1 #pragma once
2 
3 #include <array> // array
4 #include <cmath>   // signbit, isfinite
5 #include <cstdint> // intN_t, uintN_t
6 #include <cstring> // memcpy, memmove
7 #include <limits> // numeric_limits
8 #include <type_traits> // conditional
9 
10 #include <nlohmann/detail/macro_scope.hpp>
11 
12 namespace nlohmann
13 {
14 namespace detail
15 {
16 
17 /*!
18 @brief implements the Grisu2 algorithm for binary to decimal floating-point
19 conversion.
20 
21 This implementation is a slightly modified version of the reference
22 implementation which may be obtained from
23 http://florian.loitsch.com/publications (bench.tar.gz).
24 
25 The code is distributed under the MIT license, Copyright (c) 2009 Florian Loitsch.
26 
27 For a detailed description of the algorithm see:
28 
29 [1] Loitsch, "Printing Floating-Point Numbers Quickly and Accurately with
30     Integers", Proceedings of the ACM SIGPLAN 2010 Conference on Programming
31     Language Design and Implementation, PLDI 2010
32 [2] Burger, Dybvig, "Printing Floating-Point Numbers Quickly and Accurately",
33     Proceedings of the ACM SIGPLAN 1996 Conference on Programming Language
34     Design and Implementation, PLDI 1996
35 */
36 namespace dtoa_impl
37 {
38 
39 template<typename Target, typename Source>
40 Target reinterpret_bits(const Source source)
41 {
42     static_assert(sizeof(Target) == sizeof(Source), "size mismatch");
43 
44     Target target;
45     std::memcpy(&target, &source, sizeof(Source));
46     return target;
47 }
48 
49 struct diyfp // f * 2^e
50 {
51     static constexpr int kPrecision = 64; // = q
52 
53     std::uint64_t f = 0;
54     int e = 0;
55 
diyfpnlohmann::detail::dtoa_impl::diyfp56     constexpr diyfp(std::uint64_t f_, int e_) noexcept : f(f_), e(e_) {}
57 
58     /*!
59     @brief returns x - y
60     @pre x.e == y.e and x.f >= y.f
61     */
subnlohmann::detail::dtoa_impl::diyfp62     static diyfp sub(const diyfp& x, const diyfp& y) noexcept
63     {
64         JSON_ASSERT(x.e == y.e);
65         JSON_ASSERT(x.f >= y.f);
66 
67         return {x.f - y.f, x.e};
68     }
69 
70     /*!
71     @brief returns x * y
72     @note The result is rounded. (Only the upper q bits are returned.)
73     */
mulnlohmann::detail::dtoa_impl::diyfp74     static diyfp mul(const diyfp& x, const diyfp& y) noexcept
75     {
76         static_assert(kPrecision == 64, "internal error");
77 
78         // Computes:
79         //  f = round((x.f * y.f) / 2^q)
80         //  e = x.e + y.e + q
81 
82         // Emulate the 64-bit * 64-bit multiplication:
83         //
84         // p = u * v
85         //   = (u_lo + 2^32 u_hi) (v_lo + 2^32 v_hi)
86         //   = (u_lo v_lo         ) + 2^32 ((u_lo v_hi         ) + (u_hi v_lo         )) + 2^64 (u_hi v_hi         )
87         //   = (p0                ) + 2^32 ((p1                ) + (p2                )) + 2^64 (p3                )
88         //   = (p0_lo + 2^32 p0_hi) + 2^32 ((p1_lo + 2^32 p1_hi) + (p2_lo + 2^32 p2_hi)) + 2^64 (p3                )
89         //   = (p0_lo             ) + 2^32 (p0_hi + p1_lo + p2_lo                      ) + 2^64 (p1_hi + p2_hi + p3)
90         //   = (p0_lo             ) + 2^32 (Q                                          ) + 2^64 (H                 )
91         //   = (p0_lo             ) + 2^32 (Q_lo + 2^32 Q_hi                           ) + 2^64 (H                 )
92         //
93         // (Since Q might be larger than 2^32 - 1)
94         //
95         //   = (p0_lo + 2^32 Q_lo) + 2^64 (Q_hi + H)
96         //
97         // (Q_hi + H does not overflow a 64-bit int)
98         //
99         //   = p_lo + 2^64 p_hi
100 
101         const std::uint64_t u_lo = x.f & 0xFFFFFFFFu;
102         const std::uint64_t u_hi = x.f >> 32u;
103         const std::uint64_t v_lo = y.f & 0xFFFFFFFFu;
104         const std::uint64_t v_hi = y.f >> 32u;
105 
106         const std::uint64_t p0 = u_lo * v_lo;
107         const std::uint64_t p1 = u_lo * v_hi;
108         const std::uint64_t p2 = u_hi * v_lo;
109         const std::uint64_t p3 = u_hi * v_hi;
110 
111         const std::uint64_t p0_hi = p0 >> 32u;
112         const std::uint64_t p1_lo = p1 & 0xFFFFFFFFu;
113         const std::uint64_t p1_hi = p1 >> 32u;
114         const std::uint64_t p2_lo = p2 & 0xFFFFFFFFu;
115         const std::uint64_t p2_hi = p2 >> 32u;
116 
117         std::uint64_t Q = p0_hi + p1_lo + p2_lo;
118 
119         // The full product might now be computed as
120         //
121         // p_hi = p3 + p2_hi + p1_hi + (Q >> 32)
122         // p_lo = p0_lo + (Q << 32)
123         //
124         // But in this particular case here, the full p_lo is not required.
125         // Effectively we only need to add the highest bit in p_lo to p_hi (and
126         // Q_hi + 1 does not overflow).
127 
128         Q += std::uint64_t{1} << (64u - 32u - 1u); // round, ties up
129 
130         const std::uint64_t h = p3 + p2_hi + p1_hi + (Q >> 32u);
131 
132         return {h, x.e + y.e + 64};
133     }
134 
135     /*!
