1 /* Functions to determine/estimate number of iterations of a loop.
2    Copyright (C) 2004-2013 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "tm_p.h"
26 #include "basic-block.h"
27 #include "gimple-pretty-print.h"
28 #include "intl.h"
29 #include "tree-flow.h"
30 #include "dumpfile.h"
31 #include "cfgloop.h"
32 #include "ggc.h"
33 #include "tree-chrec.h"
34 #include "tree-scalar-evolution.h"
35 #include "tree-data-ref.h"
36 #include "params.h"
37 #include "flags.h"
38 #include "diagnostic-core.h"
39 #include "tree-inline.h"
40 #include "tree-pass.h"
41 
42 #define SWAP(X, Y) do { affine_iv *tmp = (X); (X) = (Y); (Y) = tmp; } while (0)
43 
44 /* The maximum number of dominator BBs we search for conditions
45    of loop header copies we use for simplifying a conditional
46    expression.  */
47 #define MAX_DOMINATORS_TO_WALK 8
48 
49 /*
50 
51    Analysis of number of iterations of an affine exit test.
52 
53 */
54 
55 /* Bounds on some value, BELOW <= X <= UP.  */
56 
57 typedef struct
58 {
59   mpz_t below, up;
60 } bounds;
61 
62 
63 /* Splits expression EXPR to a variable part VAR and constant OFFSET.  */
64 
65 static void
split_to_var_and_offset(tree expr,tree * var,mpz_t offset)66 split_to_var_and_offset (tree expr, tree *var, mpz_t offset)
67 {
68   tree type = TREE_TYPE (expr);
69   tree op0, op1;
70   double_int off;
71   bool negate = false;
72 
73   *var = expr;
74   mpz_set_ui (offset, 0);
75 
76   switch (TREE_CODE (expr))
77     {
78     case MINUS_EXPR:
79       negate = true;
80       /* Fallthru.  */
81 
82     case PLUS_EXPR:
83     case POINTER_PLUS_EXPR:
84       op0 = TREE_OPERAND (expr, 0);
85       op1 = TREE_OPERAND (expr, 1);
86 
87       if (TREE_CODE (op1) != INTEGER_CST)
88 	break;
89 
90       *var = op0;
91       /* Always sign extend the offset.  */
92       off = tree_to_double_int (op1);
93       off = off.sext (TYPE_PRECISION (type));
94       mpz_set_double_int (offset, off, false);
95       if (negate)
96 	mpz_neg (offset, offset);
97       break;
98 
99     case INTEGER_CST:
100       *var = build_int_cst_type (type, 0);
101       off = tree_to_double_int (expr);
102       mpz_set_double_int (offset, off, TYPE_UNSIGNED (type));
103       break;
104 
105     default:
106       break;
107     }
108 }
109 
110 /* Stores estimate on the minimum/maximum value of the expression VAR + OFF
111    in TYPE to MIN and MAX.  */
112 
113 static void
determine_value_range(tree type,tree var,mpz_t off,mpz_t min,mpz_t max)114 determine_value_range (tree type, tree var, mpz_t off,
115 		       mpz_t min, mpz_t max)
116 {
117   /* If the expression is a constant, we know its value exactly.  */
118   if (integer_zerop (var))
119     {
120       mpz_set (min, off);
121       mpz_set (max, off);
122       return;
123     }
124 
125   /* If the computation may wrap, we know nothing about the value, except for
126      the range of the type.  */
127   get_type_static_bounds (type, min, max);
128   if (!nowrap_type_p (type))
129     return;
130 
131   /* Since the addition of OFF does not wrap, if OFF is positive, then we may
132      add it to MIN, otherwise to MAX.  */
133   if (mpz_sgn (off) < 0)
134     mpz_add (max, max, off);
135   else
136     mpz_add (min, min, off);
137 }
138 
139 /* Stores the bounds on the difference of the values of the expressions
140    (var + X) and (var + Y), computed in TYPE, to BNDS.  */
141 
142 static void
bound_difference_of_offsetted_base(tree type,mpz_t x,mpz_t y,bounds * bnds)143 bound_difference_of_offsetted_base (tree type, mpz_t x, mpz_t y,
144 				    bounds *bnds)
145 {
146   int rel = mpz_cmp (x, y);
147   bool may_wrap = !nowrap_type_p (type);
148   mpz_t m;
149 
150   /* If X == Y, then the expressions are always equal.
151      If X > Y, there are the following possibilities:
152        a) neither of var + X and var + Y overflow or underflow, or both of
153 	  them do.  Then their difference is X - Y.
154        b) var + X overflows, and var + Y does not.  Then the values of the
155 	  expressions are var + X - M and var + Y, where M is the range of
156 	  the type, and their difference is X - Y - M.
157        c) var + Y underflows and var + X does not.  Their difference again
158 	  is M - X + Y.
159        Therefore, if the arithmetics in type does not overflow, then the
160        bounds are (X - Y, X - Y), otherwise they are (X - Y - M, X - Y)
161      Similarly, if X < Y, the bounds are either (X - Y, X - Y) or
162      (X - Y, X - Y + M).  */
163 
164   if (rel == 0)
165     {
166       mpz_set_ui (bnds->below, 0);
167       mpz_set_ui (bnds->up, 0);
168       return;
169     }
170 
171   mpz_init (m);
172   mpz_set_double_int (m, double_int::mask (TYPE_PRECISION (type)), true);
173   mpz_add_ui (m, m, 1);
174   mpz_sub (bnds->up, x, y);
175   mpz_set (bnds->below, bnds->up);
176 
177   if (may_wrap)
178     {
179       if (rel > 0)
180 	mpz_sub (bnds->below, bnds->below, m);
181       else
182 	mpz_add (bnds->up, bnds->up, m);
183     }
184 
185   mpz_clear (m);
186 }
187 
188 /* From condition C0 CMP C1 derives information regarding the
189    difference of values of VARX + OFFX and VARY + OFFY, computed in TYPE,
190    and stores it to BNDS.  */
191 
192 static void
refine_bounds_using_guard(tree type,tree varx,mpz_t offx,tree vary,mpz_t offy,tree c0,enum tree_code cmp,tree c1,bounds * bnds)193 refine_bounds_using_guard (tree type, tree varx, mpz_t offx,
194 			   tree vary, mpz_t offy,
195 			   tree c0, enum tree_code cmp, tree c1,
196 			   bounds *bnds)
197 {
198   tree varc0, varc1, tmp, ctype;
199   mpz_t offc0, offc1, loffx, loffy, bnd;
200   bool lbound = false;
201   bool no_wrap = nowrap_type_p (type);
202   bool x_ok, y_ok;
203 
204   switch (cmp)
205     {
206     case LT_EXPR:
207     case LE_EXPR:
208     case GT_EXPR:
209     case GE_EXPR:
210       STRIP_SIGN_NOPS (c0);
211       STRIP_SIGN_NOPS (c1);
212       ctype = TREE_TYPE (c0);
213       if (!useless_type_conversion_p (ctype, type))
214 	return;
215 
216       break;
217 
218     case EQ_EXPR:
219       /* We could derive quite precise information from EQ_EXPR, however, such
220 	 a guard is unlikely to appear, so we do not bother with handling
221 	 it.  */
222       return;
223 
224     case NE_EXPR:
225       /* NE_EXPR comparisons do not contain much of useful information, except for
226 	 special case of comparing with the bounds of the type.  */
227       if (TREE_CODE (c1) != INTEGER_CST
228 	  || !INTEGRAL_TYPE_P (type))
229 	return;
230 
231       /* Ensure that the condition speaks about an expression in the same type
232 	 as X and Y.  */
233       ctype = TREE_TYPE (c0);
234       if (TYPE_PRECISION (ctype) != TYPE_PRECISION (type))
235 	return;
236       c0 = fold_convert (type, c0);
237       c1 = fold_convert (type, c1);
238 
239       if (TYPE_MIN_VALUE (type)
240 	  && operand_equal_p (c1, TYPE_MIN_VALUE (type), 0))
241 	{
242 	  cmp = GT_EXPR;
243 	  break;
244 	}
245       if (TYPE_MAX_VALUE (type)
246 	  && operand_equal_p (c1, TYPE_MAX_VALUE (type), 0))
247 	{
248 	  cmp = LT_EXPR;
249 	  break;
250 	}
251 
252       return;
253     default:
254       return;
255     }
256 
257   mpz_init (offc0);
258   mpz_init (offc1);
259   split_to_var_and_offset (expand_simple_operations (c0), &varc0, offc0);
260   split_to_var_and_offset (expand_simple_operations (c1), &varc1, offc1);
261 
262   /* We are only interested in comparisons of expressions based on VARX and
263      VARY.  TODO -- we might also be able to derive some bounds from
264      expressions containing just one of the variables.  */
265 
266   if (operand_equal_p (varx, varc1, 0))
267     {
268       tmp = varc0; varc0 = varc1; varc1 = tmp;
269       mpz_swap (offc0, offc1);
270       cmp = swap_tree_comparison (cmp);
271     }
272 
273   if (!operand_equal_p (varx, varc0, 0)
274       || !operand_equal_p (vary, varc1, 0))
275     goto end;
276 
277   mpz_init_set (loffx, offx);
278   mpz_init_set (loffy, offy);
279 
280   if (cmp == GT_EXPR || cmp == GE_EXPR)
281     {
282       tmp = varx; varx = vary; vary = tmp;
283       mpz_swap (offc0, offc1);
284       mpz_swap (loffx, loffy);
285       cmp = swap_tree_comparison (cmp);
286       lbound = true;
287     }
288 
289   /* If there is no overflow, the condition implies that
290 
291      (VARX + OFFX) cmp (VARY + OFFY) + (OFFX - OFFY + OFFC1 - OFFC0).
292 
293      The overflows and underflows may complicate things a bit; each
294      overflow decreases the appropriate offset by M, and underflow
295      increases it by M.  The above inequality would not necessarily be
296      true if
297 
298      -- VARX + OFFX underflows and VARX + OFFC0 does not, or
299 	VARX + OFFC0 overflows, but VARX + OFFX does not.
300 	This may only happen if OFFX < OFFC0.
301      -- VARY + OFFY overflows and VARY + OFFC1 does not, or
302 	VARY + OFFC1 underflows and VARY + OFFY does not.
303 	This may only happen if OFFY > OFFC1.  */
304 
305   if (no_wrap)
306     {
307       x_ok = true;
308       y_ok = true;
309     }
310   else
311     {
312       x_ok = (integer_zerop (varx)
313 	      || mpz_cmp (loffx, offc0) >= 0);
314       y_ok = (integer_zerop (vary)
315 	      || mpz_cmp (loffy, offc1) <= 0);
316     }
317 
318   if (x_ok && y_ok)
319     {
320       mpz_init (bnd);
321       mpz_sub (bnd, loffx, loffy);
322       mpz_add (bnd, bnd, offc1);
323       mpz_sub (bnd, bnd, offc0);
324 
325       if (cmp == LT_EXPR)
326 	mpz_sub_ui (bnd, bnd, 1);
327 
328       if (lbound)
329 	{
330 	  mpz_neg (bnd, bnd);
331 	  if (mpz_cmp (bnds->below, bnd) < 0)
332 	    mpz_set (bnds->below, bnd);
333 	}
334       else
335 	{
336 	  if (mpz_cmp (bnd, bnds->up) < 0)
337 	    mpz_set (bnds->up, bnd);
338 	}
339       mpz_clear (bnd);
340     }
341 
342   mpz_clear (loffx);
343   mpz_clear (loffy);
344 end:
345   mpz_clear (offc0);
346   mpz_clear (offc1);
347 }
348 
349 /* Stores the bounds on the value of the expression X - Y in LOOP to BNDS.
350    The subtraction is considered to be performed in arbitrary precision,
351    without overflows.
352 
353    We do not attempt to be too clever regarding the value ranges of X and
354    Y; most of the time, they are just integers or ssa names offsetted by
355    integer.  However, we try to use the information contained in the
356    comparisons before the loop (usually created by loop header copying).  */
357 
358 static void
bound_difference(struct loop * loop,tree x,tree y,bounds * bnds)359 bound_difference (struct loop *loop, tree x, tree y, bounds *bnds)
360 {
361   tree type = TREE_TYPE (x);
362   tree varx, vary;
363   mpz_t offx, offy;
364   mpz_t minx, maxx, miny, maxy;
365   int cnt = 0;
366   edge e;
367   basic_block bb;
368   tree c0, c1;
369   gimple cond;
370   enum tree_code cmp;
371 
372   /* Get rid of unnecessary casts, but preserve the value of
373      the expressions.  */
374   STRIP_SIGN_NOPS (x);
375   STRIP_SIGN_NOPS (y);
376 
377   mpz_init (bnds->below);
378   mpz_init (bnds->up);
379   mpz_init (offx);
380   mpz_init (offy);
381   split_to_var_and_offset (x, &varx, offx);
382   split_to_var_and_offset (y, &vary, offy);
383 
384   if (!integer_zerop (varx)
385       && operand_equal_p (varx, vary, 0))
386     {
387       /* Special case VARX == VARY -- we just need to compare the
388          offsets.  The matters are a bit more complicated in the
389 	 case addition of offsets may wrap.  */
390       bound_difference_of_offsetted_base (type, offx, offy, bnds);
391     }
392   else
393     {
394       /* Otherwise, use the value ranges to determine the initial
395 	 estimates on below and up.  */
396       mpz_init (minx);
397       mpz_init (maxx);
398       mpz_init (miny);
399       mpz_init (maxy);
400       determine_value_range (type, varx, offx, minx, maxx);
401       determine_value_range (type, vary, offy, miny, maxy);
402 
403       mpz_sub (bnds->below, minx, maxy);
404       mpz_sub (bnds->up, maxx, miny);
405       mpz_clear (minx);
406       mpz_clear (maxx);
407       mpz_clear (miny);
408       mpz_clear (maxy);
409     }
410 
411   /* If both X and Y are constants, we cannot get any more precise.  */
412   if (integer_zerop (varx) && integer_zerop (vary))
413     goto end;
414 
415   /* Now walk the dominators of the loop header and use the entry
416      guards to refine the estimates.  */
417   for (bb = loop->header;
418        bb != ENTRY_BLOCK_PTR && cnt < MAX_DOMINATORS_TO_WALK;
419        bb = get_immediate_dominator (CDI_DOMINATORS, bb))
420     {
421       if (!single_pred_p (bb))
422 	continue;
423       e = single_pred_edge (bb);
424 
425       if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
426 	continue;
427 
428       cond = last_stmt (e->src);
429       c0 = gimple_cond_lhs (cond);
430       cmp = gimple_cond_code (cond);
431       c1 = gimple_cond_rhs (cond);
432 
433       if (e->flags & EDGE_FALSE_VALUE)
434 	cmp = invert_tree_comparison (cmp, false);
435 
436       refine_bounds_using_guard (type, varx, offx, vary, offy,
437 				 c0, cmp, c1, bnds);
438       ++cnt;
439     }
440 
441 end:
442   mpz_clear (offx);
443   mpz_clear (offy);
444 }
445 
446 /* Update the bounds in BNDS that restrict the value of X to the bounds
447    that restrict the value of X + DELTA.  X can be obtained as a
448    difference of two values in TYPE.  */
449 
450 static void
bounds_add(bounds * bnds,double_int delta,tree type)451 bounds_add (bounds *bnds, double_int delta, tree type)
452 {
453   mpz_t mdelta, max;
454 
455   mpz_init (mdelta);
456   mpz_set_double_int (mdelta, delta, false);
457 
458   mpz_init (max);
459   mpz_set_double_int (max, double_int::mask (TYPE_PRECISION (type)), true);
460 
461   mpz_add (bnds->up, bnds->up, mdelta);
462   mpz_add (bnds->below, bnds->below, mdelta);
463 
464   if (mpz_cmp (bnds->up, max) > 0)
465     mpz_set (bnds->up, max);
466 
467   mpz_neg (max, max);
468   if (mpz_cmp (bnds->below, max) < 0)
469     mpz_set (bnds->below, max);
470 
471   mpz_clear (mdelta);
472   mpz_clear (max);
473 }
474 
475 /* Update the bounds in BNDS that restrict the value of X to the bounds
476    that restrict the value of -X.  */
477 
478 static void
bounds_negate(bounds * bnds)479 bounds_negate (bounds *bnds)
480 {
481   mpz_t tmp;
482 
483   mpz_init_set (tmp, bnds->up);
484   mpz_neg (bnds->up, bnds->below);
485   mpz_neg (bnds->below, tmp);
486   mpz_clear (tmp);
487 }
488 
489 /* Returns inverse of X modulo 2^s, where MASK = 2^s-1.  */
490 
491 static tree
inverse(tree x,tree mask)492 inverse (tree x, tree mask)
493 {
494   tree type = TREE_TYPE (x);
495   tree rslt;
496   unsigned ctr = tree_floor_log2 (mask);
497 
498   if (TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT)
499     {
500       unsigned HOST_WIDE_INT ix;
501       unsigned HOST_WIDE_INT imask;
502       unsigned HOST_WIDE_INT irslt = 1;
503 
504       gcc_assert (cst_and_fits_in_hwi (x));
505       gcc_assert (cst_and_fits_in_hwi (mask));
506 
507       ix = int_cst_value (x);
508       imask = int_cst_value (mask);
509 
510       for (; ctr; ctr--)
511 	{
512 	  irslt *= ix;
513 	  ix *= ix;
514 	}
515       irslt &= imask;
516 
517       rslt = build_int_cst_type (type, irslt);
518     }
519   else
520     {
521       rslt = build_int_cst (type, 1);
522       for (; ctr; ctr--)
523 	{
524 	  rslt = int_const_binop (MULT_EXPR, rslt, x);
525 	  x = int_const_binop (MULT_EXPR, x, x);
526 	}
527       rslt = int_const_binop (BIT_AND_EXPR, rslt, mask);
528     }
529 
530   return rslt;
531 }
532 
533 /* Derives the upper bound BND on the number of executions of loop with exit
534    condition S * i <> C.  If NO_OVERFLOW is true, then the control variable of
535    the loop does not overflow.  EXIT_MUST_BE_TAKEN is true if we are guaranteed
536    that the loop ends through this exit, i.e., the induction variable ever
537    reaches the value of C.
538 
539    The value C is equal to final - base, where final and base are the final and
540    initial value of the actual induction variable in the analysed loop.  BNDS
541    bounds the value of this difference when computed in signed type with
542    unbounded range, while the computation of C is performed in an unsigned
543    type with the range matching the range of the type of the induction variable.
