1 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
2  * project 1999-2004.
3  */
4 /* ====================================================================
5  * Copyright (c) 1999 The OpenSSL Project.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  *
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  *
19  * 3. All advertising materials mentioning features or use of this
20  *    software must display the following acknowledgment:
21  *    "This product includes software developed by the OpenSSL Project
22  *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
23  *
24  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
25  *    endorse or promote products derived from this software without
26  *    prior written permission. For written permission, please contact
27  *    licensing@OpenSSL.org.
28  *
29  * 5. Products derived from this software may not be called "OpenSSL"
30  *    nor may "OpenSSL" appear in their names without prior written
31  *    permission of the OpenSSL Project.
32  *
33  * 6. Redistributions of any form whatsoever must retain the following
34  *    acknowledgment:
35  *    "This product includes software developed by the OpenSSL Project
36  *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
37  *
38  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
39  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
40  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
41  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
42  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
43  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
44  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
45  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
46  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
47  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
49  * OF THE POSSIBILITY OF SUCH DAMAGE.
50  * ====================================================================
51  *
52  * This product includes cryptographic software written by Eric Young
53  * (eay@cryptsoft.com).  This product includes software written by Tim
54  * Hudson (tjh@cryptsoft.com). */
55 
56 #include <openssl/pkcs8.h>
57 
58 #include <limits.h>
59 #include <string.h>
60 
61 #include <openssl/bytestring.h>
62 #include <openssl/cipher.h>
63 #include <openssl/err.h>
64 #include <openssl/mem.h>
65 #include <openssl/nid.h>
66 #include <openssl/rand.h>
67 
68 #include "internal.h"
69 #include "../internal.h"
70 
71 
72 // 1.2.840.113549.1.5.12
73 static const uint8_t kPBKDF2[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
74                                   0x0d, 0x01, 0x05, 0x0c};
75 
76 // 1.2.840.113549.1.5.13
77 static const uint8_t kPBES2[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
78                                  0x0d, 0x01, 0x05, 0x0d};
79 
80 // 1.2.840.113549.2.7
81 static const uint8_t kHMACWithSHA1[] = {0x2a, 0x86, 0x48, 0x86,
82                                         0xf7, 0x0d, 0x02, 0x07};
83 
84 // 1.2.840.113549.2.9
85 static const uint8_t kHMACWithSHA256[] = {0x2a, 0x86, 0x48, 0x86,
86                                           0xf7, 0x0d, 0x02, 0x09};
87 
88 static const struct {
89   uint8_t oid[9];
90   uint8_t oid_len;
91   int nid;
92   const EVP_CIPHER *(*cipher_func)(void);
93 } kCipherOIDs[] = {
94     // 1.2.840.113549.3.2
95     {{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x03, 0x02},
96      8,
97      NID_rc2_cbc,
98      &EVP_rc2_cbc},
99     // 1.2.840.113549.3.7
100     {{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x03, 0x07},
101      8,
102      NID_des_ede3_cbc,
103      &EVP_des_ede3_cbc},
104     // 2.16.840.1.101.3.4.1.2
105     {{0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x01, 0x02},
106      9,
107      NID_aes_128_cbc,
108      &EVP_aes_128_cbc},
109     // 2.16.840.1.101.3.4.1.22
110     {{0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x01, 0x16},
111      9,
112      NID_aes_192_cbc,
113      &EVP_aes_192_cbc},
114     // 2.16.840.1.101.3.4.1.42
115     {{0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x01, 0x2a},
116      9,
117      NID_aes_256_cbc,
118      &EVP_aes_256_cbc},
119 };
120 
