we have to create a new landing pad.  */
2287       if (e == NULL)
2288 	{
2289 	  EH_LANDING_PAD_NR (old_lp->post_landing_pad) = 0;
2290 	  new_lp = old_lp;
2291 	}
2292       else
2293 	new_lp = gen_eh_landing_pad (old_lp->region);
2294       new_lp->post_landing_pad = new_label;
2295       EH_LANDING_PAD_NR (new_label) = new_lp->index;
2296     }
2297 
2298   /* Maybe move the throwing statement to the new region.  */
2299   if (old_lp != new_lp)
2300     {
2301       remove_stmt_from_eh_lp (throw_stmt);
2302       add_stmt_to_eh_lp (throw_stmt, new_lp->index);
2303     }
2304 }
2305 
2306 /* Redirect EH edge E to NEW_BB.  */
2307 
2308 edge
redirect_eh_edge(edge edge_in,basic_block new_bb)2309 redirect_eh_edge (edge edge_in, basic_block new_bb)
2310 {
2311   redirect_eh_edge_1 (edge_in, new_bb, false);
2312   return ssa_redirect_edge (edge_in, new_bb);
2313 }
2314 
2315 /* This is a subroutine of gimple_redirect_edge_and_branch.  Update the
2316    labels for redirecting a non-fallthru EH_DISPATCH edge E to NEW_BB.
2317    The actual edge update will happen in the caller.  */
2318 
2319 void
redirect_eh_dispatch_edge(gimple stmt,edge e,basic_block new_bb)2320 redirect_eh_dispatch_edge (gimple stmt, edge e, basic_block new_bb)
2321 {
2322   tree new_lab = gimple_block_label (new_bb);
2323   bool any_changed = false;
2324   basic_block old_bb;
2325   eh_region r;
2326   eh_catch c;
2327 
2328   r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2329   switch (r->type)
2330     {
2331     case ERT_TRY:
2332       for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2333 	{
2334 	  old_bb = label_to_block (c->label);
2335 	  if (old_bb == e->dest)
2336 	    {
2337 	      c->label = new_lab;
2338 	      any_changed = true;
2339 	    }
2340 	}
2341       break;
2342 
2343     case ERT_ALLOWED_EXCEPTIONS:
2344       old_bb = label_to_block (r->u.allowed.label);
2345       gcc_assert (old_bb == e->dest);
2346       r->u.allowed.label = new_lab;
2347       any_changed = true;
2348       break;
2349 
2350     default:
2351       gcc_unreachable ();
2352     }
2353 
2354   gcc_assert (any_changed);
2355 }
2356 
2357 /* Helper function for operation_could_trap_p and stmt_could_throw_p.  */
2358 
2359 bool
operation_could_trap_helper_p(enum tree_code op,bool fp_operation,bool honor_trapv,bool honor_nans,bool honor_snans,tree divisor,bool * handled)2360 operation_could_trap_helper_p (enum tree_code op,
2361 			       bool fp_operation,
2362 			       bool honor_trapv,
2363 			       bool honor_nans,
2364 			       bool honor_snans,
2365 			       tree divisor,
2366 			       bool *handled)
2367 {
2368   *handled = true;
2369   switch (op)
2370     {
2371     case TRUNC_DIV_EXPR:
2372     case CEIL_DIV_EXPR:
2373     case FLOOR_DIV_EXPR:
2374     case ROUND_DIV_EXPR:
2375     case EXACT_DIV_EXPR:
2376     case CEIL_MOD_EXPR:
2377     case FLOOR_MOD_EXPR:
2378     case ROUND_MOD_EXPR:
2379     case TRUNC_MOD_EXPR:
2380     case RDIV_EXPR:
2381       if (honor_snans || honor_trapv)
2382 	return true;
2383       if (fp_operation)
2384 	return flag_trapping_math;
2385       if (!TREE_CONSTANT (divisor) || integer_zerop (divisor))
2386         return true;
2387       return false;
2388 
2389     case LT_EXPR:
2390     case LE_EXPR:
2391     case GT_EXPR:
2392     case GE_EXPR:
2393     case LTGT_EXPR:
2394       /* Some floating point comparisons may trap.  */
2395       return honor_nans;
2396 
2397     case EQ_EXPR:
2398     case NE_EXPR:
2399     case UNORDERED_EXPR:
2400     case ORDERED_EXPR:
2401     case UNLT_EXPR:
2402     case UNLE_EXPR:
2403     case UNGT_EXPR:
2404     case UNGE_EXPR:
2405     case UNEQ_EXPR:
2406       return honor_snans;
2407 
2408     case CONVERT_EXPR:
2409     case FIX_TRUNC_EXPR:
2410       /* Conversion of floating point might trap.  */
2411       return honor_nans;
2412 
2413     case NEGATE_EXPR:
2414     case ABS_EXPR:
2415     case CONJ_EXPR:
2416       /* These operations don't trap with floating point.  */
2417       if (honor_trapv)
2418 	return true;
2419       return false;
2420 
2421     case PLUS_EXPR:
2422     case MINUS_EXPR:
2423     case MULT_EXPR:
2424       /* Any floating arithmetic may trap.  */
2425       if (fp_operation && flag_trapping_math)
2426 	return true;
2427       if (honor_trapv)
2428 	return true;
2429       return false;
2430 
2431     case COMPLEX_EXPR:
2432     case CONSTRUCTOR:
2433       /* Constructing an object cannot trap.  */
2434       return false;
2435 
2436     default:
2437       /* Any floating arithmetic may trap.  */
2438       if (fp_operation && flag_trapping_math)
2439 	return true;
2440 
2441       *handled = false;
2442       return false;
2443     }
2444 }
2445 
2446 /* Return true if operation OP may trap.  FP_OPERATION is true if OP is applied
2447    on floating-point values.  HONOR_TRAPV is true if OP is applied on integer
2448    type operands that may trap.  If OP is a division operator, DIVISOR contains
2449    the value of the divisor.  */
2450 
2451 bool
operation_could_trap_p(enum tree_code op,bool fp_operation,bool honor_trapv,tree divisor)2452 operation_could_trap_p (enum tree_code op, bool fp_operation, bool honor_trapv,
2453 			tree divisor)
2454 {
2455   bool honor_nans = (fp_operation && flag_trapping_math
2456 		     && !flag_finite_math_only);
2457   bool honor_snans = fp_operation && flag_signaling_nans != 0;
2458   bool handled;
2459 
2460   if (TREE_CODE_CLASS (op) != tcc_comparison
2461       && TREE_CODE_CLASS (op) != tcc_unary
2462       && TREE_CODE_CLASS (op) != tcc_binary)
2463     return false;
2464 
2465   return operation_could_trap_helper_p (op, fp_operation, honor_trapv,
2466 					honor_nans, honor_snans, divisor,
2467 					&handled);
2468 }
2469 
2470 /* Return true if EXPR can trap, as in dereferencing an invalid pointer
2471    location or floating point arithmetic.  C.f. the rtl version, may_trap_p.
2472    This routine expects only GIMPLE lhs or rhs input.  */
2473 
2474 bool
tree_could_trap_p(tree expr)2475 tree_could_trap_p (tree expr)
2476 {
2477   enum tree_code code;
2478   bool fp_operation = false;
2479   bool honor_trapv = false;
2480   tree t, base, div = NULL_TREE;
2481 
2482   if (!expr)
2483     return false;
2484 
2485   code = TREE_CODE (expr);
2486   t = TREE_TYPE (expr);
2487 
2488   if (t)
2489     {
2490       if (COMPARISON_CLASS_P (expr))
2491 	fp_operation = FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0)));
2492       else
2493 	fp_operation = FLOAT_TYPE_P (t);
2494       honor_trapv = INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t);
2495     }
2496 
2497   if (TREE_CODE_CLASS (code) == tcc_binary)
2498     div = TREE_OPERAND (expr, 1);
2499   if (operation_could_trap_p (code, fp_operation, honor_trapv, div))
2500     return true;
2501 
2502  restart:
2503   switch (code)
2504     {
2505     case TARGET_MEM_REF:
2506       if (TREE_CODE (TMR_BASE (expr)) == ADDR_EXPR
2507 	  && !TMR_INDEX (expr) && !TMR_INDEX2 (expr))
2508 	return false;
2509       return !TREE_THIS_NOTRAP (expr);
2510 
2511     case COMPONENT_REF:
2512     case REALPART_EXPR:
2513     case IMAGPART_EXPR:
2514     case BIT_FIELD_REF:
2515     case VIEW_CONVERT_EXPR:
2516     case WITH_SIZE_EXPR:
2517       expr = TREE_OPERAND (expr, 0);
2518       code = TREE_CODE (expr);
2519       goto restart;
2520 
2521     case ARRAY_RANGE_REF:
2522       base = TREE_OPERAND (expr, 0);
2523       if (tree_could_trap_p (base))
2524 	return true;
2525       if (TREE_THIS_NOTRAP (expr))
2526 	return false;
2527       return !range_in_array_bounds_p (expr);
2528 
2529     case ARRAY_REF:
2530       base = TREE_OPERAND (expr, 0);
2531       if (tree_could_trap_p (base))
2532 	return true;
2533       if (TREE_THIS_NOTRAP (expr))
2534 	return false;
2535       return !in_array_bounds_p (expr);
2536 
2537     case MEM_REF:
2538       if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR)