544    In particular, BNDS.up contains an upper bound on C in the following cases:
545    -- if the iv must reach its final value without overflow, i.e., if
546       NO_OVERFLOW && EXIT_MUST_BE_TAKEN is true, or
547    -- if final >= base, which we know to hold when BNDS.below >= 0.  */
548 
549 static void
number_of_iterations_ne_max(mpz_t bnd,bool no_overflow,tree c,tree s,bounds * bnds,bool exit_must_be_taken)550 number_of_iterations_ne_max (mpz_t bnd, bool no_overflow, tree c, tree s,
551 			     bounds *bnds, bool exit_must_be_taken)
552 {
553   double_int max;
554   mpz_t d;
555   bool bnds_u_valid = ((no_overflow && exit_must_be_taken)
556 		       || mpz_sgn (bnds->below) >= 0);
557 
558   if (multiple_of_p (TREE_TYPE (c), c, s))
559     {
560       /* If C is an exact multiple of S, then its value will be reached before
561 	 the induction variable overflows (unless the loop is exited in some
562 	 other way before).  Note that the actual induction variable in the
563 	 loop (which ranges from base to final instead of from 0 to C) may
564 	 overflow, in which case BNDS.up will not be giving a correct upper
565 	 bound on C; thus, BNDS_U_VALID had to be computed in advance.  */
566       no_overflow = true;
567       exit_must_be_taken = true;
568     }
569 
570   /* If the induction variable can overflow, the number of iterations is at
571      most the period of the control variable (or infinite, but in that case
572      the whole # of iterations analysis will fail).  */
573   if (!no_overflow)
574     {
575       max = double_int::mask (TYPE_PRECISION (TREE_TYPE (c))
576 			     - tree_low_cst (num_ending_zeros (s), 1));
577       mpz_set_double_int (bnd, max, true);
578       return;
579     }
580 
581   /* Now we know that the induction variable does not overflow, so the loop
582      iterates at most (range of type / S) times.  */
583   mpz_set_double_int (bnd, double_int::mask (TYPE_PRECISION (TREE_TYPE (c))),
584 		      true);
585 
586   /* If the induction variable is guaranteed to reach the value of C before
587      overflow, ... */
588   if (exit_must_be_taken)
589     {
590       /* ... then we can strengthen this to C / S, and possibly we can use
591 	 the upper bound on C given by BNDS.  */
592       if (TREE_CODE (c) == INTEGER_CST)
593 	mpz_set_double_int (bnd, tree_to_double_int (c), true);
594       else if (bnds_u_valid)
595 	mpz_set (bnd, bnds->up);
596     }
597 
598   mpz_init (d);
599   mpz_set_double_int (d, tree_to_double_int (s), true);
600   mpz_fdiv_q (bnd, bnd, d);
601   mpz_clear (d);
602 }
603 
604 /* Determines number of iterations of loop whose ending condition
605    is IV <> FINAL.  TYPE is the type of the iv.  The number of
606    iterations is stored to NITER.  EXIT_MUST_BE_TAKEN is true if
607    we know that the exit must be taken eventually, i.e., that the IV
608    ever reaches the value FINAL (we derived this earlier, and possibly set
609    NITER->assumptions to make sure this is the case).  BNDS contains the
610    bounds on the difference FINAL - IV->base.  */
611 
612 static bool
number_of_iterations_ne(tree type,affine_iv * iv,tree final,struct tree_niter_desc * niter,bool exit_must_be_taken,bounds * bnds)613 number_of_iterations_ne (tree type, affine_iv *iv, tree final,
614 			 struct tree_niter_desc *niter, bool exit_must_be_taken,
615 			 bounds *bnds)
616 {
617   tree niter_type = unsigned_type_for (type);
618   tree s, c, d, bits, assumption, tmp, bound;
619   mpz_t max;
620 
621   niter->control = *iv;
622   niter->bound = final;
623   niter->cmp = NE_EXPR;
624 
625   /* Rearrange the terms so that we get inequality S * i <> C, with S
626      positive.  Also cast everything to the unsigned type.  If IV does
627      not overflow, BNDS bounds the value of C.  Also, this is the
628      case if the computation |FINAL - IV->base| does not overflow, i.e.,
629      if BNDS->below in the result is nonnegative.  */
630   if (tree_int_cst_sign_bit (iv->step))
631     {
632       s = fold_convert (niter_type,
633 			fold_build1 (NEGATE_EXPR, type, iv->step));
634       c = fold_build2 (MINUS_EXPR, niter_type,
635 		       fold_convert (niter_type, iv->base),
636 		       fold_convert (niter_type, final));
637       bounds_negate (bnds);
638     }
639   else
640     {
641       s = fold_convert (niter_type, iv->step);
642       c = fold_build2 (MINUS_EXPR, niter_type,
643 		       fold_convert (niter_type, final),
644 		       fold_convert (niter_type, iv->base));
645     }
646 
647   mpz_init (max);
648   number_of_iterations_ne_max (max, iv->no_overflow, c, s, bnds,
649 			       exit_must_be_taken);
650   niter->max = mpz_get_double_int (niter_type, max, false);
651   mpz_clear (max);
652 
653   /* First the trivial cases -- when the step is 1.  */
654   if (integer_onep (s))
655     {
656       niter->niter = c;
657       return true;
658     }
659 
660   /* Let nsd (step, size of mode) = d.  If d does not divide c, the loop
661      is infinite.  Otherwise, the number of iterations is
662      (inverse(s/d) * (c/d)) mod (size of mode/d).  */
663   bits = num_ending_zeros (s);
664   bound = build_low_bits_mask (niter_type,
665 			       (TYPE_PRECISION (niter_type)
666 				- tree_low_cst (bits, 1)));
667 
668   d = fold_binary_to_constant (LSHIFT_EXPR, niter_type,
669 			       build_int_cst (niter_type, 1), bits);
670   s = fold_binary_to_constant (RSHIFT_EXPR, niter_type, s, bits);
671 
672   if (!exit_must_be_taken)
673     {
674       /* If we cannot assume that the exit is taken eventually, record the
675 	 assumptions for divisibility of c.  */
676       assumption = fold_build2 (FLOOR_MOD_EXPR, niter_type, c, d);
677       assumption = fold_build2 (EQ_EXPR, boolean_type_node,
678 				assumption, build_int_cst (niter_type, 0));
679       if (!integer_nonzerop (assumption))
680 	niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
681 					  niter->assumptions, assumption);
682     }
683 
684   c = fold_build2 (EXACT_DIV_EXPR, niter_type, c, d);
685   tmp = fold_build2 (MULT_EXPR, niter_type, c, inverse (s, bound));
686   niter->niter = fold_build2 (BIT_AND_EXPR, niter_type, tmp, bound);
687   return true;
688 }
689 
690 /* Checks whether we can determine the final value of the control variable
691    of the loop with ending condition IV0 < IV1 (computed in TYPE).
692    DELTA is the difference IV1->base - IV0->base, STEP is the absolute value
693    of the step.  The assumptions necessary to ensure that the computation
694    of the final value does not overflow are recorded in NITER.  If we
695    find the final value, we adjust DELTA and return TRUE.  Otherwise
696    we return false.  BNDS bounds the value of IV1->base - IV0->base,
697    and will be updated by the same amount as DELTA.  EXIT_MUST_BE_TAKEN is
698    true if we know that the exit must be taken eventually.  */
699 
700 static bool
number_of_iterations_lt_to_ne(tree type,affine_iv * iv0,affine_iv * iv1,struct tree_niter_desc * niter,tree * delta,tree step,bool exit_must_be_taken,bounds * bnds)701 number_of_iterations_lt_to_ne (tree type, affine_iv *iv0, affine_iv *iv1,
702 			       struct tree_niter_desc *niter,
703 			       tree *delta, tree step,
704 			       bool exit_must_be_taken, bounds *bnds)
705 {
706   tree niter_type = TREE_TYPE (step);
707   tree mod = fold_build2 (FLOOR_MOD_EXPR, niter_type, *delta, step);
708   tree tmod;
709   mpz_t mmod;
710   tree assumption = boolean_true_node, bound, noloop;
711   bool ret = false, fv_comp_no_overflow;
712   tree type1 = type;
713   if (POINTER_TYPE_P (type))
714     type1 = sizetype;
715 
716   if (TREE_CODE (mod) != INTEGER_CST)
717     return false;
718   if (integer_nonzerop (mod))
719     mod = fold_build2 (MINUS_EXPR, niter_type, step, mod);
720   tmod = fold_convert (type1, mod);
721 
722   mpz_init (mmod);
723   mpz_set_double_int (mmod, tree_to_double_int (mod), true);
724   mpz_neg (mmod, mmod);
725 
726   /* If the induction variable does not overflow and the exit is taken,
727      then the computation of the final value does not overflow.  This is
728      also obviously the case if the new final value is equal to the
729      current one.  Finally, we postulate this for pointer type variables,
730      as the code cannot rely on the object to that the pointer points being
731      placed at the end of the address space (and more pragmatically,
732      TYPE_{MIN,MAX}_VALUE is not defined for pointers).  */
733   if (integer_zerop (mod) || POINTER_TYPE_P (type))
734     fv_comp_no_overflow = true;
735   else if (!exit_must_be_taken)
736     fv_comp_no_overflow = false;
737   else
738     fv_comp_no_overflow =
739 	    (iv0->no_overflow && integer_nonzerop (iv0->step))
740 	    || (iv1->no_overflow && integer_nonzerop (iv1->step));
741 
742   if (integer_nonzerop (iv0->step))
743     {
744       /* The final value of the iv is iv1->base + MOD, assuming that this
745 	 computation does not overflow, and that
746 	 iv0->base <= iv1->base + MOD.  */
747       if (!fv_comp_no_overflow)
748 	{
749 	  bound = fold_build2 (MINUS_EXPR, type1,
750 			       TYPE_MAX_VALUE (type1), tmod);
751 	  assumption = fold_build2 (LE_EXPR, boolean_type_node,
752 				    iv1->base, bound);
753 	  if (integer_zerop (assumption))
754 	    goto end;
755 	}
756       if (mpz_cmp (mmod, bnds->below) < 0)
757 	noloop = boolean_false_node;
758       else if (POINTER_TYPE_P (type))
759 	noloop = fold_build2 (GT_EXPR, boolean_type_node,
760 			      iv0->base,
761 			      fold_build_pointer_plus (iv1->base, tmod));
762       else
763 	noloop = fold_build2 (GT_EXPR, boolean_type_node,
764 			      iv0->base,
765 			      fold_build2 (PLUS_EXPR, type1,
766 					   iv1->base, tmod));
767     }
768   else
769     {
770       /* The final value of the iv is iv0->base - MOD, assuming that this
771 	 computation does not overflow, and that
772 	 iv0->base - MOD <= iv1->base. */
773       if (!fv_comp_no_overflow)
774 	{
775 	  bound = fold_build2 (PLUS_EXPR, type1,
776 			       TYPE_MIN_VALUE (type1), tmod);
777 	  assumption = fold_build2 (GE_EXPR, boolean_type_node,
778 				    iv0->base, bound);
779 	  if (integer_zerop (assumption))
780 	    goto end;
781 	}
782       if (mpz_cmp (mmod, bnds->below) < 0)
783 	noloop = boolean_false_node;
784       else if (POINTER_TYPE_P (type))
785 	noloop = fold_build2 (GT_EXPR, boolean_type_node,
786 			      fold_build_pointer_plus (iv0->base,
787 						       fold_build1 (NEGATE_EXPR,
788 								    type1, tmod)),
789 			      iv1->base);
790       else
791 	noloop = fold_build2 (GT_EXPR, boolean_type_node,
792 			      fold_build2 (MINUS_EXPR, type1,
793 					   iv0->base, tmod),
794 			      iv1->base);
795     }
796 
797   if (!integer_nonzerop (assumption))
798     niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
799 				      niter->assumptions,
800 				      assumption);
801   if (!integer_zerop (noloop))
802     niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
803 				      niter->may_be_zero,
804 				      noloop);
805   bounds_add (bnds, tree_to_double_int (mod), type);
806   *delta = fold_build2 (PLUS_EXPR, niter_type, *delta, mod);
807 
808   ret = true;
809 end:
810   mpz_clear (mmod);
811   return ret;
812 }
813 
814 /* Add assertions to NITER that ensure that the control variable of the loop
815    with ending condition IV0 < IV1 does not overflow.  Types of IV0 and IV1
816    are TYPE.  Returns false if we can prove that there is an overflow, true
817    otherwise.  STEP is the absolute value of the step.  */
818 
819 static bool
assert_no_overflow_lt(tree type,affine_iv * iv0,affine_iv * iv1,struct tree_niter_desc * niter,tree step)820 assert_no_overflow_lt (tree type, affine_iv *iv0, affine_iv *iv1,
821 		       struct tree_niter_desc *niter, tree step)
822 {
823   tree bound, d, assumption, diff;
824   tree niter_type = TREE_TYPE (step);
825 
826   if (integer_nonzerop (iv0->step))
827     {
828       /* for (i = iv0->base; i < iv1->base; i += iv0->step) */
829       if (iv0->no_overflow)
830 	return true;
831 
832       /* If iv0->base is a constant, we can determine the last value before
833 	 overflow precisely; otherwise we conservatively assume
834 	 MAX - STEP + 1.  */
835 
836       if (TREE_CODE (iv0->base) == INTEGER_CST)
837 	{
838 	  d = fold_build2 (MINUS_EXPR, niter_type,
839 			   fold_convert (niter_type, TYPE_MAX_VALUE (type)),
840 			   fold_convert (niter_type, iv0->base));
841 	  diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
842 	}
843       else
844 	diff = fold_build2 (MINUS_EXPR, niter_type, step,
845 			    build_int_cst (niter_type, 1));
846       bound = fold_build2 (MINUS_EXPR, type,
847 			   TYPE_MAX_VALUE (type), fold_convert (type, diff));
848       assumption = fold_build2 (LE_EXPR, boolean_type_node,
849 				iv1->base, bound);
850     }
851   else
852     {
853       /* for (i = iv1->base; i > iv0->base; i += iv1->step) */
854       if (iv1->no_overflow)
855 	return true;
856 
857       if (TREE_CODE (iv1->base) == INTEGER_CST)
858 	{
859 	  d = fold_build2 (MINUS_EXPR, niter_type,
860 			   fold_convert (niter_type, iv1->base),
861 			   fold_convert (niter_type, TYPE_MIN_VALUE (type)));
862 	  diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
863 	}
864       else
865 	diff = fold_build2 (MINUS_EXPR, niter_type, step,
866 			    build_int_cst (niter_type, 1));
867       bound = fold_build2 (PLUS_EXPR, type,
868 			   TYPE_MIN_VALUE (type), fold_convert (type, diff));
869       assumption = fold_build2 (GE_EXPR, boolean_type_node,
870 				iv0->base, bound);
871     }
872 
873   if (integer_zerop (assumption))
874     return false;
875   if (!integer_nonzerop (assumption))
876     niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
877 				      niter->assumptions, assumption);
878 
879   iv0->no_overflow = true;
880   iv1->no_overflow = true;
881   return true;
882 }
883 
884 /* Add an assumption to NITER that a loop whose ending condition
885    is IV0 < IV1 rolls.  TYPE is the type of the control iv.  BNDS
886    bounds the value of IV1->base - IV0->base.  */
887 
888 static void
assert_loop_rolls_lt(tree type,affine_iv * iv0,affine_iv * iv1,struct tree_niter_desc * niter,bounds * bnds)889 assert_loop_rolls_lt (tree type, affine_iv *iv0, affine_iv *iv1,
890 		      struct tree_niter_desc *niter, bounds *bnds)
891 {
892   tree assumption = boolean_true_node, bound, diff;
893   tree mbz, mbzl, mbzr, type1;
894   bool rolls_p, no_overflow_p;
895   double_int dstep;
896   mpz_t mstep, max;
897 
898   /* We are going to compute the number of iterations as
899      (iv1->base - iv0->base + step - 1) / step, computed in the unsigned
900      variant of TYPE.  This formula only works if
901 
902      -step + 1 <= (iv1->base - iv0->base) <= MAX - step + 1
903 
904      (where MAX is the maximum value of the unsigned variant of TYPE, and
905      the computations in this formula are performed in full precision,
906      i.e., without overflows).
907 
908      Usually, for loops with exit condition iv0->base + step * i < iv1->base,
909      we have a condition of the form iv0->base - step < iv1->base before the loop,
910      and for loops iv0->base < iv1->base - step * i the condition
911      iv0->base < iv1->base + step, due to loop header copying, which enable us
912      to prove the lower bound.
913 
914      The upper bound is more complicated.  Unless the expressions for initial
915      and final value themselves contain enough information, we usually cannot
916      derive it from the context.  */
917 
918   /* First check whether the answer does not follow from the bounds we gathered
919      before.  */
920   if (integer_nonzerop (iv0->step))
921     dstep = tree_to_double_int (iv0->step);
922   else
923     {
924       dstep = tree_to_double_int (iv1->step).sext (TYPE_PRECISION (type));
925       dstep = -dstep;
926     }
927 
928   mpz_init (mstep);
929   mpz_set_double_int (mstep, dstep, true);
930   mpz_neg (mstep, mstep);
931   mpz_add_ui (mstep, mstep, 1);
932 
933   rolls_p = mpz_cmp (mstep, bnds->below) <= 0;
934 
935   mpz_init (max);
936   mpz_set_double_int (max, double_int::mask (TYPE_PRECISION (type)), true);
937   mpz_add (max, max, mstep);
938   no_overflow_p = (mpz_cmp (bnds->up, max) <= 0
939 		   /* For pointers, only values lying inside a single object
940 		      can be compared or manipulated by pointer arithmetics.
