1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: hash.h
17 // -----------------------------------------------------------------------------
18 //
19 #ifndef ABSL_HASH_INTERNAL_HASH_H_
20 #define ABSL_HASH_INTERNAL_HASH_H_
21 
22 #include <algorithm>
23 #include <array>
24 #include <cmath>
25 #include <cstring>
26 #include <deque>
27 #include <forward_list>
28 #include <functional>
29 #include <iterator>
30 #include <limits>
31 #include <list>
32 #include <map>
33 #include <memory>
34 #include <set>
35 #include <string>
36 #include <tuple>
37 #include <type_traits>
38 #include <utility>
39 #include <vector>
40 
41 #include "absl/base/config.h"
42 #include "absl/base/internal/unaligned_access.h"
43 #include "absl/base/port.h"
44 #include "absl/container/fixed_array.h"
45 #include "absl/hash/internal/wyhash.h"
46 #include "absl/meta/type_traits.h"
47 #include "absl/numeric/int128.h"
48 #include "absl/strings/string_view.h"
49 #include "absl/types/optional.h"
50 #include "absl/types/variant.h"
51 #include "absl/utility/utility.h"
52 #include "absl/hash/internal/city.h"
53 
54 namespace absl {
55 ABSL_NAMESPACE_BEGIN
56 namespace hash_internal {
57 
58 // Internal detail: Large buffers are hashed in smaller chunks.  This function
59 // returns the size of these chunks.
PiecewiseChunkSize()60 constexpr size_t PiecewiseChunkSize() { return 1024; }
61 
62 // PiecewiseCombiner
63 //
64 // PiecewiseCombiner is an internal-only helper class for hashing a piecewise
65 // buffer of `char` or `unsigned char` as though it were contiguous.  This class
66 // provides two methods:
67 //
68 //   H add_buffer(state, data, size)
69 //   H finalize(state)
70 //
71 // `add_buffer` can be called zero or more times, followed by a single call to
72 // `finalize`.  This will produce the same hash expansion as concatenating each
73 // buffer piece into a single contiguous buffer, and passing this to
74 // `H::combine_contiguous`.
75 //
76 //  Example usage:
77 //    PiecewiseCombiner combiner;
78 //    for (const auto& piece : pieces) {
79 //      state = combiner.add_buffer(std::move(state), piece.data, piece.size);
80 //    }
81 //    return combiner.finalize(std::move(state));
82 class PiecewiseCombiner {
83  public:
PiecewiseCombiner()84   PiecewiseCombiner() : position_(0) {}
85   PiecewiseCombiner(const PiecewiseCombiner&) = delete;
86   PiecewiseCombiner& operator=(const PiecewiseCombiner&) = delete;
87 
88   // PiecewiseCombiner::add_buffer()
89   //
90   // Appends the given range of bytes to the sequence to be hashed, which may
91   // modify the provided hash state.
92   template <typename H>
93   H add_buffer(H state, const unsigned char* data, size_t size);
94   template <typename H>
add_buffer(H state,const char * data,size_t size)95   H add_buffer(H state, const char* data, size_t size) {
96     return add_buffer(std::move(state),
97                       reinterpret_cast<const unsigned char*>(data), size);
98   }
99 
100   // PiecewiseCombiner::finalize()
101   //
102   // Finishes combining the hash sequence, which may may modify the provided
103   // hash state.
104   //
105   // Once finalize() is called, add_buffer() may no longer be called. The
106   // resulting hash state will be the same as if the pieces passed to
107   // add_buffer() were concatenated into a single flat buffer, and then provided
108   // to H::combine_contiguous().
109   template <typename H>
110   H finalize(H state);
111 
112  private:
113   unsigned char buf_[PiecewiseChunkSize()];
114   size_t position_;
115 };
116 
117 // HashStateBase
118 //
119 // A hash state object represents an intermediate state in the computation
120 // of an unspecified hash algorithm. `HashStateBase` provides a CRTP style
121 // base class for hash state implementations. Developers adding type support
122 // for `absl::Hash` should not rely on any parts of the state object other than
123 // the following member functions:
124 //
125 //   * HashStateBase::combine()
126 //   * HashStateBase::combine_contiguous()
127 //
128 // A derived hash state class of type `H` must provide a static member function
129 // with a signature similar to the following:
130 //
131 //    `static H combine_contiguous(H state, const unsigned char*, size_t)`.
132 //
133 // `HashStateBase` will provide a complete implementation for a hash state
134 // object in terms of this method.
135 //
136 // Example:
137 //
138 //   // Use CRTP to define your derived class.
139 //   struct MyHashState : HashStateBase<MyHashState> {
140 //       static H combine_contiguous(H state, const unsigned char*, size_t);
141 //       using MyHashState::HashStateBase::combine;
142 //       using MyHashState::HashStateBase::combine_contiguous;
143 //   };
144 template <typename H>
145 class HashStateBase {
146  public:
147   // HashStateBase::combine()
148   //
149   // Combines an arbitrary number of values into a hash state, returning the
150   // updated state.
151   //
152   // Each of the value types `T` must be separately hashable by the Abseil
153   // hashing framework.