2539 	return false;
2540       /* Fallthru.  */
2541     case INDIRECT_REF:
2542       return !TREE_THIS_NOTRAP (expr);
2543 
2544     case ASM_EXPR:
2545       return TREE_THIS_VOLATILE (expr);
2546 
2547     case CALL_EXPR:
2548       t = get_callee_fndecl (expr);
2549       /* Assume that calls to weak functions may trap.  */
2550       if (!t || !DECL_P (t))
2551 	return true;
2552       if (DECL_WEAK (t))
2553 	return tree_could_trap_p (t);
2554       return false;
2555 
2556     case FUNCTION_DECL:
2557       /* Assume that accesses to weak functions may trap, unless we know
2558 	 they are certainly defined in current TU or in some other
2559 	 LTO partition.  */
2560       if (DECL_WEAK (expr))
2561 	{
2562 	  struct cgraph_node *node;
2563 	  if (!DECL_EXTERNAL (expr))
2564 	    return false;
2565 	  node = cgraph_function_node (cgraph_get_node (expr), NULL);
2566 	  if (node && node->symbol.in_other_partition)
2567 	    return false;
2568 	  return true;
2569 	}
2570       return false;
2571 
2572     case VAR_DECL:
2573       /* Assume that accesses to weak vars may trap, unless we know
2574 	 they are certainly defined in current TU or in some other
2575 	 LTO partition.  */
2576       if (DECL_WEAK (expr))
2577 	{
2578 	  struct varpool_node *node;
2579 	  if (!DECL_EXTERNAL (expr))
2580 	    return false;
2581 	  node = varpool_variable_node (varpool_get_node (expr), NULL);
2582 	  if (node && node->symbol.in_other_partition)
2583 	    return false;
2584 	  return true;
2585 	}
2586       return false;
2587 
2588     default:
2589       return false;
2590     }
2591 }
2592 
2593 
2594 /* Helper for stmt_could_throw_p.  Return true if STMT (assumed to be a
2595    an assignment or a conditional) may throw.  */
2596 
2597 static bool
stmt_could_throw_1_p(gimple stmt)2598 stmt_could_throw_1_p (gimple stmt)
2599 {
2600   enum tree_code code = gimple_expr_code (stmt);
2601   bool honor_nans = false;
2602   bool honor_snans = false;
2603   bool fp_operation = false;
2604   bool honor_trapv = false;
2605   tree t;
2606   size_t i;
2607   bool handled, ret;
2608 
2609   if (TREE_CODE_CLASS (code) == tcc_comparison
2610       || TREE_CODE_CLASS (code) == tcc_unary
2611       || TREE_CODE_CLASS (code) == tcc_binary)
2612     {
2613       if (is_gimple_assign (stmt)
2614 	  && TREE_CODE_CLASS (code) == tcc_comparison)
2615 	t = TREE_TYPE (gimple_assign_rhs1 (stmt));
2616       else if (gimple_code (stmt) == GIMPLE_COND)
2617 	t = TREE_TYPE (gimple_cond_lhs (stmt));
2618       else
2619 	t = gimple_expr_type (stmt);
2620       fp_operation = FLOAT_TYPE_P (t);
2621       if (fp_operation)
2622 	{
2623 	  honor_nans = flag_trapping_math && !flag_finite_math_only;
2624 	  honor_snans = flag_signaling_nans != 0;
2625 	}
2626       else if (INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t))
2627 	honor_trapv = true;
2628     }
2629 
2630   /* Check if the main expression may trap.  */
2631   t = is_gimple_assign (stmt) ? gimple_assign_rhs2 (stmt) : NULL;
2632   ret = operation_could_trap_helper_p (code, fp_operation, honor_trapv,
2633 				       honor_nans, honor_snans, t,
2634 				       &handled);
2635   if (handled)
2636     return ret;
2637 
2638   /* If the expression does not trap, see if any of the individual operands may
2639      trap.  */
2640   for (i = 0; i < gimple_num_ops (stmt); i++)
2641     if (tree_could_trap_p (gimple_op (stmt, i)))
2642       return true;
2643 
2644   return false;
2645 }
2646 
2647 
2648 /* Return true if statement STMT could throw an exception.  */
2649 
2650 bool
stmt_could_throw_p(gimple stmt)2651 stmt_could_throw_p (gimple stmt)
2652 {
2653   if (!flag_exceptions)
2654     return false;
2655 
2656   /* The only statements that can throw an exception are assignments,
2657      conditionals, calls, resx, and asms.  */
2658   switch (gimple_code (stmt))
2659     {
2660     case GIMPLE_RESX:
2661       return true;
2662 
2663     case GIMPLE_CALL:
2664       return !gimple_call_nothrow_p (stmt);
2665 
2666     case GIMPLE_ASSIGN:
2667     case GIMPLE_COND:
2668       if (!cfun->can_throw_non_call_exceptions)
2669         return false;
2670       return stmt_could_throw_1_p (stmt);
2671 
2672     case GIMPLE_ASM:
2673       if (!cfun->can_throw_non_call_exceptions)
2674         return false;
2675       return gimple_asm_volatile_p (stmt);
2676 
2677     default:
2678       return false;
2679     }
2680 }
2681 
2682 
2683 /* Return true if expression T could throw an exception.  */
2684 
2685 bool
tree_could_throw_p(tree t)2686 tree_could_throw_p (tree t)
2687 {
2688   if (!flag_exceptions)
2689     return false;
2690   if (TREE_CODE (t) == MODIFY_EXPR)
2691     {
2692       if (cfun->can_throw_non_call_exceptions
2693           && tree_could_trap_p (TREE_OPERAND (t, 0)))
2694         return true;
2695       t = TREE_OPERAND (t, 1);
2696     }
2697 
2698   if (TREE_CODE (t) == WITH_SIZE_EXPR)
2699     t = TREE_OPERAND (t, 0);
2700   if (TREE_CODE (t) == CALL_EXPR)
2701     return (call_expr_flags (t) & ECF_NOTHROW) == 0;
2702   if (cfun->can_throw_non_call_exceptions)
2703     return tree_could_trap_p (t);
2704   return false;
2705 }
2706 
2707 /* Return true if STMT can throw an exception that is not caught within
2708    the current function (CFUN).  */
2709 
2710 bool
stmt_can_throw_external(gimple stmt)2711 stmt_can_throw_external (gimple stmt)
2712 {
2713   int lp_nr;
2714 
2715   if (!stmt_could_throw_p (stmt))
2716     return false;
2717 
2718   lp_nr = lookup_stmt_eh_lp (stmt);
2719   return lp_nr == 0;
2720 }
2721 
2722 /* Return true if STMT can throw an exception that is caught within
2723    the current function (CFUN).  */
2724 
2725 bool
stmt_can_throw_internal(gimple stmt)2726 stmt_can_throw_internal (gimple stmt)
2727 {
2728   int lp_nr;
2729 
2730   if (!stmt_could_throw_p (stmt))
2731     return false;
2732 
2733   lp_nr = lookup_stmt_eh_lp (stmt);
2734   return lp_nr > 0;
2735 }
2736 
2737 /* Given a statement STMT in IFUN, if STMT can no longer throw, then
2738    remove any entry it might have from the EH table.  Return true if
2739    any change was made.  */
2740 
2741 bool
maybe_clean_eh_stmt_fn(struct function * ifun,gimple stmt)2742 maybe_clean_eh_stmt_fn (struct function *ifun, gimple stmt)
2743 {
2744   if (stmt_could_throw_p (stmt))
2745     return false;
2746   return remove_stmt_from_eh_lp_fn (ifun, stmt);
2747 }
2748 
2749 /* Likewise, but always use the current function.  */
2750 
2751 bool
maybe_clean_eh_stmt(gimple stmt)2752 maybe_clean_eh_stmt (gimple stmt)
2753 {
2754   return maybe_clean_eh_stmt_fn (cfun, stmt);
2755 }
2756 
2757 /* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced
2758    OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT
2759    in the table if it should be in there.  Return TRUE if a replacement was
2760    done that my require an EH edge purge.  */
2761 
2762 bool
maybe_clean_or_replace_eh_stmt(gimple old_stmt,gimple new_stmt)2763 maybe_clean_or_replace_eh_stmt (gimple old_stmt, gimple new_stmt)
2764 {
2765   int lp_nr = lookup_stmt_eh_lp (old_stmt);
2766 
2767   if (lp_nr != 0)
2768     {
2769       bool new_stmt_could_throw = stmt_could_throw_p (new_stmt);
2770 
2771       if (new_stmt == old_stmt && new_stmt_could_throw)
2772 	return false;
2773 
2774       remove_stmt_from_eh_lp (old_stmt);
2775       if (new_stmt_could_throw)
2776 	{
2777 	  add_stmt_to_eh_lp (new_stmt, lp_nr);
2778 	  return false;
2779 	}
2780       else
2781 	return true;
2782     }
2783 
2784   return false;
2785 }
2786 
2787 /* Given a statement OLD_STMT in OLD_FUN and a duplicate statement NEW_STMT
2788    in NEW_FUN, copy the EH table data from OLD_STMT to NEW_STMT.  The MAP
2789    operand is the return value of duplicate_eh_regions.  */
2790 
2791 bool
maybe_duplicate_eh_stmt_fn(struct function * new_fun,gimple new_stmt,struct function * old_fun,gimple old_stmt,struct pointer_map_t * map,int default_lp_nr)2792 maybe_duplicate_eh_stmt_fn (struct function *new_fun, gimple new_stmt,