136     @brief normalize x such that the significand is >= 2^(q-1)
137     @pre x.f != 0
138     */
normalizenlohmann::detail::dtoa_impl::diyfp139     static diyfp normalize(diyfp x) noexcept
140     {
141         JSON_ASSERT(x.f != 0);
142 
143         while ((x.f >> 63u) == 0)
144         {
145             x.f <<= 1u;
146             x.e--;
147         }
148 
149         return x;
150     }
151 
152     /*!
153     @brief normalize x such that the result has the exponent E
154     @pre e >= x.e and the upper e - x.e bits of x.f must be zero.
155     */
normalize_tonlohmann::detail::dtoa_impl::diyfp156     static diyfp normalize_to(const diyfp& x, const int target_exponent) noexcept
157     {
158         const int delta = x.e - target_exponent;
159 
160         JSON_ASSERT(delta >= 0);
161         JSON_ASSERT(((x.f << delta) >> delta) == x.f);
162 
163         return {x.f << delta, target_exponent};
164     }
165 };
166 
167 struct boundaries
168 {
169     diyfp w;
170     diyfp minus;
171     diyfp plus;
172 };
173 
174 /*!
175 Compute the (normalized) diyfp representing the input number 'value' and its
176 boundaries.
177 
178 @pre value must be finite and positive
179 */
180 template<typename FloatType>
compute_boundaries(FloatType value)181 boundaries compute_boundaries(FloatType value)
182 {
183     JSON_ASSERT(std::isfinite(value));
184     JSON_ASSERT(value > 0);
185 
186     // Convert the IEEE representation into a diyfp.
187     //
188     // If v is denormal:
189     //      value = 0.F * 2^(1 - bias) = (          F) * 2^(1 - bias - (p-1))
190     // If v is normalized:
191     //      value = 1.F * 2^(E - bias) = (2^(p-1) + F) * 2^(E - bias - (p-1))
192 
193     static_assert(std::numeric_limits<FloatType>::is_iec559,
194                   "internal error: dtoa_short requires an IEEE-754 floating-point implementation");
195 
196     constexpr int      kPrecision = std::numeric_limits<FloatType>::digits; // = p (includes the hidden bit)
197     constexpr int      kBias      = std::numeric_limits<FloatType>::max_exponent - 1 + (kPrecision - 1);
198     constexpr int      kMinExp    = 1 - kBias;
199     constexpr std::uint64_t kHiddenBit = std::uint64_t{1} << (kPrecision - 1); // = 2^(p-1)
200 
201     using bits_type = typename std::conditional<kPrecision == 24, std::uint32_t, std::uint64_t >::type;
202 
203     const auto bits = static_cast<std::uint64_t>(reinterpret_bits<bits_type>(value));
204     const std::uint64_t E = bits >> (kPrecision - 1);
205     const std::uint64_t F = bits & (kHiddenBit - 1);
206 
207     const bool is_denormal = E == 0;
208     const diyfp v = is_denormal
209                     ? diyfp(F, kMinExp)
210                     : diyfp(F + kHiddenBit, static_cast<int>(E) - kBias);
211 
212     // Compute the boundaries m- and m+ of the floating-point value
213     // v = f * 2^e.
214     //
215     // Determine v- and v+, the floating-point predecessor and successor if v,
216     // respectively.
217     //
218     //      v- = v - 2^e        if f != 2^(p-1) or e == e_min                (A)
219     //         = v - 2^(e-1)    if f == 2^(p-1) and e > e_min                (B)
220     //
221     //      v+ = v + 2^e
222     //
223     // Let m- = (v- + v) / 2 and m+ = (v + v+) / 2. All real numbers _strictly_
224     // between m- and m+ round to v, regardless of how the input rounding
225     // algorithm breaks ties.
226     //
227     //      ---+-------------+-------------+-------------+-------------+---  (A)
228     //         v-            m-            v             m+            v+
229     //
230     //      -----------------+------+------+-------------+-------------+---  (B)
231     //                       v-     m-     v             m+            v+
232 
233     const bool lower_boundary_is_closer = F == 0 && E > 1;
234     const diyfp m_plus = diyfp(2 * v.f + 1, v.e - 1);
235     const diyfp m_minus = lower_boundary_is_closer
236                           ? diyfp(4 * v.f - 1, v.e - 2)  // (B)
237                           : diyfp(2 * v.f - 1, v.e - 1); // (A)
238 
239     // Determine the normalized w+ = m+.
240     const diyfp w_plus = diyfp::normalize(m_plus);
241 
242     // Determine w- = m- such that e_(w-) = e_(w+).
243     const diyfp w_minus = diyfp::normalize_to(m_minus, w_plus.e);
244 
245     return {diyfp::normalize(v), w_minus, w_plus};
246 }
247 
248 // Given normalized diyfp w, Grisu needs to find a (normalized) cached
249 // power-of-ten c, such that the exponent of the product c * w = f * 2^e lies
250 // within a certain range [alpha, gamma] (Definition 3.2 from [1])
251 //
252 //      alpha <= e = e_c + e_w + q <= gamma
253 //
254 // or
255 //
256 //      f_c * f_w * 2^alpha <= f_c 2^(e_c) * f_w 2^(e_w) * 2^q
257 //                          <= f_c * f_w * 2^gamma
258 //
259 // Since c and w are normalized, i.e. 2^(q-1) <= f < 2^q, this implies
260 //
261 //      2^(q-1) * 2^(q-1) * 2^alpha <= c * w * 2^q < 2^q * 2^q * 2^gamma
262 //
263 // or
264 //
265 //      2^(q - 2 + alpha) <= c * w < 2^(q + gamma)
266 //
267 // The choice of (alpha,gamma) determines the size of the table and the form of
268 // the digit generation procedure. Using (alpha,gamma)=(-60,-32) works out well
269 // in practice:
270 //
271 // The idea is to cut the number c * w = f * 2^e into two parts, which can be
272 // processed independently: An integral part p1, and a fractional part p2:
273 //
274 //      f * 2^e = ( (f div 2^-e) * 2^-e + (f mod 2^-e) ) * 2^e
275 //              = (f div 2^-e) + (f mod 2^-e) * 2^e
276 //              = p1 + p2 * 2^e
277 //
278 // The conversion of p1 into decimal form requires a series of divisions and
279 // modulos by (a power of) 10. These operations are faster for 32-bit than for
280 // 64-bit integers, so p1 should ideally fit into a 32-bit integer. This can be
281 // achieved by choosing
282 //
283 //      -e >= 32   or   e <= -32 := gamma
284 //
285 // In order to convert the fractional part
286 //
287 //      p2 * 2^e = p2 / 2^-e = d[-1] / 10^1 + d[-2] / 10^2 + ...
