1// Copyright 2009 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5// Binary to decimal floating point conversion. 6// Algorithm: 7// 1) store mantissa in multiprecision decimal 8// 2) shift decimal by exponent 9// 3) read digits out & format 10 11package strconv 12 13import "math" 14 15// TODO: move elsewhere? 16type floatInfo struct { 17 mantbits uint 18 expbits uint 19 bias int 20} 21 22var float32info = floatInfo{23, 8, -127} 23var float64info = floatInfo{52, 11, -1023} 24 25// FormatFloat converts the floating-point number f to a string, 26// according to the format fmt and precision prec. It rounds the 27// result assuming that the original was obtained from a floating-point 28// value of bitSize bits (32 for float32, 64 for float64). 29// 30// The format fmt is one of 31// 'b' (-ddddp±ddd, a binary exponent), 32// 'e' (-d.dddde±dd, a decimal exponent), 33// 'E' (-d.ddddE±dd, a decimal exponent), 34// 'f' (-ddd.dddd, no exponent), 35// 'g' ('e' for large exponents, 'f' otherwise), or 36// 'G' ('E' for large exponents, 'f' otherwise). 37// 38// The precision prec controls the number of digits 39// (excluding the exponent) printed by the 'e', 'E', 'f', 'g', and 'G' formats. 40// For 'e', 'E', and 'f' it is the number of digits after the decimal point. 41// For 'g' and 'G' it is the total number of digits. 42// The special precision -1 uses the smallest number of digits 43// necessary such that ParseFloat will return f exactly. 44func FormatFloat(f float64, fmt byte, prec, bitSize int) string { 45 return string(genericFtoa(make([]byte, 0, max(prec+4, 24)), f, fmt, prec, bitSize)) 46} 47 48// AppendFloat appends the string form of the floating-point number f, 49// as generated by FormatFloat, to dst and returns the extended buffer. 50func AppendFloat(dst []byte, f float64, fmt byte, prec int, bitSize int) []byte { 51 return genericFtoa(dst, f, fmt, prec, bitSize) 52} 53 54func genericFtoa(dst []byte, val float64, fmt byte, prec, bitSize int) []byte { 55 var bits uint64 56 var flt *floatInfo 57 switch bitSize { 58 case 32: 59 bits = uint64(math.Float32bits(float32(val))) 60 flt = &float32info 61 case 64: 62 bits = math.Float64bits(val) 63 flt = &float64info 64 default: 65 panic("strconv: illegal AppendFloat/FormatFloat bitSize") 66 } 67 68 neg := bits>>(flt.expbits+flt.mantbits) != 0 69 exp := int(bits>>flt.mantbits) & (1<<flt.expbits - 1) 70 mant := bits & (uint64(1)<<flt.mantbits - 1) 71 72 switch exp { 73 case 1<<flt.expbits - 1: 74 // Inf, NaN 75 var s string 76 switch { 77 case mant != 0: 78 s = "NaN" 79 case neg: 80 s = "-Inf" 81 default: 82 s = "+Inf" 83 } 84 return append(dst, s...) 85 86 case 0: 87 // denormalized 88 exp++ 89 90 default: 91 // add implicit top bit 92 mant |= uint64(1) << flt.mantbits 93 } 94 exp += flt.bias 95 96 // Pick off easy binary format. 97 if fmt == 'b' { 98 return fmtB(dst, neg, mant, exp, flt) 99 } 100 101 if !optimize { 102 return bigFtoa(dst, prec, fmt, neg, mant, exp, flt) 103 } 104 105 var digs decimalSlice 106 ok := false 107 // Negative precision means "only as much as needed to be exact." 108 shortest := prec < 0 109 if shortest { 110 // Try Grisu3 algorithm. 111 f := new(extFloat) 112 lower, upper := f.AssignComputeBounds(mant, exp, neg, flt) 113 var buf [32]byte 114 digs.d = buf[:] 115 ok = f.ShortestDecimal(&digs, &lower, &upper) 116 if !ok { 117 return bigFtoa(dst, prec, fmt, neg, mant, exp, flt) 118 } 119 // Precision for shortest representation mode. 120 switch fmt { 121 case 'e', 'E': 122 prec = digs.nd - 1 123 case 'f': 124 prec = max(digs.nd-digs.dp, 0) 125 case 'g', 'G': 126 prec = digs.nd 127 } 128 } else if fmt != 'f' { 129 // Fixed number of digits. 130 digits := prec 131 switch fmt { 132 case 'e', 'E': 133 digits++ 134 case 'g', 'G': 135 if prec == 0 { 136 prec = 1 137 } 138 digits = prec 139 } 140 if digits <= 15 { 141 // try fast algorithm when the number of digits is reasonable. 142 var buf [24]byte 143 digs.d = buf[:] 144 f := extFloat{mant, exp - int(flt.mantbits), neg} 145 ok = f.FixedDecimal(&digs, digits) 146 } 147 } 148 if !ok { 149 return bigFtoa(dst, prec, fmt, neg, mant, exp, flt) 150 } 151 return formatDigits(dst, shortest, neg, digs, prec, fmt) 152} 153 154// bigFtoa uses multiprecision computations to format a float. 