1 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
2  * project 1999.
3  */
4 /* ====================================================================
5  * Copyright (c) 1999 The OpenSSL Project.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  *
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  *
19  * 3. All advertising materials mentioning features or use of this
20  *    software must display the following acknowledgment:
21  *    "This product includes software developed by the OpenSSL Project
22  *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
23  *
24  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
25  *    endorse or promote products derived from this software without
26  *    prior written permission. For written permission, please contact
27  *    licensing@OpenSSL.org.
28  *
29  * 5. Products derived from this software may not be called "OpenSSL"
30  *    nor may "OpenSSL" appear in their names without prior written
31  *    permission of the OpenSSL Project.
32  *
33  * 6. Redistributions of any form whatsoever must retain the following
34  *    acknowledgment:
35  *    "This product includes software developed by the OpenSSL Project
36  *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
37  *
38  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
39  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
40  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
41  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
42  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
43  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
44  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
45  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
46  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
47  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
49  * OF THE POSSIBILITY OF SUCH DAMAGE.
50  * ====================================================================
51  *
52  * This product includes cryptographic software written by Eric Young
53  * (eay@cryptsoft.com).  This product includes software written by Tim
54  * Hudson (tjh@cryptsoft.com). */
55 
56 #include <openssl/pkcs8.h>
57 
58 #include <assert.h>
59 #include <limits.h>
60 #include <string.h>
61 
62 #include <openssl/bytestring.h>
63 #include <openssl/cipher.h>
64 #include <openssl/digest.h>
65 #include <openssl/err.h>
66 #include <openssl/mem.h>
67 #include <openssl/nid.h>
68 #include <openssl/rand.h>
69 
70 #include "internal.h"
71 #include "../bytestring/internal.h"
72 #include "../internal.h"
73 
74 
pkcs12_encode_password(const char * in,size_t in_len,uint8_t ** out,size_t * out_len)75 static int pkcs12_encode_password(const char *in, size_t in_len, uint8_t **out,
76                                   size_t *out_len) {
77   CBB cbb;
78   if (!CBB_init(&cbb, in_len * 2)) {
79     OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE);
80     return 0;
81   }
82 
83   // Convert the password to BMPString, or UCS-2. See
84   // https://tools.ietf.org/html/rfc7292#appendix-B.1.
85   CBS cbs;
86   CBS_init(&cbs, (const uint8_t *)in, in_len);
87   while (CBS_len(&cbs) != 0) {
88     uint32_t c;
89     if (!cbs_get_utf8(&cbs, &c) ||
90         !cbb_add_ucs2_be(&cbb, c)) {
91       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INVALID_CHARACTERS);
92       goto err;
93     }
94   }
95 
96   // Terminate the result with a UCS-2 NUL.
97   if (!cbb_add_ucs2_be(&cbb, 0) ||
98       !CBB_finish(&cbb, out, out_len)) {
99     goto err;
100   }
101 
102   return 1;
103 
104 err:
105   CBB_cleanup(&cbb);
106   return 0;
107 }
108 
pkcs12_key_gen(const char * pass,size_t pass_len,const uint8_t * salt,size_t salt_len,uint8_t id,unsigned iterations,size_t out_len,uint8_t * out,const EVP_MD * md)109 int pkcs12_key_gen(const char *pass, size_t pass_len, const uint8_t *salt,
110                    size_t salt_len, uint8_t id, unsigned iterations,
111                    size_t out_len, uint8_t *out, const EVP_MD *md) {
112   // See https://tools.ietf.org/html/rfc7292#appendix-B. Quoted parts of the
113   // specification have errata applied and other typos fixed.
114 
115   if (iterations < 1) {
116     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_ITERATION_COUNT);
117     return 0;
118   }
119 
120   int ret = 0;
121   EVP_MD_CTX ctx;
122   EVP_MD_CTX_init(&ctx);
123   uint8_t *pass_raw = NULL, *I = NULL;
124   size_t pass_raw_len = 0, I_len = 0;
125   // If |pass| is NULL, we use the empty string rather than {0, 0} as the raw
126   // password.
127   if (pass != NULL &&
128       !pkcs12_encode_password(pass, pass_len, &pass_raw, &pass_raw_len)) {
129     goto err;
130   }
131 
132   // In the spec, |block_size| is called "v", but measured in bits.
133   size_t block_size = EVP_MD_block_size(md);
134 
135   // 1. Construct a string, D (the "diversifier"), by concatenating v/8 copies
136   // of ID.
137   uint8_t D[EVP_MAX_MD_BLOCK_SIZE];
138   OPENSSL_memset(D, id, block_size);
139 
140   // 2. Concatenate copies of the salt together to create a string S of length
141   // v(ceiling(s/v)) bits (the final copy of the salt may be truncated to
142   // create S). Note that if the salt is the empty string, then so is S.
143   //
144   // 3. Concatenate copies of the password together to create a string P of
145   // length v(ceiling(p/v)) bits (the final copy of the password may be
146   // truncated to create P).  Note that if the password is the empty string,
147   // then so is P.