154   //
155   // NOTE:
156   //
157   //   state = H::combine(std::move(state), value1, value2, value3);
158   //
159   // is guaranteed to produce the same hash expansion as:
160   //
161   //   state = H::combine(std::move(state), value1);
162   //   state = H::combine(std::move(state), value2);
163   //   state = H::combine(std::move(state), value3);
164   template <typename T, typename... Ts>
165   static H combine(H state, const T& value, const Ts&... values);
combine(H state)166   static H combine(H state) { return state; }
167 
168   // HashStateBase::combine_contiguous()
169   //
170   // Combines a contiguous array of `size` elements into a hash state, returning
171   // the updated state.
172   //
173   // NOTE:
174   //
175   //   state = H::combine_contiguous(std::move(state), data, size);
176   //
177   // is NOT guaranteed to produce the same hash expansion as a for-loop (it may
178   // perform internal optimizations).  If you need this guarantee, use the
179   // for-loop instead.
180   template <typename T>
181   static H combine_contiguous(H state, const T* data, size_t size);
182 
183   using AbslInternalPiecewiseCombiner = PiecewiseCombiner;
184 };
185 
186 // is_uniquely_represented
187 //
188 // `is_uniquely_represented<T>` is a trait class that indicates whether `T`
189 // is uniquely represented.
190 //
191 // A type is "uniquely represented" if two equal values of that type are
192 // guaranteed to have the same bytes in their underlying storage. In other
193 // words, if `a == b`, then `memcmp(&a, &b, sizeof(T))` is guaranteed to be
194 // zero. This property cannot be detected automatically, so this trait is false
195 // by default, but can be specialized by types that wish to assert that they are
196 // uniquely represented. This makes them eligible for certain optimizations.
197 //
198 // If you have any doubt whatsoever, do not specialize this template.
199 // The default is completely safe, and merely disables some optimizations
200 // that will not matter for most types. Specializing this template,
201 // on the other hand, can be very hazardous.
202 //
203 // To be uniquely represented, a type must not have multiple ways of
204 // representing the same value; for example, float and double are not
205 // uniquely represented, because they have distinct representations for
206 // +0 and -0. Furthermore, the type's byte representation must consist
207 // solely of user-controlled data, with no padding bits and no compiler-
208 // controlled data such as vptrs or sanitizer metadata. This is usually
209 // very difficult to guarantee, because in most cases the compiler can
210 // insert data and padding bits at its own discretion.
211 //
212 // If you specialize this template for a type `T`, you must do so in the file
213 // that defines that type (or in this file). If you define that specialization
214 // anywhere else, `is_uniquely_represented<T>` could have different meanings
215 // in different places.
216 //
217 // The Enable parameter is meaningless; it is provided as a convenience,
218 // to support certain SFINAE techniques when defining specializations.
219 template <typename T, typename Enable = void>
220 struct is_uniquely_represented : std::false_type {};
221 
222 // is_uniquely_represented<unsigned char>
223 //
224 // unsigned char is a synonym for "byte", so it is guaranteed to be
225 // uniquely represented.
226 template <>
227 struct is_uniquely_represented<unsigned char> : std::true_type {};
228 
229 // is_uniquely_represented for non-standard integral types
230 //
231 // Integral types other than bool should be uniquely represented on any
232 // platform that this will plausibly be ported to.
233 template <typename Integral>
234 struct is_uniquely_represented<
235     Integral, typename std::enable_if<std::is_integral<Integral>::value>::type>
236     : std::true_type {};
237 
238 // is_uniquely_represented<bool>
239 //
240 //
241 template <>
242 struct is_uniquely_represented<bool> : std::false_type {};
243 
244 // hash_bytes()
245 //
246 // Convenience function that combines `hash_state` with the byte representation
247 // of `value`.
248 template <typename H, typename T>
249 H hash_bytes(H hash_state, const T& value) {
250   const unsigned char* start = reinterpret_cast<const unsigned char*>(&value);
251   return H::combine_contiguous(std::move(hash_state), start, sizeof(value));
252 }
253 
254 // -----------------------------------------------------------------------------
255 // AbslHashValue for Basic Types
256 // -----------------------------------------------------------------------------
257 
258 // Note: Default `AbslHashValue` implementations live in `hash_internal`. This
259 // allows us to block lexical scope lookup when doing an unqualified call to
260 // `AbslHashValue` below. User-defined implementations of `AbslHashValue` can
261 // only be found via ADL.
262 
263 // AbslHashValue() for hashing bool values
264 //
265 // We use SFINAE to ensure that this overload only accepts bool, not types that
266 // are convertible to bool.
267 template <typename H, typename B>
268 typename std::enable_if<std::is_same<B, bool>::value, H>::type AbslHashValue(
269     H hash_state, B value) {
270   return H::combine(std::move(hash_state),
271                     static_cast<unsigned char>(value ? 1 : 0));
272 }
273 
274 // AbslHashValue() for hashing enum values
275 template <typename H, typename Enum>
276 typename std::enable_if<std::is_enum<Enum>::value, H>::type AbslHashValue(
277     H hash_state, Enum e) {
278   // In practice, we could almost certainly just invoke hash_bytes directly,
279   // but it's possible that a sanitizer might one day want to
280   // store data in the unused bits of an enum. To avoid that risk, we
281   // convert to the underlying type before hashing. Hopefully this will get
282   // optimized away; if not, we can reopen discussion with c-toolchain-team.