2793 			    struct function *old_fun, gimple old_stmt,
2794 			    struct pointer_map_t *map, int default_lp_nr)
2795 {
2796   int old_lp_nr, new_lp_nr;
2797   void **slot;
2798 
2799   if (!stmt_could_throw_p (new_stmt))
2800     return false;
2801 
2802   old_lp_nr = lookup_stmt_eh_lp_fn (old_fun, old_stmt);
2803   if (old_lp_nr == 0)
2804     {
2805       if (default_lp_nr == 0)
2806 	return false;
2807       new_lp_nr = default_lp_nr;
2808     }
2809   else if (old_lp_nr > 0)
2810     {
2811       eh_landing_pad old_lp, new_lp;
2812 
2813       old_lp = (*old_fun->eh->lp_array)[old_lp_nr];
2814       slot = pointer_map_contains (map, old_lp);
2815       new_lp = (eh_landing_pad) *slot;
2816       new_lp_nr = new_lp->index;
2817     }
2818   else
2819     {
2820       eh_region old_r, new_r;
2821 
2822       old_r = (*old_fun->eh->region_array)[-old_lp_nr];
2823       slot = pointer_map_contains (map, old_r);
2824       new_r = (eh_region) *slot;
2825       new_lp_nr = -new_r->index;
2826     }
2827 
2828   add_stmt_to_eh_lp_fn (new_fun, new_stmt, new_lp_nr);
2829   return true;
2830 }
2831 
2832 /* Similar, but both OLD_STMT and NEW_STMT are within the current function,
2833    and thus no remapping is required.  */
2834 
2835 bool
maybe_duplicate_eh_stmt(gimple new_stmt,gimple old_stmt)2836 maybe_duplicate_eh_stmt (gimple new_stmt, gimple old_stmt)
2837 {
2838   int lp_nr;
2839 
2840   if (!stmt_could_throw_p (new_stmt))
2841     return false;
2842 
2843   lp_nr = lookup_stmt_eh_lp (old_stmt);
2844   if (lp_nr == 0)
2845     return false;
2846 
2847   add_stmt_to_eh_lp (new_stmt, lp_nr);
2848   return true;
2849 }
2850 
2851 /* Returns TRUE if oneh and twoh are exception handlers (gimple_try_cleanup of
2852    GIMPLE_TRY) that are similar enough to be considered the same.  Currently
2853    this only handles handlers consisting of a single call, as that's the
2854    important case for C++: a destructor call for a particular object showing
2855    up in multiple handlers.  */
2856 
2857 static bool
same_handler_p(gimple_seq oneh,gimple_seq twoh)2858 same_handler_p (gimple_seq oneh, gimple_seq twoh)
2859 {
2860   gimple_stmt_iterator gsi;
2861   gimple ones, twos;
2862   unsigned int ai;
2863 
2864   gsi = gsi_start (oneh);
2865   if (!gsi_one_before_end_p (gsi))
2866     return false;
2867   ones = gsi_stmt (gsi);
2868 
2869   gsi = gsi_start (twoh);
2870   if (!gsi_one_before_end_p (gsi))
2871     return false;
2872   twos = gsi_stmt (gsi);
2873 
2874   if (!is_gimple_call (ones)
2875       || !is_gimple_call (twos)
2876       || gimple_call_lhs (ones)
2877       || gimple_call_lhs (twos)
2878       || gimple_call_chain (ones)
2879       || gimple_call_chain (twos)
2880       || !gimple_call_same_target_p (ones, twos)
2881       || gimple_call_num_args (ones) != gimple_call_num_args (twos))
2882     return false;
2883 
2884   for (ai = 0; ai < gimple_call_num_args (ones); ++ai)
2885     if (!operand_equal_p (gimple_call_arg (ones, ai),
2886                           gimple_call_arg (twos, ai), 0))
2887       return false;
2888 
2889   return true;
2890 }
2891 
2892 /* Optimize
2893     try { A() } finally { try { ~B() } catch { ~A() } }
2894     try { ... } finally { ~A() }
2895    into
2896     try { A() } catch { ~B() }
2897     try { ~B() ... } finally { ~A() }
2898 
2899    This occurs frequently in C++, where A is a local variable and B is a
2900    temporary used in the initializer for A.  */
2901 
2902 static void
optimize_double_finally(gimple one,gimple two)2903 optimize_double_finally (gimple one, gimple two)
2904 {
2905   gimple oneh;
2906   gimple_stmt_iterator gsi;
2907   gimple_seq cleanup;
2908 
2909   cleanup = gimple_try_cleanup (one);
2910   gsi = gsi_start (cleanup);
2911   if (!gsi_one_before_end_p (gsi))
2912     return;
2913 
2914   oneh = gsi_stmt (gsi);
2915   if (gimple_code (oneh) != GIMPLE_TRY
2916       || gimple_try_kind (oneh) != GIMPLE_TRY_CATCH)
2917     return;
2918 
2919   if (same_handler_p (gimple_try_cleanup (oneh), gimple_try_cleanup (two)))
2920     {
2921       gimple_seq seq = gimple_try_eval (oneh);
2922 
2923       gimple_try_set_cleanup (one, seq);
2924       gimple_try_set_kind (one, GIMPLE_TRY_CATCH);
2925       seq = copy_gimple_seq_and_replace_locals (seq);
2926       gimple_seq_add_seq (&seq, gimple_try_eval (two));
2927       gimple_try_set_eval (two, seq);
2928     }
2929 }
2930 
2931 /* Perform EH refactoring optimizations that are simpler to do when code
2932    flow has been lowered but EH structures haven't.  */
2933 
2934 static void
refactor_eh_r(gimple_seq seq)2935 refactor_eh_r (gimple_seq seq)
2936 {
2937   gimple_stmt_iterator gsi;
2938   gimple one, two;
2939 
2940   one = NULL;
2941   two = NULL;
2942   gsi = gsi_start (seq);
2943   while (1)
2944     {
2945       one = two;
2946       if (gsi_end_p (gsi))
2947 	two = NULL;
2948       else
2949 	two = gsi_stmt (gsi);
2950       if (one
2951 	  && two
2952 	  && gimple_code (one) == GIMPLE_TRY
2953 	  && gimple_code (two) == GIMPLE_TRY
2954 	  && gimple_try_kind (one) == GIMPLE_TRY_FINALLY
2955 	  && gimple_try_kind (two) == GIMPLE_TRY_FINALLY)
2956 	optimize_double_finally (one, two);
2957       if (one)
2958 	switch (gimple_code (one))
2959 	  {
2960 	  case GIMPLE_TRY:
2961 	    refactor_eh_r (gimple_try_eval (one));
2962 	    refactor_eh_r (gimple_try_cleanup (one));
2963 	    break;
2964 	  case GIMPLE_CATCH:
2965 	    refactor_eh_r (gimple_catch_handler (one));
2966 	    break;
2967 	  case GIMPLE_EH_FILTER:
2968 	    refactor_eh_r (gimple_eh_filter_failure (one));
2969 	    break;
2970 	  case GIMPLE_EH_ELSE:
2971 	    refactor_eh_r (gimple_eh_else_n_body (one));
2972 	    refactor_eh_r (gimple_eh_else_e_body (one));
2973 	    break;
2974 	  default:
2975 	    break;
2976 	  }
2977       if (two)
2978 	gsi_next (&gsi);
2979       else
2980 	break;
2981     }
2982 }
2983 
2984 static unsigned
refactor_eh(void)2985 refactor_eh (void)
2986 {
2987   refactor_eh_r (gimple_body (current_function_decl));
2988   return 0;
2989 }
2990 
2991 static bool
gate_refactor_eh(void)2992 gate_refactor_eh (void)
2993 {
2994   return flag_exceptions != 0;
2995 }
2996 
2997 struct gimple_opt_pass pass_refactor_eh =
2998 {
2999  {
3000   GIMPLE_PASS,
3001   "ehopt",				/* name */
3002   OPTGROUP_NONE,                        /* optinfo_flags */
3003   gate_refactor_eh,			/* gate */
3004   refactor_eh,				/* execute */
3005   NULL,					/* sub */
3006   NULL,					/* next */
3007   0,					/* static_pass_number */
3008   TV_TREE_EH,				/* tv_id */
3009   PROP_gimple_lcf,			/* properties_required */
3010   0,					/* properties_provided */
3011   0,					/* properties_destroyed */
3012   0,					/* todo_flags_start */
3013   0             			/* todo_flags_finish */
3014  }
3015 };
3016 
3017 /* At the end of gimple optimization, we can lower RESX.  */
3018 
3019 static bool
lower_resx(basic_block bb,gimple stmt,struct pointer_map_t * mnt_map)3020 lower_resx (basic_block bb, gimple stmt, struct pointer_map_t *mnt_map)
3021 {
3022   int lp_nr;
3023   eh_region src_r, dst_r;
3024   gimple_stmt_iterator gsi;
3025   gimple x;
3026   tree fn, src_nr;
3027   bool ret = false;
3028 
3029   lp_nr = lookup_stmt_eh_lp (stmt);
3030   if (lp_nr != 0)
3031     dst_r = get_eh_region_from_lp_number (lp_nr);
3032   else
3033     dst_r = NULL;
3034 
3035   src_r = get_eh_region_from_number (gimple_resx_region (stmt));
3036   gsi = gsi_last_bb (bb);
3037 
3038   if (src_r == NULL)
3039     {
3040       /* We can wind up with no source region when pass_cleanup_eh shows
3041 	 that there are no entries into an eh region and deletes it, but
3042 	 then the block that contains the resx isn't removed.  This can
3043 	 happen without optimization when the switch statement created by
3044 	 lower_try_finally_switch isn't simplified to remove the eh case.