941 		      Gcc in general does not allow or handle objects larger
942 		      than half of the address space, hence the upper bound
943 		      is satisfied for pointers.  */
944 		   || POINTER_TYPE_P (type));
945   mpz_clear (mstep);
946   mpz_clear (max);
947 
948   if (rolls_p && no_overflow_p)
949     return;
950 
951   type1 = type;
952   if (POINTER_TYPE_P (type))
953     type1 = sizetype;
954 
955   /* Now the hard part; we must formulate the assumption(s) as expressions, and
956      we must be careful not to introduce overflow.  */
957 
958   if (integer_nonzerop (iv0->step))
959     {
960       diff = fold_build2 (MINUS_EXPR, type1,
961 			  iv0->step, build_int_cst (type1, 1));
962 
963       /* We need to know that iv0->base >= MIN + iv0->step - 1.  Since
964 	 0 address never belongs to any object, we can assume this for
965 	 pointers.  */
966       if (!POINTER_TYPE_P (type))
967 	{
968 	  bound = fold_build2 (PLUS_EXPR, type1,
969 			       TYPE_MIN_VALUE (type), diff);
970 	  assumption = fold_build2 (GE_EXPR, boolean_type_node,
971 				    iv0->base, bound);
972 	}
973 
974       /* And then we can compute iv0->base - diff, and compare it with
975 	 iv1->base.  */
976       mbzl = fold_build2 (MINUS_EXPR, type1,
977 			  fold_convert (type1, iv0->base), diff);
978       mbzr = fold_convert (type1, iv1->base);
979     }
980   else
981     {
982       diff = fold_build2 (PLUS_EXPR, type1,
983 			  iv1->step, build_int_cst (type1, 1));
984 
985       if (!POINTER_TYPE_P (type))
986 	{
987 	  bound = fold_build2 (PLUS_EXPR, type1,
988 			       TYPE_MAX_VALUE (type), diff);
989 	  assumption = fold_build2 (LE_EXPR, boolean_type_node,
990 				    iv1->base, bound);
991 	}
992 
993       mbzl = fold_convert (type1, iv0->base);
994       mbzr = fold_build2 (MINUS_EXPR, type1,
995 			  fold_convert (type1, iv1->base), diff);
996     }
997 
998   if (!integer_nonzerop (assumption))
999     niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1000 				      niter->assumptions, assumption);
1001   if (!rolls_p)
1002     {
1003       mbz = fold_build2 (GT_EXPR, boolean_type_node, mbzl, mbzr);
1004       niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1005 					niter->may_be_zero, mbz);
1006     }
1007 }
1008 
1009 /* Determines number of iterations of loop whose ending condition
1010    is IV0 < IV1.  TYPE is the type of the iv.  The number of
1011    iterations is stored to NITER.  BNDS bounds the difference
1012    IV1->base - IV0->base.  EXIT_MUST_BE_TAKEN is true if we know
1013    that the exit must be taken eventually.  */
1014 
1015 static bool
number_of_iterations_lt(tree type,affine_iv * iv0,affine_iv * iv1,struct tree_niter_desc * niter,bool exit_must_be_taken,bounds * bnds)1016 number_of_iterations_lt (tree type, affine_iv *iv0, affine_iv *iv1,
1017 			 struct tree_niter_desc *niter,
1018 			 bool exit_must_be_taken, bounds *bnds)
1019 {
1020   tree niter_type = unsigned_type_for (type);
1021   tree delta, step, s;
1022   mpz_t mstep, tmp;
1023 
1024   if (integer_nonzerop (iv0->step))
1025     {
1026       niter->control = *iv0;
1027       niter->cmp = LT_EXPR;
1028       niter->bound = iv1->base;
1029     }
1030   else
1031     {
1032       niter->control = *iv1;
1033       niter->cmp = GT_EXPR;
1034       niter->bound = iv0->base;
1035     }
1036 
1037   delta = fold_build2 (MINUS_EXPR, niter_type,
1038 		       fold_convert (niter_type, iv1->base),
1039 		       fold_convert (niter_type, iv0->base));
1040 
1041   /* First handle the special case that the step is +-1.  */
1042   if ((integer_onep (iv0->step) && integer_zerop (iv1->step))
1043       || (integer_all_onesp (iv1->step) && integer_zerop (iv0->step)))
1044     {
1045       /* for (i = iv0->base; i < iv1->base; i++)
1046 
1047 	 or
1048 
1049 	 for (i = iv1->base; i > iv0->base; i--).
1050 
1051 	 In both cases # of iterations is iv1->base - iv0->base, assuming that
1052 	 iv1->base >= iv0->base.
1053 
1054          First try to derive a lower bound on the value of
1055 	 iv1->base - iv0->base, computed in full precision.  If the difference
1056 	 is nonnegative, we are done, otherwise we must record the
1057 	 condition.  */
1058 
1059       if (mpz_sgn (bnds->below) < 0)
1060 	niter->may_be_zero = fold_build2 (LT_EXPR, boolean_type_node,
1061 					  iv1->base, iv0->base);
1062       niter->niter = delta;
1063       niter->max = mpz_get_double_int (niter_type, bnds->up, false);
1064       return true;
1065     }
1066 
1067   if (integer_nonzerop (iv0->step))
1068     step = fold_convert (niter_type, iv0->step);
1069   else
1070     step = fold_convert (niter_type,
1071 			 fold_build1 (NEGATE_EXPR, type, iv1->step));
1072 
1073   /* If we can determine the final value of the control iv exactly, we can
1074      transform the condition to != comparison.  In particular, this will be
1075      the case if DELTA is constant.  */
1076   if (number_of_iterations_lt_to_ne (type, iv0, iv1, niter, &delta, step,
1077 				     exit_must_be_taken, bnds))
1078     {
1079       affine_iv zps;
1080 
1081       zps.base = build_int_cst (niter_type, 0);
1082       zps.step = step;
1083       /* number_of_iterations_lt_to_ne will add assumptions that ensure that
1084 	 zps does not overflow.  */
1085       zps.no_overflow = true;
1086 
1087       return number_of_iterations_ne (type, &zps, delta, niter, true, bnds);
1088     }
1089 
1090   /* Make sure that the control iv does not overflow.  */
1091   if (!assert_no_overflow_lt (type, iv0, iv1, niter, step))
1092     return false;
1093 
1094   /* We determine the number of iterations as (delta + step - 1) / step.  For
1095      this to work, we must know that iv1->base >= iv0->base - step + 1,
1096      otherwise the loop does not roll.  */
1097   assert_loop_rolls_lt (type, iv0, iv1, niter, bnds);
1098 
1099   s = fold_build2 (MINUS_EXPR, niter_type,
1100 		   step, build_int_cst (niter_type, 1));
1101   delta = fold_build2 (PLUS_EXPR, niter_type, delta, s);
1102   niter->niter = fold_build2 (FLOOR_DIV_EXPR, niter_type, delta, step);
1103 
1104   mpz_init (mstep);
1105   mpz_init (tmp);
1106   mpz_set_double_int (mstep, tree_to_double_int (step), true);
1107   mpz_add (tmp, bnds->up, mstep);
1108   mpz_sub_ui (tmp, tmp, 1);
1109   mpz_fdiv_q (tmp, tmp, mstep);
1110   niter->max = mpz_get_double_int (niter_type, tmp, false);
1111   mpz_clear (mstep);
1112   mpz_clear (tmp);
1113 
1114   return true;
1115 }
1116 
1117 /* Determines number of iterations of loop whose ending condition
1118    is IV0 <= IV1.  TYPE is the type of the iv.  The number of
1119    iterations is stored to NITER.  EXIT_MUST_BE_TAKEN is true if
1120    we know that this condition must eventually become false (we derived this
1121    earlier, and possibly set NITER->assumptions to make sure this
1122    is the case).  BNDS bounds the difference IV1->base - IV0->base.  */
1123 
1124 static bool
number_of_iterations_le(tree type,affine_iv * iv0,affine_iv * iv1,struct tree_niter_desc * niter,bool exit_must_be_taken,bounds * bnds)1125 number_of_iterations_le (tree type, affine_iv *iv0, affine_iv *iv1,
1126 			 struct tree_niter_desc *niter, bool exit_must_be_taken,
1127 			 bounds *bnds)
1128 {
1129   tree assumption;
1130   tree type1 = type;
1131   if (POINTER_TYPE_P (type))
1132     type1 = sizetype;
1133 
1134   /* Say that IV0 is the control variable.  Then IV0 <= IV1 iff
1135      IV0 < IV1 + 1, assuming that IV1 is not equal to the greatest
1136      value of the type.  This we must know anyway, since if it is
1137      equal to this value, the loop rolls forever.  We do not check
1138      this condition for pointer type ivs, as the code cannot rely on
1139      the object to that the pointer points being placed at the end of
1140      the address space (and more pragmatically, TYPE_{MIN,MAX}_VALUE is
1141      not defined for pointers).  */
1142 
1143   if (!exit_must_be_taken && !POINTER_TYPE_P (type))
1144     {
1145       if (integer_nonzerop (iv0->step))
1146 	assumption = fold_build2 (NE_EXPR, boolean_type_node,
1147 				  iv1->base, TYPE_MAX_VALUE (type));
1148       else
1149 	assumption = fold_build2 (NE_EXPR, boolean_type_node,
1150 				  iv0->base, TYPE_MIN_VALUE (type));
1151 
1152       if (integer_zerop (assumption))
1153 	return false;
1154       if (!integer_nonzerop (assumption))
1155 	niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1156 					  niter->assumptions, assumption);
1157     }
1158 
1159   if (integer_nonzerop (iv0->step))
1160     {
1161       if (POINTER_TYPE_P (type))
1162 	iv1->base = fold_build_pointer_plus_hwi (iv1->base, 1);
1163       else
1164 	iv1->base = fold_build2 (PLUS_EXPR, type1, iv1->base,
1165 				 build_int_cst (type1, 1));
1166     }
1167   else if (POINTER_TYPE_P (type))
1168     iv0->base = fold_build_pointer_plus_hwi (iv0->base, -1);
1169   else
1170     iv0->base = fold_build2 (MINUS_EXPR, type1,
1171 			     iv0->base, build_int_cst (type1, 1));
1172 
1173   bounds_add (bnds, double_int_one, type1);
1174 
1175   return number_of_iterations_lt (type, iv0, iv1, niter, exit_must_be_taken,
1176 				  bnds);
1177 }
1178 
1179 /* Dumps description of affine induction variable IV to FILE.  */
1180 
1181 static void
dump_affine_iv(FILE * file,affine_iv * iv)1182 dump_affine_iv (FILE *file, affine_iv *iv)
1183 {
1184   if (!integer_zerop (iv->step))
1185     fprintf (file, "[");
1186 
1187   print_generic_expr (dump_file, iv->base, TDF_SLIM);
1188 
1189   if (!integer_zerop (iv->step))
1190     {
1191       fprintf (file, ", + , ");
1192       print_generic_expr (dump_file, iv->step, TDF_SLIM);
1193       fprintf (file, "]%s", iv->no_overflow ? "(no_overflow)" : "");
1194     }
1195 }
1196 
1197 /* Determine the number of iterations according to condition (for staying
1198    inside loop) which compares two induction variables using comparison
1199    operator CODE.  The induction variable on left side of the comparison
1200    is IV0, the right-hand side is IV1.  Both induction variables must have
1201    type TYPE, which must be an integer or pointer type.  The steps of the
1202    ivs must be constants (or NULL_TREE, which is interpreted as constant zero).
1203 
1204    LOOP is the loop whose number of iterations we are determining.
1205 
1206    ONLY_EXIT is true if we are sure this is the only way the loop could be
1207    exited (including possibly non-returning function calls, exceptions, etc.)
1208    -- in this case we can use the information whether the control induction
1209    variables can overflow or not in a more efficient way.
1210 
1211    if EVERY_ITERATION is true, we know the test is executed on every iteration.
1212 
1213    The results (number of iterations and assumptions as described in
1214    comments at struct tree_niter_desc in tree-flow.h) are stored to NITER.
1215    Returns false if it fails to determine number of iterations, true if it
1216    was determined (possibly with some assumptions).  */
1217 
1218 static bool
number_of_iterations_cond(struct loop * loop,tree type,affine_iv * iv0,enum tree_code code,affine_iv * iv1,struct tree_niter_desc * niter,bool only_exit,bool every_iteration)1219 number_of_iterations_cond (struct loop *loop,
1220 			   tree type, affine_iv *iv0, enum tree_code code,
1221 			   affine_iv *iv1, struct tree_niter_desc *niter,
1222 			   bool only_exit, bool every_iteration)
1223 {
1224   bool exit_must_be_taken = false, ret;
1225   bounds bnds;
1226 
1227   /* If the test is not executed every iteration, wrapping may make the test
1228      to pass again.
1229      TODO: the overflow case can be still used as unreliable estimate of upper
1230      bound.  But we have no API to pass it down to number of iterations code
1231      and, at present, it will not use it anyway.  */
1232   if (!every_iteration
1233       && (!iv0->no_overflow || !iv1->no_overflow
1234 	  || code == NE_EXPR || code == EQ_EXPR))
1235     return false;
1236 
1237   /* The meaning of these assumptions is this:
1238      if !assumptions
1239        then the rest of information does not have to be valid
1240      if may_be_zero then the loop does not roll, even if
1241        niter != 0.  */
1242   niter->assumptions = boolean_true_node;
1243   niter->may_be_zero = boolean_false_node;
1244   niter->niter = NULL_TREE;
1245   niter->max = double_int_zero;
1246 
1247   niter->bound = NULL_TREE;
1248   niter->cmp = ERROR_MARK;
1249 
1250   /* Make < comparison from > ones, and for NE_EXPR comparisons, ensure that
1251      the control variable is on lhs.  */
1252   if (code == GE_EXPR || code == GT_EXPR
1253       || (code == NE_EXPR && integer_zerop (iv0->step)))
1254     {
1255       SWAP (iv0, iv1);
1256       code = swap_tree_comparison (code);
1257     }
1258 
1259   if (POINTER_TYPE_P (type))
1260     {
1261       /* Comparison of pointers is undefined unless both iv0 and iv1 point
1262 	 to the same object.  If they do, the control variable cannot wrap
1263 	 (as wrap around the bounds of memory will never return a pointer
1264 	 that would be guaranteed to point to the same object, even if we
1265 	 avoid undefined behavior by casting to size_t and back).  */
1266       iv0->no_overflow = true;
1267       iv1->no_overflow = true;
1268     }
1269 
1270   /* If the control induction variable does not overflow and the only exit
1271      from the loop is the one that we analyze, we know it must be taken
1272      eventually.  */
1273   if (only_exit)
1274     {
1275       if (!integer_zerop (iv0->step) && iv0->no_overflow)
1276 	exit_must_be_taken = true;
1277       else if (!integer_zerop (iv1->step) && iv1->no_overflow)
1278 	exit_must_be_taken = true;
1279     }
1280 
1281   /* We can handle the case when neither of the sides of the comparison is
1282      invariant, provided that the test is NE_EXPR.  This rarely occurs in
1283      practice, but it is simple enough to manage.  */
1284   if (!integer_zerop (iv0->step) && !integer_zerop (iv1->step))
1285     {
1286       tree step_type = POINTER_TYPE_P (type) ? sizetype : type;
1287       if (code != NE_EXPR)
1288 	return false;
1289 
1290       iv0->step = fold_binary_to_constant (MINUS_EXPR, step_type,
1291 					   iv0->step, iv1->step);
1292       iv0->no_overflow = false;
1293       iv1->step = build_int_cst (step_type, 0);
1294       iv1->no_overflow = true;
1295     }
1296 
1297   /* If the result of the comparison is a constant,  the loop is weird.  More
1298      precise handling would be possible, but the situation is not common enough
1299      to waste time on it.  */
1300   if (integer_zerop (iv0->step) && integer_zerop (iv1->step))
1301     return false;
1302 
1303   /* Ignore loops of while (i-- < 10) type.  */
1304   if (code != NE_EXPR)
1305     {
1306       if (iv0->step && tree_int_cst_sign_bit (iv0->step))
1307 	return false;
1308 
1309       if (!integer_zerop (iv1->step) && !tree_int_cst_sign_bit (iv1->step))
1310 	return false;
1311     }
1312 
1313   /* If the loop exits immediately, there is nothing to do.  */
1314   if (integer_zerop (fold_build2 (code, boolean_type_node, iv0->base, iv1->base)))
1315     {
1316       niter->niter = build_int_cst (unsigned_type_for (type), 0);
1317       niter->max = double_int_zero;
1318       return true;
1319     }
1320 
1321   /* OK, now we know we have a senseful loop.  Handle several cases, depending
1322      on what comparison operator is used.  */
1323   bound_difference (loop, iv1->base, iv0->base, &bnds);
1324 
1325   if (dump_file && (dump_flags & TDF_DETAILS))
1326     {
1327       fprintf (dump_file,
1328 	       "Analyzing # of iterations of loop %d\n", loop->num);
1329 
1330       fprintf (dump_file, "  exit condition ");
1331       dump_affine_iv (dump_file, iv0);
1332       fprintf (dump_file, " %s ",
1333 	       code == NE_EXPR ? "!="
1334 	       : code == LT_EXPR ? "<"
1335 	       : "<=");
1336       dump_affine_iv (dump_file, iv1);
1337       fprintf (dump_file, "\n");
1338 
1339       fprintf (dump_file, "  bounds on difference of bases: ");
1340       mpz_out_str (dump_file, 10, bnds.below);
1341       fprintf (dump_file, " ... ");
1342       mpz_out_str (dump_file, 10, bnds.up);
1343       fprintf (dump_file, "\n");
1344     }
1345 
1346   switch (code)
1347     {
1348     case NE_EXPR:
1349       gcc_assert (integer_zerop (iv1->step));
1350       ret = number_of_iterations_ne (type, iv0, iv1->base, niter,
1351 				     exit_must_be_taken, &bnds);
1352       break;
1353 
1354     case LT_EXPR:
1355       ret = number_of_iterations_lt (type, iv0, iv1, niter, exit_must_be_taken,
1356 				     &bnds);
1357       break;
1358 
1359     case LE_EXPR:
1360       ret = number_of_iterations_le (type, iv0, iv1, niter, exit_must_be_taken,
1361 				     &bnds);
1362       break;
1363 
1364     default:
1365       gcc_unreachable ();
1366     }
1367 
1368   mpz_clear (bnds.up);
1369   mpz_clear (bnds.below);
1370 
1371   if (dump_file && (dump_flags & TDF_DETAILS))
1372     {
1373       if (ret)
1374 	{
1375 	  fprintf (dump_file, "  result:\n");
1376 	  if (!integer_nonzerop (niter->assumptions))
1377 	    {
1378 	      fprintf (dump_file, "    under assumptions ");
1379 	      print_generic_expr (dump_file, niter->assumptions, TDF_SLIM);
1380 	      fprintf (dump_file, "\n");
1381 	    }
1382 
1383 	  if (!integer_zerop (niter->may_be_zero))
1384 	    {
1385 	      fprintf (dump_file, "    zero if ");
1386 	      print_generic_expr (dump_file, niter->may_be_zero, TDF_SLIM);
1387 	      fprintf (dump_file, "\n");
1388 	    }
1389 
1390 	  fprintf (dump_file, "    # of iterations ");
1391 	  print_generic_expr (dump_file, niter->niter, TDF_SLIM);
1392 	  fprintf (dump_file, ", bounded by ");
1393 	  dump_double_int (dump_file, niter->max, true);
1394 	  fprintf (dump_file, "\n");
1395 	}
1396       else
1397 	fprintf (dump_file, "  failed\n\n");
1398     }
1399   return ret;
1400 }
1401 
1402 /* Substitute NEW for OLD in EXPR and fold the result.  */