288 //
289 // into decimal form, the fraction is repeatedly multiplied by 10 and the digits
290 // d[-i] are extracted in order:
291 //
292 //      (10 * p2) div 2^-e = d[-1]
293 //      (10 * p2) mod 2^-e = d[-2] / 10^1 + ...
294 //
295 // The multiplication by 10 must not overflow. It is sufficient to choose
296 //
297 //      10 * p2 < 16 * p2 = 2^4 * p2 <= 2^64.
298 //
299 // Since p2 = f mod 2^-e < 2^-e,
300 //
301 //      -e <= 60   or   e >= -60 := alpha
302 
303 constexpr int kAlpha = -60;
304 constexpr int kGamma = -32;
305 
306 struct cached_power // c = f * 2^e ~= 10^k
307 {
308     std::uint64_t f;
309     int e;
310     int k;
311 };
312 
313 /*!
314 For a normalized diyfp w = f * 2^e, this function returns a (normalized) cached
315 power-of-ten c = f_c * 2^e_c, such that the exponent of the product w * c
316 satisfies (Definition 3.2 from [1])
317 
318      alpha <= e_c + e + q <= gamma.
319 */
get_cached_power_for_binary_exponent(int e)320 inline cached_power get_cached_power_for_binary_exponent(int e)
321 {
322     // Now
323     //
324     //      alpha <= e_c + e + q <= gamma                                    (1)
325     //      ==> f_c * 2^alpha <= c * 2^e * 2^q
326     //
327     // and since the c's are normalized, 2^(q-1) <= f_c,
328     //
329     //      ==> 2^(q - 1 + alpha) <= c * 2^(e + q)
330     //      ==> 2^(alpha - e - 1) <= c
331     //
332     // If c were an exact power of ten, i.e. c = 10^k, one may determine k as
333     //
334     //      k = ceil( log_10( 2^(alpha - e - 1) ) )
335     //        = ceil( (alpha - e - 1) * log_10(2) )
336     //
337     // From the paper:
338     // "In theory the result of the procedure could be wrong since c is rounded,
339     //  and the computation itself is approximated [...]. In practice, however,
340     //  this simple function is sufficient."
341     //
342     // For IEEE double precision floating-point numbers converted into
343     // normalized diyfp's w = f * 2^e, with q = 64,
344     //
345     //      e >= -1022      (min IEEE exponent)
346     //           -52        (p - 1)
347     //           -52        (p - 1, possibly normalize denormal IEEE numbers)
348     //           -11        (normalize the diyfp)
349     //         = -1137
350     //
351     // and
352     //
353     //      e <= +1023      (max IEEE exponent)
354     //           -52        (p - 1)
355     //           -11        (normalize the diyfp)
356     //         = 960
357     //
358     // This binary exponent range [-1137,960] results in a decimal exponent
359     // range [-307,324]. One does not need to store a cached power for each
360     // k in this range. For each such k it suffices to find a cached power
361     // such that the exponent of the product lies in [alpha,gamma].
362     // This implies that the difference of the decimal exponents of adjacent
363     // table entries must be less than or equal to
364     //
365     //      floor( (gamma - alpha) * log_10(2) ) = 8.
366     //
367     // (A smaller distance gamma-alpha would require a larger table.)
368 
369     // NB:
370     // Actually this function returns c, such that -60 <= e_c + e + 64 <= -34.
371 
372     constexpr int kCachedPowersMinDecExp = -300;
373     constexpr int kCachedPowersDecStep = 8;
374 
375     static constexpr std::array<cached_power, 79> kCachedPowers =
376     {
377         {
378             { 0xAB70FE17C79AC6CA, -1060, -300 },
379             { 0xFF77B1FCBEBCDC4F, -1034, -292 },
380             { 0xBE5691EF416BD60C, -1007, -284 },
381             { 0x8DD01FAD907FFC3C,  -980, -276 },
382             { 0xD3515C2831559A83,  -954, -268 },
383             { 0x9D71AC8FADA6C9B5,  -927, -260 },
384             { 0xEA9C227723EE8BCB,  -901, -252 },
385             { 0xAECC49914078536D,  -874, -244 },
386             { 0x823C12795DB6CE57,  -847, -236 },
387             { 0xC21094364DFB5637,  -821, -228 },
388             { 0x9096EA6F3848984F,  -794, -220 },
389             { 0xD77485CB25823AC7,  -768, -212 },
390             { 0xA086CFCD97BF97F4,  -741, -204 },
391             { 0xEF340A98172AACE5,  -715, -196 },
392             { 0xB23867FB2A35B28E,  -688, -188 },
393             { 0x84C8D4DFD2C63F3B,  -661, -180 },
394             { 0xC5DD44271AD3CDBA,  -635, -172 },
395             { 0x936B9FCEBB25C996,  -608, -164 },
396             { 0xDBAC6C247D62A584,  -582, -156 },
397             { 0xA3AB66580D5FDAF6,  -555, -148 },
398             { 0xF3E2F893DEC3F126,  -529, -140 },
399             { 0xB5B5ADA8AAFF80B8,  -502, -132 },
400             { 0x87625F056C7C4A8B,  -475, -124 },
401             { 0xC9BCFF6034C13053,  -449, -116 },
402             { 0x964E858C91BA2655,  -422, -108 },
403             { 0xDFF9772470297EBD,  -396, -100 },
404             { 0xA6DFBD9FB8E5B88F,  -369,  -92 },
405             { 0xF8A95FCF88747D94,  -343,  -84 },
406             { 0xB94470938FA89BCF,  -316,  -76 },
407             { 0x8A08F0F8BF0F156B,  -289,  -68 },
408             { 0xCDB02555653131B6,  -263,  -60 },
409             { 0x993FE2C6D07B7FAC,  -236,  -52 },
410             { 0xE45C10C42A2B3B06,  -210,  -44 },
411             { 0xAA242499697392D3,  -183,  -36 },
412             { 0xFD87B5F28300CA0E,  -157,  -28 },
413             { 0xBCE5086492111AEB,  -130,  -20 },
414             { 0x8CBCCC096F5088CC,  -103,  -12 },
415             { 0xD1B71758E219652C,   -77,   -4 },
416             { 0x9C40000000000000,   -50,    4 },