3045 
3046 	 Resolve this by expanding the resx node to an abort.  */
3047 
3048       fn = builtin_decl_implicit (BUILT_IN_TRAP);
3049       x = gimple_build_call (fn, 0);
3050       gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3051 
3052       while (EDGE_COUNT (bb->succs) > 0)
3053 	remove_edge (EDGE_SUCC (bb, 0));
3054     }
3055   else if (dst_r)
3056     {
3057       /* When we have a destination region, we resolve this by copying
3058 	 the excptr and filter values into place, and changing the edge
3059 	 to immediately after the landing pad.  */
3060       edge e;
3061 
3062       if (lp_nr < 0)
3063 	{
3064 	  basic_block new_bb;
3065 	  void **slot;
3066 	  tree lab;
3067 
3068 	  /* We are resuming into a MUST_NOT_CALL region.  Expand a call to
3069 	     the failure decl into a new block, if needed.  */
3070 	  gcc_assert (dst_r->type == ERT_MUST_NOT_THROW);
3071 
3072 	  slot = pointer_map_contains (mnt_map, dst_r);
3073 	  if (slot == NULL)
3074 	    {
3075 	      gimple_stmt_iterator gsi2;
3076 
3077 	      new_bb = create_empty_bb (bb);
3078 	      if (current_loops)
3079 		add_bb_to_loop (new_bb, bb->loop_father);
3080 	      lab = gimple_block_label (new_bb);
3081 	      gsi2 = gsi_start_bb (new_bb);
3082 
3083 	      fn = dst_r->u.must_not_throw.failure_decl;
3084 	      x = gimple_build_call (fn, 0);
3085 	      gimple_set_location (x, dst_r->u.must_not_throw.failure_loc);
3086 	      gsi_insert_after (&gsi2, x, GSI_CONTINUE_LINKING);
3087 
3088 	      slot = pointer_map_insert (mnt_map, dst_r);
3089 	      *slot = lab;
3090 	    }
3091 	  else
3092 	    {
3093 	      lab = (tree) *slot;
3094 	      new_bb = label_to_block (lab);
3095 	    }
3096 
3097 	  gcc_assert (EDGE_COUNT (bb->succs) == 0);
3098 	  e = make_edge (bb, new_bb, EDGE_FALLTHRU);
3099 	  e->count = bb->count;
3100 	  e->probability = REG_BR_PROB_BASE;
3101 	}
3102       else
3103 	{
3104 	  edge_iterator ei;
3105 	  tree dst_nr = build_int_cst (integer_type_node, dst_r->index);
3106 
3107 	  fn = builtin_decl_implicit (BUILT_IN_EH_COPY_VALUES);
3108 	  src_nr = build_int_cst (integer_type_node, src_r->index);
3109 	  x = gimple_build_call (fn, 2, dst_nr, src_nr);
3110 	  gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3111 
3112 	  /* Update the flags for the outgoing edge.  */
3113 	  e = single_succ_edge (bb);
3114 	  gcc_assert (e->flags & EDGE_EH);
3115 	  e->flags = (e->flags & ~EDGE_EH) | EDGE_FALLTHRU;
3116 
3117 	  /* If there are no more EH users of the landing pad, delete it.  */
3118 	  FOR_EACH_EDGE (e, ei, e->dest->preds)
3119 	    if (e->flags & EDGE_EH)
3120 	      break;
3121 	  if (e == NULL)
3122 	    {
3123 	      eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
3124 	      remove_eh_landing_pad (lp);
3125 	    }
3126 	}
3127 
3128       ret = true;
3129     }
3130   else
3131     {
3132       tree var;
3133 
3134       /* When we don't have a destination region, this exception escapes
3135 	 up the call chain.  We resolve this by generating a call to the
3136 	 _Unwind_Resume library function.  */
3137 
3138       /* The ARM EABI redefines _Unwind_Resume as __cxa_end_cleanup
3139 	 with no arguments for C++ and Java.  Check for that.  */
3140       if (src_r->use_cxa_end_cleanup)
3141 	{
3142 	  fn = builtin_decl_implicit (BUILT_IN_CXA_END_CLEANUP);
3143 	  x = gimple_build_call (fn, 0);
3144 	  gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3145 	}
3146       else
3147 	{
3148 	  fn = builtin_decl_implicit (BUILT_IN_EH_POINTER);
3149 	  src_nr = build_int_cst (integer_type_node, src_r->index);
3150 	  x = gimple_build_call (fn, 1, src_nr);
3151 	  var = create_tmp_var (ptr_type_node, NULL);
3152 	  var = make_ssa_name (var, x);
3153 	  gimple_call_set_lhs (x, var);
3154 	  gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3155 
3156 	  fn = builtin_decl_implicit (BUILT_IN_UNWIND_RESUME);
3157 	  x = gimple_build_call (fn, 1, var);
3158 	  gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3159 	}
3160 
3161       gcc_assert (EDGE_COUNT (bb->succs) == 0);
3162     }
3163 
3164   gsi_remove (&gsi, true);
3165 
3166   return ret;
3167 }
3168 
3169 static unsigned
execute_lower_resx(void)3170 execute_lower_resx (void)
3171 {
3172   basic_block bb;
3173   struct pointer_map_t *mnt_map;
3174   bool dominance_invalidated = false;
3175   bool any_rewritten = false;
3176 
3177   mnt_map = pointer_map_create ();
3178 
3179   FOR_EACH_BB (bb)
3180     {
3181       gimple last = last_stmt (bb);
3182       if (last && is_gimple_resx (last))
3183 	{
3184 	  dominance_invalidated |= lower_resx (bb, last, mnt_map);
3185 	  any_rewritten = true;
3186 	}
3187     }
3188 
3189   pointer_map_destroy (mnt_map);
3190 
3191   if (dominance_invalidated)
3192     {
3193       free_dominance_info (CDI_DOMINATORS);
3194       free_dominance_info (CDI_POST_DOMINATORS);
3195     }
3196 
3197   return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3198 }
3199 
3200 static bool
gate_lower_resx(void)3201 gate_lower_resx (void)
3202 {
3203   return flag_exceptions != 0;
3204 }
3205 
3206 struct gimple_opt_pass pass_lower_resx =
3207 {
3208  {
3209   GIMPLE_PASS,
3210   "resx",				/* name */
3211   OPTGROUP_NONE,                        /* optinfo_flags */
3212   gate_lower_resx,			/* gate */
3213   execute_lower_resx,			/* execute */
3214   NULL,					/* sub */
3215   NULL,					/* next */
3216   0,					/* static_pass_number */
3217   TV_TREE_EH,				/* tv_id */
3218   PROP_gimple_lcf,			/* properties_required */
3219   0,					/* properties_provided */
3220   0,					/* properties_destroyed */
3221   0,					/* todo_flags_start */
3222   TODO_verify_flow	                /* todo_flags_finish */
3223  }
3224 };
3225 
3226 /* Try to optimize var = {v} {CLOBBER} stmts followed just by
3227    external throw.  */
3228 
3229 static void
optimize_clobbers(basic_block bb)3230 optimize_clobbers (basic_block bb)
3231 {
3232   gimple_stmt_iterator gsi = gsi_last_bb (bb);
3233   for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3234     {
3235       gimple stmt = gsi_stmt (gsi);
3236       if (is_gimple_debug (stmt))
3237 	continue;
3238       if (!gimple_clobber_p (stmt)
3239 	  || TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME)
3240 	return;
3241       unlink_stmt_vdef (stmt);
3242       gsi_remove (&gsi, true);
3243       release_defs (stmt);
3244     }
3245 }
3246 
3247 /* Try to sink var = {v} {CLOBBER} stmts followed just by
3248    internal throw to successor BB.  */
3249 
3250 static int
sink_clobbers(basic_block bb)3251 sink_clobbers (basic_block bb)
3252 {
3253   edge e;
3254   edge_iterator ei;
3255   gimple_stmt_iterator gsi, dgsi;
3256   basic_block succbb;
3257   bool any_clobbers = false;
3258 
3259   /* Only optimize if BB has a single EH successor and
3260      all predecessor edges are EH too.  */
3261   if (!single_succ_p (bb)
3262       || (single_succ_edge (bb)->flags & EDGE_EH) == 0)
3263     return 0;
3264 
3265   FOR_EACH_EDGE (e, ei, bb->preds)
3266     {
3267       if ((e->flags & EDGE_EH) == 0)
3268 	return 0;
3269     }
3270 
3271   /* And BB contains only CLOBBER stmts before the final
3272      RESX.  */
3273   gsi = gsi_last_bb (bb);
3274   for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3275     {
3276       gimple stmt = gsi_stmt (gsi);
3277       if (is_gimple_debug (stmt))
3278 	continue;
3279       if (gimple_code (stmt) == GIMPLE_LABEL)
3280 	break;
3281       if (!gimple_clobber_p (stmt)
3282 	  || TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME)
3283 	return 0;
3284       any_clobbers = true;
3285     }
3286   if (!any_clobbers)
3287     return 0;
3288 
3289   succbb = single_succ (bb);
3290   dgsi = gsi_after_labels (succbb);
3291   gsi = gsi_last_bb (bb);
3292   for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3293     {
3294       gimple stmt = gsi_stmt (gsi);
3295       if (is_gimple_debug (stmt))
3296 	continue;
3297       if (gimple_code (stmt) == GIMPLE_LABEL)
3298 	break;
3299       unlink_stmt_vdef (stmt);
3300       gsi_remove (&gsi, false);
3301       /* Trigger the operand scanner to cause renaming for virtual
3302          operands for this statement.
3303 	 ???  Given the simple structure of this code manually
3304 	 figuring out the reaching definition should not be too hard.  */
3305       if (gimple_vuse (stmt))
3306 	gimple_set_vuse (stmt, NULL_TREE);
3307       gsi_insert_before (&dgsi, stmt, GSI_SAME_STMT);
3308     }
3309 
3310   return TODO_update_ssa_only_virtuals;
3311 }
3312 
3313 /* At the end of inlining, we can lower EH_DISPATCH.  Return true when
3314    we have found some duplicate labels and removed some edges.  */
3315 
3316 static bool
lower_eh_dispatch(basic_block src,gimple stmt)3317 lower_eh_dispatch (basic_block src, gimple stmt)
3318 {
3319   gimple_stmt_iterator gsi;
3320   int region_nr;
3321   eh_region r;
3322   tree filter, fn;
3323   gimple x;
3324   bool redirected = false;
3325 
3326   region_nr = gimple_eh_dispatch_region (stmt);
3327   r = get_eh_region_from_number (region_nr);
3328 
3329   gsi = gsi_last_bb (src);
3330 
3331   switch (r->type)
3332     {
3333     case ERT_TRY:
3334       {
3335 	vec<tree> labels = vNULL;
3336 	tree default_label = NULL;
3337 	eh_catch c;
3338 	edge_iterator ei;
3339 	edge e;
3340 	struct pointer_set_t *seen_values = pointer_set_create ();
3341 
3342 	/* Collect the labels for a switch.  Zero the post_landing_pad
3343 	   field becase we'll no longer have anything keeping these labels
3344 	   in existence and the optimizer will be free to merge these
3345 	   blocks at will.  */
3346 	for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
3347 	  {
3348 	    tree tp_node, flt_node, lab = c->label;
3349 	    bool have_label = false;
3350 
3351 	    c->label = NULL;
3352 	    tp_node = c->type_list;
3353 	    flt_node = c->filter_list;
3354 
3355 	    if (tp_node == NULL)
3356 	      {
3357 	        default_label = lab;
3358 		break;
3359 	      }
3360 	    do
3361 	      {
3362 		/* Filter out duplicate labels that arise when this handler
3363 		   is shadowed by an earlier one.  When no labels are
3364 		   attached to the handler anymore, we remove
3365 		   the corresponding edge and then we delete unreachable
3366 		   blocks at the end of this pass.  */
3367 		if (! pointer_set_contains (seen_values, TREE_VALUE (flt_node)))
3368 		  {
3369 		    tree t = build_case_label (TREE_VALUE (flt_node),
3370 					       NULL, lab);
3371 		    labels.safe_push (t);
3372 		    pointer_set_insert (seen_values, TREE_VALUE (flt_node));
3373 		    have_label = true;
3374 		  }
3375 
3376 		tp_node = TREE_CHAIN (tp_node);
3377 		flt_node = TREE_CHAIN (flt_node);
3378 	      }
3379 	    while (tp_node);
3380 	    if (! have_label)
3381 	      {
3382 	        remove_edge (find_edge (src, label_to_block (lab)));
3383 	        redirected = true;
3384 	      }
3385 	  }
3386 
3387 	/* Clean up the edge flags.  */
3388 	FOR_EACH_EDGE (e, ei, src->succs)
3389 	  {
3390 	    if (e->flags & EDGE_FALLTHRU)
3391 	      {
3392 		/* If there was no catch-all, use the fallthru edge.  */
3393 		if (default_label == NULL)
3394 		  default_label = gimple_block_label (e->dest);
3395 		e->flags &= ~EDGE_FALLTHRU;
3396 	      }
3397 	  }
3398 	gcc_assert (default_label != NULL);
3399 
3400 	/* Don't generate a switch if there's only a default case.
