1 /*	$Id: qdivrem.c,v 1.3 2009/03/15 00:20:42 gmcgarry Exp $	*/
2 /*	$NetBSD: qdivrem.c,v 1.1 2005/12/20 19:28:51 christos Exp $	*/
3 
4 /*-
5  * Copyright (c) 1992, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This software was developed by the Computer Systems Engineering group
9  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10  * contributed to Berkeley.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 /*
38  * Multiprecision divide.  This algorithm is from Knuth vol. 2 (2nd ed),
39  * section 4.3.1, pp. 257--259.
40  */
41 
42 #include "quad.h"
43 
44 #define	B	((int)1 << HALF_BITS)	/* digit base */
45 
46 /* Combine two `digits' to make a single two-digit number. */
47 #define	COMBINE(a, b) (((unsigned int)(a) << HALF_BITS) | (b))
48 
49 /* select a type for digits in base B: use unsigned short if they fit */
50 #if UINT_MAX == 0xffffffffU && USHRT_MAX >= 0xffff
51 typedef unsigned short digit;
52 #else
53 typedef unsigned int digit;
54 #endif
55 
56 static void shl(digit *p, int len, int sh);
57 
58 /*
59  * __qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v.
60  *
61  * We do this in base 2-sup-HALF_BITS, so that all intermediate products
62  * fit within unsigned int.  As a consequence, the maximum length dividend and
63  * divisor are 4 `digits' in this base (they are shorter if they have
64  * leading zeros).
65  */
66 u_quad_t
67 __qdivrem(u_quad_t uq, u_quad_t vq, u_quad_t *arq)
68 {
69 	union uu tmp;
70 	digit *u, *v, *q;
71 	digit v1, v2;
72 	unsigned int qhat, rhat, t;
73 	int m, n, d, j, i;
74 	digit uspace[5], vspace[5], qspace[5];
75 
76 	/*
77 	 * Take care of special cases: divide by zero, and u < v.
78 	 */
79 	if (vq == 0) {
80 		/* divide by zero. */
81 		static volatile const unsigned int zero = 0;
82 
83 		tmp.ul[H] = tmp.ul[L] = 1 / zero;
84 		if (arq)
85 			*arq = uq;
86 		return (tmp.q);
87 	}
88 	if (uq < vq) {
89 		if (arq)
90 			*arq = uq;
91 		return (0);
92 	}
93 	u = &uspace[0];
94 	v = &vspace[0];
95 	q = &qspace[0];
96 
97 	/*
98 	 * Break dividend and divisor into digits in base B, then
99 	 * count leading zeros to determine m and n.  When done, we
100 	 * will have:
101 	 *	u = (u[1]u[2]...u[m+n]) sub B
102 	 *	v = (v[1]v[2]...v[n]) sub B
103 	 *	v[1] != 0
104 	 *	1 < n <= 4 (if n = 1, we use a different division algorithm)
105 	 *	m >= 0 (otherwise u < v, which we already checked)
106 	 *	m + n = 4
107 	 * and thus
108 	 *	m = 4 - n <= 2
109 	 */
110 	tmp.uq = uq;
111 	u[0] = 0;
112 	u[1] = (digit)HHALF(tmp.ul[H]);
113 	u[2] = (digit)LHALF(tmp.ul[H]);
114 	u[3] = (digit)HHALF(tmp.ul[L]);
115 	u[4] = (digit)LHALF(tmp.ul[L]);
116 	tmp.uq = vq;
117 	v[1] = (digit)HHALF(tmp.ul[H]);
118 	v[2] = (digit)LHALF(tmp.ul[H]);
119 	v[3] = (digit)HHALF(tmp.ul[L]);
120 	v[4] = (digit)LHALF(tmp.ul[L]);
121 	for (n = 4; v[1] == 0; v++) {
122 		if (--n == 1) {
123 			unsigned int rbj;	/* r*B+u[j] (not root boy jim) */
124 			digit q1, q2, q3, q4;
125 
126 			/*
127 			 * Change of plan, per exercise 16.
128 			 *	r = 0;
129 			 *	for j = 1..4:
130 			 *		q[j] = floor((r*B + u[j]) / v),
131 			 *		r = (r*B + u[j]) % v;
132 			 * We unroll this completely here.
133 			 */
134 			t = v[2];	/* nonzero, by definition */
135 			q1 = (digit)(u[1] / t);
136 			rbj = COMBINE(u[1] % t, u[2]);
137 			q2 = (digit)(rbj / t);
138 			rbj = COMBINE(rbj % t, u[3]);
139 			q3 = (digit)(rbj / t);
140 			rbj = COMBINE(rbj % t, u[4]);
141 			q4 = (digit)(rbj / t);
142 			if (arq)
143 				*arq = rbj % t;
144 			tmp.ul[H] = COMBINE(q1, q2);
145 			tmp.ul[L] = COMBINE(q3, q4);
146 			return (tmp.q);
147 		}
148 	}
149 
150 	/*
151 	 * By adjusting q once we determine m, we can guarantee that
152 	 * there is a complete four-digit quotient at &qspace[1] when
153 	 * we finally stop.