417             { 0xE8D4A51000000000,   -24,   12 },
418             { 0xAD78EBC5AC620000,     3,   20 },
419             { 0x813F3978F8940984,    30,   28 },
420             { 0xC097CE7BC90715B3,    56,   36 },
421             { 0x8F7E32CE7BEA5C70,    83,   44 },
422             { 0xD5D238A4ABE98068,   109,   52 },
423             { 0x9F4F2726179A2245,   136,   60 },
424             { 0xED63A231D4C4FB27,   162,   68 },
425             { 0xB0DE65388CC8ADA8,   189,   76 },
426             { 0x83C7088E1AAB65DB,   216,   84 },
427             { 0xC45D1DF942711D9A,   242,   92 },
428             { 0x924D692CA61BE758,   269,  100 },
429             { 0xDA01EE641A708DEA,   295,  108 },
430             { 0xA26DA3999AEF774A,   322,  116 },
431             { 0xF209787BB47D6B85,   348,  124 },
432             { 0xB454E4A179DD1877,   375,  132 },
433             { 0x865B86925B9BC5C2,   402,  140 },
434             { 0xC83553C5C8965D3D,   428,  148 },
435             { 0x952AB45CFA97A0B3,   455,  156 },
436             { 0xDE469FBD99A05FE3,   481,  164 },
437             { 0xA59BC234DB398C25,   508,  172 },
438             { 0xF6C69A72A3989F5C,   534,  180 },
439             { 0xB7DCBF5354E9BECE,   561,  188 },
440             { 0x88FCF317F22241E2,   588,  196 },
441             { 0xCC20CE9BD35C78A5,   614,  204 },
442             { 0x98165AF37B2153DF,   641,  212 },
443             { 0xE2A0B5DC971F303A,   667,  220 },
444             { 0xA8D9D1535CE3B396,   694,  228 },
445             { 0xFB9B7CD9A4A7443C,   720,  236 },
446             { 0xBB764C4CA7A44410,   747,  244 },
447             { 0x8BAB8EEFB6409C1A,   774,  252 },
448             { 0xD01FEF10A657842C,   800,  260 },
449             { 0x9B10A4E5E9913129,   827,  268 },
450             { 0xE7109BFBA19C0C9D,   853,  276 },
451             { 0xAC2820D9623BF429,   880,  284 },
452             { 0x80444B5E7AA7CF85,   907,  292 },
453             { 0xBF21E44003ACDD2D,   933,  300 },
454             { 0x8E679C2F5E44FF8F,   960,  308 },
455             { 0xD433179D9C8CB841,   986,  316 },
456             { 0x9E19DB92B4E31BA9,  1013,  324 },
457         }
458     };
459 
460     // This computation gives exactly the same results for k as
461     //      k = ceil((kAlpha - e - 1) * 0.30102999566398114)
462     // for |e| <= 1500, but doesn't require floating-point operations.
463     // NB: log_10(2) ~= 78913 / 2^18
464     JSON_ASSERT(e >= -1500);
465     JSON_ASSERT(e <=  1500);
466     const int f = kAlpha - e - 1;
467     const int k = (f * 78913) / (1 << 18) + static_cast<int>(f > 0);
468 
469     const int index = (-kCachedPowersMinDecExp + k + (kCachedPowersDecStep - 1)) / kCachedPowersDecStep;
470     JSON_ASSERT(index >= 0);
471     JSON_ASSERT(static_cast<std::size_t>(index) < kCachedPowers.size());
472 
473     const cached_power cached = kCachedPowers[static_cast<std::size_t>(index)];
474     JSON_ASSERT(kAlpha <= cached.e + e + 64);
475     JSON_ASSERT(kGamma >= cached.e + e + 64);
476 
477     return cached;
478 }
479 
480 /*!
481 For n != 0, returns k, such that pow10 := 10^(k-1) <= n < 10^k.
482 For n == 0, returns 1 and sets pow10 := 1.
483 */
find_largest_pow10(const std::uint32_t n,std::uint32_t & pow10)484 inline int find_largest_pow10(const std::uint32_t n, std::uint32_t& pow10)
485 {
486     // LCOV_EXCL_START
487     if (n >= 1000000000)
488     {
489         pow10 = 1000000000;
490         return 10;
491     }
492     // LCOV_EXCL_STOP
493     if (n >= 100000000)
494     {
495         pow10 = 100000000;
496         return  9;
497     }
498     if (n >= 10000000)
499     {
500         pow10 = 10000000;
501         return  8;
502     }
503     if (n >= 1000000)
504     {
505         pow10 = 1000000;
506         return  7;
507     }
508     if (n >= 100000)
509     {
510         pow10 = 100000;
511         return  6;
512     }
513     if (n >= 10000)
514     {
515         pow10 = 10000;
516         return  5;
517     }
518     if (n >= 1000)
519     {
520         pow10 = 1000;
521         return  4;
522     }
523     if (n >= 100)
524     {
525         pow10 = 100;
526         return  3;
527     }
528     if (n >= 10)
529     {
530         pow10 = 10;
531         return  2;
532     }
533 
534     pow10 = 1;
535     return 1;
536 }
537 
grisu2_round(char * buf,int len,std::uint64_t dist,std::uint64_t delta,std::uint64_t rest,std::uint64_t ten_k)538 inline void grisu2_round(char* buf, int len, std::uint64_t dist, std::uint64_t delta,
539                          std::uint64_t rest, std::uint64_t ten_k)
540 {
541     JSON_ASSERT(len >= 1);
542     JSON_ASSERT(dist <= delta);
543     JSON_ASSERT(rest <= delta);
544     JSON_ASSERT(ten_k > 0);
545 
546     //               <--------------------------- delta ---->
547     //                                  <---- dist --------->
548     // --------------[------------------+-------------------]--------------
549     //               M-                 w                   M+
550     //
551     //                                  ten_k
552     //                                <------>
553     //                                       <---- rest ---->
554     // --------------[------------------+----+--------------]--------------
555     //                                  w    V
556     //                                       = buf * 10^k
557     //
558     // ten_k represents a unit-in-the-last-place in the decimal representation
559     // stored in buf.