3401 	   This is common in the form of try { A; } catch (...) { B; }.  */
3402 	if (!labels.exists ())
3403 	  {
3404 	    e = single_succ_edge (src);
3405 	    e->flags |= EDGE_FALLTHRU;
3406 	  }
3407 	else
3408 	  {
3409 	    fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3410 	    x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3411 							 region_nr));
3412 	    filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3413 	    filter = make_ssa_name (filter, x);
3414 	    gimple_call_set_lhs (x, filter);
3415 	    gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3416 
3417 	    /* Turn the default label into a default case.  */
3418 	    default_label = build_case_label (NULL, NULL, default_label);
3419 	    sort_case_labels (labels);
3420 
3421 	    x = gimple_build_switch (filter, default_label, labels);
3422 	    gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3423 
3424 	    labels.release ();
3425 	  }
3426 	pointer_set_destroy (seen_values);
3427       }
3428       break;
3429 
3430     case ERT_ALLOWED_EXCEPTIONS:
3431       {
3432 	edge b_e = BRANCH_EDGE (src);
3433 	edge f_e = FALLTHRU_EDGE (src);
3434 
3435 	fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3436 	x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3437 						     region_nr));
3438 	filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3439 	filter = make_ssa_name (filter, x);
3440 	gimple_call_set_lhs (x, filter);
3441 	gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3442 
3443 	r->u.allowed.label = NULL;
3444 	x = gimple_build_cond (EQ_EXPR, filter,
3445 			       build_int_cst (TREE_TYPE (filter),
3446 					      r->u.allowed.filter),
3447 			       NULL_TREE, NULL_TREE);
3448 	gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3449 
3450 	b_e->flags = b_e->flags | EDGE_TRUE_VALUE;
3451         f_e->flags = (f_e->flags & ~EDGE_FALLTHRU) | EDGE_FALSE_VALUE;
3452       }
3453       break;
3454 
3455     default:
3456       gcc_unreachable ();
3457     }
3458 
3459   /* Replace the EH_DISPATCH with the SWITCH or COND generated above.  */
3460   gsi_remove (&gsi, true);
3461   return redirected;
3462 }
3463 
3464 static unsigned
execute_lower_eh_dispatch(void)3465 execute_lower_eh_dispatch (void)
3466 {
3467   basic_block bb;
3468   int flags = 0;
3469   bool redirected = false;
3470 
3471   assign_filter_values ();
3472 
3473   FOR_EACH_BB (bb)
3474     {
3475       gimple last = last_stmt (bb);
3476       if (last == NULL)
3477 	continue;
3478       if (gimple_code (last) == GIMPLE_EH_DISPATCH)
3479 	{
3480 	  redirected |= lower_eh_dispatch (bb, last);
3481 	  flags |= TODO_update_ssa_only_virtuals;
3482 	}
3483       else if (gimple_code (last) == GIMPLE_RESX)
3484 	{
3485 	  if (stmt_can_throw_external (last))
3486 	    optimize_clobbers (bb);
3487 	  else
3488 	    flags |= sink_clobbers (bb);
3489 	}
3490     }
3491 
3492   if (redirected)
3493     delete_unreachable_blocks ();
3494   return flags;
3495 }
3496 
3497 static bool
gate_lower_eh_dispatch(void)3498 gate_lower_eh_dispatch (void)
3499 {
3500   return cfun->eh->region_tree != NULL;
3501 }
3502 
3503 struct gimple_opt_pass pass_lower_eh_dispatch =
3504 {
3505  {
3506   GIMPLE_PASS,
3507   "ehdisp",				/* name */
3508   OPTGROUP_NONE,                        /* optinfo_flags */
3509   gate_lower_eh_dispatch,		/* gate */
3510   execute_lower_eh_dispatch,		/* execute */
3511   NULL,					/* sub */
3512   NULL,					/* next */
3513   0,					/* static_pass_number */
3514   TV_TREE_EH,				/* tv_id */
3515   PROP_gimple_lcf,			/* properties_required */
3516   0,					/* properties_provided */
3517   0,					/* properties_destroyed */
3518   0,					/* todo_flags_start */
3519   TODO_verify_flow	                /* todo_flags_finish */
3520  }
3521 };
3522 
3523 /* Walk statements, see what regions and, optionally, landing pads
3524    are really referenced.
3525 
3526    Returns in R_REACHABLEP an sbitmap with bits set for reachable regions,
3527    and in LP_REACHABLE an sbitmap with bits set for reachable landing pads.
3528 
3529    Passing NULL for LP_REACHABLE is valid, in this case only reachable
3530    regions are marked.
3531 
3532    The caller is responsible for freeing the returned sbitmaps.  */
3533 
3534 static void
mark_reachable_handlers(sbitmap * r_reachablep,sbitmap * lp_reachablep)3535 mark_reachable_handlers (sbitmap *r_reachablep, sbitmap *lp_reachablep)
3536 {
3537   sbitmap r_reachable, lp_reachable;
3538   basic_block bb;
3539   bool mark_landing_pads = (lp_reachablep != NULL);
3540   gcc_checking_assert (r_reachablep != NULL);
3541 
3542   r_reachable = sbitmap_alloc (cfun->eh->region_array->length ());
3543   bitmap_clear (r_reachable);
3544   *r_reachablep = r_reachable;
3545 
3546   if (mark_landing_pads)
3547     {
3548       lp_reachable = sbitmap_alloc (cfun->eh->lp_array->length ());
3549       bitmap_clear (lp_reachable);
3550       *lp_reachablep = lp_reachable;
3551     }
3552   else
3553     lp_reachable = NULL;
3554 
3555   FOR_EACH_BB (bb)
3556     {
3557       gimple_stmt_iterator gsi;
3558 
3559       for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3560 	{
3561 	  gimple stmt = gsi_stmt (gsi);
3562 
3563 	  if (mark_landing_pads)
3564 	    {
3565 	      int lp_nr = lookup_stmt_eh_lp (stmt);
3566 
3567 	      /* Negative LP numbers are MUST_NOT_THROW regions which
3568 		 are not considered BB enders.  */
3569 	      if (lp_nr < 0)
3570 		bitmap_set_bit (r_reachable, -lp_nr);
3571 
3572 	      /* Positive LP numbers are real landing pads, and BB enders.  */
3573 	      else if (lp_nr > 0)
3574 		{
3575 		  gcc_assert (gsi_one_before_end_p (gsi));
3576 		  eh_region region = get_eh_region_from_lp_number (lp_nr);
3577 		  bitmap_set_bit (r_reachable, region->index);
3578 		  bitmap_set_bit (lp_reachable, lp_nr);
3579 		}
3580 	    }
3581 
3582 	  /* Avoid removing regions referenced from RESX/EH_DISPATCH.  */
3583 	  switch (gimple_code (stmt))
3584 	    {
3585 	    case GIMPLE_RESX:
3586 	      bitmap_set_bit (r_reachable, gimple_resx_region (stmt));
3587 	      break;
3588 	    case GIMPLE_EH_DISPATCH:
3589 	      bitmap_set_bit (r_reachable, gimple_eh_dispatch_region (stmt));
3590 	      break;
3591 	    default:
3592 	      break;
3593 	    }
3594 	}
3595     }
3596 }
3597 
3598 /* Remove unreachable handlers and unreachable landing pads.  */
3599 
3600 static void
remove_unreachable_handlers(void)3601 remove_unreachable_handlers (void)
3602 {
3603   sbitmap r_reachable, lp_reachable;
3604   eh_region region;
3605   eh_landing_pad lp;
3606   unsigned i;
3607 
3608   mark_reachable_handlers (&r_reachable, &lp_reachable);
3609 
3610   if (dump_file)
3611     {
3612       fprintf (dump_file, "Before removal of unreachable regions:\n");
3613       dump_eh_tree (dump_file, cfun);
3614       fprintf (dump_file, "Reachable regions: ");
3615       dump_bitmap_file (dump_file, r_reachable);
3616       fprintf (dump_file, "Reachable landing pads: ");
3617       dump_bitmap_file (dump_file, lp_reachable);
3618     }
3619 
3620   if (dump_file)
3621     {
3622       FOR_EACH_VEC_SAFE_ELT (cfun->eh->region_array, i, region)
3623 	if (region && !bitmap_bit_p (r_reachable, region->index))
3624 	  fprintf (dump_file,
3625 		   "Removing unreachable region %d\n",
3626 		   region->index);
3627     }
3628 
3629   remove_unreachable_eh_regions (r_reachable);
3630 
3631   FOR_EACH_VEC_SAFE_ELT (cfun->eh->lp_array, i, lp)
3632     if (lp && !bitmap_bit_p (lp_reachable, lp->index))
3633       {
3634 	if (dump_file)
3635 	  fprintf (dump_file,
3636 		   "Removing unreachable landing pad %d\n",
3637 		   lp->index);
3638 	remove_eh_landing_pad (lp);
3639       }
3640 
3641   if (dump_file)
3642     {
3643       fprintf (dump_file, "\n\nAfter removal of unreachable regions:\n");
3644       dump_eh_tree (dump_file, cfun);
3645       fprintf (dump_file, "\n\n");
3646     }
3647 
3648   sbitmap_free (r_reachable);
3649   sbitmap_free (lp_reachable);
3650 
3651 #ifdef ENABLE_CHECKING
3652   verify_eh_tree (cfun);
3653 #endif
3654 }
3655 
3656 /* Remove unreachable handlers if any landing pads have been removed after
3657    last ehcleanup pass (due to gimple_purge_dead_eh_edges).  */
3658 
3659 void
maybe_remove_unreachable_handlers(void)3660 maybe_remove_unreachable_handlers (void)
3661 {
3662   eh_landing_pad lp;
3663   unsigned i;
3664 
3665   if (cfun->eh == NULL)
3666     return;
3667 
3668   FOR_EACH_VEC_SAFE_ELT (cfun->eh->lp_array, i, lp)
3669     if (lp && lp->post_landing_pad)
3670       {
3671 	if (label_to_block (lp->post_landing_pad) == NULL)
3672 	  {
3673 	    remove_unreachable_handlers ();
3674 	    return;
3675 	  }
3676       }
3677 }
3678 
3679 /* Remove regions that do not have landing pads.  This assumes
3680    that remove_unreachable_handlers has already been run, and
3681    that we've just manipulated the landing pads since then.