155func bigFtoa(dst []byte, prec int, fmt byte, neg bool, mant uint64, exp int, flt *floatInfo) []byte { 156 d := new(decimal) 157 d.Assign(mant) 158 d.Shift(exp - int(flt.mantbits)) 159 var digs decimalSlice 160 shortest := prec < 0 161 if shortest { 162 roundShortest(d, mant, exp, flt) 163 digs = decimalSlice{d: d.d[:], nd: d.nd, dp: d.dp} 164 // Precision for shortest representation mode. 165 switch fmt { 166 case 'e', 'E': 167 prec = digs.nd - 1 168 case 'f': 169 prec = max(digs.nd-digs.dp, 0) 170 case 'g', 'G': 171 prec = digs.nd 172 } 173 } else { 174 // Round appropriately. 175 switch fmt { 176 case 'e', 'E': 177 d.Round(prec + 1) 178 case 'f': 179 d.Round(d.dp + prec) 180 case 'g', 'G': 181 if prec == 0 { 182 prec = 1 183 } 184 d.Round(prec) 185 } 186 digs = decimalSlice{d: d.d[:], nd: d.nd, dp: d.dp} 187 } 188 return formatDigits(dst, shortest, neg, digs, prec, fmt) 189} 190 191func formatDigits(dst []byte, shortest bool, neg bool, digs decimalSlice, prec int, fmt byte) []byte { 192 switch fmt { 193 case 'e', 'E': 194 return fmtE(dst, neg, digs, prec, fmt) 195 case 'f': 196 return fmtF(dst, neg, digs, prec) 197 case 'g', 'G': 198 // trailing fractional zeros in 'e' form will be trimmed. 199 eprec := prec 200 if eprec > digs.nd && digs.nd >= digs.dp { 201 eprec = digs.nd 202 } 203 // %e is used if the exponent from the conversion 204 // is less than -4 or greater than or equal to the precision. 205 // if precision was the shortest possible, use precision 6 for this decision. 206 if shortest { 207 eprec = 6 208 } 209 exp := digs.dp - 1 210 if exp < -4 || exp >= eprec { 211 if prec > digs.nd { 212 prec = digs.nd 213 } 214 return fmtE(dst, neg, digs, prec-1, fmt+'e'-'g') 215 } 216 if prec > digs.dp { 217 prec = digs.nd 218 } 219 return fmtF(dst, neg, digs, max(prec-digs.dp, 0)) 220 } 221 222 // unknown format 223 return append(dst, '%', fmt) 224} 225 226// Round d (= mant * 2^exp) to the shortest number of digits 227// that will let the original floating point value be precisely 228// reconstructed. Size is original floating point size (64 or 32). 229func roundShortest(d *decimal, mant uint64, exp int, flt *floatInfo) { 230 // If mantissa is zero, the number is zero; stop now. 231 if mant == 0 { 232 d.nd = 0 233 return 234 } 235 236 // Compute upper and lower such that any decimal number 237 // between upper and lower (possibly inclusive) 238 // will round to the original floating point number. 239 240 // We may see at once that the number is already shortest. 241 // 242 // Suppose d is not denormal, so that 2^exp <= d < 10^dp. 243 // The closest shorter number is at least 10^(dp-nd) away. 244 // The lower/upper bounds computed below are at distance 245 // at most 2^(exp-mantbits). 246 // 247 // So the number is already shortest if 10^(dp-nd) > 2^(exp-mantbits), 248 // or equivalently log2(10)*(dp-nd) > exp-mantbits. 249 // It is true if 332/100*(dp-nd) >= exp-mantbits (log2(10) > 3.32). 250 minexp := flt.bias + 1 // minimum possible exponent 251 if exp > minexp && 332*(d.dp-d.nd) >= 100*(exp-int(flt.mantbits)) { 252 // The number is already shortest. 253 return 254 } 255 256 // d = mant << (exp - mantbits) 257 // Next highest floating point number is mant+1 << exp-mantbits. 258 // Our upper bound is halfway between, mant*2+1 << exp-mantbits-1. 259 upper := new(decimal) 260 upper.Assign(mant*2 + 1) 261 upper.Shift(exp - int(flt.mantbits) - 1) 262 263 // d = mant << (exp - mantbits) 264 // Next lowest floating point number is mant-1 << exp-mantbits, 265 // unless mant-1 drops the significant bit and exp is not the minimum exp, 266 // in which case the next lowest is mant*2-1 << exp-mantbits-1. 267 // Either way, call it mantlo << explo-mantbits. 268 // Our lower bound is halfway between, mantlo*2+1 << explo-mantbits-1. 