1403 
1404 static tree
simplify_replace_tree(tree expr,tree old,tree new_tree)1405 simplify_replace_tree (tree expr, tree old, tree new_tree)
1406 {
1407   unsigned i, n;
1408   tree ret = NULL_TREE, e, se;
1409 
1410   if (!expr)
1411     return NULL_TREE;
1412 
1413   /* Do not bother to replace constants.  */
1414   if (CONSTANT_CLASS_P (old))
1415     return expr;
1416 
1417   if (expr == old
1418       || operand_equal_p (expr, old, 0))
1419     return unshare_expr (new_tree);
1420 
1421   if (!EXPR_P (expr))
1422     return expr;
1423 
1424   n = TREE_OPERAND_LENGTH (expr);
1425   for (i = 0; i < n; i++)
1426     {
1427       e = TREE_OPERAND (expr, i);
1428       se = simplify_replace_tree (e, old, new_tree);
1429       if (e == se)
1430 	continue;
1431 
1432       if (!ret)
1433 	ret = copy_node (expr);
1434 
1435       TREE_OPERAND (ret, i) = se;
1436     }
1437 
1438   return (ret ? fold (ret) : expr);
1439 }
1440 
1441 /* Expand definitions of ssa names in EXPR as long as they are simple
1442    enough, and return the new expression.  */
1443 
1444 tree
expand_simple_operations(tree expr)1445 expand_simple_operations (tree expr)
1446 {
1447   unsigned i, n;
1448   tree ret = NULL_TREE, e, ee, e1;
1449   enum tree_code code;
1450   gimple stmt;
1451 
1452   if (expr == NULL_TREE)
1453     return expr;
1454 
1455   if (is_gimple_min_invariant (expr))
1456     return expr;
1457 
1458   code = TREE_CODE (expr);
1459   if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
1460     {
1461       n = TREE_OPERAND_LENGTH (expr);
1462       for (i = 0; i < n; i++)
1463 	{
1464 	  e = TREE_OPERAND (expr, i);
1465 	  ee = expand_simple_operations (e);
1466 	  if (e == ee)
1467 	    continue;
1468 
1469 	  if (!ret)
1470 	    ret = copy_node (expr);
1471 
1472 	  TREE_OPERAND (ret, i) = ee;
1473 	}
1474 
1475       if (!ret)
1476 	return expr;
1477 
1478       fold_defer_overflow_warnings ();
1479       ret = fold (ret);
1480       fold_undefer_and_ignore_overflow_warnings ();
1481       return ret;
1482     }
1483 
1484   if (TREE_CODE (expr) != SSA_NAME)
1485     return expr;
1486 
1487   stmt = SSA_NAME_DEF_STMT (expr);
1488   if (gimple_code (stmt) == GIMPLE_PHI)
1489     {
1490       basic_block src, dest;
1491 
1492       if (gimple_phi_num_args (stmt) != 1)
1493 	return expr;
1494       e = PHI_ARG_DEF (stmt, 0);
1495 
1496       /* Avoid propagating through loop exit phi nodes, which
1497 	 could break loop-closed SSA form restrictions.  */
1498       dest = gimple_bb (stmt);
1499       src = single_pred (dest);
1500       if (TREE_CODE (e) == SSA_NAME
1501 	  && src->loop_father != dest->loop_father)
1502 	return expr;
1503 
1504       return expand_simple_operations (e);
1505     }
1506   if (gimple_code (stmt) != GIMPLE_ASSIGN)
1507     return expr;
1508 
1509   e = gimple_assign_rhs1 (stmt);
1510   code = gimple_assign_rhs_code (stmt);
1511   if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1512     {
1513       if (is_gimple_min_invariant (e))
1514 	return e;
1515 
1516       if (code == SSA_NAME)
1517 	return expand_simple_operations (e);
1518 
1519       return expr;
1520     }
1521 
1522   switch (code)
1523     {
1524     CASE_CONVERT:
1525       /* Casts are simple.  */
1526       ee = expand_simple_operations (e);
1527       return fold_build1 (code, TREE_TYPE (expr), ee);
1528 
1529     case PLUS_EXPR:
1530     case MINUS_EXPR:
1531     case POINTER_PLUS_EXPR:
1532       /* And increments and decrements by a constant are simple.  */
1533       e1 = gimple_assign_rhs2 (stmt);
1534       if (!is_gimple_min_invariant (e1))
1535 	return expr;
1536 
1537       ee = expand_simple_operations (e);
1538       return fold_build2 (code, TREE_TYPE (expr), ee, e1);
1539 
1540     default:
1541       return expr;
1542     }
1543 }
1544 
1545 /* Tries to simplify EXPR using the condition COND.  Returns the simplified
1546    expression (or EXPR unchanged, if no simplification was possible).  */
1547 
1548 static tree
tree_simplify_using_condition_1(tree cond,tree expr)1549 tree_simplify_using_condition_1 (tree cond, tree expr)
1550 {
1551   bool changed;
1552   tree e, te, e0, e1, e2, notcond;
1553   enum tree_code code = TREE_CODE (expr);
1554 
1555   if (code == INTEGER_CST)
1556     return expr;
1557 
1558   if (code == TRUTH_OR_EXPR
1559       || code == TRUTH_AND_EXPR
1560       || code == COND_EXPR)
1561     {
1562       changed = false;
1563 
1564       e0 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 0));
1565       if (TREE_OPERAND (expr, 0) != e0)
1566 	changed = true;
1567 
1568       e1 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 1));
1569       if (TREE_OPERAND (expr, 1) != e1)
1570 	changed = true;
1571 
1572       if (code == COND_EXPR)
1573 	{
1574 	  e2 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 2));
1575 	  if (TREE_OPERAND (expr, 2) != e2)
1576 	    changed = true;
1577 	}
1578       else
1579 	e2 = NULL_TREE;
1580 
1581       if (changed)
1582 	{
1583 	  if (code == COND_EXPR)
1584 	    expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
1585 	  else
1586 	    expr = fold_build2 (code, boolean_type_node, e0, e1);
1587 	}
1588 
1589       return expr;
1590     }
1591 
1592   /* In case COND is equality, we may be able to simplify EXPR by copy/constant
1593      propagation, and vice versa.  Fold does not handle this, since it is
1594      considered too expensive.  */
1595   if (TREE_CODE (cond) == EQ_EXPR)
1596     {
1597       e0 = TREE_OPERAND (cond, 0);
1598       e1 = TREE_OPERAND (cond, 1);
1599 
1600       /* We know that e0 == e1.  Check whether we cannot simplify expr
1601 	 using this fact.  */
1602       e = simplify_replace_tree (expr, e0, e1);
1603       if (integer_zerop (e) || integer_nonzerop (e))
1604 	return e;
1605 
1606       e = simplify_replace_tree (expr, e1, e0);
1607       if (integer_zerop (e) || integer_nonzerop (e))
1608 	return e;
1609     }
1610   if (TREE_CODE (expr) == EQ_EXPR)
1611     {
1612       e0 = TREE_OPERAND (expr, 0);
1613       e1 = TREE_OPERAND (expr, 1);
1614 
1615       /* If e0 == e1 (EXPR) implies !COND, then EXPR cannot be true.  */
1616       e = simplify_replace_tree (cond, e0, e1);
1617       if (integer_zerop (e))
1618 	return e;
1619       e = simplify_replace_tree (cond, e1, e0);
1620       if (integer_zerop (e))
1621 	return e;
1622     }
1623   if (TREE_CODE (expr) == NE_EXPR)
1624     {
1625       e0 = TREE_OPERAND (expr, 0);
1626       e1 = TREE_OPERAND (expr, 1);
1627 
1628       /* If e0 == e1 (!EXPR) implies !COND, then EXPR must be true.  */
1629       e = simplify_replace_tree (cond, e0, e1);
1630       if (integer_zerop (e))
1631 	return boolean_true_node;
1632       e = simplify_replace_tree (cond, e1, e0);
1633       if (integer_zerop (e))
1634 	return boolean_true_node;
1635     }
1636 
1637   te = expand_simple_operations (expr);
1638 
1639   /* Check whether COND ==> EXPR.  */
1640   notcond = invert_truthvalue (cond);
1641   e = fold_binary (TRUTH_OR_EXPR, boolean_type_node, notcond, te);
1642   if (e && integer_nonzerop (e))
1643     return e;
1644 
1645   /* Check whether COND ==> not EXPR.  */
1646   e = fold_binary (TRUTH_AND_EXPR, boolean_type_node, cond, te);
1647   if (e && integer_zerop (e))
1648     return e;
1649 
1650   return expr;
1651 }
1652 
1653 /* Tries to simplify EXPR using the condition COND.  Returns the simplified
1654    expression (or EXPR unchanged, if no simplification was possible).
1655    Wrapper around tree_simplify_using_condition_1 that ensures that chains
1656    of simple operations in definitions of ssa names in COND are expanded,
1657    so that things like casts or incrementing the value of the bound before
1658    the loop do not cause us to fail.  */
1659 
1660 static tree
tree_simplify_using_condition(tree cond,tree expr)1661 tree_simplify_using_condition (tree cond, tree expr)
1662 {
1663   cond = expand_simple_operations (cond);
1664 
1665   return tree_simplify_using_condition_1 (cond, expr);
1666 }
1667 
1668 /* Tries to simplify EXPR using the conditions on entry to LOOP.
1669    Returns the simplified expression (or EXPR unchanged, if no
1670    simplification was possible).*/
1671 
1672 static tree
simplify_using_initial_conditions(struct loop * loop,tree expr)1673 simplify_using_initial_conditions (struct loop *loop, tree expr)
1674 {
1675   edge e;
1676   basic_block bb;
1677   gimple stmt;
1678   tree cond;
1679   int cnt = 0;
1680 
1681   if (TREE_CODE (expr) == INTEGER_CST)
1682     return expr;
1683 
1684   /* Limit walking the dominators to avoid quadraticness in
1685      the number of BBs times the number of loops in degenerate
1686      cases.  */
1687   for (bb = loop->header;
1688        bb != ENTRY_BLOCK_PTR && cnt < MAX_DOMINATORS_TO_WALK;
1689        bb = get_immediate_dominator (CDI_DOMINATORS, bb))
1690     {
1691       if (!single_pred_p (bb))
1692 	continue;
1693       e = single_pred_edge (bb);
1694 
1695       if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
1696 	continue;
1697 
1698       stmt = last_stmt (e->src);
1699       cond = fold_build2 (gimple_cond_code (stmt),
1700 			  boolean_type_node,
1701 			  gimple_cond_lhs (stmt),
1702 			  gimple_cond_rhs (stmt));
1703       if (e->flags & EDGE_FALSE_VALUE)
1704 	cond = invert_truthvalue (cond);
1705       expr = tree_simplify_using_condition (cond, expr);
1706       ++cnt;
1707     }
1708 
1709   return expr;
1710 }
1711 
1712 /* Tries to simplify EXPR using the evolutions of the loop invariants
1713    in the superloops of LOOP.  Returns the simplified expression
1714    (or EXPR unchanged, if no simplification was possible).  */
1715 
1716 static tree
simplify_using_outer_evolutions(struct loop * loop,tree expr)1717 simplify_using_outer_evolutions (struct loop *loop, tree expr)
1718 {
1719   enum tree_code code = TREE_CODE (expr);
1720   bool changed;
1721   tree e, e0, e1, e2;
1722 
1723   if (is_gimple_min_invariant (expr))
1724     return expr;
1725 
1726   if (code == TRUTH_OR_EXPR
1727       || code == TRUTH_AND_EXPR
1728       || code == COND_EXPR)
1729     {
1730       changed = false;
1731 
1732       e0 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 0));
1733       if (TREE_OPERAND (expr, 0) != e0)
1734 	changed = true;
1735 
1736       e1 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 1));
1737       if (TREE_OPERAND (expr, 1) != e1)
1738 	changed = true;
1739 
1740       if (code == COND_EXPR)
1741 	{
1742 	  e2 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 2));
1743 	  if (TREE_OPERAND (expr, 2) != e2)
1744 	    changed = true;
1745 	}
1746       else
1747 	e2 = NULL_TREE;
1748 
1749       if (changed)
1750 	{
1751 	  if (code == COND_EXPR)
1752 	    expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
1753 	  else
1754 	    expr = fold_build2 (code, boolean_type_node, e0, e1);
1755 	}
1756 
1757       return expr;
1758     }
1759 
1760   e = instantiate_parameters (loop, expr);
1761   if (is_gimple_min_invariant (e))
1762     return e;
1763 
1764   return expr;
1765 }
1766 
1767 /* Returns true if EXIT is the only possible exit from LOOP.  */
1768 
1769 bool
loop_only_exit_p(const struct loop * loop,const_edge exit)1770 loop_only_exit_p (const struct loop *loop, const_edge exit)
1771 {
1772   basic_block *body;
1773   gimple_stmt_iterator bsi;
1774   unsigned i;
1775   gimple call;
1776 
1777   if (exit != single_exit (loop))
1778     return false;
1779 
1780   body = get_loop_body (loop);
1781   for (i = 0; i < loop->num_nodes; i++)
1782     {
1783       for (bsi = gsi_start_bb (body[i]); !gsi_end_p (bsi); gsi_next (&bsi))
1784 	{
1785 	  call = gsi_stmt (bsi);
1786 	  if (gimple_code (call) != GIMPLE_CALL)
1787 	    continue;
1788 
1789 	  if (gimple_has_side_effects (call))
1790 	    {
1791 	      free (body);
1792 	      return false;
1793 	    }
1794 	}
1795     }
1796 
1797   free (body);
1798   return true;
1799 }
1800 
1801 /* Stores description of number of iterations of LOOP derived from
1802    EXIT (an exit edge of the LOOP) in NITER.  Returns true if some
1803    useful information could be derived (and fields of NITER has
1804    meaning described in comments at struct tree_niter_desc
1805    declaration), false otherwise.  If WARN is true and
1806    -Wunsafe-loop-optimizations was given, warn if the optimizer is going to use
1807    potentially unsafe assumptions.
1808    When EVERY_ITERATION is true, only tests that are known to be executed
1809    every iteration are considered (i.e. only test that alone bounds the loop).
1810  */
1811 
1812 bool
number_of_iterations_exit(struct loop * loop,edge exit,struct tree_niter_desc * niter,bool warn,bool every_iteration)1813 number_of_iterations_exit (struct loop *loop, edge exit,
1814 			   struct tree_niter_desc *niter,
1815 			   bool warn, bool every_iteration)
1816 {
1817   gimple stmt;
1818   tree type;
1819   tree op0, op1;
1820   enum tree_code code;
1821   affine_iv iv0, iv1;
1822   bool safe;
1823 
1824   safe = dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src);
1825 
1826   if (every_iteration && !safe)
1827     return false;
1828 
1829   niter->assumptions = boolean_false_node;
1830   stmt = last_stmt (exit->src);
1831   if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1832     return false;
1833 
1834   /* We want the condition for staying inside loop.  */
1835   code = gimple_cond_code (stmt);
1836   if (exit->flags & EDGE_TRUE_VALUE)
1837     code = invert_tree_comparison (code, false);
1838 
1839   switch (code)
1840     {
1841     case GT_EXPR:
1842     case GE_EXPR:
1843     case LT_EXPR:
1844     case LE_EXPR:
1845     case NE_EXPR:
1846       break;
1847 
1848     default:
1849       return false;
1850     }
1851 
1852   op0 = gimple_cond_lhs (stmt);
1853   op1 = gimple_cond_rhs (stmt);
1854   type = TREE_TYPE (op0);
1855 
1856   if (TREE_CODE (type) != INTEGER_TYPE
1857       && !POINTER_TYPE_P (type))
1858     return false;
1859 
1860   if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, false))
1861     return false;
1862   if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, false))
1863     return false;
1864 
1865   /* We don't want to see undefined signed overflow warnings while
1866      computing the number of iterations.  */
1867   fold_defer_overflow_warnings ();
1868 
1869   iv0.base = expand_simple_operations (iv0.base);
1870   iv1.base = expand_simple_operations (iv1.base);
1871   if (!number_of_iterations_cond (loop, type, &iv0, code, &iv1, niter,
1872 				  loop_only_exit_p (loop, exit), safe))
1873     {
1874       fold_undefer_and_ignore_overflow_warnings ();
1875       return false;
1876     }
1877 
1878   if (optimize >= 3)
1879     {
1880       niter->assumptions = simplify_using_outer_evolutions (loop,
1881 							    niter->assumptions);
1882       niter->may_be_zero = simplify_using_outer_evolutions (loop,
1883 							    niter->may_be_zero);
1884       niter->niter = simplify_using_outer_evolutions (loop, niter->niter);
1885     }
1886 
1887   niter->assumptions
1888 	  = simplify_using_initial_conditions (loop,
1889 					       niter->assumptions);
1890   niter->may_be_zero
1891 	  = simplify_using_initial_conditions (loop,
1892 					       niter->may_be_zero);
1893 
1894   fold_undefer_and_ignore_overflow_warnings ();
1895 
1896   /* If NITER has simplified into a constant, update MAX.  */
1897   if (TREE_CODE (niter->niter) == INTEGER_CST)
1898     niter->max = tree_to_double_int (niter->niter);
1899 
1900   if (integer_onep (niter->assumptions))
1901     return true;
1902 
1903   /* With -funsafe-loop-optimizations we assume that nothing bad can happen.
1904      But if we can prove that there is overflow or some other source of weird
1905      behavior, ignore the loop even with -funsafe-loop-optimizations.  */
1906   if (integer_zerop (niter->assumptions) || !single_exit (loop))
1907     return false;
1908 
1909   if (flag_unsafe_loop_optimizations)
1910     niter->assumptions = boolean_true_node;
1911 
1912   if (warn)
1913     {
1914       const char *wording;
1915       location_t loc = gimple_location (stmt);
1916 
1917       /* We can provide a more specific warning if one of the operator is
1918 	 constant and the other advances by +1 or -1.  */
1919       if (!integer_zerop (iv1.step)
1920 	  ? (integer_zerop (iv0.step)
1921 	     && (integer_onep (iv1.step) || integer_all_onesp (iv1.step)))
1922 	  : (integer_onep (iv0.step) || integer_all_onesp (iv0.step)))
1923         wording =
1924           flag_unsafe_loop_optimizations
1925           ? N_("assuming that the loop is not infinite")
1926           : N_("cannot optimize possibly infinite loops");
1927       else
1928 	wording =
1929 	  flag_unsafe_loop_optimizations
1930 	  ? N_("assuming that the loop counter does not overflow")
1931 	  : N_("cannot optimize loop, the loop counter may overflow");
1932 
1933       warning_at ((LOCATION_LINE (loc) > 0) ? loc : input_location,
1934 		  OPT_Wunsafe_loop_optimizations, "%s", gettext (wording));
1935     }
1936 
1937   return flag_unsafe_loop_optimizations;
1938 }
1939 
1940 /* Try to determine the number of iterations of LOOP.  If we succeed,
1941    expression giving number of iterations is returned and *EXIT is
1942    set to the edge from that the information is obtained.  Otherwise
1943    chrec_dont_know is returned.  */
1944 
1945 tree
find_loop_niter(struct loop * loop,edge * exit)1946 find_loop_niter (struct loop *loop, edge *exit)
1947 {
1948   unsigned i;
1949   vec<edge> exits = get_loop_exit_edges (loop);
1950   edge ex;
1951   tree niter = NULL_TREE, aniter;
1952   struct tree_niter_desc desc;
1953 
1954   *exit = NULL;
1955   FOR_EACH_VEC_ELT (exits, i, ex)
1956     {
1957       if (!number_of_iterations_exit (loop, ex, &desc, false))
1958 	continue;
1959 
1960       if (integer_nonzerop (desc.may_be_zero))
1961 	{
1962 	  /* We exit in the first iteration through this exit.