560     // Decrement buf by ten_k while this takes buf closer to w.
561 
562     // The tests are written in this order to avoid overflow in unsigned
563     // integer arithmetic.
564 
565     while (rest < dist
566             && delta - rest >= ten_k
567             && (rest + ten_k < dist || dist - rest > rest + ten_k - dist))
568     {
569         JSON_ASSERT(buf[len - 1] != '0');
570         buf[len - 1]--;
571         rest += ten_k;
572     }
573 }
574 
575 /*!
576 Generates V = buffer * 10^decimal_exponent, such that M- <= V <= M+.
577 M- and M+ must be normalized and share the same exponent -60 <= e <= -32.
578 */
grisu2_digit_gen(char * buffer,int & length,int & decimal_exponent,diyfp M_minus,diyfp w,diyfp M_plus)579 inline void grisu2_digit_gen(char* buffer, int& length, int& decimal_exponent,
580                              diyfp M_minus, diyfp w, diyfp M_plus)
581 {
582     static_assert(kAlpha >= -60, "internal error");
583     static_assert(kGamma <= -32, "internal error");
584 
585     // Generates the digits (and the exponent) of a decimal floating-point
586     // number V = buffer * 10^decimal_exponent in the range [M-, M+]. The diyfp's
587     // w, M- and M+ share the same exponent e, which satisfies alpha <= e <= gamma.
588     //
589     //               <--------------------------- delta ---->
590     //                                  <---- dist --------->
591     // --------------[------------------+-------------------]--------------
592     //               M-                 w                   M+
593     //
594     // Grisu2 generates the digits of M+ from left to right and stops as soon as
595     // V is in [M-,M+].
596 
597     JSON_ASSERT(M_plus.e >= kAlpha);
598     JSON_ASSERT(M_plus.e <= kGamma);
599 
600     std::uint64_t delta = diyfp::sub(M_plus, M_minus).f; // (significand of (M+ - M-), implicit exponent is e)
601     std::uint64_t dist  = diyfp::sub(M_plus, w      ).f; // (significand of (M+ - w ), implicit exponent is e)
602 
603     // Split M+ = f * 2^e into two parts p1 and p2 (note: e < 0):
604     //
605     //      M+ = f * 2^e
606     //         = ((f div 2^-e) * 2^-e + (f mod 2^-e)) * 2^e
607     //         = ((p1        ) * 2^-e + (p2        )) * 2^e
608     //         = p1 + p2 * 2^e
609 
610     const diyfp one(std::uint64_t{1} << -M_plus.e, M_plus.e);
611 
612     auto p1 = static_cast<std::uint32_t>(M_plus.f >> -one.e); // p1 = f div 2^-e (Since -e >= 32, p1 fits into a 32-bit int.)
613     std::uint64_t p2 = M_plus.f & (one.f - 1);                    // p2 = f mod 2^-e
614 
615     // 1)
616     //
617     // Generate the digits of the integral part p1 = d[n-1]...d[1]d[0]
618 
619     JSON_ASSERT(p1 > 0);
620 
621     std::uint32_t pow10{};
622     const int k = find_largest_pow10(p1, pow10);
623 
624     //      10^(k-1) <= p1 < 10^k, pow10 = 10^(k-1)
625     //
626     //      p1 = (p1 div 10^(k-1)) * 10^(k-1) + (p1 mod 10^(k-1))
627     //         = (d[k-1]         ) * 10^(k-1) + (p1 mod 10^(k-1))
628     //
629     //      M+ = p1                                             + p2 * 2^e
630     //         = d[k-1] * 10^(k-1) + (p1 mod 10^(k-1))          + p2 * 2^e
631     //         = d[k-1] * 10^(k-1) + ((p1 mod 10^(k-1)) * 2^-e + p2) * 2^e
632     //         = d[k-1] * 10^(k-1) + (                         rest) * 2^e
633     //
634     // Now generate the digits d[n] of p1 from left to right (n = k-1,...,0)
635     //
636     //      p1 = d[k-1]...d[n] * 10^n + d[n-1]...d[0]
637     //
638     // but stop as soon as
639     //
640     //      rest * 2^e = (d[n-1]...d[0] * 2^-e + p2) * 2^e <= delta * 2^e
641 
642     int n = k;
643     while (n > 0)
644     {
645         // Invariants:
646         //      M+ = buffer * 10^n + (p1 + p2 * 2^e)    (buffer = 0 for n = k)
647         //      pow10 = 10^(n-1) <= p1 < 10^n
648         //
649         const std::uint32_t d = p1 / pow10;  // d = p1 div 10^(n-1)
650         const std::uint32_t r = p1 % pow10;  // r = p1 mod 10^(n-1)
651         //
652         //      M+ = buffer * 10^n + (d * 10^(n-1) + r) + p2 * 2^e
653         //         = (buffer * 10 + d) * 10^(n-1) + (r + p2 * 2^e)
654         //
655         JSON_ASSERT(d <= 9);
656         buffer[length++] = static_cast<char>('0' + d); // buffer := buffer * 10 + d
657         //
658         //      M+ = buffer * 10^(n-1) + (r + p2 * 2^e)
659         //
660         p1 = r;
661         n--;
662         //
663         //      M+ = buffer * 10^n + (p1 + p2 * 2^e)
664         //      pow10 = 10^n
665         //
666 
667         // Now check if enough digits have been generated.