283   return H::combine(std::move(hash_state),
284                     static_cast<typename std::underlying_type<Enum>::type>(e));
285 }
286 // AbslHashValue() for hashing floating-point values
287 template <typename H, typename Float>
288 typename std::enable_if<std::is_same<Float, float>::value ||
289                             std::is_same<Float, double>::value,
290                         H>::type
291 AbslHashValue(H hash_state, Float value) {
292   return hash_internal::hash_bytes(std::move(hash_state),
293                                    value == 0 ? 0 : value);
294 }
295 
296 // Long double has the property that it might have extra unused bytes in it.
297 // For example, in x86 sizeof(long double)==16 but it only really uses 80-bits
298 // of it. This means we can't use hash_bytes on a long double and have to
299 // convert it to something else first.
300 template <typename H, typename LongDouble>
301 typename std::enable_if<std::is_same<LongDouble, long double>::value, H>::type
302 AbslHashValue(H hash_state, LongDouble value) {
303   const int category = std::fpclassify(value);
304   switch (category) {
305     case FP_INFINITE:
306       // Add the sign bit to differentiate between +Inf and -Inf
307       hash_state = H::combine(std::move(hash_state), std::signbit(value));
308       break;
309 
310     case FP_NAN:
311     case FP_ZERO:
312     default:
313       // Category is enough for these.
314       break;
315 
316     case FP_NORMAL:
317     case FP_SUBNORMAL:
318       // We can't convert `value` directly to double because this would have
319       // undefined behavior if the value is out of range.
320       // std::frexp gives us a value in the range (-1, -.5] or [.5, 1) that is
321       // guaranteed to be in range for `double`. The truncation is
322       // implementation defined, but that works as long as it is deterministic.
323       int exp;
324       auto mantissa = static_cast<double>(std::frexp(value, &exp));
325       hash_state = H::combine(std::move(hash_state), mantissa, exp);
326   }
327 
328   return H::combine(std::move(hash_state), category);
329 }
330 
331 // AbslHashValue() for hashing pointers
332 template <typename H, typename T>
333 H AbslHashValue(H hash_state, T* ptr) {
334   auto v = reinterpret_cast<uintptr_t>(ptr);
335   // Due to alignment, pointers tend to have low bits as zero, and the next few
336   // bits follow a pattern since they are also multiples of some base value.
337   // Mixing the pointer twice helps prevent stuck low bits for certain alignment
338   // values.
339   return H::combine(std::move(hash_state), v, v);
340 }
341 
342 // AbslHashValue() for hashing nullptr_t
343 template <typename H>
344 H AbslHashValue(H hash_state, std::nullptr_t) {
345   return H::combine(std::move(hash_state), static_cast<void*>(nullptr));
346 }
347 
348 // -----------------------------------------------------------------------------
349 // AbslHashValue for Composite Types
350 // -----------------------------------------------------------------------------
351 
352 // is_hashable()
353 //
354 // Trait class which returns true if T is hashable by the absl::Hash framework.
355 // Used for the AbslHashValue implementations for composite types below.
356 template <typename T>
357 struct is_hashable;
358 
359 // AbslHashValue() for hashing pairs
360 template <typename H, typename T1, typename T2>
361 typename std::enable_if<is_hashable<T1>::value && is_hashable<T2>::value,
362                         H>::type
363 AbslHashValue(H hash_state, const std::pair<T1, T2>& p) {
364   return H::combine(std::move(hash_state), p.first, p.second);
365 }
366 
367 // hash_tuple()
368 //
369 // Helper function for hashing a tuple. The third argument should
370 // be an index_sequence running from 0 to tuple_size<Tuple> - 1.
371 template <typename H, typename Tuple, size_t... Is>
372 H hash_tuple(H hash_state, const Tuple& t, absl::index_sequence<Is...>) {
373   return H::combine(std::move(hash_state), std::get<Is>(t)...);
374 }
375 
376 // AbslHashValue for hashing tuples
377 template <typename H, typename... Ts>
378 #if defined(_MSC_VER)
379 // This SFINAE gets MSVC confused under some conditions. Let's just disable it
380 // for now.