1963 	     We won't find anything better.  */
1964 	  niter = build_int_cst (unsigned_type_node, 0);
1965 	  *exit = ex;
1966 	  break;
1967 	}
1968 
1969       if (!integer_zerop (desc.may_be_zero))
1970 	continue;
1971 
1972       aniter = desc.niter;
1973 
1974       if (!niter)
1975 	{
1976 	  /* Nothing recorded yet.  */
1977 	  niter = aniter;
1978 	  *exit = ex;
1979 	  continue;
1980 	}
1981 
1982       /* Prefer constants, the lower the better.  */
1983       if (TREE_CODE (aniter) != INTEGER_CST)
1984 	continue;
1985 
1986       if (TREE_CODE (niter) != INTEGER_CST)
1987 	{
1988 	  niter = aniter;
1989 	  *exit = ex;
1990 	  continue;
1991 	}
1992 
1993       if (tree_int_cst_lt (aniter, niter))
1994 	{
1995 	  niter = aniter;
1996 	  *exit = ex;
1997 	  continue;
1998 	}
1999     }
2000   exits.release ();
2001 
2002   return niter ? niter : chrec_dont_know;
2003 }
2004 
2005 /* Return true if loop is known to have bounded number of iterations.  */
2006 
2007 bool
finite_loop_p(struct loop * loop)2008 finite_loop_p (struct loop *loop)
2009 {
2010   double_int nit;
2011   int flags;
2012 
2013   if (flag_unsafe_loop_optimizations)
2014     return true;
2015   flags = flags_from_decl_or_type (current_function_decl);
2016   if ((flags & (ECF_CONST|ECF_PURE)) && !(flags & ECF_LOOPING_CONST_OR_PURE))
2017     {
2018       if (dump_file && (dump_flags & TDF_DETAILS))
2019 	fprintf (dump_file, "Found loop %i to be finite: it is within pure or const function.\n",
2020 		 loop->num);
2021       return true;
2022     }
2023 
2024   if (loop->any_upper_bound
2025       || max_loop_iterations (loop, &nit))
2026     {
2027       if (dump_file && (dump_flags & TDF_DETAILS))
2028 	fprintf (dump_file, "Found loop %i to be finite: upper bound found.\n",
2029 		 loop->num);
2030       return true;
2031     }
2032   return false;
2033 }
2034 
2035 /*
2036 
2037    Analysis of a number of iterations of a loop by a brute-force evaluation.
2038 
2039 */
2040 
2041 /* Bound on the number of iterations we try to evaluate.  */
2042 
2043 #define MAX_ITERATIONS_TO_TRACK \
2044   ((unsigned) PARAM_VALUE (PARAM_MAX_ITERATIONS_TO_TRACK))
2045 
2046 /* Returns the loop phi node of LOOP such that ssa name X is derived from its
2047    result by a chain of operations such that all but exactly one of their
2048    operands are constants.  */
2049 
2050 static gimple
chain_of_csts_start(struct loop * loop,tree x)2051 chain_of_csts_start (struct loop *loop, tree x)
2052 {
2053   gimple stmt = SSA_NAME_DEF_STMT (x);
2054   tree use;
2055   basic_block bb = gimple_bb (stmt);
2056   enum tree_code code;
2057 
2058   if (!bb
2059       || !flow_bb_inside_loop_p (loop, bb))
2060     return NULL;
2061 
2062   if (gimple_code (stmt) == GIMPLE_PHI)
2063     {
2064       if (bb == loop->header)
2065 	return stmt;
2066 
2067       return NULL;
2068     }
2069 
2070   if (gimple_code (stmt) != GIMPLE_ASSIGN)
2071     return NULL;
2072 
2073   code = gimple_assign_rhs_code (stmt);
2074   if (gimple_references_memory_p (stmt)
2075       || TREE_CODE_CLASS (code) == tcc_reference
2076       || (code == ADDR_EXPR
2077 	  && !is_gimple_min_invariant (gimple_assign_rhs1 (stmt))))
2078     return NULL;
2079 
2080   use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
2081   if (use == NULL_TREE)
2082     return NULL;
2083 
2084   return chain_of_csts_start (loop, use);
2085 }
2086 
2087 /* Determines whether the expression X is derived from a result of a phi node
2088    in header of LOOP such that
2089 
2090    * the derivation of X consists only from operations with constants
2091    * the initial value of the phi node is constant
2092    * the value of the phi node in the next iteration can be derived from the
2093      value in the current iteration by a chain of operations with constants.
2094 
2095    If such phi node exists, it is returned, otherwise NULL is returned.  */
2096 
2097 static gimple
get_base_for(struct loop * loop,tree x)2098 get_base_for (struct loop *loop, tree x)
2099 {
2100   gimple phi;
2101   tree init, next;
2102 
2103   if (is_gimple_min_invariant (x))
2104     return NULL;
2105 
2106   phi = chain_of_csts_start (loop, x);
2107   if (!phi)
2108     return NULL;
2109 
2110   init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2111   next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2112 
2113   if (TREE_CODE (next) != SSA_NAME)
2114     return NULL;
2115 
2116   if (!is_gimple_min_invariant (init))
2117     return NULL;
2118 
2119   if (chain_of_csts_start (loop, next) != phi)
2120     return NULL;
2121 
2122   return phi;
2123 }
2124 
2125 /* Given an expression X, then
2126 
2127    * if X is NULL_TREE, we return the constant BASE.
2128    * otherwise X is a SSA name, whose value in the considered loop is derived
2129      by a chain of operations with constant from a result of a phi node in
2130      the header of the loop.  Then we return value of X when the value of the
2131      result of this phi node is given by the constant BASE.  */
2132 
2133 static tree
get_val_for(tree x,tree base)2134 get_val_for (tree x, tree base)
2135 {
2136   gimple stmt;
2137 
2138   gcc_assert (is_gimple_min_invariant (base));
2139 
2140   if (!x)
2141     return base;
2142 
2143   stmt = SSA_NAME_DEF_STMT (x);
2144   if (gimple_code (stmt) == GIMPLE_PHI)
2145     return base;
2146 
2147   gcc_assert (is_gimple_assign (stmt));
2148 
2149   /* STMT must be either an assignment of a single SSA name or an
2150      expression involving an SSA name and a constant.  Try to fold that
2151      expression using the value for the SSA name.  */
2152   if (gimple_assign_ssa_name_copy_p (stmt))
2153     return get_val_for (gimple_assign_rhs1 (stmt), base);
2154   else if (gimple_assign_rhs_class (stmt) == GIMPLE_UNARY_RHS
2155 	   && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
2156     {
2157       return fold_build1 (gimple_assign_rhs_code (stmt),
2158 			  gimple_expr_type (stmt),
2159 			  get_val_for (gimple_assign_rhs1 (stmt), base));
2160     }
2161   else if (gimple_assign_rhs_class (stmt) == GIMPLE_BINARY_RHS)
2162     {
2163       tree rhs1 = gimple_assign_rhs1 (stmt);
2164       tree rhs2 = gimple_assign_rhs2 (stmt);
2165       if (TREE_CODE (rhs1) == SSA_NAME)
2166 	rhs1 = get_val_for (rhs1, base);
2167       else if (TREE_CODE (rhs2) == SSA_NAME)
2168 	rhs2 = get_val_for (rhs2, base);
2169       else
2170 	gcc_unreachable ();
2171       return fold_build2 (gimple_assign_rhs_code (stmt),
2172 			  gimple_expr_type (stmt), rhs1, rhs2);
2173     }
2174   else
2175     gcc_unreachable ();
2176 }
2177 
2178 
2179 /* Tries to count the number of iterations of LOOP till it exits by EXIT
2180    by brute force -- i.e. by determining the value of the operands of the
2181    condition at EXIT in first few iterations of the loop (assuming that
2182    these values are constant) and determining the first one in that the
2183    condition is not satisfied.  Returns the constant giving the number
2184    of the iterations of LOOP if successful, chrec_dont_know otherwise.  */
2185 
2186 tree
loop_niter_by_eval(struct loop * loop,edge exit)2187 loop_niter_by_eval (struct loop *loop, edge exit)
2188 {
2189   tree acnd;
2190   tree op[2], val[2], next[2], aval[2];
2191   gimple phi, cond;
2192   unsigned i, j;
2193   enum tree_code cmp;
2194 
2195   cond = last_stmt (exit->src);
2196   if (!cond || gimple_code (cond) != GIMPLE_COND)
2197     return chrec_dont_know;
2198 
2199   cmp = gimple_cond_code (cond);
2200   if (exit->flags & EDGE_TRUE_VALUE)
2201     cmp = invert_tree_comparison (cmp, false);
2202 
2203   switch (cmp)
2204     {
2205     case EQ_EXPR:
2206     case NE_EXPR:
2207     case GT_EXPR:
2208     case GE_EXPR:
2209     case LT_EXPR:
2210     case LE_EXPR:
2211       op[0] = gimple_cond_lhs (cond);
2212       op[1] = gimple_cond_rhs (cond);
2213       break;
2214 
2215     default:
2216       return chrec_dont_know;
2217     }
2218 
2219   for (j = 0; j < 2; j++)
2220     {
2221       if (is_gimple_min_invariant (op[j]))
2222 	{
2223 	  val[j] = op[j];
2224 	  next[j] = NULL_TREE;
2225 	  op[j] = NULL_TREE;
2226 	}
2227       else
2228 	{
2229 	  phi = get_base_for (loop, op[j]);
2230 	  if (!phi)
2231 	    return chrec_dont_know;
2232 	  val[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2233 	  next[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2234 	}
2235     }
2236 
2237   /* Don't issue signed overflow warnings.  */
2238   fold_defer_overflow_warnings ();
2239 
2240   for (i = 0; i < MAX_ITERATIONS_TO_TRACK; i++)
2241     {
2242       for (j = 0; j < 2; j++)
2243 	aval[j] = get_val_for (op[j], val[j]);
2244 
2245       acnd = fold_binary (cmp, boolean_type_node, aval[0], aval[1]);
2246       if (acnd && integer_zerop (acnd))
2247 	{
2248 	  fold_undefer_and_ignore_overflow_warnings ();
2249 	  if (dump_file && (dump_flags & TDF_DETAILS))
2250 	    fprintf (dump_file,
2251 		     "Proved that loop %d iterates %d times using brute force.\n",
2252 		     loop->num, i);
2253 	  return build_int_cst (unsigned_type_node, i);
2254 	}
2255 
2256       for (j = 0; j < 2; j++)
2257 	{
2258 	  val[j] = get_val_for (next[j], val[j]);
2259 	  if (!is_gimple_min_invariant (val[j]))
2260 	    {
2261 	      fold_undefer_and_ignore_overflow_warnings ();
2262 	      return chrec_dont_know;
2263 	    }
2264 	}
2265     }
2266 
2267   fold_undefer_and_ignore_overflow_warnings ();
2268 
2269   return chrec_dont_know;
2270 }
2271 
2272 /* Finds the exit of the LOOP by that the loop exits after a constant
2273    number of iterations and stores the exit edge to *EXIT.  The constant
2274    giving the number of iterations of LOOP is returned.  The number of
2275    iterations is determined using loop_niter_by_eval (i.e. by brute force
2276    evaluation).  If we are unable to find the exit for that loop_niter_by_eval
2277    determines the number of iterations, chrec_dont_know is returned.  */
2278 
2279 tree
find_loop_niter_by_eval(struct loop * loop,edge * exit)2280 find_loop_niter_by_eval (struct loop *loop, edge *exit)
2281 {
2282   unsigned i;
2283   vec<edge> exits = get_loop_exit_edges (loop);
2284   edge ex;
2285   tree niter = NULL_TREE, aniter;
2286 
2287   *exit = NULL;
2288 
2289   /* Loops with multiple exits are expensive to handle and less important.  */
2290   if (!flag_expensive_optimizations
2291       && exits.length () > 1)
2292     {
2293       exits.release ();
2294       return chrec_dont_know;
2295     }
2296 
2297   FOR_EACH_VEC_ELT (exits, i, ex)
2298     {
2299       if (!just_once_each_iteration_p (loop, ex->src))
2300 	continue;
2301 
2302       aniter = loop_niter_by_eval (loop, ex);
2303       if (chrec_contains_undetermined (aniter))
2304 	continue;
2305 
2306       if (niter
2307 	  && !tree_int_cst_lt (aniter, niter))
2308 	continue;
2309 
2310       niter = aniter;
2311       *exit = ex;
2312     }
2313   exits.release ();
2314 
2315   return niter ? niter : chrec_dont_know;
2316 }
2317 
2318 /*
2319 
2320    Analysis of upper bounds on number of iterations of a loop.
2321 
2322 */
2323 
2324 static double_int derive_constant_upper_bound_ops (tree, tree,
2325 						   enum tree_code, tree);
2326 
2327 /* Returns a constant upper bound on the value of the right-hand side of
2328    an assignment statement STMT.  */
2329 
2330 static double_int
derive_constant_upper_bound_assign(gimple stmt)2331 derive_constant_upper_bound_assign (gimple stmt)
2332 {
2333   enum tree_code code = gimple_assign_rhs_code (stmt);
2334   tree op0 = gimple_assign_rhs1 (stmt);
2335   tree op1 = gimple_assign_rhs2 (stmt);
2336 
2337   return derive_constant_upper_bound_ops (TREE_TYPE (gimple_assign_lhs (stmt)),
2338 					  op0, code, op1);
2339 }
2340 
2341 /* Returns a constant upper bound on the value of expression VAL.  VAL
2342    is considered to be unsigned.  If its type is signed, its value must
2343    be nonnegative.  */
2344 
2345 static double_int
derive_constant_upper_bound(tree val)2346 derive_constant_upper_bound (tree val)
2347 {
2348   enum tree_code code;
2349   tree op0, op1;
2350 
2351   extract_ops_from_tree (val, &code, &op0, &op1);
2352   return derive_constant_upper_bound_ops (TREE_TYPE (val), op0, code, op1);
2353 }
2354 
2355 /* Returns a constant upper bound on the value of expression OP0 CODE OP1,
2356    whose type is TYPE.  The expression is considered to be unsigned.  If
2357    its type is signed, its value must be nonnegative.  */
2358 
2359 static double_int
derive_constant_upper_bound_ops(tree type,tree op0,enum tree_code code,tree op1)2360 derive_constant_upper_bound_ops (tree type, tree op0,
2361 				 enum tree_code code, tree op1)
2362 {
2363   tree subtype, maxt;
2364   double_int bnd, max, mmax, cst;
2365   gimple stmt;
2366 
2367   if (INTEGRAL_TYPE_P (type))
2368     maxt = TYPE_MAX_VALUE (type);
2369   else
2370     maxt = upper_bound_in_type (type, type);
2371 
2372   max = tree_to_double_int (maxt);
2373 
2374   switch (code)
2375     {
2376     case INTEGER_CST:
2377       return tree_to_double_int (op0);
2378 
2379     CASE_CONVERT:
2380       subtype = TREE_TYPE (op0);
2381       if (!TYPE_UNSIGNED (subtype)
2382 	  /* If TYPE is also signed, the fact that VAL is nonnegative implies
2383 	     that OP0 is nonnegative.  */
2384 	  && TYPE_UNSIGNED (type)
2385 	  && !tree_expr_nonnegative_p (op0))
2386 	{
2387 	  /* If we cannot prove that the casted expression is nonnegative,
2388 	     we cannot establish more useful upper bound than the precision
2389 	     of the type gives us.  */
2390 	  return max;
2391 	}
2392 
2393       /* We now know that op0 is an nonnegative value.  Try deriving an upper
2394 	 bound for it.  */
2395       bnd = derive_constant_upper_bound (op0);
2396 
2397       /* If the bound does not fit in TYPE, max. value of TYPE could be
2398 	 attained.  */
2399       if (max.ult (bnd))
2400 	return max;
2401 
2402       return bnd;
2403 
2404     case PLUS_EXPR:
2405     case POINTER_PLUS_EXPR:
2406     case MINUS_EXPR:
2407       if (TREE_CODE (op1) != INTEGER_CST
2408 	  || !tree_expr_nonnegative_p (op0))
2409 	return max;
2410 
2411       /* Canonicalize to OP0 - CST.  Consider CST to be signed, in order to
2412 	 choose the most logical way how to treat this constant regardless
2413 	 of the signedness of the type.  */
2414       cst = tree_to_double_int (op1);
2415       cst = cst.sext (TYPE_PRECISION (type));
2416       if (code != MINUS_EXPR)
2417 	cst = -cst;
2418 
2419       bnd = derive_constant_upper_bound (op0);
2420 
2421       if (cst.is_negative ())
2422 	{
2423 	  cst = -cst;
2424 	  /* Avoid CST == 0x80000...  */
2425 	  if (cst.is_negative ())
2426 	    return max;;
2427 
2428 	  /* OP0 + CST.  We need to check that
2429 	     BND <= MAX (type) - CST.  */
2430 
2431 	  mmax -= cst;
2432 	  if (bnd.ugt (mmax))
2433 	    return max;
2434 
2435 	  return bnd + cst;
2436 	}
2437       else
2438 	{
2439 	  /* OP0 - CST, where CST >= 0.
2440 
2441 	     If TYPE is signed, we have already verified that OP0 >= 0, and we
2442 	     know that the result is nonnegative.  This implies that
2443 	     VAL <= BND - CST.
2444 
2445 	     If TYPE is unsigned, we must additionally know that OP0 >= CST,
2446 	     otherwise the operation underflows.