668         // Compute
669         //
670         //      p1 + p2 * 2^e = (p1 * 2^-e + p2) * 2^e = rest * 2^e
671         //
672         // Note:
673         // Since rest and delta share the same exponent e, it suffices to
674         // compare the significands.
675         const std::uint64_t rest = (std::uint64_t{p1} << -one.e) + p2;
676         if (rest <= delta)
677         {
678             // V = buffer * 10^n, with M- <= V <= M+.
679 
680             decimal_exponent += n;
681 
682             // We may now just stop. But instead look if the buffer could be
683             // decremented to bring V closer to w.
684             //
685             // pow10 = 10^n is now 1 ulp in the decimal representation V.
686             // The rounding procedure works with diyfp's with an implicit
687             // exponent of e.
688             //
689             //      10^n = (10^n * 2^-e) * 2^e = ulp * 2^e
690             //
691             const std::uint64_t ten_n = std::uint64_t{pow10} << -one.e;
692             grisu2_round(buffer, length, dist, delta, rest, ten_n);
693 
694             return;
695         }
696 
697         pow10 /= 10;
698         //
699         //      pow10 = 10^(n-1) <= p1 < 10^n
700         // Invariants restored.
701     }
702 
703     // 2)
704     //
705     // The digits of the integral part have been generated:
706     //
707     //      M+ = d[k-1]...d[1]d[0] + p2 * 2^e
708     //         = buffer            + p2 * 2^e
709     //
710     // Now generate the digits of the fractional part p2 * 2^e.
711     //
712     // Note:
713     // No decimal point is generated: the exponent is adjusted instead.
714     //
715     // p2 actually represents the fraction
716     //
717     //      p2 * 2^e
718     //          = p2 / 2^-e
719     //          = d[-1] / 10^1 + d[-2] / 10^2 + ...
720     //
721     // Now generate the digits d[-m] of p1 from left to right (m = 1,2,...)
722     //
723     //      p2 * 2^e = d[-1]d[-2]...d[-m] * 10^-m
724     //                      + 10^-m * (d[-m-1] / 10^1 + d[-m-2] / 10^2 + ...)
725     //
726     // using
727     //
728     //      10^m * p2 = ((10^m * p2) div 2^-e) * 2^-e + ((10^m * p2) mod 2^-e)
729     //                = (                   d) * 2^-e + (                   r)
730     //
731     // or
732     //      10^m * p2 * 2^e = d + r * 2^e
733     //
734     // i.e.
735     //
736     //      M+ = buffer + p2 * 2^e
737     //         = buffer + 10^-m * (d + r * 2^e)
738     //         = (buffer * 10^m + d) * 10^-m + 10^-m * r * 2^e
739     //
740     // and stop as soon as 10^-m * r * 2^e <= delta * 2^e
741 
742     JSON_ASSERT(p2 > delta);
743 
744     int m = 0;
745     for (;;)
746     {
747         // Invariant:
748         //      M+ = buffer * 10^-m + 10^-m * (d[-m-1] / 10 + d[-m-2] / 10^2 + ...) * 2^e
749         //         = buffer * 10^-m + 10^-m * (p2                                 ) * 2^e
750         //         = buffer * 10^-m + 10^-m * (1/10 * (10 * p2)                   ) * 2^e
751         //         = buffer * 10^-m + 10^-m * (1/10 * ((10*p2 div 2^-e) * 2^-e + (10*p2 mod 2^-e)) * 2^e
752         //
753         JSON_ASSERT(p2 <= (std::numeric_limits<std::uint64_t>::max)() / 10);
754         p2 *= 10;
755         const std::uint64_t d = p2 >> -one.e;     // d = (10 * p2) div 2^-e
756         const std::uint64_t r = p2 & (one.f - 1); // r = (10 * p2) mod 2^-e
757         //
758         //      M+ = buffer * 10^-m + 10^-m * (1/10 * (d * 2^-e + r) * 2^e
759         //         = buffer * 10^-m + 10^-m * (1/10 * (d + r * 2^e))
760         //         = (buffer * 10 + d) * 10^(-m-1) + 10^(-m-1) * r * 2^e
761         //
762         JSON_ASSERT(d <= 9);
763         buffer[length++] = static_cast<char>('0' + d); // buffer := buffer * 10 + d
764         //
765         //      M+ = buffer * 10^(-m-1) + 10^(-m-1) * r * 2^e
766         //
767         p2 = r;
768         m++;
769         //
770         //      M+ = buffer * 10^-m + 10^-m * p2 * 2^e
771         // Invariant restored.
772 
773         // Check if enough digits have been generated.
774         //
775         //      10^-m * p2 * 2^e <= delta * 2^e
776         //              p2 * 2^e <= 10^m * delta * 2^e
777         //                    p2 <= 10^m * delta
778         delta *= 10;
779         dist  *= 10;
780         if (p2 <= delta)
781         {
782             break;
783         }
784     }
785 
786     // V = buffer * 10^-m, with M- <= V <= M+.
787 
788     decimal_exponent -= m;
789 
790     // 1 ulp in the decimal representation is now 10^-m.
791     // Since delta and dist are now scaled by 10^m, we need to do the
792     // same with ulp in order to keep the units in sync.
793     //
794     //      10^m * 10^-m = 1 = 2^-e * 2^e = ten_m * 2^e
795     //
796     const std::uint64_t ten_m = one.f;
797     grisu2_round(buffer, length, dist, delta, p2, ten_m);
798 
799     // By construction this algorithm generates the shortest possible decimal
800     // number (Loitsch, Theorem 6.2) which rounds back to w.
801     // For an input number of precision p, at least
802     //
803     //      N = 1 + ceil(p * log_10(2))
804     //
805     // decimal digits are sufficient to identify all binary floating-point
806     // numbers (Matula, "In-and-Out conversions").
807     // This implies that the algorithm does not produce more than N decimal
808     // digits.
809     //
810     //      N = 17 for p = 53 (IEEE double precision)
811     //      N = 9  for p = 24 (IEEE single precision)
812 }
813 
814 /*!