3682 
3683    Preserve regions with landing pads and regions that prevent
3684    exceptions from propagating further, even if these regions
3685    are not reachable.  */
3686 
3687 static void
remove_unreachable_handlers_no_lp(void)3688 remove_unreachable_handlers_no_lp (void)
3689 {
3690   eh_region region;
3691   sbitmap r_reachable;
3692   unsigned i;
3693 
3694   mark_reachable_handlers (&r_reachable, /*lp_reachablep=*/NULL);
3695 
3696   FOR_EACH_VEC_SAFE_ELT (cfun->eh->region_array, i, region)
3697     {
3698       if (! region)
3699 	continue;
3700 
3701       if (region->landing_pads != NULL
3702 	  || region->type == ERT_MUST_NOT_THROW)
3703 	bitmap_set_bit (r_reachable, region->index);
3704 
3705       if (dump_file
3706 	  && !bitmap_bit_p (r_reachable, region->index))
3707 	fprintf (dump_file,
3708 		 "Removing unreachable region %d\n",
3709 		 region->index);
3710     }
3711 
3712   remove_unreachable_eh_regions (r_reachable);
3713 
3714   sbitmap_free (r_reachable);
3715 }
3716 
3717 /* Undo critical edge splitting on an EH landing pad.  Earlier, we
3718    optimisticaly split all sorts of edges, including EH edges.  The
3719    optimization passes in between may not have needed them; if not,
3720    we should undo the split.
3721 
3722    Recognize this case by having one EH edge incoming to the BB and
3723    one normal edge outgoing; BB should be empty apart from the
3724    post_landing_pad label.
3725 
3726    Note that this is slightly different from the empty handler case
3727    handled by cleanup_empty_eh, in that the actual handler may yet
3728    have actual code but the landing pad has been separated from the
3729    handler.  As such, cleanup_empty_eh relies on this transformation
3730    having been done first.  */
3731 
3732 static bool
unsplit_eh(eh_landing_pad lp)3733 unsplit_eh (eh_landing_pad lp)
3734 {
3735   basic_block bb = label_to_block (lp->post_landing_pad);
3736   gimple_stmt_iterator gsi;
3737   edge e_in, e_out;
3738 
3739   /* Quickly check the edge counts on BB for singularity.  */
3740   if (EDGE_COUNT (bb->preds) != 1 || EDGE_COUNT (bb->succs) != 1)
3741     return false;
3742   e_in = EDGE_PRED (bb, 0);
3743   e_out = EDGE_SUCC (bb, 0);
3744 
3745   /* Input edge must be EH and output edge must be normal.  */
3746   if ((e_in->flags & EDGE_EH) == 0 || (e_out->flags & EDGE_EH) != 0)
3747     return false;
3748 
3749   /* The block must be empty except for the labels and debug insns.  */
3750   gsi = gsi_after_labels (bb);
3751   if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
3752     gsi_next_nondebug (&gsi);
3753   if (!gsi_end_p (gsi))
3754     return false;
3755 
3756   /* The destination block must not already have a landing pad
3757      for a different region.  */
3758   for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
3759     {
3760       gimple stmt = gsi_stmt (gsi);
3761       tree lab;
3762       int lp_nr;
3763 
3764       if (gimple_code (stmt) != GIMPLE_LABEL)
3765 	break;
3766       lab = gimple_label_label (stmt);
3767       lp_nr = EH_LANDING_PAD_NR (lab);
3768       if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
3769 	return false;
3770     }
3771 
3772   /* The new destination block must not already be a destination of
3773      the source block, lest we merge fallthru and eh edges and get
3774      all sorts of confused.  */
3775   if (find_edge (e_in->src, e_out->dest))
3776     return false;
3777 
3778   /* ??? We can get degenerate phis due to cfg cleanups.  I would have
3779      thought this should have been cleaned up by a phicprop pass, but
3780      that doesn't appear to handle virtuals.  Propagate by hand.  */
3781   if (!gimple_seq_empty_p (phi_nodes (bb)))
3782     {
3783       for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
3784 	{
3785 	  gimple use_stmt, phi = gsi_stmt (gsi);
3786 	  tree lhs = gimple_phi_result (phi);
3787 	  tree rhs = gimple_phi_arg_def (phi, 0);
3788 	  use_operand_p use_p;
3789 	  imm_use_iterator iter;
3790 
3791 	  FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
3792 	    {
3793 	      FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3794 		SET_USE (use_p, rhs);
3795 	    }
3796 
3797 	  if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
3798 	    SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
3799 
3800 	  remove_phi_node (&gsi, true);
3801 	}
3802     }
3803 
3804   if (dump_file && (dump_flags & TDF_DETAILS))
3805     fprintf (dump_file, "Unsplit EH landing pad %d to block %i.\n",
3806 	     lp->index, e_out->dest->index);
3807 
3808   /* Redirect the edge.  Since redirect_eh_edge_1 expects to be moving
3809      a successor edge, humor it.  But do the real CFG change with the
3810      predecessor of E_OUT in order to preserve the ordering of arguments
3811      to the PHI nodes in E_OUT->DEST.  */
3812   redirect_eh_edge_1 (e_in, e_out->dest, false);
3813   redirect_edge_pred (e_out, e_in->src);
3814   e_out->flags = e_in->flags;
3815   e_out->probability = e_in->probability;
3816   e_out->count = e_in->count;
3817   remove_edge (e_in);
3818 
3819   return true;
3820 }
3821 
3822 /* Examine each landing pad block and see if it matches unsplit_eh.  */
3823 
3824 static bool
unsplit_all_eh(void)3825 unsplit_all_eh (void)
3826 {
3827   bool changed = false;
3828   eh_landing_pad lp;
3829   int i;
3830 
3831   for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
3832     if (lp)
3833       changed |= unsplit_eh (lp);
3834 
3835   return changed;
3836 }
3837 
3838 /* A subroutine of cleanup_empty_eh.  Redirect all EH edges incoming
3839    to OLD_BB to NEW_BB; return true on success, false on failure.
3840 
3841    OLD_BB_OUT is the edge into NEW_BB from OLD_BB, so if we miss any
3842    PHI variables from OLD_BB we can pick them up from OLD_BB_OUT.
3843    Virtual PHIs may be deleted and marked for renaming.  */
3844 
3845 static bool
cleanup_empty_eh_merge_phis(basic_block new_bb,basic_block old_bb,edge old_bb_out,bool change_region)3846 cleanup_empty_eh_merge_phis (basic_block new_bb, basic_block old_bb,
3847 			     edge old_bb_out, bool change_region)
3848 {
3849   gimple_stmt_iterator ngsi, ogsi;
3850   edge_iterator ei;
3851   edge e;
3852   bitmap rename_virts;
3853   bitmap ophi_handled;
3854 
3855   /* The destination block must not be a regular successor for any
3856      of the preds of the landing pad.  Thus, avoid turning
3857         <..>
3858 	 |  \ EH
3859 	 |  <..>
3860 	 |  /
3861 	<..>
3862      into
3863         <..>
3864 	|  | EH
3865 	<..>
3866      which CFG verification would choke on.  See PR45172 and PR51089.  */
3867   FOR_EACH_EDGE (e, ei, old_bb->preds)
3868     if (find_edge (e->src, new_bb))
3869       return false;
3870 
3871   FOR_EACH_EDGE (e, ei, old_bb->preds)
3872     redirect_edge_var_map_clear (e);
3873 
3874   ophi_handled = BITMAP_ALLOC (NULL);
3875   rename_virts = BITMAP_ALLOC (NULL);
3876 
3877   /* First, iterate through the PHIs on NEW_BB and set up the edge_var_map
3878      for the edges we're going to move.  */
3879   for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); gsi_next (&ngsi))
3880     {
3881       gimple ophi, nphi = gsi_stmt (ngsi);
3882       tree nresult, nop;
3883 
3884       nresult = gimple_phi_result (nphi);
3885       nop = gimple_phi_arg_def (nphi, old_bb_out->dest_idx);
3886 
3887       /* Find the corresponding PHI in OLD_BB so we can forward-propagate
3888 	 the source ssa_name.  */
3889       ophi = NULL;
3890       for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
3891 	{
3892 	  ophi = gsi_stmt (ogsi);
3893 	  if (gimple_phi_result (ophi) == nop)
3894 	    break;
3895 	  ophi = NULL;
3896 	}
3897 
3898       /* If we did find the corresponding PHI, copy those inputs.  */
3899       if (ophi)
3900 	{
3901 	  /* If NOP is used somewhere else beyond phis in new_bb, give up.  */
3902 	  if (!has_single_use (nop))
3903 	    {
3904 	      imm_use_iterator imm_iter;
3905 	      use_operand_p use_p;
3906 
3907 	      FOR_EACH_IMM_USE_FAST (use_p, imm_iter, nop)
3908 		{
3909 		  if (!gimple_debug_bind_p (USE_STMT (use_p))
3910 		      && (gimple_code (USE_STMT (use_p)) != GIMPLE_PHI
3911 			  || gimple_bb (USE_STMT (use_p)) != new_bb))
3912 		    goto fail;
3913 		}
3914 	    }
3915 	  bitmap_set_bit (ophi_handled, SSA_NAME_VERSION (nop));
3916 	  FOR_EACH_EDGE (e, ei, old_bb->preds)
3917 	    {
3918 	      location_t oloc;
3919 	      tree oop;
3920 
3921 	      if ((e->flags & EDGE_EH) == 0)
3922 		continue;
3923 	      oop = gimple_phi_arg_def (ophi, e->dest_idx);
3924 	      oloc = gimple_phi_arg_location (ophi, e->dest_idx);
3925 	      redirect_edge_var_map_add (e, nresult, oop, oloc);
3926 	    }
3927 	}
3928       /* If we didn't find the PHI, but it's a VOP, remember to rename
3929 	 it later, assuming all other tests succeed.  */
3930       else if (virtual_operand_p (nresult))
3931 	bitmap_set_bit (rename_virts, SSA_NAME_VERSION (nresult));
3932       /* If we didn't find the PHI, and it's a real variable, we know
3933 	 from the fact that OLD_BB is tree_empty_eh_handler_p that the
3934 	 variable is unchanged from input to the block and we can simply
3935 	 re-use the input to NEW_BB from the OLD_BB_OUT edge.  */
3936       else
3937 	{
3938 	  location_t nloc
3939 	    = gimple_phi_arg_location (nphi, old_bb_out->dest_idx);
3940 	  FOR_EACH_EDGE (e, ei, old_bb->preds)
3941 	    redirect_edge_var_map_add (e, nresult, nop, nloc);
3942 	}
3943     }
3944 
3945   /* Second, verify that all PHIs from OLD_BB have been handled.  If not,
3946      we don't know what values from the other edges into NEW_BB to use.  */
3947   for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
3948     {
3949       gimple ophi = gsi_stmt (ogsi);
3950       tree oresult = gimple_phi_result (ophi);
3951       if (!bitmap_bit_p (ophi_handled, SSA_NAME_VERSION (oresult)))
3952 	goto fail;
3953     }
3954 
3955   /* At this point we know that the merge will succeed.  Remove the PHI
3956      nodes for the virtuals that we want to rename.  */
3957   if (!bitmap_empty_p (rename_virts))
3958     {
3959       for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); )
3960 	{
3961 	  gimple nphi = gsi_stmt (ngsi);
3962 	  tree nresult = gimple_phi_result (nphi);
3963 	  if (bitmap_bit_p (rename_virts, SSA_NAME_VERSION (nresult)))
3964 	    {
3965 	      mark_virtual_phi_result_for_renaming (nphi);
3966 	      remove_phi_node (&ngsi, true);
3967 	    }
3968 	  else
3969 	    gsi_next (&ngsi);
3970 	}
3971     }
3972 
3973   /* Finally, move the edges and update the PHIs.  */
3974   for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)); )
3975     if (e->flags & EDGE_EH)
3976       {
3977 	/* ???  CFG manipluation routines do not try to update loop
3978 	   form on edge redirection.  Do so manually here for now.  */
3979 	/* If we redirect a loop entry or latch edge that will either create
3980 	   a multiple entry loop or rotate the loop.  If the loops merge
3981 	   we may have created a loop with multiple latches.