2447 	   */
2448 
2449 	  /* This should only happen if the type is unsigned; however, for
2450 	     buggy programs that use overflowing signed arithmetics even with
2451 	     -fno-wrapv, this condition may also be true for signed values.  */
2452 	  if (bnd.ult (cst))
2453 	    return max;
2454 
2455 	  if (TYPE_UNSIGNED (type))
2456 	    {
2457 	      tree tem = fold_binary (GE_EXPR, boolean_type_node, op0,
2458 				      double_int_to_tree (type, cst));
2459 	      if (!tem || integer_nonzerop (tem))
2460 		return max;
2461 	    }
2462 
2463 	  bnd -= cst;
2464 	}
2465 
2466       return bnd;
2467 
2468     case FLOOR_DIV_EXPR:
2469     case EXACT_DIV_EXPR:
2470       if (TREE_CODE (op1) != INTEGER_CST
2471 	  || tree_int_cst_sign_bit (op1))
2472 	return max;
2473 
2474       bnd = derive_constant_upper_bound (op0);
2475       return bnd.udiv (tree_to_double_int (op1), FLOOR_DIV_EXPR);
2476 
2477     case BIT_AND_EXPR:
2478       if (TREE_CODE (op1) != INTEGER_CST
2479 	  || tree_int_cst_sign_bit (op1))
2480 	return max;
2481       return tree_to_double_int (op1);
2482 
2483     case SSA_NAME:
2484       stmt = SSA_NAME_DEF_STMT (op0);
2485       if (gimple_code (stmt) != GIMPLE_ASSIGN
2486 	  || gimple_assign_lhs (stmt) != op0)
2487 	return max;
2488       return derive_constant_upper_bound_assign (stmt);
2489 
2490     default:
2491       return max;
2492     }
2493 }
2494 
2495 /* Records that every statement in LOOP is executed I_BOUND times.
2496    REALISTIC is true if I_BOUND is expected to be close to the real number
2497    of iterations.  UPPER is true if we are sure the loop iterates at most
2498    I_BOUND times.  */
2499 
2500 void
record_niter_bound(struct loop * loop,double_int i_bound,bool realistic,bool upper)2501 record_niter_bound (struct loop *loop, double_int i_bound, bool realistic,
2502 		    bool upper)
2503 {
2504   /* Update the bounds only when there is no previous estimation, or when the
2505      current estimation is smaller.  */
2506   if (upper
2507       && (!loop->any_upper_bound
2508 	  || i_bound.ult (loop->nb_iterations_upper_bound)))
2509     {
2510       loop->any_upper_bound = true;
2511       loop->nb_iterations_upper_bound = i_bound;
2512     }
2513   if (realistic
2514       && (!loop->any_estimate
2515 	  || i_bound.ult (loop->nb_iterations_estimate)))
2516     {
2517       loop->any_estimate = true;
2518       loop->nb_iterations_estimate = i_bound;
2519     }
2520 
2521   /* If an upper bound is smaller than the realistic estimate of the
2522      number of iterations, use the upper bound instead.  */
2523   if (loop->any_upper_bound
2524       && loop->any_estimate
2525       && loop->nb_iterations_upper_bound.ult (loop->nb_iterations_estimate))
2526     loop->nb_iterations_estimate = loop->nb_iterations_upper_bound;
2527 }
2528 
2529 /* Emit a -Waggressive-loop-optimizations warning if needed.  */
2530 
2531 static void
do_warn_aggressive_loop_optimizations(struct loop * loop,double_int i_bound,gimple stmt)2532 do_warn_aggressive_loop_optimizations (struct loop *loop,
2533 				       double_int i_bound, gimple stmt)
2534 {
2535   /* Don't warn if the loop doesn't have known constant bound.  */
2536   if (!loop->nb_iterations
2537       || TREE_CODE (loop->nb_iterations) != INTEGER_CST
2538       || !warn_aggressive_loop_optimizations
2539       /* To avoid warning multiple times for the same loop,
2540 	 only start warning when we preserve loops.  */
2541       || (cfun->curr_properties & PROP_loops) == 0
2542       /* Only warn once per loop.  */
2543       || loop->warned_aggressive_loop_optimizations
2544       /* Only warn if undefined behavior gives us lower estimate than the
2545 	 known constant bound.  */
2546       || i_bound.ucmp (tree_to_double_int (loop->nb_iterations)) >= 0
2547       /* And undefined behavior happens unconditionally.  */
2548       || !dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (stmt)))
2549     return;
2550 
2551   edge e = single_exit (loop);
2552   if (e == NULL)
2553     return;
2554 
2555   gimple estmt = last_stmt (e->src);
2556   if (warning_at (gimple_location (stmt), OPT_Waggressive_loop_optimizations,
2557 		  "iteration %E invokes undefined behavior",
2558 		  double_int_to_tree (TREE_TYPE (loop->nb_iterations),
2559 				      i_bound)))
2560     inform (gimple_location (estmt), "containing loop");
2561   loop->warned_aggressive_loop_optimizations = true;
2562 }
2563 
2564 /* Records that AT_STMT is executed at most BOUND + 1 times in LOOP.  IS_EXIT
2565    is true if the loop is exited immediately after STMT, and this exit
2566    is taken at last when the STMT is executed BOUND + 1 times.
2567    REALISTIC is true if BOUND is expected to be close to the real number
2568    of iterations.  UPPER is true if we are sure the loop iterates at most
2569    BOUND times.  I_BOUND is an unsigned double_int upper estimate on BOUND.  */
2570 
2571 static void
record_estimate(struct loop * loop,tree bound,double_int i_bound,gimple at_stmt,bool is_exit,bool realistic,bool upper)2572 record_estimate (struct loop *loop, tree bound, double_int i_bound,
2573 		 gimple at_stmt, bool is_exit, bool realistic, bool upper)
2574 {
2575   double_int delta;
2576 
2577   if (dump_file && (dump_flags & TDF_DETAILS))
2578     {
2579       fprintf (dump_file, "Statement %s", is_exit ? "(exit)" : "");
2580       print_gimple_stmt (dump_file, at_stmt, 0, TDF_SLIM);
2581       fprintf (dump_file, " is %sexecuted at most ",
2582 	       upper ? "" : "probably ");
2583       print_generic_expr (dump_file, bound, TDF_SLIM);
2584       fprintf (dump_file, " (bounded by ");
2585       dump_double_int (dump_file, i_bound, true);
2586       fprintf (dump_file, ") + 1 times in loop %d.\n", loop->num);
2587     }
2588 
2589   /* If the I_BOUND is just an estimate of BOUND, it rarely is close to the
2590      real number of iterations.  */
2591   if (TREE_CODE (bound) != INTEGER_CST)
2592     realistic = false;
2593   else
2594     gcc_checking_assert (i_bound == tree_to_double_int (bound));
2595   if (!upper && !realistic)
2596     return;
2597 
2598   /* If we have a guaranteed upper bound, record it in the appropriate
2599      list, unless this is an !is_exit bound (i.e. undefined behavior in
2600      at_stmt) in a loop with known constant number of iterations.  */
2601   if (upper
2602       && (is_exit
2603 	  || loop->nb_iterations == NULL_TREE
2604 	  || TREE_CODE (loop->nb_iterations) != INTEGER_CST))
2605     {
2606       struct nb_iter_bound *elt = ggc_alloc_nb_iter_bound ();
2607 
2608       elt->bound = i_bound;
2609       elt->stmt = at_stmt;
2610       elt->is_exit = is_exit;
2611       elt->next = loop->bounds;
2612       loop->bounds = elt;
2613     }
2614 
2615   /* If statement is executed on every path to the loop latch, we can directly
2616      infer the upper bound on the # of iterations of the loop.  */
2617   if (!dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (at_stmt)))
2618     return;
2619 
2620   /* Update the number of iteration estimates according to the bound.
2621      If at_stmt is an exit then the loop latch is executed at most BOUND times,
2622      otherwise it can be executed BOUND + 1 times.  We will lower the estimate
2623      later if such statement must be executed on last iteration  */
2624   if (is_exit)
2625     delta = double_int_zero;
2626   else
2627     delta = double_int_one;
2628   i_bound += delta;
2629 
2630   /* If an overflow occurred, ignore the result.  */
2631   if (i_bound.ult (delta))
2632     return;
2633 
2634   if (upper && !is_exit)
2635     do_warn_aggressive_loop_optimizations (loop, i_bound, at_stmt);
2636   record_niter_bound (loop, i_bound, realistic, upper);
2637 }
2638 
2639 /* Record the estimate on number of iterations of LOOP based on the fact that
2640    the induction variable BASE + STEP * i evaluated in STMT does not wrap and
2641    its values belong to the range <LOW, HIGH>.  REALISTIC is true if the
2642    estimated number of iterations is expected to be close to the real one.
2643    UPPER is true if we are sure the induction variable does not wrap.  */
2644 
2645 static void
record_nonwrapping_iv(struct loop * loop,tree base,tree step,gimple stmt,tree low,tree high,bool realistic,bool upper)2646 record_nonwrapping_iv (struct loop *loop, tree base, tree step, gimple stmt,
2647 		       tree low, tree high, bool realistic, bool upper)
2648 {
2649   tree niter_bound, extreme, delta;
2650   tree type = TREE_TYPE (base), unsigned_type;
2651   double_int max;
2652 
2653   if (TREE_CODE (step) != INTEGER_CST || integer_zerop (step))
2654     return;
2655 
2656   if (dump_file && (dump_flags & TDF_DETAILS))
2657     {
2658       fprintf (dump_file, "Induction variable (");
2659       print_generic_expr (dump_file, TREE_TYPE (base), TDF_SLIM);
2660       fprintf (dump_file, ") ");
2661       print_generic_expr (dump_file, base, TDF_SLIM);
2662       fprintf (dump_file, " + ");
2663       print_generic_expr (dump_file, step, TDF_SLIM);
2664       fprintf (dump_file, " * iteration does not wrap in statement ");
2665       print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2666       fprintf (dump_file, " in loop %d.\n", loop->num);
2667     }
2668 
2669   unsigned_type = unsigned_type_for (type);
2670   base = fold_convert (unsigned_type, base);
2671   step = fold_convert (unsigned_type, step);
2672 
2673   if (tree_int_cst_sign_bit (step))
2674     {
2675       extreme = fold_convert (unsigned_type, low);
2676       if (TREE_CODE (base) != INTEGER_CST)
2677 	base = fold_convert (unsigned_type, high);
2678       delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
2679       step = fold_build1 (NEGATE_EXPR, unsigned_type, step);
2680     }
2681   else
2682     {
2683       extreme = fold_convert (unsigned_type, high);
2684       if (TREE_CODE (base) != INTEGER_CST)
2685 	base = fold_convert (unsigned_type, low);
2686       delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
2687     }
2688 
2689   /* STMT is executed at most NITER_BOUND + 1 times, since otherwise the value
2690      would get out of the range.  */
2691   niter_bound = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step);
2692   max = derive_constant_upper_bound (niter_bound);
2693   record_estimate (loop, niter_bound, max, stmt, false, realistic, upper);
2694 }
2695 
2696 /* Determine information about number of iterations a LOOP from the index
2697    IDX of a data reference accessed in STMT.  RELIABLE is true if STMT is
2698    guaranteed to be executed in every iteration of LOOP.  Callback for
2699    for_each_index.  */
2700 
2701 struct ilb_data
2702 {
2703   struct loop *loop;
2704   gimple stmt;
2705 };
2706 
2707 static bool
idx_infer_loop_bounds(tree base,tree * idx,void * dta)2708 idx_infer_loop_bounds (tree base, tree *idx, void *dta)
2709 {
2710   struct ilb_data *data = (struct ilb_data *) dta;
2711   tree ev, init, step;
2712   tree low, high, type, next;
2713   bool sign, upper = true, at_end = false;
2714   struct loop *loop = data->loop;
2715   bool reliable = true;
2716 
2717   if (TREE_CODE (base) != ARRAY_REF)
2718     return true;
2719 
2720   /* For arrays at the end of the structure, we are not guaranteed that they
2721      do not really extend over their declared size.  However, for arrays of
2722      size greater than one, this is unlikely to be intended.  */
2723   if (array_at_struct_end_p (base))
2724     {
2725       at_end = true;
2726       upper = false;
2727     }
2728 
2729   struct loop *dloop = loop_containing_stmt (data->stmt);
2730   if (!dloop)
2731     return true;
2732 
2733   ev = analyze_scalar_evolution (dloop, *idx);
2734   ev = instantiate_parameters (loop, ev);
2735   init = initial_condition (ev);
2736   step = evolution_part_in_loop_num (ev, loop->num);
2737 
2738   if (!init
2739       || !step
2740       || TREE_CODE (step) != INTEGER_CST
2741       || integer_zerop (step)
2742       || tree_contains_chrecs (init, NULL)
2743       || chrec_contains_symbols_defined_in_loop (init, loop->num))
2744     return true;
2745 
2746   low = array_ref_low_bound (base);
2747   high = array_ref_up_bound (base);
2748 
2749   /* The case of nonconstant bounds could be handled, but it would be
2750      complicated.  */
2751   if (TREE_CODE (low) != INTEGER_CST
2752       || !high
2753       || TREE_CODE (high) != INTEGER_CST)
2754     return true;
2755   sign = tree_int_cst_sign_bit (step);
2756   type = TREE_TYPE (step);
2757 
2758   /* The array of length 1 at the end of a structure most likely extends
2759      beyond its bounds.  */
2760   if (at_end
2761       && operand_equal_p (low, high, 0))
2762     return true;
2763 
2764   /* In case the relevant bound of the array does not fit in type, or
2765      it does, but bound + step (in type) still belongs into the range of the
2766      array, the index may wrap and still stay within the range of the array
2767      (consider e.g. if the array is indexed by the full range of
2768      unsigned char).
2769 
2770      To make things simpler, we require both bounds to fit into type, although
2771      there are cases where this would not be strictly necessary.  */
2772   if (!int_fits_type_p (high, type)
2773       || !int_fits_type_p (low, type))
2774     return true;
2775   low = fold_convert (type, low);
2776   high = fold_convert (type, high);
2777 
2778   if (sign)
2779     next = fold_binary (PLUS_EXPR, type, low, step);
2780   else
2781     next = fold_binary (PLUS_EXPR, type, high, step);
2782 
2783   if (tree_int_cst_compare (low, next) <= 0
2784       && tree_int_cst_compare (next, high) <= 0)
2785     return true;
2786 
2787   /* If access is not executed on every iteration, we must ensure that overlow may
2788      not make the access valid later.  */
2789   if (!dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (data->stmt))
2790       && scev_probably_wraps_p (initial_condition_in_loop_num (ev, loop->num),
2791 				step, data->stmt, loop, true))
2792     reliable = false;
2793 
2794   record_nonwrapping_iv (loop, init, step, data->stmt, low, high, reliable, upper);
2795   return true;
2796 }
2797 
2798 /* Determine information about number of iterations a LOOP from the bounds
2799    of arrays in the data reference REF accessed in STMT.  RELIABLE is true if
2800    STMT is guaranteed to be executed in every iteration of LOOP.*/
2801 
2802 static void
infer_loop_bounds_from_ref(struct loop * loop,gimple stmt,tree ref)2803 infer_loop_bounds_from_ref (struct loop *loop, gimple stmt, tree ref)
2804 {
2805   struct ilb_data data;
2806 
2807   data.loop = loop;
2808   data.stmt = stmt;
2809   for_each_index (&ref, idx_infer_loop_bounds, &data);
2810 }
2811 
2812 /* Determine information about number of iterations of a LOOP from the way
2813    arrays are used in STMT.  RELIABLE is true if STMT is guaranteed to be
2814    executed in every iteration of LOOP.  */
2815 
2816 static void
infer_loop_bounds_from_array(struct loop * loop,gimple stmt)2817 infer_loop_bounds_from_array (struct loop *loop, gimple stmt)
2818 {
2819   if (is_gimple_assign (stmt))
2820     {
2821       tree op0 = gimple_assign_lhs (stmt);
2822       tree op1 = gimple_assign_rhs1 (stmt);
2823 
2824       /* For each memory access, analyze its access function
2825 	 and record a bound on the loop iteration domain.  */
2826       if (REFERENCE_CLASS_P (op0))
2827 	infer_loop_bounds_from_ref (loop, stmt, op0);
2828 
2829       if (REFERENCE_CLASS_P (op1))
2830 	infer_loop_bounds_from_ref (loop, stmt, op1);
2831     }
2832   else if (is_gimple_call (stmt))
2833     {
2834       tree arg, lhs;
2835       unsigned i, n = gimple_call_num_args (stmt);
2836 
2837       lhs = gimple_call_lhs (stmt);
2838       if (lhs && REFERENCE_CLASS_P (lhs))
2839 	infer_loop_bounds_from_ref (loop, stmt, lhs);
2840 
2841       for (i = 0; i < n; i++)
2842 	{
2843 	  arg = gimple_call_arg (stmt, i);
2844 	  if (REFERENCE_CLASS_P (arg))
2845 	    infer_loop_bounds_from_ref (loop, stmt, arg);
2846 	}
2847     }
2848 }
2849 
2850 /* Determine information about number of iterations of a LOOP from the fact
2851    that pointer arithmetics in STMT does not overflow.  */
2852 
2853 static void
infer_loop_bounds_from_pointer_arith(struct loop * loop,gimple stmt)2854 infer_loop_bounds_from_pointer_arith (struct loop *loop, gimple stmt)
2855 {
2856   tree def, base, step, scev, type, low, high;
2857   tree var, ptr;
2858 
2859   if (!is_gimple_assign (stmt)
2860       || gimple_assign_rhs_code (stmt) != POINTER_PLUS_EXPR)
2861     return;
2862 
2863   def = gimple_assign_lhs (stmt);
2864   if (TREE_CODE (def) != SSA_NAME)
2865     return;
2866 
2867   type = TREE_TYPE (def);
2868   if (!nowrap_type_p (type))
2869     return;
2870 
2871   ptr = gimple_assign_rhs1 (stmt);
2872   if (!expr_invariant_in_loop_p (loop, ptr))
2873     return;
2874 
2875   var = gimple_assign_rhs2 (stmt);
2876   if (TYPE_PRECISION (type) != TYPE_PRECISION (TREE_TYPE (var)))
2877     return;
2878 
2879   scev = instantiate_parameters (loop, analyze_scalar_evolution (loop, def));
2880   if (chrec_contains_undetermined (scev))
2881     return;
2882 
2883   base = initial_condition_in_loop_num (scev, loop->num);
2884   step = evolution_part_in_loop_num (scev, loop->num);
2885 
2886   if (!base || !step
2887       || TREE_CODE (step) != INTEGER_CST
2888       || tree_contains_chrecs (base, NULL)
2889       || chrec_contains_symbols_defined_in_loop (base, loop->num))
2890     return;
2891 
2892   low = lower_bound_in_type (type, type);
2893   high = upper_bound_in_type (type, type);
2894 
2895   /* In C, pointer arithmetic p + 1 cannot use a NULL pointer, and p - 1 cannot
2896      produce a NULL pointer.  The contrary would mean NULL points to an object,
2897      while NULL is supposed to compare unequal with the address of all objects.