815 v = buf * 10^decimal_exponent
816 len is the length of the buffer (number of decimal digits)
817 The buffer must be large enough, i.e. >= max_digits10.
818 */
819 JSON_HEDLEY_NON_NULL(1)
grisu2(char * buf,int & len,int & decimal_exponent,diyfp m_minus,diyfp v,diyfp m_plus)820 inline void grisu2(char* buf, int& len, int& decimal_exponent,
821                    diyfp m_minus, diyfp v, diyfp m_plus)
822 {
823     JSON_ASSERT(m_plus.e == m_minus.e);
824     JSON_ASSERT(m_plus.e == v.e);
825 
826     //  --------(-----------------------+-----------------------)--------    (A)
827     //          m-                      v                       m+
828     //
829     //  --------------------(-----------+-----------------------)--------    (B)
830     //                      m-          v                       m+
831     //
832     // First scale v (and m- and m+) such that the exponent is in the range
833     // [alpha, gamma].
834 
835     const cached_power cached = get_cached_power_for_binary_exponent(m_plus.e);
836 
837     const diyfp c_minus_k(cached.f, cached.e); // = c ~= 10^-k
838 
839     // The exponent of the products is = v.e + c_minus_k.e + q and is in the range [alpha,gamma]
840     const diyfp w       = diyfp::mul(v,       c_minus_k);
841     const diyfp w_minus = diyfp::mul(m_minus, c_minus_k);
842     const diyfp w_plus  = diyfp::mul(m_plus,  c_minus_k);
843 
844     //  ----(---+---)---------------(---+---)---------------(---+---)----
845     //          w-                      w                       w+
846     //          = c*m-                  = c*v                   = c*m+
847     //
848     // diyfp::mul rounds its result and c_minus_k is approximated too. w, w- and
849     // w+ are now off by a small amount.
850     // In fact:
851     //
852     //      w - v * 10^k < 1 ulp
853     //
854     // To account for this inaccuracy, add resp. subtract 1 ulp.
855     //
856     //  --------+---[---------------(---+---)---------------]---+--------
857     //          w-  M-                  w                   M+  w+
858     //
859     // Now any number in [M-, M+] (bounds included) will round to w when input,
860     // regardless of how the input rounding algorithm breaks ties.
861     //
862     // And digit_gen generates the shortest possible such number in [M-, M+].
863     // Note that this does not mean that Grisu2 always generates the shortest
864     // possible number in the interval (m-, m+).
865     const diyfp M_minus(w_minus.f + 1, w_minus.e);
866     const diyfp M_plus (w_plus.f  - 1, w_plus.e );
867 
868     decimal_exponent = -cached.k; // = -(-k) = k
869 
870     grisu2_digit_gen(buf, len, decimal_exponent, M_minus, w, M_plus);
871 }
872 
873 /*!
874 v = buf * 10^decimal_exponent
875 len is the length of the buffer (number of decimal digits)
876 The buffer must be large enough, i.e. >= max_digits10.
877 */
878 template<typename FloatType>
879 JSON_HEDLEY_NON_NULL(1)
grisu2(char * buf,int & len,int & decimal_exponent,FloatType value)880 void grisu2(char* buf, int& len, int& decimal_exponent, FloatType value)
881 {
882     static_assert(diyfp::kPrecision >= std::numeric_limits<FloatType>::digits + 3,
883                   "internal error: not enough precision");
884 
885     JSON_ASSERT(std::isfinite(value));
886     JSON_ASSERT(value > 0);
887 
888     // If the neighbors (and boundaries) of 'value' are always computed for double-precision
889     // numbers, all float's can be recovered using strtod (and strtof). However, the resulting
890     // decimal representations are not exactly "short".
891     //
892     // The documentation for 'std::to_chars' (https://en.cppreference.com/w/cpp/utility/to_chars)
893     // says "value is converted to a string as if by std::sprintf in the default ("C") locale"
894     // and since sprintf promotes float's to double's, I think this is exactly what 'std::to_chars'
895     // does.
896     // On the other hand, the documentation for 'std::to_chars' requires that "parsing the
897     // representation using the corresponding std::from_chars function recovers value exactly". That
898     // indicates that single precision floating-point numbers should be recovered using
899     // 'std::strtof'.
900     //
901     // NB: If the neighbors are computed for single-precision numbers, there is a single float
902     //     (7.0385307e-26f) which can't be recovered using strtod. The resulting double precision
903     //     value is off by 1 ulp.
904 #if 0
905     const boundaries w = compute_boundaries(static_cast<double>(value));
906 #else
907     const boundaries w = compute_boundaries(value);
908 #endif
909 
910     grisu2(buf, len, decimal_exponent, w.minus, w.w, w.plus);
911 }
912 
913 /*!
914 @brief appends a decimal representation of e to buf
915 @return a pointer to the element following the exponent.
916 @pre -1000 < e < 1000
917 */
918 JSON_HEDLEY_NON_NULL(1)
919 JSON_HEDLEY_RETURNS_NON_NULL
append_exponent(char * buf,int e)920 inline char* append_exponent(char* buf, int e)
921 {
922     JSON_ASSERT(e > -1000);
923     JSON_ASSERT(e <  1000);
924 
925     if (e < 0)
926     {
927         e = -e;
928         *buf++ = '-';
929     }
930     else
931     {
932         *buf++ = '+';
933     }
934 
935     auto k = static_cast<std::uint32_t>(e);
936     if (k < 10)
937     {
938         // Always print at least two digits in the exponent.
939         // This is for compatibility with printf("%g").
940         *buf++ = '0';
941         *buf++ = static_cast<char>('0' + k);
942     }
943     else if (k < 100)
944     {
945         *buf++ = static_cast<char>('0' + k / 10);
946         k %= 10;
947         *buf++ = static_cast<char>('0' + k);
948     }
949     else
950     {
951         *buf++ = static_cast<char>('0' + k / 100);
952         k %= 100;
953         *buf++ = static_cast<char>('0' + k / 10);
954         k %= 10;
955         *buf++ = static_cast<char>('0' + k);
956     }
957 
958     return buf;
959 }
960 
961 /*!