381 H
382 #else  // _MSC_VER
383 typename std::enable_if<absl::conjunction<is_hashable<Ts>...>::value, H>::type
384 #endif  // _MSC_VER
385 AbslHashValue(H hash_state, const std::tuple<Ts...>& t) {
386   return hash_internal::hash_tuple(std::move(hash_state), t,
387                                    absl::make_index_sequence<sizeof...(Ts)>());
388 }
389 
390 // -----------------------------------------------------------------------------
391 // AbslHashValue for Pointers
392 // -----------------------------------------------------------------------------
393 
394 // AbslHashValue for hashing unique_ptr
395 template <typename H, typename T, typename D>
396 H AbslHashValue(H hash_state, const std::unique_ptr<T, D>& ptr) {
397   return H::combine(std::move(hash_state), ptr.get());
398 }
399 
400 // AbslHashValue for hashing shared_ptr
401 template <typename H, typename T>
402 H AbslHashValue(H hash_state, const std::shared_ptr<T>& ptr) {
403   return H::combine(std::move(hash_state), ptr.get());
404 }
405 
406 // -----------------------------------------------------------------------------
407 // AbslHashValue for String-Like Types
408 // -----------------------------------------------------------------------------
409 
410 // AbslHashValue for hashing strings
411 //
412 // All the string-like types supported here provide the same hash expansion for
413 // the same character sequence. These types are:
414 //
415 //  - `absl::Cord`
416 //  - `std::string` (and std::basic_string<char, std::char_traits<char>, A> for
417 //      any allocator A)
418 //  - `absl::string_view` and `std::string_view`
419 //
420 // For simplicity, we currently support only `char` strings. This support may
421 // be broadened, if necessary, but with some caution - this overload would
422 // misbehave in cases where the traits' `eq()` member isn't equivalent to `==`
423 // on the underlying character type.
424 template <typename H>
425 H AbslHashValue(H hash_state, absl::string_view str) {
426   return H::combine(
427       H::combine_contiguous(std::move(hash_state), str.data(), str.size()),
428       str.size());
429 }
430 
431 // Support std::wstring, std::u16string and std::u32string.
432 template <typename Char, typename Alloc, typename H,
433           typename = absl::enable_if_t<std::is_same<Char, wchar_t>::value ||
434                                        std::is_same<Char, char16_t>::value ||
435                                        std::is_same<Char, char32_t>::value>>
436 H AbslHashValue(
437     H hash_state,
438     const std::basic_string<Char, std::char_traits<Char>, Alloc>& str) {
439   return H::combine(
440       H::combine_contiguous(std::move(hash_state), str.data(), str.size()),
441       str.size());
442 }
443 
444 // -----------------------------------------------------------------------------
445 // AbslHashValue for Sequence Containers
446 // -----------------------------------------------------------------------------
447 
448 // AbslHashValue for hashing std::array
449 template <typename H, typename T, size_t N>
450 typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
451     H hash_state, const std::array<T, N>& array) {
452   return H::combine_contiguous(std::move(hash_state), array.data(),
453                                array.size());
454 }
455 
456 // AbslHashValue for hashing std::deque
457 template <typename H, typename T, typename Allocator>
458 typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
459     H hash_state, const std::deque<T, Allocator>& deque) {
460   // TODO(gromer): investigate a more efficient implementation taking
461   // advantage of the chunk structure.
462   for (const auto& t : deque) {
463     hash_state = H::combine(std::move(hash_state), t);
464   }
465   return H::combine(std::move(hash_state), deque.size());
466 }
467 
468 // AbslHashValue for hashing std::forward_list
469 template <typename H, typename T, typename Allocator>
470 typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
471     H hash_state, const std::forward_list<T, Allocator>& list) {
472   size_t size = 0;
473   for (const T& t : list) {
474     hash_state = H::combine(std::move(hash_state), t);
475     ++size;
476   }
477   return H::combine(std::move(hash_state), size);
478 }
479 
480 // AbslHashValue for hashing std::list
481 template <typename H, typename T, typename Allocator>
482 typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
483     H hash_state, const std::list<T, Allocator>& list) {
484   for (const auto& t : list) {
485     hash_state = H::combine(std::move(hash_state), t);
486   }
487   return H::combine(std::move(hash_state), list.size());
488 }
489 
490 // AbslHashValue for hashing std::vector
491 //
492 // Do not use this for vector<bool>. It does not have a .data(), and a fallback
493 // for std::hash<> is most likely faster.