3982 	   All of this isn't easily fixed thus cancel the affected loop
3983 	   and mark the other loop as possibly having multiple latches.  */
3984 	if (current_loops
3985 	    && e->dest == e->dest->loop_father->header)
3986 	  {
3987 	    e->dest->loop_father->header = NULL;
3988 	    e->dest->loop_father->latch = NULL;
3989 	    new_bb->loop_father->latch = NULL;
3990 	    loops_state_set (LOOPS_NEED_FIXUP|LOOPS_MAY_HAVE_MULTIPLE_LATCHES);
3991 	  }
3992 	redirect_eh_edge_1 (e, new_bb, change_region);
3993 	redirect_edge_succ (e, new_bb);
3994 	flush_pending_stmts (e);
3995       }
3996     else
3997       ei_next (&ei);
3998 
3999   BITMAP_FREE (ophi_handled);
4000   BITMAP_FREE (rename_virts);
4001   return true;
4002 
4003  fail:
4004   FOR_EACH_EDGE (e, ei, old_bb->preds)
4005     redirect_edge_var_map_clear (e);
4006   BITMAP_FREE (ophi_handled);
4007   BITMAP_FREE (rename_virts);
4008   return false;
4009 }
4010 
4011 /* A subroutine of cleanup_empty_eh.  Move a landing pad LP from its
4012    old region to NEW_REGION at BB.  */
4013 
4014 static void
cleanup_empty_eh_move_lp(basic_block bb,edge e_out,eh_landing_pad lp,eh_region new_region)4015 cleanup_empty_eh_move_lp (basic_block bb, edge e_out,
4016 			  eh_landing_pad lp, eh_region new_region)
4017 {
4018   gimple_stmt_iterator gsi;
4019   eh_landing_pad *pp;
4020 
4021   for (pp = &lp->region->landing_pads; *pp != lp; pp = &(*pp)->next_lp)
4022     continue;
4023   *pp = lp->next_lp;
4024 
4025   lp->region = new_region;
4026   lp->next_lp = new_region->landing_pads;
4027   new_region->landing_pads = lp;
4028 
4029   /* Delete the RESX that was matched within the empty handler block.  */
4030   gsi = gsi_last_bb (bb);
4031   unlink_stmt_vdef (gsi_stmt (gsi));
4032   gsi_remove (&gsi, true);
4033 
4034   /* Clean up E_OUT for the fallthru.  */
4035   e_out->flags = (e_out->flags & ~EDGE_EH) | EDGE_FALLTHRU;
4036   e_out->probability = REG_BR_PROB_BASE;
4037 }
4038 
4039 /* A subroutine of cleanup_empty_eh.  Handle more complex cases of
4040    unsplitting than unsplit_eh was prepared to handle, e.g. when
4041    multiple incoming edges and phis are involved.  */
4042 
4043 static bool
cleanup_empty_eh_unsplit(basic_block bb,edge e_out,eh_landing_pad lp)4044 cleanup_empty_eh_unsplit (basic_block bb, edge e_out, eh_landing_pad lp)
4045 {
4046   gimple_stmt_iterator gsi;
4047   tree lab;
4048 
4049   /* We really ought not have totally lost everything following
4050      a landing pad label.  Given that BB is empty, there had better
4051      be a successor.  */
4052   gcc_assert (e_out != NULL);
4053 
4054   /* The destination block must not already have a landing pad
4055      for a different region.  */
4056   lab = NULL;
4057   for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
4058     {
4059       gimple stmt = gsi_stmt (gsi);
4060       int lp_nr;
4061 
4062       if (gimple_code (stmt) != GIMPLE_LABEL)
4063 	break;
4064       lab = gimple_label_label (stmt);
4065       lp_nr = EH_LANDING_PAD_NR (lab);
4066       if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
4067 	return false;
4068     }
4069 
4070   /* Attempt to move the PHIs into the successor block.  */
4071   if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, false))
4072     {
4073       if (dump_file && (dump_flags & TDF_DETAILS))
4074 	fprintf (dump_file,
4075 		 "Unsplit EH landing pad %d to block %i "
4076 		 "(via cleanup_empty_eh).\n",
4077 		 lp->index, e_out->dest->index);
4078       return true;
4079     }
4080 
4081   return false;
4082 }
4083 
4084 /* Return true if edge E_FIRST is part of an empty infinite loop
4085    or leads to such a loop through a series of single successor
4086    empty bbs.  */
4087 
4088 static bool
infinite_empty_loop_p(edge e_first)4089 infinite_empty_loop_p (edge e_first)
4090 {
4091   bool inf_loop = false;
4092   edge e;
4093 
4094   if (e_first->dest == e_first->src)
4095     return true;
4096 
4097   e_first->src->aux = (void *) 1;
4098   for (e = e_first; single_succ_p (e->dest); e = single_succ_edge (e->dest))
4099     {
4100       gimple_stmt_iterator gsi;
4101       if (e->dest->aux)
4102 	{
4103 	  inf_loop = true;
4104 	  break;
4105 	}
4106       e->dest->aux = (void *) 1;
4107       gsi = gsi_after_labels (e->dest);
4108       if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4109 	gsi_next_nondebug (&gsi);
4110       if (!gsi_end_p (gsi))
4111 	break;
4112     }
4113   e_first->src->aux = NULL;
4114   for (e = e_first; e->dest->aux; e = single_succ_edge (e->dest))
4115     e->dest->aux = NULL;
4116 
4117   return inf_loop;
4118 }
4119 
4120 /* Examine the block associated with LP to determine if it's an empty
4121    handler for its EH region.  If so, attempt to redirect EH edges to
4122    an outer region.  Return true the CFG was updated in any way.  This
4123    is similar to jump forwarding, just across EH edges.  */
4124 
4125 static bool
cleanup_empty_eh(eh_landing_pad lp)4126 cleanup_empty_eh (eh_landing_pad lp)
4127 {
4128   basic_block bb = label_to_block (lp->post_landing_pad);
4129   gimple_stmt_iterator gsi;
4130   gimple resx;
4131   eh_region new_region;
4132   edge_iterator ei;
4133   edge e, e_out;
4134   bool has_non_eh_pred;
4135   bool ret = false;
4136   int new_lp_nr;
4137 
4138   /* There can be zero or one edges out of BB.  This is the quickest test.  */
4139   switch (EDGE_COUNT (bb->succs))
4140     {
4141     case 0:
4142       e_out = NULL;
4143       break;
4144     case 1:
4145       e_out = EDGE_SUCC (bb, 0);
4146       break;
4147     default:
4148       return false;
4149     }
4150 
4151   resx = last_stmt (bb);
4152   if (resx && is_gimple_resx (resx))
4153     {
4154       if (stmt_can_throw_external (resx))
4155 	optimize_clobbers (bb);
4156       else if (sink_clobbers (bb))
4157 	ret = true;
4158     }
4159 
4160   gsi = gsi_after_labels (bb);
4161 
4162   /* Make sure to skip debug statements.  */
4163   if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4164     gsi_next_nondebug (&gsi);
4165 
4166   /* If the block is totally empty, look for more unsplitting cases.  */
4167   if (gsi_end_p (gsi))
4168     {
4169       /* For the degenerate case of an infinite loop bail out.  */
4170       if (infinite_empty_loop_p (e_out))
4171 	return ret;
4172 
4173       return ret | cleanup_empty_eh_unsplit (bb, e_out, lp);
4174     }
4175 
4176   /* The block should consist only of a single RESX statement, modulo a
4177      preceding call to __builtin_stack_restore if there is no outgoing
4178      edge, since the call can be eliminated in this case.  */
4179   resx = gsi_stmt (gsi);
4180   if (!e_out && gimple_call_builtin_p (resx, BUILT_IN_STACK_RESTORE))
4181     {
4182       gsi_next (&gsi);
4183       resx = gsi_stmt (gsi);
4184     }
4185   if (!is_gimple_resx (resx))
4186     return ret;
4187   gcc_assert (gsi_one_before_end_p (gsi));
4188 
4189   /* Determine if there are non-EH edges, or resx edges into the handler.  */
4190   has_non_eh_pred = false;
4191   FOR_EACH_EDGE (e, ei, bb->preds)
4192     if (!(e->flags & EDGE_EH))
4193       has_non_eh_pred = true;
4194 
4195   /* Find the handler that's outer of the empty handler by looking at
4196      where the RESX instruction was vectored.  */
4197   new_lp_nr = lookup_stmt_eh_lp (resx);
4198   new_region = get_eh_region_from_lp_number (new_lp_nr);
4199 
4200   /* If there's no destination region within the current function,
4201      redirection is trivial via removing the throwing statements from
4202      the EH region, removing the EH edges, and allowing the block
4203      to go unreachable.  */
4204   if (new_region == NULL)
4205     {
4206       gcc_assert (e_out == NULL);
4207       for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
4208 	if (e->flags & EDGE_EH)
4209 	  {
4210 	    gimple stmt = last_stmt (e->src);
4211 	    remove_stmt_from_eh_lp (stmt);
4212 	    remove_edge (e);
4213 	  }
4214 	else
4215 	  ei_next (&ei);
4216       goto succeed;
4217     }
4218 
4219   /* If the destination region is a MUST_NOT_THROW, allow the runtime
4220      to handle the abort and allow the blocks to go unreachable.  */
4221   if (new_region->type == ERT_MUST_NOT_THROW)
4222     {
4223       for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
4224 	if (e->flags & EDGE_EH)
4225 	  {
4226 	    gimple stmt = last_stmt (e->src);
4227 	    remove_stmt_from_eh_lp (stmt);
4228 	    add_stmt_to_eh_lp (stmt, new_lp_nr);
4229 	    remove_edge (e);
4230 	  }
4231 	else
4232 	  ei_next (&ei);
4233       goto succeed;
4234     }
4235 
4236   /* Try to redirect the EH edges and merge the PHIs into the destination
4237      landing pad block.  If the merge succeeds, we'll already have redirected
4238      all the EH edges.  The handler itself will go unreachable if there were
4239      no normal edges.  */
4240   if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, true))
4241     goto succeed;
4242 
4243   /* Finally, if all input edges are EH edges, then we can (potentially)
4244      reduce the number of transfers from the runtime by moving the landing
4245      pad from the original region to the new region.  This is a win when
4246      we remove the last CLEANUP region along a particular exception
4247      propagation path.  Since nothing changes except for the region with
4248      which the landing pad is associated, the PHI nodes do not need to be
4249      adjusted at all.  */
4250   if (!has_non_eh_pred)
4251     {
4252       cleanup_empty_eh_move_lp (bb, e_out, lp, new_region);
4253       if (dump_file && (dump_flags & TDF_DETAILS))
4254 	fprintf (dump_file, "Empty EH handler %i moved to EH region %i.\n",
4255 		 lp->index, new_region->index);
4256 
4257       /* ??? The CFG didn't change, but we may have rendered the
4258 	 old EH region unreachable.  Trigger a cleanup there.  */
4259       return true;
4260     }
4261 
4262   return ret;
4263 
4264  succeed:
4265   if (dump_file && (dump_flags & TDF_DETAILS))
4266     fprintf (dump_file, "Empty EH handler %i removed.\n", lp->index);
4267   remove_eh_landing_pad (lp);
4268   return true;
4269 }
4270 
4271 /* Do a post-order traversal of the EH region tree.  Examine each
4272    post_landing_pad block and see if we can eliminate it as empty.  */
4273 
4274 static bool
cleanup_all_empty_eh(void)4275 cleanup_all_empty_eh (void)
4276 {
4277   bool changed = false;
4278   eh_landing_pad lp;
4279   int i;
4280 
4281   for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
4282     if (lp)
4283       changed |= cleanup_empty_eh (lp);
4284 
4285   return changed;
4286 }
4287 
4288 /* Perform cleanups and lowering of exception handling
4289     1) cleanups regions with handlers doing nothing are optimized out
4290     2) MUST_NOT_THROW regions that became dead because of 1) are optimized out
4291     3) Info about regions that are containing instructions, and regions
4292        reachable via local EH edges is collected
4293     4) Eh tree is pruned for regions no longer neccesary.