962 @brief prettify v = buf * 10^decimal_exponent
963 
964 If v is in the range [10^min_exp, 10^max_exp) it will be printed in fixed-point
965 notation. Otherwise it will be printed in exponential notation.
966 
967 @pre min_exp < 0
968 @pre max_exp > 0
969 */
970 JSON_HEDLEY_NON_NULL(1)
971 JSON_HEDLEY_RETURNS_NON_NULL
format_buffer(char * buf,int len,int decimal_exponent,int min_exp,int max_exp)972 inline char* format_buffer(char* buf, int len, int decimal_exponent,
973                            int min_exp, int max_exp)
974 {
975     JSON_ASSERT(min_exp < 0);
976     JSON_ASSERT(max_exp > 0);
977 
978     const int k = len;
979     const int n = len + decimal_exponent;
980 
981     // v = buf * 10^(n-k)
982     // k is the length of the buffer (number of decimal digits)
983     // n is the position of the decimal point relative to the start of the buffer.
984 
985     if (k <= n && n <= max_exp)
986     {
987         // digits[000]
988         // len <= max_exp + 2
989 
990         std::memset(buf + k, '0', static_cast<size_t>(n) - static_cast<size_t>(k));
991         // Make it look like a floating-point number (#362, #378)
992         buf[n + 0] = '.';
993         buf[n + 1] = '0';
994         return buf + (static_cast<size_t>(n) + 2);
995     }
996 
997     if (0 < n && n <= max_exp)
998     {
999         // dig.its
1000         // len <= max_digits10 + 1
1001 
1002         JSON_ASSERT(k > n);
1003 
1004         std::memmove(buf + (static_cast<size_t>(n) + 1), buf + n, static_cast<size_t>(k) - static_cast<size_t>(n));
1005         buf[n] = '.';
1006         return buf + (static_cast<size_t>(k) + 1U);
1007     }
1008 
1009     if (min_exp < n && n <= 0)
1010     {
1011         // 0.[000]digits
1012         // len <= 2 + (-min_exp - 1) + max_digits10
1013 
1014         std::memmove(buf + (2 + static_cast<size_t>(-n)), buf, static_cast<size_t>(k));
1015         buf[0] = '0';
1016         buf[1] = '.';
1017         std::memset(buf + 2, '0', static_cast<size_t>(-n));
1018         return buf + (2U + static_cast<size_t>(-n) + static_cast<size_t>(k));
1019     }
1020 
1021     if (k == 1)
1022     {
1023         // dE+123
1024         // len <= 1 + 5
1025 
1026         buf += 1;
1027     }
1028     else
1029     {
1030         // d.igitsE+123
1031         // len <= max_digits10 + 1 + 5
1032 
1033         std::memmove(buf + 2, buf + 1, static_cast<size_t>(k) - 1);
1034         buf[1] = '.';
1035         buf += 1 + static_cast<size_t>(k);
1036     }
1037 
1038     *buf++ = 'e';
1039     return append_exponent(buf, n - 1);
1040 }
1041 
1042 } // namespace dtoa_impl
1043 
1044 /*!
1045 @brief generates a decimal representation of the floating-point number value in [first, last).
1046 
1047 The format of the resulting decimal representation is similar to printf's %g
1048 format. Returns an iterator pointing past-the-end of the decimal representation.
1049 
1050 @note The input number must be finite, i.e. NaN's and Inf's are not supported.
1051 @note The buffer must be large enough.
1052 @note The result is NOT null-terminated.
1053 */
1054 template<typename FloatType>
1055 JSON_HEDLEY_NON_NULL(1, 2)
1056 JSON_HEDLEY_RETURNS_NON_NULL
to_chars(char * first,const char * last,FloatType value)1057 char* to_chars(char* first, const char* last, FloatType value)
1058 {
1059     static_cast<void>(last); // maybe unused - fix warning
1060     JSON_ASSERT(std::isfinite(value));
1061 
1062     // Use signbit(value) instead of (value < 0) since signbit works for -0.
1063     if (std::signbit(value))
1064     {
1065         value = -value;
1066         *first++ = '-';
1067     }
1068 
1069 #ifdef __GNUC__
1070 #pragma GCC diagnostic push
1071 #pragma GCC diagnostic ignored "-Wfloat-equal"
1072 #endif
1073     if (value == 0) // +-0
1074     {
1075         *first++ = '0';
1076         // Make it look like a floating-point number (#362, #378)
1077         *first++ = '.';
1078         *first++ = '0';
1079         return first;
1080     }
1081 #ifdef __GNUC__
1082 #pragma GCC diagnostic pop
1083 #endif
1084 
1085     JSON_ASSERT(last - first >= std::numeric_limits<FloatType>::max_digits10);
1086 
1087     // Compute v = buffer * 10^decimal_exponent.
1088     // The decimal digits are stored in the buffer, which needs to be interpreted
1089     // as an unsigned decimal integer.
1090     // len is the length of the buffer, i.e. the number of decimal digits.
1091     int len = 0;
1092     int decimal_exponent = 0;
1093     dtoa_impl::grisu2(first, len, decimal_exponent, value);
1094 
1095     JSON_ASSERT(len <= std::numeric_limits<FloatType>::max_digits10);
1096 
1097     // Format the buffer like printf("%.*g", prec, value)
1098     constexpr int kMinExp = -4;
1099     // Use digits10 here to increase compatibility with version 2.
1100     constexpr int kMaxExp = std::numeric_limits<FloatType>::digits10;
1101 
1102     JSON_ASSERT(last - first >= kMaxExp + 2);
1103     JSON_ASSERT(last - first >= 2 + (-kMinExp - 1) + std::numeric_limits<FloatType>::max_digits10);
1104     JSON_ASSERT(last - first >= std::numeric_limits<FloatType>::max_digits10 + 6);
1105 
1106     return dtoa_impl::format_buffer(first, len, decimal_exponent, kMinExp, kMaxExp);
1107 }
1108 
1109 } // namespace detail
1110 } // namespace nlohmann
1111