494 template <typename H, typename T, typename Allocator>
495 typename std::enable_if<is_hashable<T>::value && !std::is_same<T, bool>::value,
496                         H>::type
497 AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) {
498   return H::combine(H::combine_contiguous(std::move(hash_state), vector.data(),
499                                           vector.size()),
500                     vector.size());
501 }
502 
503 // -----------------------------------------------------------------------------
504 // AbslHashValue for Ordered Associative Containers
505 // -----------------------------------------------------------------------------
506 
507 // AbslHashValue for hashing std::map
508 template <typename H, typename Key, typename T, typename Compare,
509           typename Allocator>
510 typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
511                         H>::type
512 AbslHashValue(H hash_state, const std::map<Key, T, Compare, Allocator>& map) {
513   for (const auto& t : map) {
514     hash_state = H::combine(std::move(hash_state), t);
515   }
516   return H::combine(std::move(hash_state), map.size());
517 }
518 
519 // AbslHashValue for hashing std::multimap
520 template <typename H, typename Key, typename T, typename Compare,
521           typename Allocator>
522 typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
523                         H>::type
524 AbslHashValue(H hash_state,
525               const std::multimap<Key, T, Compare, Allocator>& map) {
526   for (const auto& t : map) {
527     hash_state = H::combine(std::move(hash_state), t);
528   }
529   return H::combine(std::move(hash_state), map.size());
530 }
531 
532 // AbslHashValue for hashing std::set
533 template <typename H, typename Key, typename Compare, typename Allocator>
534 typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
535     H hash_state, const std::set<Key, Compare, Allocator>& set) {
536   for (const auto& t : set) {
537     hash_state = H::combine(std::move(hash_state), t);
538   }
539   return H::combine(std::move(hash_state), set.size());
540 }
541 
542 // AbslHashValue for hashing std::multiset
543 template <typename H, typename Key, typename Compare, typename Allocator>
544 typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
545     H hash_state, const std::multiset<Key, Compare, Allocator>& set) {
546   for (const auto& t : set) {
547     hash_state = H::combine(std::move(hash_state), t);
548   }
549   return H::combine(std::move(hash_state), set.size());
550 }
551 
552 // -----------------------------------------------------------------------------
553 // AbslHashValue for Wrapper Types
554 // -----------------------------------------------------------------------------
555 
556 // AbslHashValue for hashing std::reference_wrapper
557 template <typename H, typename T>
558 typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
559     H hash_state, std::reference_wrapper<T> opt) {
560   return H::combine(std::move(hash_state), opt.get());
561 }
562 
563 // AbslHashValue for hashing absl::optional
564 template <typename H, typename T>
565 typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
566     H hash_state, const absl::optional<T>& opt) {
567   if (opt) hash_state = H::combine(std::move(hash_state), *opt);
568   return H::combine(std::move(hash_state), opt.has_value());
569 }
570 
571 // VariantVisitor
572 template <typename H>
573 struct VariantVisitor {
574   H&& hash_state;
575   template <typename T>
576   H operator()(const T& t) const {
577     return H::combine(std::move(hash_state), t);
578   }
579 };
580 
581 // AbslHashValue for hashing absl::variant
582 template <typename H, typename... T>
583 typename std::enable_if<conjunction<is_hashable<T>...>::value, H>::type
584 AbslHashValue(H hash_state, const absl::variant<T...>& v) {
585   if (!v.valueless_by_exception()) {
586     hash_state = absl::visit(VariantVisitor<H>{std::move(hash_state)}, v);
587   }
588   return H::combine(std::move(hash_state), v.index());
589 }
590 
591 // -----------------------------------------------------------------------------
592 // AbslHashValue for Other Types
593 // -----------------------------------------------------------------------------
594 
595 // AbslHashValue for hashing std::bitset is not defined, for the same reason as
596 // for vector<bool> (see std::vector above): It does not expose the raw bytes,
597 // and a fallback to std::hash<> is most likely faster.
598 
599 // -----------------------------------------------------------------------------
600 
601 // hash_range_or_bytes()
602 //
603 // Mixes all values in the range [data, data+size) into the hash state.
604 // This overload accepts only uniquely-represented types, and hashes them by
605 // hashing the entire range of bytes.
606 template <typename H, typename T>
607 typename std::enable_if<is_uniquely_represented<T>::value, H>::type
608 hash_range_or_bytes(H hash_state, const T* data, size_t size) {
609   const auto* bytes = reinterpret_cast<const unsigned char*>(data);
610   return H::combine_contiguous(std::move(hash_state), bytes, sizeof(T) * size);
611 }
612 
613 // hash_range_or_bytes()
614 template <typename H, typename T>
615 typename std::enable_if<!is_uniquely_represented<T>::value, H>::type
616 hash_range_or_bytes(H hash_state, const T* data, size_t size) {
617   for (const auto end = data + size; data < end; ++data) {
618     hash_state = H::combine(std::move(hash_state), *data);
619   }
620   return hash_state;
621 }
622 
623 #if defined(ABSL_INTERNAL_LEGACY_HASH_NAMESPACE) && \
624     ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
625 #define ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ 1
626 #else
627 #define ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ 0
628 #endif
629 
630 // HashSelect
631 //
632 // Type trait to select the appropriate hash implementation to use.
633 // HashSelect::type<T> will give the proper hash implementation, to be invoked
634 // as:
635 //   HashSelect::type<T>::Invoke(state, value)
636 // Also, HashSelect::type<T>::value is a boolean equal to `true` if there is a
637 // valid `Invoke` function. Types that are not hashable will have a ::value of
638 // `false`.