269 var mantlo uint64 270 var explo int 271 if mant > 1<<flt.mantbits || exp == minexp { 272 mantlo = mant - 1 273 explo = exp 274 } else { 275 mantlo = mant*2 - 1 276 explo = exp - 1 277 } 278 lower := new(decimal) 279 lower.Assign(mantlo*2 + 1) 280 lower.Shift(explo - int(flt.mantbits) - 1) 281 282 // The upper and lower bounds are possible outputs only if 283 // the original mantissa is even, so that IEEE round-to-even 284 // would round to the original mantissa and not the neighbors. 285 inclusive := mant%2 == 0 286 287 // Now we can figure out the minimum number of digits required. 288 // Walk along until d has distinguished itself from upper and lower. 289 for i := 0; i < d.nd; i++ { 290 var l, m, u byte // lower, middle, upper digits 291 if i < lower.nd { 292 l = lower.d[i] 293 } else { 294 l = '0' 295 } 296 m = d.d[i] 297 if i < upper.nd { 298 u = upper.d[i] 299 } else { 300 u = '0' 301 } 302 303 // Okay to round down (truncate) if lower has a different digit 304 // or if lower is inclusive and is exactly the result of rounding down. 305 okdown := l != m || (inclusive && l == m && i+1 == lower.nd) 306 307 // Okay to round up if upper has a different digit and 308 // either upper is inclusive or upper is bigger than the result of rounding up. 309 okup := m != u && (inclusive || m+1 < u || i+1 < upper.nd) 310 311 // If it's okay to do either, then round to the nearest one. 312 // If it's okay to do only one, do it. 313 switch { 314 case okdown && okup: 315 d.Round(i + 1) 316 return 317 case okdown: 318 d.RoundDown(i + 1) 319 return 320 case okup: 321 d.RoundUp(i + 1) 322 return 323 } 324 } 325} 326 327type decimalSlice struct { 328 d []byte 329 nd, dp int 330 neg bool 331} 332 333// %e: -d.ddddde±dd 334func fmtE(dst []byte, neg bool, d decimalSlice, prec int, fmt byte) []byte { 335 // sign 336 if neg { 337 dst = append(dst, '-') 338 } 339 340 // first digit 341 ch := byte('0') 342 if d.nd != 0 { 343 ch = d.d[0] 344 } 345 dst = append(dst, ch) 346 347 // .moredigits 348 if prec > 0 { 349 dst = append(dst, '.') 350 i := 1 351 m := d.nd + prec + 1 - max(d.nd, prec+1) 352 for i < m { 353 dst = append(dst, d.d[i]) 354 i++ 355 } 356 for i <= prec { 357 dst = append(dst, '0') 358 i++ 359 } 360 } 361 362 // e± 363 dst = append(dst, fmt) 364 exp := d.dp - 1 365 if d.nd == 0 { // special case: 0 has exponent 0 366 exp = 0 367 } 368 if exp < 0 { 369 ch = '-' 370 exp = -exp 371 } else { 372 ch = '+' 373 } 374 dst = append(dst, ch) 375 376 // dddd 377 var buf [3]byte 378 i := len(buf) 379 for exp >= 10 { 380 i-- 381 buf[i] = byte(exp%10 + '0') 382 exp /= 10 383 } 384 // exp < 10 385 i-- 386 buf[i] = byte(exp + '0') 387 388 switch i { 389 case 0: 390 dst = append(dst, buf[0], buf[1], buf[2]) 391 case 1: 392 dst = append(dst, buf[1], buf[2]) 393 case 2: 394 // leading zeroes 395 dst = append(dst, '0', buf[2]) 396 } 397 return dst 398} 399 400// %f: -ddddddd.ddddd 401func fmtF(dst []byte, neg bool, d decimalSlice, prec int) []byte { 402 // sign 403 if neg { 404 dst = append(dst, '-') 405 } 406 407 // integer, padded with zeros as needed. 408 if d.dp > 0 { 409 var i int 410 for i = 0; i < d.dp && i < d.nd; i++ { 411 dst = append(dst, d.d[i]) 412 } 413 for ; i < d.dp; i++ { 414 dst = append(dst, '0') 415 } 416 } else { 417 dst = append(dst, '0') 418 } 419 420 // fraction 421 if prec > 0 { 422 dst = append(dst, '.') 423 for i := 0; i < prec; i++ { 424 ch := byte('0') 425 if j := d.dp + i; 0 <= j && j < d.nd { 426 ch = d.d[j] 427 } 428 dst = append(dst, ch) 429 } 430 } 431 432 return dst 433} 434 435// %b: -ddddddddp+ddd 436func fmtB(dst []byte, neg bool, mant uint64, exp int, flt *floatInfo) []byte { 437 var buf [50]byte 438 w := len(buf) 439 exp -= int(flt.mantbits) 440 esign := byte('+') 441 if exp < 0 { 442 esign = '-' 443 exp = -exp 444 } 445 n := 0 446 for exp > 0 || n < 1 { 447 n++ 448 w-- 449 buf[w] = byte(exp%10 + '0') 450 exp /= 10 451 } 452 w-- 453 buf[w] = esign 454 w-- 455 buf[w] = 'p' 456 n = 0 457 for mant > 0 || n < 1 { 458 n++ 459 w-- 460 buf[w] = byte(mant%10 + '0') 461 mant /= 10 462 } 463 if neg { 464 w-- 465 buf[w] = '-' 466 } 467 return append(dst, buf[w:]...) 468} 469 470func max(a, b int) int { 471 if a > b { 472 return a 473 } 474 return b 475} 476