4294 
4295    TODO: Push MUST_NOT_THROW regions to the root of the EH tree.
4296 	 Unify those that have the same failure decl and locus.
4297 */
4298 
4299 static unsigned int
execute_cleanup_eh_1(void)4300 execute_cleanup_eh_1 (void)
4301 {
4302   /* Do this first: unsplit_all_eh and cleanup_all_empty_eh can die
4303      looking up unreachable landing pads.  */
4304   remove_unreachable_handlers ();
4305 
4306   /* Watch out for the region tree vanishing due to all unreachable.  */
4307   if (cfun->eh->region_tree && optimize)
4308     {
4309       bool changed = false;
4310 
4311       changed |= unsplit_all_eh ();
4312       changed |= cleanup_all_empty_eh ();
4313 
4314       if (changed)
4315 	{
4316 	  free_dominance_info (CDI_DOMINATORS);
4317 	  free_dominance_info (CDI_POST_DOMINATORS);
4318 
4319           /* We delayed all basic block deletion, as we may have performed
4320 	     cleanups on EH edges while non-EH edges were still present.  */
4321 	  delete_unreachable_blocks ();
4322 
4323 	  /* We manipulated the landing pads.  Remove any region that no
4324 	     longer has a landing pad.  */
4325 	  remove_unreachable_handlers_no_lp ();
4326 
4327 	  return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
4328 	}
4329     }
4330 
4331   return 0;
4332 }
4333 
4334 static unsigned int
execute_cleanup_eh(void)4335 execute_cleanup_eh (void)
4336 {
4337   int ret = execute_cleanup_eh_1 ();
4338 
4339   /* If the function no longer needs an EH personality routine
4340      clear it.  This exposes cross-language inlining opportunities
4341      and avoids references to a never defined personality routine.  */
4342   if (DECL_FUNCTION_PERSONALITY (current_function_decl)
4343       && function_needs_eh_personality (cfun) != eh_personality_lang)
4344     DECL_FUNCTION_PERSONALITY (current_function_decl) = NULL_TREE;
4345 
4346   return ret;
4347 }
4348 
4349 static bool
gate_cleanup_eh(void)4350 gate_cleanup_eh (void)
4351 {
4352   return cfun->eh != NULL && cfun->eh->region_tree != NULL;
4353 }
4354 
4355 struct gimple_opt_pass pass_cleanup_eh = {
4356   {
4357    GIMPLE_PASS,
4358    "ehcleanup",			/* name */
4359    OPTGROUP_NONE,               /* optinfo_flags */
4360    gate_cleanup_eh,		/* gate */
4361    execute_cleanup_eh,		/* execute */
4362    NULL,			/* sub */
4363    NULL,			/* next */
4364    0,				/* static_pass_number */
4365    TV_TREE_EH,			/* tv_id */
4366    PROP_gimple_lcf,		/* properties_required */
4367    0,				/* properties_provided */
4368    0,				/* properties_destroyed */
4369    0,				/* todo_flags_start */
4370    0             		/* todo_flags_finish */
4371    }
4372 };
4373 
4374 /* Verify that BB containing STMT as the last statement, has precisely the
4375    edge that make_eh_edges would create.  */
4376 
4377 DEBUG_FUNCTION bool
verify_eh_edges(gimple stmt)4378 verify_eh_edges (gimple stmt)
4379 {
4380   basic_block bb = gimple_bb (stmt);
4381   eh_landing_pad lp = NULL;
4382   int lp_nr;
4383   edge_iterator ei;
4384   edge e, eh_edge;
4385 
4386   lp_nr = lookup_stmt_eh_lp (stmt);
4387   if (lp_nr > 0)
4388     lp = get_eh_landing_pad_from_number (lp_nr);
4389 
4390   eh_edge = NULL;
4391   FOR_EACH_EDGE (e, ei, bb->succs)
4392     {
4393       if (e->flags & EDGE_EH)
4394 	{
4395 	  if (eh_edge)
4396 	    {
4397 	      error ("BB %i has multiple EH edges", bb->index);
4398 	      return true;
4399 	    }
4400 	  else
4401 	    eh_edge = e;
4402 	}
4403     }
4404 
4405   if (lp == NULL)
4406     {
4407       if (eh_edge)
4408 	{
4409 	  error ("BB %i can not throw but has an EH edge", bb->index);
4410 	  return true;
4411 	}
4412       return false;
4413     }
4414 
4415   if (!stmt_could_throw_p (stmt))
4416     {
4417       error ("BB %i last statement has incorrectly set lp", bb->index);
4418       return true;
4419     }
4420 
4421   if (eh_edge == NULL)
4422     {
4423       error ("BB %i is missing an EH edge", bb->index);
4424       return true;
4425     }
4426 
4427   if (eh_edge->dest != label_to_block (lp->post_landing_pad))
4428     {
4429       error ("Incorrect EH edge %i->%i", bb->index, eh_edge->dest->index);
4430       return true;
4431     }
4432 
4433   return false;
4434 }
4435 
4436 /* Similarly, but handle GIMPLE_EH_DISPATCH specifically.  */
4437 
4438 DEBUG_FUNCTION bool
verify_eh_dispatch_edge(gimple stmt)4439 verify_eh_dispatch_edge (gimple stmt)
4440 {
4441   eh_region r;
4442   eh_catch c;
4443   basic_block src, dst;
4444   bool want_fallthru = true;
4445   edge_iterator ei;
4446   edge e, fall_edge;
4447 
4448   r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
4449   src = gimple_bb (stmt);
4450 
4451   FOR_EACH_EDGE (e, ei, src->succs)
4452     gcc_assert (e->aux == NULL);
4453 
4454   switch (r->type)
4455     {
4456     case ERT_TRY:
4457       for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4458 	{
4459 	  dst = label_to_block (c->label);
4460 	  e = find_edge (src, dst);
4461 	  if (e == NULL)
4462 	    {
4463 	      error ("BB %i is missing an edge", src->index);
4464 	      return true;
4465 	    }
4466 	  e->aux = (void *)e;
4467 
4468 	  /* A catch-all handler doesn't have a fallthru.  */
4469 	  if (c->type_list == NULL)
4470 	    {
4471 	      want_fallthru = false;
4472 	      break;
4473 	    }
4474 	}
4475       break;
4476 
4477     case ERT_ALLOWED_EXCEPTIONS:
4478       dst = label_to_block (r->u.allowed.label);
4479       e = find_edge (src, dst);
4480       if (e == NULL)
4481 	{
4482 	  error ("BB %i is missing an edge", src->index);
4483 	  return true;
4484 	}
4485       e->aux = (void *)e;
4486       break;
4487 
4488     default:
4489       gcc_unreachable ();
4490     }
4491 
4492   fall_edge = NULL;
4493   FOR_EACH_EDGE (e, ei, src->succs)
4494     {
4495       if (e->flags & EDGE_FALLTHRU)
4496 	{
4497 	  if (fall_edge != NULL)
4498 	    {
4499 	      error ("BB %i too many fallthru edges", src->index);
4500 	      return true;
4501 	    }
4502 	  fall_edge = e;
4503 	}
4504       else if (e->aux)
4505 	e->aux = NULL;
4506       else
4507 	{
4508 	  error ("BB %i has incorrect edge", src->index);
4509 	  return true;
4510 	}
4511     }
4512   if ((fall_edge != NULL) ^ want_fallthru)
4513     {
4514       error ("BB %i has incorrect fallthru edge", src->index);
4515       return true;
4516     }
4517 
4518   return false;
4519 }
4520