639 struct HashSelect {
640  private:
641   struct State : HashStateBase<State> {
642     static State combine_contiguous(State hash_state, const unsigned char*,
643                                     size_t);
644     using State::HashStateBase::combine_contiguous;
645   };
646 
647   struct UniquelyRepresentedProbe {
648     template <typename H, typename T>
649     static auto Invoke(H state, const T& value)
650         -> absl::enable_if_t<is_uniquely_represented<T>::value, H> {
651       return hash_internal::hash_bytes(std::move(state), value);
652     }
653   };
654 
655   struct HashValueProbe {
656     template <typename H, typename T>
657     static auto Invoke(H state, const T& value) -> absl::enable_if_t<
658         std::is_same<H,
659                      decltype(AbslHashValue(std::move(state), value))>::value,
660         H> {
661       return AbslHashValue(std::move(state), value);
662     }
663   };
664 
665   struct LegacyHashProbe {
666 #if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
667     template <typename H, typename T>
668     static auto Invoke(H state, const T& value) -> absl::enable_if_t<
669         std::is_convertible<
670             decltype(ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash<T>()(value)),
671             size_t>::value,
672         H> {
673       return hash_internal::hash_bytes(
674           std::move(state),
675           ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash<T>{}(value));
676     }
677 #endif  // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
678   };
679 
680   struct StdHashProbe {
681     template <typename H, typename T>
682     static auto Invoke(H state, const T& value)
683         -> absl::enable_if_t<type_traits_internal::IsHashable<T>::value, H> {
684       return hash_internal::hash_bytes(std::move(state), std::hash<T>{}(value));
685     }
686   };
687 
688   template <typename Hash, typename T>
689   struct Probe : Hash {
690    private:
691     template <typename H, typename = decltype(H::Invoke(
692                               std::declval<State>(), std::declval<const T&>()))>
693     static std::true_type Test(int);
694     template <typename U>
695     static std::false_type Test(char);
696 
697    public:
698     static constexpr bool value = decltype(Test<Hash>(0))::value;
699   };
700 
701  public:
702   // Probe each implementation in order.
703   // disjunction provides short circuiting wrt instantiation.
704   template <typename T>
705   using Apply = absl::disjunction<         //
706       Probe<UniquelyRepresentedProbe, T>,  //
707       Probe<HashValueProbe, T>,            //
708       Probe<LegacyHashProbe, T>,           //
709       Probe<StdHashProbe, T>,              //
710       std::false_type>;
711 };
712 
713 template <typename T>
714 struct is_hashable
715     : std::integral_constant<bool, HashSelect::template Apply<T>::value> {};
716 
717 // HashState
718 class ABSL_DLL HashState : public HashStateBase<HashState> {
719   // absl::uint128 is not an alias or a thin wrapper around the intrinsic.
720   // We use the intrinsic when available to improve performance.
721 #ifdef ABSL_HAVE_INTRINSIC_INT128
722   using uint128 = __uint128_t;
723 #else   // ABSL_HAVE_INTRINSIC_INT128
724   using uint128 = absl::uint128;
725 #endif  // ABSL_HAVE_INTRINSIC_INT128
726 
727   static constexpr uint64_t kMul =
728       sizeof(size_t) == 4 ? uint64_t{0xcc9e2d51}
729                           : uint64_t{0x9ddfea08eb382d69};
730 
731   template <typename T>
732   using IntegralFastPath =
733       conjunction<std::is_integral<T>, is_uniquely_represented<T>>;
734 
735  public:
736   // Move only
737   HashState(HashState&&) = default;
738   HashState& operator=(HashState&&) = default;
739 
740   // HashState::combine_contiguous()
741   //
742   // Fundamental base case for hash recursion: mixes the given range of bytes
743   // into the hash state.
744   static HashState combine_contiguous(HashState hash_state,
745                                       const unsigned char* first, size_t size) {
746     return HashState(
747         CombineContiguousImpl(hash_state.state_, first, size,
748                               std::integral_constant<int, sizeof(size_t)>{}));
749   }
750   using HashState::HashStateBase::combine_contiguous;
751 
752   // HashState::hash()
753   //
754   // For performance reasons in non-opt mode, we specialize this for
755   // integral types.
756   // Otherwise we would be instantiating and calling dozens of functions for
757   // something that is just one multiplication and a couple xor's.
758   // The result should be the same as running the whole algorithm, but faster.
759   template <typename T, absl::enable_if_t<IntegralFastPath<T>::value, int> = 0>
760   static size_t hash(T value) {
761     return static_cast<size_t>(Mix(Seed(), static_cast<uint64_t>(value)));
762   }
763 
764   // Overload of HashState::hash()
765   template <typename T, absl::enable_if_t<!IntegralFastPath<T>::value, int> = 0>
766   static size_t hash(const T& value) {
767     return static_cast<size_t>(combine(HashState{}, value).state_);
768   }
769 
770  private:
771   // Invoked only once for a given argument; that plus the fact that this is
772   // move-only ensures that there is only one non-moved-from object.
773   HashState() : state_(Seed()) {}
774 
775   // Workaround for MSVC bug.
776   // We make the type copyable to fix the calling convention, even though we
777   // never actually copy it. Keep it private to not affect the public API of the
778   // type.
779   HashState(const HashState&) = default;
780 
781   explicit HashState(uint64_t state) : state_(state) {}
782 
783   // Implementation of the base case for combine_contiguous where we actually
784   // mix the bytes into the state.
785   // Dispatch to different implementations of the combine_contiguous depending
786   // on the value of `sizeof(size_t)`.
787   static uint64_t CombineContiguousImpl(uint64_t state,
788                                         const unsigned char* first, size_t len,
789                                         std::integral_constant<int, 4>
790                                         /* sizeof_size_t */);
791   static uint64_t CombineContiguousImpl(uint64_t state,
792                                         const unsigned char* first, size_t len,
793                                         std::integral_constant<int, 8>
794                                         /* sizeof_size_t */);
795 
796 
797   // Slow dispatch path for calls to CombineContiguousImpl with a size argument
798   // larger than PiecewiseChunkSize().  Has the same effect as calling
799   // CombineContiguousImpl() repeatedly with the chunk stride size.