154 	 */
155 	for (m = 4 - n; u[1] == 0; u++)
156 		m--;
157 	for (i = 4 - m; --i >= 0;)
158 		q[i] = 0;
159 	q += 4 - m;
160 
161 	/*
162 	 * Here we run Program D, translated from MIX to C and acquiring
163 	 * a few minor changes.
164 	 *
165 	 * D1: choose multiplier 1 << d to ensure v[1] >= B/2.
166 	 */
167 	d = 0;
168 	for (t = v[1]; t < B / 2; t <<= 1)
169 		d++;
170 	if (d > 0) {
171 		shl(&u[0], m + n, d);		/* u <<= d */
172 		shl(&v[1], n - 1, d);		/* v <<= d */
173 	}
174 	/*
175 	 * D2: j = 0.
176 	 */
177 	j = 0;
178 	v1 = v[1];	/* for D3 -- note that v[1..n] are constant */
179 	v2 = v[2];	/* for D3 */
180 	do {
181 		digit uj0, uj1, uj2;
182 
183 		/*
184 		 * D3: Calculate qhat (\^q, in TeX notation).
185 		 * Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and
186 		 * let rhat = (u[j]*B + u[j+1]) mod v[1].
187 		 * While rhat < B and v[2]*qhat > rhat*B+u[j+2],
188 		 * decrement qhat and increase rhat correspondingly.
189 		 * Note that if rhat >= B, v[2]*qhat < rhat*B.
190 		 */
191 		uj0 = u[j + 0];	/* for D3 only -- note that u[j+...] change */
192 		uj1 = u[j + 1];	/* for D3 only */
193 		uj2 = u[j + 2];	/* for D3 only */
194 		if (uj0 == v1) {
195 			qhat = B;
196 			rhat = uj1;
197 			goto qhat_too_big;
198 		} else {
199 			unsigned int nn = COMBINE(uj0, uj1);
200 			qhat = nn / v1;
201 			rhat = nn % v1;
202 		}
203 		while (v2 * qhat > COMBINE(rhat, uj2)) {
204 	qhat_too_big:
205 			qhat--;
206 			if ((rhat += v1) >= B)
207 				break;
208 		}
209 		/*
210 		 * D4: Multiply and subtract.
211 		 * The variable `t' holds any borrows across the loop.
212 		 * We split this up so that we do not require v[0] = 0,
213 		 * and to eliminate a final special case.
214 		 */
215 		for (t = 0, i = n; i > 0; i--) {
216 			t = u[i + j] - v[i] * qhat - t;
217 			u[i + j] = (digit)LHALF(t);
218 			t = (B - HHALF(t)) & (B - 1);
219 		}
220 		t = u[j] - t;
221 		u[j] = (digit)LHALF(t);
222 		/*
223 		 * D5: test remainder.
224 		 * There is a borrow if and only if HHALF(t) is nonzero;
225 		 * in that (rare) case, qhat was too large (by exactly 1).
226 		 * Fix it by adding v[1..n] to u[j..j+n].
227 		 */
228 		if (HHALF(t)) {
229 			qhat--;
230 			for (t = 0, i = n; i > 0; i--) { /* D6: add back. */
231 				t += u[i + j] + v[i];
232 				u[i + j] = (digit)LHALF(t);
233 				t = HHALF(t);
234 			}
235 			u[j] = (digit)LHALF(u[j] + t);
236 		}
237 		q[j] = (digit)qhat;
238 	} while (++j <= m);		/* D7: loop on j. */
239 
240 	/*
241 	 * If caller wants the remainder, we have to calculate it as
242 	 * u[m..m+n] >> d (this is at most n digits and thus fits in
243 	 * u[m+1..m+n], but we may need more source digits).
244 	 */
245 	if (arq) {
246 		if (d) {
247 			for (i = m + n; i > m; --i)
248 				u[i] = (digit)(((unsigned int)u[i] >> d) |
249 				    LHALF((unsigned int)u[i - 1] << (HALF_BITS - d)));
250 			u[i] = 0;
251 		}
252 		tmp.ul[H] = COMBINE(uspace[1], uspace[2]);
253 		tmp.ul[L] = COMBINE(uspace[3], uspace[4]);
254 		*arq = tmp.q;
255 	}
256 
257 	tmp.ul[H] = COMBINE(qspace[1], qspace[2]);
258 	tmp.ul[L] = COMBINE(qspace[3], qspace[4]);
259 	return (tmp.q);
260 }
261 
262 /*
263  * Shift p[0]..p[len] left `sh' bits, ignoring any bits that
264  * `fall out' the left (there never will be any such anyway).
265  * We may assume len >= 0.  NOTE THAT THIS WRITES len+1 DIGITS.
266  */
267 static void
268 shl(digit *p, int len, int sh)
269 {
270 	int i;
271 
272 	for (i = 0; i < len; i++)
273 		p[i] = (digit)(LHALF((unsigned int)p[i] << sh) |
274 		    ((unsigned int)p[i + 1] >> (HALF_BITS - sh)));
275 	p[i] = (digit)(LHALF((unsigned int)p[i] << sh));
276 }
277