cbs_to_cipher(const CBS * cbs)121 static const EVP_CIPHER *cbs_to_cipher(const CBS *cbs) {
122   for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kCipherOIDs); i++) {
123     if (CBS_mem_equal(cbs, kCipherOIDs[i].oid, kCipherOIDs[i].oid_len)) {
124       return kCipherOIDs[i].cipher_func();
125     }
126   }
127 
128   return NULL;
129 }
130 
add_cipher_oid(CBB * out,int nid)131 static int add_cipher_oid(CBB *out, int nid) {
132   for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kCipherOIDs); i++) {
133     if (kCipherOIDs[i].nid == nid) {
134       CBB child;
135       return CBB_add_asn1(out, &child, CBS_ASN1_OBJECT) &&
136              CBB_add_bytes(&child, kCipherOIDs[i].oid,
137                            kCipherOIDs[i].oid_len) &&
138              CBB_flush(out);
139     }
140   }
141 
142   OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_CIPHER);
143   return 0;
144 }
145 
pkcs5_pbe2_cipher_init(EVP_CIPHER_CTX * ctx,const EVP_CIPHER * cipher,const EVP_MD * pbkdf2_md,unsigned iterations,const char * pass,size_t pass_len,const uint8_t * salt,size_t salt_len,const uint8_t * iv,size_t iv_len,int enc)146 static int pkcs5_pbe2_cipher_init(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
147                                   const EVP_MD *pbkdf2_md, unsigned iterations,
148                                   const char *pass, size_t pass_len,
149                                   const uint8_t *salt, size_t salt_len,
150                                   const uint8_t *iv, size_t iv_len, int enc) {
151   if (iv_len != EVP_CIPHER_iv_length(cipher)) {
152     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_ERROR_SETTING_CIPHER_PARAMS);
153     return 0;
154   }
155 
156   uint8_t key[EVP_MAX_KEY_LENGTH];
157   int ret = PKCS5_PBKDF2_HMAC(pass, pass_len, salt, salt_len, iterations,
158                               pbkdf2_md, EVP_CIPHER_key_length(cipher), key) &&
159             EVP_CipherInit_ex(ctx, cipher, NULL /* engine */, key, iv, enc);
160   OPENSSL_cleanse(key, EVP_MAX_KEY_LENGTH);
161   return ret;
162 }
163 
PKCS5_pbe2_encrypt_init(CBB * out,EVP_CIPHER_CTX * ctx,const EVP_CIPHER * cipher,unsigned iterations,const char * pass,size_t pass_len,const uint8_t * salt,size_t salt_len)164 int PKCS5_pbe2_encrypt_init(CBB *out, EVP_CIPHER_CTX *ctx,
165                             const EVP_CIPHER *cipher, unsigned iterations,
166                             const char *pass, size_t pass_len,
167                             const uint8_t *salt, size_t salt_len) {
168   int cipher_nid = EVP_CIPHER_nid(cipher);
169   if (cipher_nid == NID_undef) {
170     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_CIPHER_HAS_NO_OBJECT_IDENTIFIER);
171     return 0;
172   }
173 
174   // Generate a random IV.
175   uint8_t iv[EVP_MAX_IV_LENGTH];
176   if (!RAND_bytes(iv, EVP_CIPHER_iv_length(cipher))) {
177     return 0;
178   }
179 
180   // See RFC 2898, appendix A.
181   CBB algorithm, oid, param, kdf, kdf_oid, kdf_param, salt_cbb, cipher_cbb,
182       iv_cbb;
183   if (!CBB_add_asn1(out, &algorithm, CBS_ASN1_SEQUENCE) ||
184       !CBB_add_asn1(&algorithm, &oid, CBS_ASN1_OBJECT) ||
185       !CBB_add_bytes(&oid, kPBES2, sizeof(kPBES2)) ||
186       !CBB_add_asn1(&algorithm, &param, CBS_ASN1_SEQUENCE) ||
187       !CBB_add_asn1(&param, &kdf, CBS_ASN1_SEQUENCE) ||
188       !CBB_add_asn1(&kdf, &kdf_oid, CBS_ASN1_OBJECT) ||
189       !CBB_add_bytes(&kdf_oid, kPBKDF2, sizeof(kPBKDF2)) ||
190       !CBB_add_asn1(&kdf, &kdf_param, CBS_ASN1_SEQUENCE) ||
191       !CBB_add_asn1(&kdf_param, &salt_cbb, CBS_ASN1_OCTETSTRING) ||
192       !CBB_add_bytes(&salt_cbb, salt, salt_len) ||
193       !CBB_add_asn1_uint64(&kdf_param, iterations) ||
194       // Specify a key length for RC2.
195       (cipher_nid == NID_rc2_cbc &&
196        !CBB_add_asn1_uint64(&kdf_param, EVP_CIPHER_key_length(cipher))) ||
197       // Omit the PRF. We use the default hmacWithSHA1.
198       !CBB_add_asn1(&param, &cipher_cbb, CBS_ASN1_SEQUENCE) ||
199       !add_cipher_oid(&cipher_cbb, cipher_nid) ||
200       // RFC 2898 says RC2-CBC and RC5-CBC-Pad use a SEQUENCE with version and
201       // IV, but OpenSSL always uses an OCTET STRING IV, so we do the same.