2898      Furthermore, p + 1 cannot produce a NULL pointer and p - 1 cannot use a
2899      NULL pointer since that would mean wrapping, which we assume here not to
2900      happen.  So, we can exclude NULL from the valid range of pointer
2901      arithmetic.  */
2902   if (flag_delete_null_pointer_checks && int_cst_value (low) == 0)
2903     low = build_int_cstu (TREE_TYPE (low), TYPE_ALIGN_UNIT (TREE_TYPE (type)));
2904 
2905   record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
2906 }
2907 
2908 /* Determine information about number of iterations of a LOOP from the fact
2909    that signed arithmetics in STMT does not overflow.  */
2910 
2911 static void
infer_loop_bounds_from_signedness(struct loop * loop,gimple stmt)2912 infer_loop_bounds_from_signedness (struct loop *loop, gimple stmt)
2913 {
2914   tree def, base, step, scev, type, low, high;
2915 
2916   if (gimple_code (stmt) != GIMPLE_ASSIGN)
2917     return;
2918 
2919   def = gimple_assign_lhs (stmt);
2920 
2921   if (TREE_CODE (def) != SSA_NAME)
2922     return;
2923 
2924   type = TREE_TYPE (def);
2925   if (!INTEGRAL_TYPE_P (type)
2926       || !TYPE_OVERFLOW_UNDEFINED (type))
2927     return;
2928 
2929   scev = instantiate_parameters (loop, analyze_scalar_evolution (loop, def));
2930   if (chrec_contains_undetermined (scev))
2931     return;
2932 
2933   base = initial_condition_in_loop_num (scev, loop->num);
2934   step = evolution_part_in_loop_num (scev, loop->num);
2935 
2936   if (!base || !step
2937       || TREE_CODE (step) != INTEGER_CST
2938       || tree_contains_chrecs (base, NULL)
2939       || chrec_contains_symbols_defined_in_loop (base, loop->num))
2940     return;
2941 
2942   low = lower_bound_in_type (type, type);
2943   high = upper_bound_in_type (type, type);
2944 
2945   record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
2946 }
2947 
2948 /* The following analyzers are extracting informations on the bounds
2949    of LOOP from the following undefined behaviors:
2950 
2951    - data references should not access elements over the statically
2952      allocated size,
2953 
2954    - signed variables should not overflow when flag_wrapv is not set.
2955 */
2956 
2957 static void
infer_loop_bounds_from_undefined(struct loop * loop)2958 infer_loop_bounds_from_undefined (struct loop *loop)
2959 {
2960   unsigned i;
2961   basic_block *bbs;
2962   gimple_stmt_iterator bsi;
2963   basic_block bb;
2964   bool reliable;
2965 
2966   bbs = get_loop_body (loop);
2967 
2968   for (i = 0; i < loop->num_nodes; i++)
2969     {
2970       bb = bbs[i];
2971 
2972       /* If BB is not executed in each iteration of the loop, we cannot
2973 	 use the operations in it to infer reliable upper bound on the
2974 	 # of iterations of the loop.  However, we can use it as a guess.
2975 	 Reliable guesses come only from array bounds.  */
2976       reliable = dominated_by_p (CDI_DOMINATORS, loop->latch, bb);
2977 
2978       for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2979 	{
2980 	  gimple stmt = gsi_stmt (bsi);
2981 
2982 	  infer_loop_bounds_from_array (loop, stmt);
2983 
2984 	  if (reliable)
2985             {
2986               infer_loop_bounds_from_signedness (loop, stmt);
2987               infer_loop_bounds_from_pointer_arith (loop, stmt);
2988             }
2989   	}
2990 
2991     }
2992 
2993   free (bbs);
2994 }
2995 
2996 /* Converts VAL to double_int.  */
2997 
2998 static double_int
gcov_type_to_double_int(gcov_type val)2999 gcov_type_to_double_int (gcov_type val)
3000 {
3001   double_int ret;
3002 
3003   ret.low = (unsigned HOST_WIDE_INT) val;
3004   /* If HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_WIDEST_INT, avoid shifting by
3005      the size of type.  */
3006   val >>= HOST_BITS_PER_WIDE_INT - 1;
3007   val >>= 1;
3008   ret.high = (unsigned HOST_WIDE_INT) val;
3009 
3010   return ret;
3011 }
3012 
3013 /* Compare double ints, callback for qsort.  */
3014 
3015 int
double_int_cmp(const void * p1,const void * p2)3016 double_int_cmp (const void *p1, const void *p2)
3017 {
3018   const double_int *d1 = (const double_int *)p1;
3019   const double_int *d2 = (const double_int *)p2;
3020   if (*d1 == *d2)
3021     return 0;
3022   if (d1->ult (*d2))
3023     return -1;
3024   return 1;
3025 }
3026 
3027 /* Return index of BOUND in BOUNDS array sorted in increasing order.
3028    Lookup by binary search.  */
3029 
3030 int
bound_index(vec<double_int> bounds,double_int bound)3031 bound_index (vec<double_int> bounds, double_int bound)
3032 {
3033   unsigned int end = bounds.length ();
3034   unsigned int begin = 0;
3035 
3036   /* Find a matching index by means of a binary search.  */
3037   while (begin != end)
3038     {
3039       unsigned int middle = (begin + end) / 2;
3040       double_int index = bounds[middle];
3041 
3042       if (index == bound)
3043 	return middle;
3044       else if (index.ult (bound))
3045 	begin = middle + 1;
3046       else
3047 	end = middle;
3048     }
3049   gcc_unreachable ();
3050 }
3051 
3052 /* We recorded loop bounds only for statements dominating loop latch (and thus
3053    executed each loop iteration).  If there are any bounds on statements not
3054    dominating the loop latch we can improve the estimate by walking the loop
3055    body and seeing if every path from loop header to loop latch contains
3056    some bounded statement.  */
3057 
3058 static void
discover_iteration_bound_by_body_walk(struct loop * loop)3059 discover_iteration_bound_by_body_walk (struct loop *loop)
3060 {
3061   pointer_map_t *bb_bounds;
3062   struct nb_iter_bound *elt;
3063   vec<double_int> bounds = vNULL;
3064   vec<vec<basic_block> > queues = vNULL;
3065   vec<basic_block> queue = vNULL;
3066   ptrdiff_t queue_index;
3067   ptrdiff_t latch_index = 0;
3068   pointer_map_t *block_priority;
3069 
3070   /* Discover what bounds may interest us.  */
3071   for (elt = loop->bounds; elt; elt = elt->next)
3072     {
3073       double_int bound = elt->bound;
3074 
3075       /* Exit terminates loop at given iteration, while non-exits produce undefined
3076 	 effect on the next iteration.  */
3077       if (!elt->is_exit)
3078 	{
3079 	  bound += double_int_one;
3080 	  /* If an overflow occurred, ignore the result.  */
3081 	  if (bound.is_zero ())
3082 	    continue;
3083 	}
3084 
3085       if (!loop->any_upper_bound
3086 	  || bound.ult (loop->nb_iterations_upper_bound))
3087         bounds.safe_push (bound);
3088     }
3089 
3090   /* Exit early if there is nothing to do.  */
3091   if (!bounds.exists ())
3092     return;
3093 
3094   if (dump_file && (dump_flags & TDF_DETAILS))
3095     fprintf (dump_file, " Trying to walk loop body to reduce the bound.\n");
3096 
3097   /* Sort the bounds in decreasing order.  */
3098   qsort (bounds.address (), bounds.length (),
3099 	 sizeof (double_int), double_int_cmp);
3100 
3101   /* For every basic block record the lowest bound that is guaranteed to
3102      terminate the loop.  */
3103 
3104   bb_bounds = pointer_map_create ();
3105   for (elt = loop->bounds; elt; elt = elt->next)
3106     {
3107       double_int bound = elt->bound;
3108       if (!elt->is_exit)
3109 	{
3110 	  bound += double_int_one;
3111 	  /* If an overflow occurred, ignore the result.  */
3112 	  if (bound.is_zero ())
3113 	    continue;
3114 	}
3115 
3116       if (!loop->any_upper_bound
3117 	  || bound.ult (loop->nb_iterations_upper_bound))
3118 	{
3119 	  ptrdiff_t index = bound_index (bounds, bound);
3120 	  void **entry = pointer_map_contains (bb_bounds,
3121 					       gimple_bb (elt->stmt));
3122 	  if (!entry)
3123 	    *pointer_map_insert (bb_bounds,
3124 				 gimple_bb (elt->stmt)) = (void *)index;
3125 	  else if ((ptrdiff_t)*entry > index)
3126 	    *entry = (void *)index;
3127 	}
3128     }
3129 
3130   block_priority = pointer_map_create ();
3131 
3132   /* Perform shortest path discovery loop->header ... loop->latch.
3133 
3134      The "distance" is given by the smallest loop bound of basic block
3135      present in the path and we look for path with largest smallest bound
3136      on it.
3137 
3138      To avoid the need for fibonacci heap on double ints we simply compress
3139      double ints into indexes to BOUNDS array and then represent the queue
3140      as arrays of queues for every index.
3141      Index of BOUNDS.length() means that the execution of given BB has
3142      no bounds determined.
3143 
3144      VISITED is a pointer map translating basic block into smallest index
3145      it was inserted into the priority queue with.  */
3146   latch_index = -1;
3147 
3148   /* Start walk in loop header with index set to infinite bound.  */
3149   queue_index = bounds.length ();
3150   queues.safe_grow_cleared (queue_index + 1);
3151   queue.safe_push (loop->header);
3152   queues[queue_index] = queue;
3153   *pointer_map_insert (block_priority, loop->header) = (void *)queue_index;
3154 
3155   for (; queue_index >= 0; queue_index--)
3156     {
3157       if (latch_index < queue_index)
3158 	{
3159 	  while (queues[queue_index].length ())
3160 	    {
3161 	      basic_block bb;
3162 	      ptrdiff_t bound_index = queue_index;
3163 	      void **entry;
3164               edge e;
3165               edge_iterator ei;
3166 
3167 	      queue = queues[queue_index];
3168 	      bb = queue.pop ();
3169 
3170 	      /* OK, we later inserted the BB with lower priority, skip it.  */
3171 	      if ((ptrdiff_t)*pointer_map_contains (block_priority, bb) > queue_index)
3172 		continue;
3173 
3174 	      /* See if we can improve the bound.  */
3175 	      entry = pointer_map_contains (bb_bounds, bb);
3176 	      if (entry && (ptrdiff_t)*entry < bound_index)
3177 		bound_index = (ptrdiff_t)*entry;
3178 
3179 	      /* Insert succesors into the queue, watch for latch edge
3180 		 and record greatest index we saw.  */
3181 	      FOR_EACH_EDGE (e, ei, bb->succs)
3182 		{
3183 		  bool insert = false;
3184 		  void **entry;
3185 
3186 		  if (loop_exit_edge_p (loop, e))
3187 		    continue;
3188 
3189 		  if (e == loop_latch_edge (loop)
3190 		      && latch_index < bound_index)
3191 		    latch_index = bound_index;
3192 		  else if (!(entry = pointer_map_contains (block_priority, e->dest)))
3193 		    {
3194 		      insert = true;
3195 		      *pointer_map_insert (block_priority, e->dest) = (void *)bound_index;
3196 		    }
3197 		  else if ((ptrdiff_t)*entry < bound_index)
3198 		    {
3199 		      insert = true;
3200 		      *entry = (void *)bound_index;
3201 		    }
3202 
3203 		  if (insert)
3204 		    queues[bound_index].safe_push (e->dest);
3205 		}
3206 	    }
3207 	}
3208       queues[queue_index].release ();
3209     }
3210 
3211   gcc_assert (latch_index >= 0);
3212   if ((unsigned)latch_index < bounds.length ())
3213     {
3214       if (dump_file && (dump_flags & TDF_DETAILS))
3215 	{
3216 	  fprintf (dump_file, "Found better loop bound ");
3217 	  dump_double_int (dump_file, bounds[latch_index], true);
3218 	  fprintf (dump_file, "\n");
3219 	}
3220       record_niter_bound (loop, bounds[latch_index], false, true);
3221     }
3222 
3223   queues.release ();
3224   bounds.release ();
3225   pointer_map_destroy (bb_bounds);
3226   pointer_map_destroy (block_priority);
3227 }
3228 
3229 /* See if every path cross the loop goes through a statement that is known
3230    to not execute at the last iteration. In that case we can decrese iteration
3231    count by 1.  */
3232 
3233 static void
maybe_lower_iteration_bound(struct loop * loop)3234 maybe_lower_iteration_bound (struct loop *loop)
3235 {
3236   pointer_set_t *not_executed_last_iteration = NULL;
3237   struct nb_iter_bound *elt;
3238   bool found_exit = false;
3239   vec<basic_block> queue = vNULL;
3240   bitmap visited;
3241 
3242   /* Collect all statements with interesting (i.e. lower than
3243      nb_iterations_upper_bound) bound on them.