800   static uint64_t CombineLargeContiguousImpl32(uint64_t state,
801                                                const unsigned char* first,
802                                                size_t len);
803   static uint64_t CombineLargeContiguousImpl64(uint64_t state,
804                                                const unsigned char* first,
805                                                size_t len);
806 
807   // Reads 9 to 16 bytes from p.
808   // The least significant 8 bytes are in .first, the rest (zero padded) bytes
809   // are in .second.
810   static std::pair<uint64_t, uint64_t> Read9To16(const unsigned char* p,
811                                                  size_t len) {
812     uint64_t low_mem = absl::base_internal::UnalignedLoad64(p);
813     uint64_t high_mem = absl::base_internal::UnalignedLoad64(p + len - 8);
814 #ifdef ABSL_IS_LITTLE_ENDIAN
815     uint64_t most_significant = high_mem;
816     uint64_t least_significant = low_mem;
817 #else
818     uint64_t most_significant = low_mem;
819     uint64_t least_significant = high_mem;
820 #endif
821     return {least_significant, most_significant >> (128 - len * 8)};
822   }
823 
824   // Reads 4 to 8 bytes from p. Zero pads to fill uint64_t.
825   static uint64_t Read4To8(const unsigned char* p, size_t len) {
826     uint32_t low_mem = absl::base_internal::UnalignedLoad32(p);
827     uint32_t high_mem = absl::base_internal::UnalignedLoad32(p + len - 4);
828 #ifdef ABSL_IS_LITTLE_ENDIAN
829     uint32_t most_significant = high_mem;
830     uint32_t least_significant = low_mem;
831 #else
832     uint32_t most_significant = low_mem;
833     uint32_t least_significant = high_mem;
834 #endif
835     return (static_cast<uint64_t>(most_significant) << (len - 4) * 8) |
836            least_significant;
837   }
838 
839   // Reads 1 to 3 bytes from p. Zero pads to fill uint32_t.
840   static uint32_t Read1To3(const unsigned char* p, size_t len) {
841     unsigned char mem0 = p[0];
842     unsigned char mem1 = p[len / 2];
843     unsigned char mem2 = p[len - 1];
844 #ifdef ABSL_IS_LITTLE_ENDIAN
845     unsigned char significant2 = mem2;
846     unsigned char significant1 = mem1;
847     unsigned char significant0 = mem0;
848 #else
849     unsigned char significant2 = mem0;
850     unsigned char significant1 = mem1;
851     unsigned char significant0 = mem2;
852 #endif
853     return static_cast<uint32_t>(significant0 |                     //
854                                  (significant1 << (len / 2 * 8)) |  //
855                                  (significant2 << ((len - 1) * 8)));
856   }
857 
858   ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Mix(uint64_t state, uint64_t v) {
859     using MultType =
860         absl::conditional_t<sizeof(size_t) == 4, uint64_t, uint128>;
861     // We do the addition in 64-bit space to make sure the 128-bit
862     // multiplication is fast. If we were to do it as MultType the compiler has
863     // to assume that the high word is non-zero and needs to perform 2
864     // multiplications instead of one.
865     MultType m = state + v;
866     m *= kMul;
867     return static_cast<uint64_t>(m ^ (m >> (sizeof(m) * 8 / 2)));
868   }
869 
870   // An extern to avoid bloat on a direct call to Wyhash() with fixed values for
871   // both the seed and salt parameters.
872   static uint64_t WyhashImpl(const unsigned char* data, size_t len);
873 
874   ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Hash64(const unsigned char* data,
875                                                       size_t len) {
876 #ifdef ABSL_HAVE_INTRINSIC_INT128
877     return WyhashImpl(data, len);
878 #else
879     return absl::hash_internal::CityHash64(reinterpret_cast<const char*>(data), len);
880 #endif
881   }
882 
883   // Seed()
884   //
885   // A non-deterministic seed.
886   //
887   // The current purpose of this seed is to generate non-deterministic results
888   // and prevent having users depend on the particular hash values.
889   // It is not meant as a security feature right now, but it leaves the door
890   // open to upgrade it to a true per-process random seed. A true random seed
891   // costs more and we don't need to pay for that right now.
892   //
893   // On platforms with ASLR, we take advantage of it to make a per-process
894   // random value.
895   // See https://en.wikipedia.org/wiki/Address_space_layout_randomization
896   //
897   // On other platforms this is still going to be non-deterministic but most
898   // probably per-build and not per-process.
899   ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Seed() {
900 #if (!defined(__clang__) || __clang_major__ > 11) && \
901     !defined(__apple_build_version__)
902     return static_cast<uint64_t>(reinterpret_cast<uintptr_t>(&kSeed));
903 #else
904     // Workaround the absence of
905     // https://github.com/llvm/llvm-project/commit/bc15bf66dcca76cc06fe71fca35b74dc4d521021.