202       !CBB_add_asn1(&cipher_cbb, &iv_cbb, CBS_ASN1_OCTETSTRING) ||
203       !CBB_add_bytes(&iv_cbb, iv, EVP_CIPHER_iv_length(cipher)) ||
204       !CBB_flush(out)) {
205     return 0;
206   }
207 
208   return pkcs5_pbe2_cipher_init(ctx, cipher, EVP_sha1(), iterations, pass,
209                                 pass_len, salt, salt_len, iv,
210                                 EVP_CIPHER_iv_length(cipher), 1 /* encrypt */);
211 }
212 
PKCS5_pbe2_decrypt_init(const struct pbe_suite * suite,EVP_CIPHER_CTX * ctx,const char * pass,size_t pass_len,CBS * param)213 int PKCS5_pbe2_decrypt_init(const struct pbe_suite *suite, EVP_CIPHER_CTX *ctx,
214                             const char *pass, size_t pass_len, CBS *param) {
215   CBS pbe_param, kdf, kdf_obj, enc_scheme, enc_obj;
216   if (!CBS_get_asn1(param, &pbe_param, CBS_ASN1_SEQUENCE) ||
217       CBS_len(param) != 0 ||
218       !CBS_get_asn1(&pbe_param, &kdf, CBS_ASN1_SEQUENCE) ||
219       !CBS_get_asn1(&pbe_param, &enc_scheme, CBS_ASN1_SEQUENCE) ||
220       CBS_len(&pbe_param) != 0 ||
221       !CBS_get_asn1(&kdf, &kdf_obj, CBS_ASN1_OBJECT) ||
222       !CBS_get_asn1(&enc_scheme, &enc_obj, CBS_ASN1_OBJECT)) {
223     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
224     return 0;
225   }
226 
227   // Only PBKDF2 is supported.
228   if (!CBS_mem_equal(&kdf_obj, kPBKDF2, sizeof(kPBKDF2))) {
229     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_KEY_DERIVATION_FUNCTION);
230     return 0;
231   }
232 
233   // See if we recognise the encryption algorithm.
234   const EVP_CIPHER *cipher = cbs_to_cipher(&enc_obj);
235   if (cipher == NULL) {
236     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_CIPHER);
237     return 0;
238   }
239 
240   // Parse the KDF parameters. See RFC 8018, appendix A.2.
241   CBS pbkdf2_params, salt;
242   uint64_t iterations;
243   if (!CBS_get_asn1(&kdf, &pbkdf2_params, CBS_ASN1_SEQUENCE) ||
244       CBS_len(&kdf) != 0 ||
245       !CBS_get_asn1(&pbkdf2_params, &salt, CBS_ASN1_OCTETSTRING) ||
246       !CBS_get_asn1_uint64(&pbkdf2_params, &iterations)) {
247     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
248     return 0;
249   }
250 
251   if (!pkcs12_iterations_acceptable(iterations)) {
252     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_ITERATION_COUNT);
253     return 0;
254   }
255 
256   // The optional keyLength parameter, if present, must match the key length of
257   // the cipher.
258   if (CBS_peek_asn1_tag(&pbkdf2_params, CBS_ASN1_INTEGER)) {
259     uint64_t key_len;
260     if (!CBS_get_asn1_uint64(&pbkdf2_params, &key_len)) {
261       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
262       return 0;
263     }
264 
265     if (key_len != EVP_CIPHER_key_length(cipher)) {
266       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_KEYLENGTH);
267       return 0;
268     }
269   }
270 
271   const EVP_MD *md = EVP_sha1();
272   if (CBS_len(&pbkdf2_params) != 0) {
273     CBS alg_id, prf;
274     if (!CBS_get_asn1(&pbkdf2_params, &alg_id, CBS_ASN1_SEQUENCE) ||
275         !CBS_get_asn1(&alg_id, &prf, CBS_ASN1_OBJECT) ||
276         CBS_len(&pbkdf2_params) != 0) {
277       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
278       return 0;
279     }
280 
281     if (CBS_mem_equal(&prf, kHMACWithSHA1, sizeof(kHMACWithSHA1))) {
282       // hmacWithSHA1 is the DEFAULT, so DER requires it be omitted, but we
283       // match OpenSSL in tolerating it being present.
284       md = EVP_sha1();
285     } else if (CBS_mem_equal(&prf, kHMACWithSHA256, sizeof(kHMACWithSHA256))) {
286       md = EVP_sha256();
287     } else {
288       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_PRF);
289       return 0;
290     }
291 
292     // All supported PRFs use a NULL parameter.
293     CBS null;
294     if (!CBS_get_asn1(&alg_id, &null, CBS_ASN1_NULL) ||
295         CBS_len(&null) != 0 ||
296         CBS_len(&alg_id) != 0) {
297       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
298       return 0;
299     }
300   }
301 
302   // Parse the encryption scheme parameters. Note OpenSSL does not match the
303   // specification. Per RFC 2898, this should depend on the encryption scheme.
304   // In particular, RC2-CBC uses a SEQUENCE with version and IV. We align with
305   // OpenSSL.
306   CBS iv;
307   if (!CBS_get_asn1(&enc_scheme, &iv, CBS_ASN1_OCTETSTRING) ||
308       CBS_len(&enc_scheme) != 0) {
309     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_PRF);
310     return 0;
311   }
312 
313   return pkcs5_pbe2_cipher_init(ctx, cipher, md, (unsigned)iterations, pass,
314                                 pass_len, CBS_data(&salt), CBS_len(&salt),
315                                 CBS_data(&iv), CBS_len(&iv), 0 /* decrypt */);
316 }
317