3244 
3245      TODO: Due to the way record_estimate choose estimates to store, the bounds
3246      will be always nb_iterations_upper_bound-1.  We can change this to record
3247      also statements not dominating the loop latch and update the walk bellow
3248      to the shortest path algorthm.  */
3249   for (elt = loop->bounds; elt; elt = elt->next)
3250     {
3251       if (!elt->is_exit
3252 	  && elt->bound.ult (loop->nb_iterations_upper_bound))
3253 	{
3254 	  if (!not_executed_last_iteration)
3255 	    not_executed_last_iteration = pointer_set_create ();
3256 	  pointer_set_insert (not_executed_last_iteration, elt->stmt);
3257 	}
3258     }
3259   if (!not_executed_last_iteration)
3260     return;
3261 
3262   /* Start DFS walk in the loop header and see if we can reach the
3263      loop latch or any of the exits (including statements with side
3264      effects that may terminate the loop otherwise) without visiting
3265      any of the statements known to have undefined effect on the last
3266      iteration.  */
3267   queue.safe_push (loop->header);
3268   visited = BITMAP_ALLOC (NULL);
3269   bitmap_set_bit (visited, loop->header->index);
3270   found_exit = false;
3271 
3272   do
3273     {
3274       basic_block bb = queue.pop ();
3275       gimple_stmt_iterator gsi;
3276       bool stmt_found = false;
3277 
3278       /* Loop for possible exits and statements bounding the execution.  */
3279       for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3280 	{
3281 	  gimple stmt = gsi_stmt (gsi);
3282 	  if (pointer_set_contains (not_executed_last_iteration, stmt))
3283 	    {
3284 	      stmt_found = true;
3285 	      break;
3286 	    }
3287 	  if (gimple_has_side_effects (stmt))
3288 	    {
3289 	      found_exit = true;
3290 	      break;
3291 	    }
3292 	}
3293       if (found_exit)
3294 	break;
3295 
3296       /* If no bounding statement is found, continue the walk.  */
3297       if (!stmt_found)
3298 	{
3299           edge e;
3300           edge_iterator ei;
3301 
3302           FOR_EACH_EDGE (e, ei, bb->succs)
3303 	    {
3304 	      if (loop_exit_edge_p (loop, e)
3305 		  || e == loop_latch_edge (loop))
3306 		{
3307 		  found_exit = true;
3308 		  break;
3309 		}
3310 	      if (bitmap_set_bit (visited, e->dest->index))
3311 		queue.safe_push (e->dest);
3312 	    }
3313 	}
3314     }
3315   while (queue.length () && !found_exit);
3316 
3317   /* If every path through the loop reach bounding statement before exit,
3318      then we know the last iteration of the loop will have undefined effect
3319      and we can decrease number of iterations.  */
3320 
3321   if (!found_exit)
3322     {
3323       if (dump_file && (dump_flags & TDF_DETAILS))
3324 	fprintf (dump_file, "Reducing loop iteration estimate by 1; "
3325 		 "undefined statement must be executed at the last iteration.\n");
3326       record_niter_bound (loop, loop->nb_iterations_upper_bound - double_int_one,
3327 			  false, true);
3328     }
3329   BITMAP_FREE (visited);
3330   queue.release ();
3331   pointer_set_destroy (not_executed_last_iteration);
3332 }
3333 
3334 /* Records estimates on numbers of iterations of LOOP.  If USE_UNDEFINED_P
3335    is true also use estimates derived from undefined behavior.  */
3336 
3337 void
estimate_numbers_of_iterations_loop(struct loop * loop)3338 estimate_numbers_of_iterations_loop (struct loop *loop)
3339 {
3340   vec<edge> exits;
3341   tree niter, type;
3342   unsigned i;
3343   struct tree_niter_desc niter_desc;
3344   edge ex;
3345   double_int bound;
3346   edge likely_exit;
3347 
3348   /* Give up if we already have tried to compute an estimation.  */
3349   if (loop->estimate_state != EST_NOT_COMPUTED)
3350     return;
3351 
3352   loop->estimate_state = EST_AVAILABLE;
3353   /* Force estimate compuation but leave any existing upper bound in place.  */
3354   loop->any_estimate = false;
3355 
3356   /* Ensure that loop->nb_iterations is computed if possible.  If it turns out
3357      to be constant, we avoid undefined behavior implied bounds and instead
3358      diagnose those loops with -Waggressive-loop-optimizations.  */
3359   number_of_latch_executions (loop);
3360 
3361   exits = get_loop_exit_edges (loop);
3362   likely_exit = single_likely_exit (loop);
3363   FOR_EACH_VEC_ELT (exits, i, ex)
3364     {
3365       if (!number_of_iterations_exit (loop, ex, &niter_desc, false, false))
3366 	continue;
3367 
3368       niter = niter_desc.niter;
3369       type = TREE_TYPE (niter);
3370       if (TREE_CODE (niter_desc.may_be_zero) != INTEGER_CST)
3371 	niter = build3 (COND_EXPR, type, niter_desc.may_be_zero,
3372 			build_int_cst (type, 0),
3373 			niter);
3374       record_estimate (loop, niter, niter_desc.max,
3375 		       last_stmt (ex->src),
3376 		       true, ex == likely_exit, true);
3377     }
3378   exits.release ();
3379 
3380   if (flag_aggressive_loop_optimizations)
3381     infer_loop_bounds_from_undefined (loop);
3382 
3383   discover_iteration_bound_by_body_walk (loop);
3384 
3385   maybe_lower_iteration_bound (loop);
3386 
3387   /* If we have a measured profile, use it to estimate the number of
3388      iterations.  */
3389   if (loop->header->count != 0)
3390     {
3391       gcov_type nit = expected_loop_iterations_unbounded (loop) + 1;
3392       bound = gcov_type_to_double_int (nit);
3393       record_niter_bound (loop, bound, true, false);
3394     }
3395 
3396   /* If we know the exact number of iterations of this loop, try to
3397      not break code with undefined behavior by not recording smaller
3398      maximum number of iterations.  */
3399   if (loop->nb_iterations
3400       && TREE_CODE (loop->nb_iterations) == INTEGER_CST)
3401     {
3402       loop->any_upper_bound = true;
3403       loop->nb_iterations_upper_bound
3404 	= tree_to_double_int (loop->nb_iterations);
3405     }
3406 }
3407 
3408 /* Sets NIT to the estimated number of executions of the latch of the
3409    LOOP.  If CONSERVATIVE is true, we must be sure that NIT is at least as
3410    large as the number of iterations.  If we have no reliable estimate,
3411    the function returns false, otherwise returns true.  */
3412 
3413 bool
estimated_loop_iterations(struct loop * loop,double_int * nit)3414 estimated_loop_iterations (struct loop *loop, double_int *nit)
3415 {
3416   /* When SCEV information is available, try to update loop iterations
3417      estimate.  Otherwise just return whatever we recorded earlier.  */
3418   if (scev_initialized_p ())
3419     estimate_numbers_of_iterations_loop (loop);
3420 
3421   /* Even if the bound is not recorded, possibly we can derrive one from
3422      profile.  */
3423   if (!loop->any_estimate)
3424     {
3425       if (loop->header->count)
3426 	{
3427           *nit = gcov_type_to_double_int
3428 		   (expected_loop_iterations_unbounded (loop) + 1);
3429 	  return true;
3430 	}
3431       return false;
3432     }
3433 
3434   *nit = loop->nb_iterations_estimate;
3435   return true;
3436 }
3437 
3438 /* Sets NIT to an upper bound for the maximum number of executions of the
3439    latch of the LOOP.  If we have no reliable estimate, the function returns
3440    false, otherwise returns true.  */
3441 
3442 bool
max_loop_iterations(struct loop * loop,double_int * nit)3443 max_loop_iterations (struct loop *loop, double_int *nit)
3444 {
3445   /* When SCEV information is available, try to update loop iterations
3446      estimate.  Otherwise just return whatever we recorded earlier.  */
3447   if (scev_initialized_p ())
3448     estimate_numbers_of_iterations_loop (loop);
3449   if (!loop->any_upper_bound)
3450     return false;
3451 
3452   *nit = loop->nb_iterations_upper_bound;
3453   return true;
3454 }
3455 
3456 /* Similar to estimated_loop_iterations, but returns the estimate only
3457    if it fits to HOST_WIDE_INT.  If this is not the case, or the estimate
3458    on the number of iterations of LOOP could not be derived, returns -1.  */
3459 
3460 HOST_WIDE_INT
estimated_loop_iterations_int(struct loop * loop)3461 estimated_loop_iterations_int (struct loop *loop)
3462 {
3463   double_int nit;
3464   HOST_WIDE_INT hwi_nit;
3465 
3466   if (!estimated_loop_iterations (loop, &nit))
3467     return -1;
3468 
3469   if (!nit.fits_shwi ())
3470     return -1;
3471   hwi_nit = nit.to_shwi ();
3472 
3473   return hwi_nit < 0 ? -1 : hwi_nit;
3474 }
3475 
3476 /* Similar to max_loop_iterations, but returns the estimate only
3477    if it fits to HOST_WIDE_INT.  If this is not the case, or the estimate
3478    on the number of iterations of LOOP could not be derived, returns -1.  */
3479 
3480 HOST_WIDE_INT
max_loop_iterations_int(struct loop * loop)3481 max_loop_iterations_int (struct loop *loop)
3482 {
3483   double_int nit;
3484   HOST_WIDE_INT hwi_nit;
3485 
3486   if (!max_loop_iterations (loop, &nit))
3487     return -1;
3488 
3489   if (!nit.fits_shwi ())
3490     return -1;
3491   hwi_nit = nit.to_shwi ();
3492 
3493   return hwi_nit < 0 ? -1 : hwi_nit;
3494 }
3495 
3496 /* Returns an upper bound on the number of executions of statements
3497    in the LOOP.  For statements before the loop exit, this exceeds
3498    the number of execution of the latch by one.  */
3499 
3500 HOST_WIDE_INT
max_stmt_executions_int(struct loop * loop)3501 max_stmt_executions_int (struct loop *loop)
3502 {
3503   HOST_WIDE_INT nit = max_loop_iterations_int (loop);
3504   HOST_WIDE_INT snit;
3505 
3506   if (nit == -1)
3507     return -1;
3508 
3509   snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
3510 
3511   /* If the computation overflows, return -1.  */
3512   return snit < 0 ? -1 : snit;
3513 }
3514 
3515 /* Returns an estimate for the number of executions of statements
3516    in the LOOP.  For statements before the loop exit, this exceeds
3517    the number of execution of the latch by one.  */
3518 
3519 HOST_WIDE_INT
estimated_stmt_executions_int(struct loop * loop)3520 estimated_stmt_executions_int (struct loop *loop)
3521 {
3522   HOST_WIDE_INT nit = estimated_loop_iterations_int (loop);
3523   HOST_WIDE_INT snit;
3524 
3525   if (nit == -1)
3526     return -1;
3527 
3528   snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
3529 
3530   /* If the computation overflows, return -1.  */
3531   return snit < 0 ? -1 : snit;
3532 }
3533 
3534 /* Sets NIT to the estimated maximum number of executions of the latch of the
3535    LOOP, plus one.  If we have no reliable estimate, the function returns
3536    false, otherwise returns true.  */
3537 
3538 bool
max_stmt_executions(struct loop * loop,double_int * nit)3539 max_stmt_executions (struct loop *loop, double_int *nit)
3540 {
3541   double_int nit_minus_one;
3542 
3543   if (!max_loop_iterations (loop, nit))
3544     return false;
3545 
3546   nit_minus_one = *nit;
3547 
3548   *nit += double_int_one;
3549 
3550   return (*nit).ugt (nit_minus_one);
3551 }
3552 
3553 /* Sets NIT to the estimated number of executions of the latch of the
3554    LOOP, plus one.  If we have no reliable estimate, the function returns
3555    false, otherwise returns true.  */
3556 
3557 bool
estimated_stmt_executions(struct loop * loop,double_int * nit)3558 estimated_stmt_executions (struct loop *loop, double_int *nit)
3559 {
3560   double_int nit_minus_one;
3561 
3562   if (!estimated_loop_iterations (loop, nit))
3563     return false;
3564 
3565   nit_minus_one = *nit;
3566 
3567   *nit += double_int_one;
3568 
3569   return (*nit).ugt (nit_minus_one);
3570 }
3571 
3572 /* Records estimates on numbers of iterations of loops.  */
3573 
3574 void
estimate_numbers_of_iterations(void)3575 estimate_numbers_of_iterations (void)
3576 {
3577   loop_iterator li;
3578   struct loop *loop;
3579 
3580   /* We don't want to issue signed overflow warnings while getting
3581      loop iteration estimates.  */
3582   fold_defer_overflow_warnings ();
3583 
3584   FOR_EACH_LOOP (li, loop, 0)
3585     {
3586       estimate_numbers_of_iterations_loop (loop);
3587     }
3588 
3589   fold_undefer_and_ignore_overflow_warnings ();
3590 }
3591 
3592 /* Returns true if statement S1 dominates statement S2.  */
3593 
3594 bool
stmt_dominates_stmt_p(gimple s1,gimple s2)3595 stmt_dominates_stmt_p (gimple s1, gimple s2)
3596 {
3597   basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
3598 
3599   if (!bb1
3600       || s1 == s2)
3601     return true;
3602 
3603   if (bb1 == bb2)
3604     {
3605       gimple_stmt_iterator bsi;
3606 
3607       if (gimple_code (s2) == GIMPLE_PHI)
3608 	return false;
3609 
3610       if (gimple_code (s1) == GIMPLE_PHI)
3611 	return true;
3612 
3613       for (bsi = gsi_start_bb (bb1); gsi_stmt (bsi) != s2; gsi_next (&bsi))
3614 	if (gsi_stmt (bsi) == s1)
3615 	  return true;
3616 
3617       return false;
3618     }
3619 
3620   return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
3621 }
3622 
3623 /* Returns true when we can prove that the number of executions of
3624    STMT in the loop is at most NITER, according to the bound on
3625    the number of executions of the statement NITER_BOUND->stmt recorded in
3626    NITER_BOUND and fact that NITER_BOUND->stmt dominate STMT.
3627 
3628    ??? This code can become quite a CPU hog - we can have many bounds,
3629    and large basic block forcing stmt_dominates_stmt_p to be queried
3630    many times on a large basic blocks, so the whole thing is O(n^2)
3631    for scev_probably_wraps_p invocation (that can be done n times).
3632 
3633    It would make more sense (and give better answers) to remember BB
3634    bounds computed by discover_iteration_bound_by_body_walk.  */
3635 
3636 static bool
n_of_executions_at_most(gimple stmt,struct nb_iter_bound * niter_bound,tree niter)3637 n_of_executions_at_most (gimple stmt,
3638 			 struct nb_iter_bound *niter_bound,
3639 			 tree niter)
3640 {
3641   double_int bound = niter_bound->bound;
3642   tree nit_type = TREE_TYPE (niter), e;
3643   enum tree_code cmp;
3644 
3645   gcc_assert (TYPE_UNSIGNED (nit_type));
3646 
3647   /* If the bound does not even fit into NIT_TYPE, it cannot tell us that
3648      the number of iterations is small.  */
3649   if (!double_int_fits_to_tree_p (nit_type, bound))
3650     return false;
3651 
3652   /* We know that NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
3653      times.  This means that:
3654 
3655      -- if NITER_BOUND->is_exit is true, then everything after
3656 	it at most NITER_BOUND->bound times.
3657 
3658      -- If NITER_BOUND->is_exit is false, then if we can prove that when STMT
3659 	is executed, then NITER_BOUND->stmt is executed as well in the same
3660 	iteration then STMT is executed at most NITER_BOUND->bound + 1 times.
3661 
3662 	If we can determine that NITER_BOUND->stmt is always executed
3663 	after STMT, then STMT is executed at most NITER_BOUND->bound + 2 times.
3664 	We conclude that if both statements belong to the same
3665 	basic block and STMT is before NITER_BOUND->stmt and there are no
3666 	statements with side effects in between.  */
3667 
3668   if (niter_bound->is_exit)
3669     {
3670       if (stmt == niter_bound->stmt
3671 	  || !stmt_dominates_stmt_p (niter_bound->stmt, stmt))
3672 	return false;
3673       cmp = GE_EXPR;
3674     }
3675   else
3676     {
3677       if (!stmt_dominates_stmt_p (niter_bound->stmt, stmt))
3678 	{
3679           gimple_stmt_iterator bsi;
3680 	  if (gimple_bb (stmt) != gimple_bb (niter_bound->stmt)
3681 	      || gimple_code (stmt) == GIMPLE_PHI
3682 	      || gimple_code (niter_bound->stmt) == GIMPLE_PHI)
3683 	    return false;
3684 
3685 	  /* By stmt_dominates_stmt_p we already know that STMT appears
3686 	     before NITER_BOUND->STMT.  Still need to test that the loop
3687 	     can not be terinated by a side effect in between.  */
3688 	  for (bsi = gsi_for_stmt (stmt); gsi_stmt (bsi) != niter_bound->stmt;
3689 	       gsi_next (&bsi))
3690 	    if (gimple_has_side_effects (gsi_stmt (bsi)))
3691 	       return false;
3692 	  bound += double_int_one;
3693 	  if (bound.is_zero ()
3694 	      || !double_int_fits_to_tree_p (nit_type, bound))
3695 	    return false;
3696 	}
3697       cmp = GT_EXPR;
3698     }
3699 
3700   e = fold_binary (cmp, boolean_type_node,
3701 		   niter, double_int_to_tree (nit_type, bound));
3702   return e && integer_nonzerop (e);
3703 }
3704 
3705 /* Returns true if the arithmetics in TYPE can be assumed not to wrap.  */
3706 
3707 bool
nowrap_type_p(tree type)3708 nowrap_type_p (tree type)
3709 {
3710   if (INTEGRAL_TYPE_P (type)
3711       && TYPE_OVERFLOW_UNDEFINED (type))
3712     return true;
3713 
3714   if (POINTER_TYPE_P (type))
3715     return true;
3716 
3717   return false;
3718 }
3719 
3720 /* Return false only when the induction variable BASE + STEP * I is
3721    known to not overflow: i.e. when the number of iterations is small
3722    enough with respect to the step and initial condition in order to
3723    keep the evolution confined in TYPEs bounds.  Return true when the
3724    iv is known to overflow or when the property is not computable.
3725 
3726    USE_OVERFLOW_SEMANTICS is true if this function should assume that
3727    the rules for overflow of the given language apply (e.g., that signed
3728    arithmetics in C does not overflow).  */
3729 
3730 bool
scev_probably_wraps_p(tree base,tree step,gimple at_stmt,struct loop * loop,bool use_overflow_semantics)3731 scev_probably_wraps_p (tree base, tree step,
3732 		       gimple at_stmt, struct loop *loop,
3733 		       bool use_overflow_semantics)
3734 {
3735   tree delta, step_abs;
3736   tree unsigned_type, valid_niter;
3737   tree type = TREE_TYPE (step);
3738   tree e;
3739   double_int niter;
3740   struct nb_iter_bound *bound;
3741 
3742   /* FIXME: We really need something like
3743      http://gcc.gnu.org/ml/gcc-patches/2005-06/msg02025.html.
3744 
3745      We used to test for the following situation that frequently appears
3746      during address arithmetics:
3747 
3748        D.1621_13 = (long unsigned intD.4) D.1620_12;
3749        D.1622_14 = D.1621_13 * 8;
3750        D.1623_15 = (doubleD.29 *) D.1622_14;
3751 
3752      And derived that the sequence corresponding to D_14
3753      can be proved to not wrap because it is used for computing a
3754      memory access; however, this is not really the case -- for example,
3755      if D_12 = (unsigned char) [254,+,1], then D_14 has values
3756      2032, 2040, 0, 8, ..., but the code is still legal.  */
3757 
3758   if (chrec_contains_undetermined (base)
3759       || chrec_contains_undetermined (step))
3760     return true;
3761 
3762   if (integer_zerop (step))
3763     return false;
3764 
3765   /* If we can use the fact that signed and pointer arithmetics does not
3766      wrap, we are done.  */
3767   if (use_overflow_semantics && nowrap_type_p (TREE_TYPE (base)))
3768     return false;
3769 
3770   /* To be able to use estimates on number of iterations of the loop,
3771      we must have an upper bound on the absolute value of the step.  */
3772   if (TREE_CODE (step) != INTEGER_CST)
3773     return true;
3774 
3775   /* Don't issue signed overflow warnings.  */
3776   fold_defer_overflow_warnings ();
3777 
3778   /* Otherwise, compute the number of iterations before we reach the
3779      bound of the type, and verify that the loop is exited before this
3780      occurs.  */
3781   unsigned_type = unsigned_type_for (type);
3782   base = fold_convert (unsigned_type, base);
3783 
3784   if (tree_int_cst_sign_bit (step))
3785     {
3786       tree extreme = fold_convert (unsigned_type,
3787 				   lower_bound_in_type (type, type));
3788       delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
3789       step_abs = fold_build1 (NEGATE_EXPR, unsigned_type,
3790 			      fold_convert (unsigned_type, step));
3791     }
3792   else
3793     {
3794       tree extreme = fold_convert (unsigned_type,
3795 				   upper_bound_in_type (type, type));
3796       delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
3797       step_abs = fold_convert (unsigned_type, step);
3798     }
3799 
3800   valid_niter = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step_abs);
3801 
3802   estimate_numbers_of_iterations_loop (loop);
3803 
3804   if (max_loop_iterations (loop, &niter)
3805       && double_int_fits_to_tree_p (TREE_TYPE (valid_niter), niter)
3806       && (e = fold_binary (GT_EXPR, boolean_type_node, valid_niter,
3807 			   double_int_to_tree (TREE_TYPE (valid_niter),
3808 					       niter))) != NULL
3809       && integer_nonzerop (e))
3810     {
3811       fold_undefer_and_ignore_overflow_warnings ();
3812       return false;
3813     }
3814   if (at_stmt)
3815     for (bound = loop->bounds; bound; bound = bound->next)
3816       {
3817 	if (n_of_executions_at_most (at_stmt, bound, valid_niter))
3818 	  {
3819 	    fold_undefer_and_ignore_overflow_warnings ();
3820 	    return false;
3821 	  }
3822       }
3823 
3824   fold_undefer_and_ignore_overflow_warnings ();
3825 
3826   /* At this point we still don't have a proof that the iv does not
3827      overflow: give up.  */
3828   return true;
3829 }
3830 
3831 /* Frees the information on upper bounds on numbers of iterations of LOOP.  */
3832 
3833 void
free_numbers_of_iterations_estimates_loop(struct loop * loop)3834 free_numbers_of_iterations_estimates_loop (struct loop *loop)
3835 {
3836   struct nb_iter_bound *bound, *next;
3837 
3838   loop->nb_iterations = NULL;
3839   loop->estimate_state = EST_NOT_COMPUTED;
3840   for (bound = loop->bounds; bound; bound = next)
3841     {
3842       next = bound->next;
3843       ggc_free (bound);
3844     }
3845 
3846   loop->bounds = NULL;
3847 }
3848 
3849 /* Frees the information on upper bounds on numbers of iterations of loops.  */
3850 
3851 void
free_numbers_of_iterations_estimates(void)3852 free_numbers_of_iterations_estimates (void)
3853 {
3854   loop_iterator li;
3855   struct loop *loop;
3856 
3857   FOR_EACH_LOOP (li, loop, 0)
3858     {
3859       free_numbers_of_iterations_estimates_loop (loop);
3860     }
3861 }
3862 
3863 /* Substitute value VAL for ssa name NAME inside expressions held
3864    at LOOP.  */
3865 
3866 void
substitute_in_loop_info(struct loop * loop,tree name,tree val)3867 substitute_in_loop_info (struct loop *loop, tree name, tree val)
3868 {
3869   loop->nb_iterations = simplify_replace_tree (loop->nb_iterations, name, val);
3870 }
3871