906     return static_cast<uint64_t>(reinterpret_cast<uintptr_t>(kSeed));
907 #endif
908   }
909   static const void* const kSeed;
910 
911   uint64_t state_;
912 };
913 
914 // HashState::CombineContiguousImpl()
915 inline uint64_t HashState::CombineContiguousImpl(
916     uint64_t state, const unsigned char* first, size_t len,
917     std::integral_constant<int, 4> /* sizeof_size_t */) {
918   // For large values we use CityHash, for small ones we just use a
919   // multiplicative hash.
920   uint64_t v;
921   if (len > 8) {
922     if (ABSL_PREDICT_FALSE(len > PiecewiseChunkSize())) {
923       return CombineLargeContiguousImpl32(state, first, len);
924     }
925     v = absl::hash_internal::CityHash32(reinterpret_cast<const char*>(first), len);
926   } else if (len >= 4) {
927     v = Read4To8(first, len);
928   } else if (len > 0) {
929     v = Read1To3(first, len);
930   } else {
931     // Empty ranges have no effect.
932     return state;
933   }
934   return Mix(state, v);
935 }
936 
937 // Overload of HashState::CombineContiguousImpl()
938 inline uint64_t HashState::CombineContiguousImpl(
939     uint64_t state, const unsigned char* first, size_t len,
940     std::integral_constant<int, 8> /* sizeof_size_t */) {
941   // For large values we use Wyhash or CityHash depending on the platform, for
942   // small ones we just use a multiplicative hash.
943   uint64_t v;
944   if (len > 16) {
945     if (ABSL_PREDICT_FALSE(len > PiecewiseChunkSize())) {
946       return CombineLargeContiguousImpl64(state, first, len);
947     }
948     v = Hash64(first, len);
949   } else if (len > 8) {
950     auto p = Read9To16(first, len);
951     state = Mix(state, p.first);
952     v = p.second;
953   } else if (len >= 4) {
954     v = Read4To8(first, len);
955   } else if (len > 0) {
956     v = Read1To3(first, len);
957   } else {
958     // Empty ranges have no effect.
959     return state;
960   }
961   return Mix(state, v);
962 }
963 
964 struct AggregateBarrier {};
965 
966 // HashImpl
967 
968 // Add a private base class to make sure this type is not an aggregate.
969 // Aggregates can be aggregate initialized even if the default constructor is
970 // deleted.
971 struct PoisonedHash : private AggregateBarrier {
972   PoisonedHash() = delete;
973   PoisonedHash(const PoisonedHash&) = delete;
974   PoisonedHash& operator=(const PoisonedHash&) = delete;
975 };
976 
977 template <typename T>
978 struct HashImpl {
979   size_t operator()(const T& value) const { return HashState::hash(value); }
980 };
981 
982 template <typename T>
983 struct Hash
984     : absl::conditional_t<is_hashable<T>::value, HashImpl<T>, PoisonedHash> {};
985 
986 template <typename H>
987 template <typename T, typename... Ts>
988 H HashStateBase<H>::combine(H state, const T& value, const Ts&... values) {
989   return H::combine(hash_internal::HashSelect::template Apply<T>::Invoke(
990                         std::move(state), value),
991                     values...);
992 }
993 
994 // HashStateBase::combine_contiguous()
995 template <typename H>
996 template <typename T>
997 H HashStateBase<H>::combine_contiguous(H state, const T* data, size_t size) {
998   return hash_internal::hash_range_or_bytes(std::move(state), data, size);
999 }
1000 
1001 // HashStateBase::PiecewiseCombiner::add_buffer()
1002 template <typename H>
1003 H PiecewiseCombiner::add_buffer(H state, const unsigned char* data,
1004                                 size_t size) {
1005   if (position_ + size < PiecewiseChunkSize()) {
1006     // This partial chunk does not fill our existing buffer
1007     memcpy(buf_ + position_, data, size);
1008     position_ += size;
1009     return state;
1010   }
1011 
1012   // If the buffer is partially filled we need to complete the buffer
1013   // and hash it.
1014   if (position_ != 0) {
1015     const size_t bytes_needed = PiecewiseChunkSize() - position_;
1016     memcpy(buf_ + position_, data, bytes_needed);
1017     state = H::combine_contiguous(std::move(state), buf_, PiecewiseChunkSize());
1018     data += bytes_needed;
1019     size -= bytes_needed;
1020   }
1021 
1022   // Hash whatever chunks we can without copying
1023   while (size >= PiecewiseChunkSize()) {
1024     state = H::combine_contiguous(std::move(state), data, PiecewiseChunkSize());
1025     data += PiecewiseChunkSize();
1026     size -= PiecewiseChunkSize();
1027   }
1028   // Fill the buffer with the remainder
1029   memcpy(buf_, data, size);
1030   position_ = size;
1031   return state;
1032 }
1033 
1034 // HashStateBase::PiecewiseCombiner::finalize()
1035 template <typename H>
1036 H PiecewiseCombiner::finalize(H state) {
1037   // Hash the remainder left in the buffer, which may be empty
1038   return H::combine_contiguous(std::move(state), buf_, position_);
1039 }
1040 
1041 }  // namespace hash_internal
1042 ABSL_NAMESPACE_END
1043 }  // namespace absl
1044 
1045 #endif  // ABSL_HASH_INTERNAL_HASH_H_
1046