148   //
149   // 4. Set I=S||P to be the concatenation of S and P.
150   if (salt_len + block_size - 1 < salt_len ||
151       pass_raw_len + block_size - 1 < pass_raw_len) {
152     OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW);
153     goto err;
154   }
155   size_t S_len = block_size * ((salt_len + block_size - 1) / block_size);
156   size_t P_len = block_size * ((pass_raw_len + block_size - 1) / block_size);
157   I_len = S_len + P_len;
158   if (I_len < S_len) {
159     OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW);
160     goto err;
161   }
162 
163   I = OPENSSL_malloc(I_len);
164   if (I_len != 0 && I == NULL) {
165     OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE);
166     goto err;
167   }
168 
169   for (size_t i = 0; i < S_len; i++) {
170     I[i] = salt[i % salt_len];
171   }
172   for (size_t i = 0; i < P_len; i++) {
173     I[i + S_len] = pass_raw[i % pass_raw_len];
174   }
175 
176   while (out_len != 0) {
177     // A. Set A_i=H^r(D||I). (i.e., the r-th hash of D||I,
178     // H(H(H(... H(D||I))))
179     uint8_t A[EVP_MAX_MD_SIZE];
180     unsigned A_len;
181     if (!EVP_DigestInit_ex(&ctx, md, NULL) ||
182         !EVP_DigestUpdate(&ctx, D, block_size) ||
183         !EVP_DigestUpdate(&ctx, I, I_len) ||
184         !EVP_DigestFinal_ex(&ctx, A, &A_len)) {
185       goto err;
186     }
187     for (unsigned iter = 1; iter < iterations; iter++) {
188       if (!EVP_DigestInit_ex(&ctx, md, NULL) ||
189           !EVP_DigestUpdate(&ctx, A, A_len) ||
190           !EVP_DigestFinal_ex(&ctx, A, &A_len)) {
191         goto err;
192       }
193     }
194 
195     size_t todo = out_len < A_len ? out_len : A_len;
196     OPENSSL_memcpy(out, A, todo);
197     out += todo;
198     out_len -= todo;
199     if (out_len == 0) {
200       break;
201     }
202 
203     // B. Concatenate copies of A_i to create a string B of length v bits (the
204     // final copy of A_i may be truncated to create B).
205     uint8_t B[EVP_MAX_MD_BLOCK_SIZE];
206     for (size_t i = 0; i < block_size; i++) {
207       B[i] = A[i % A_len];
208     }
209 
210     // C. Treating I as a concatenation I_0, I_1, ..., I_(k-1) of v-bit blocks,
211     // where k=ceiling(s/v)+ceiling(p/v), modify I by setting I_j=(I_j+B+1) mod
212     // 2^v for each j.
213     assert(I_len % block_size == 0);
214     for (size_t i = 0; i < I_len; i += block_size) {
215       unsigned carry = 1;
216       for (size_t j = block_size - 1; j < block_size; j--) {
217         carry += I[i + j] + B[j];
218         I[i + j] = (uint8_t)carry;
219         carry >>= 8;
220       }
221     }
222   }
223 
224   ret = 1;
225 
226 err:
227   OPENSSL_free(I);
228   OPENSSL_free(pass_raw);
229   EVP_MD_CTX_cleanup(&ctx);
230   return ret;
231 }
232 
pkcs12_pbe_cipher_init(const struct pbe_suite * suite,EVP_CIPHER_CTX * ctx,unsigned iterations,const char * pass,size_t pass_len,const uint8_t * salt,size_t salt_len,int is_encrypt)233 static int pkcs12_pbe_cipher_init(const struct pbe_suite *suite,
234                                   EVP_CIPHER_CTX *ctx, unsigned iterations,
235                                   const char *pass, size_t pass_len,
236                                   const uint8_t *salt, size_t salt_len,
237                                   int is_encrypt) {
238   const EVP_CIPHER *cipher = suite->cipher_func();
239   const EVP_MD *md = suite->md_func();
240 
241   uint8_t key[EVP_MAX_KEY_LENGTH];
242   uint8_t iv[EVP_MAX_IV_LENGTH];
243   if (!pkcs12_key_gen(pass, pass_len, salt, salt_len, PKCS12_KEY_ID, iterations,
244                       EVP_CIPHER_key_length(cipher), key, md) ||
245       !pkcs12_key_gen(pass, pass_len, salt, salt_len, PKCS12_IV_ID, iterations,
246                       EVP_CIPHER_iv_length(cipher), iv, md)) {
247     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_KEY_GEN_ERROR);
248     return 0;
249   }
250 
251   int ret = EVP_CipherInit_ex(ctx, cipher, NULL, key, iv, is_encrypt);
252   OPENSSL_cleanse(key, EVP_MAX_KEY_LENGTH);
253   OPENSSL_cleanse(iv, EVP_MAX_IV_LENGTH);
254   return ret;
255 }
256 
pkcs12_pbe_decrypt_init(const struct pbe_suite * suite,EVP_CIPHER_CTX * ctx,const char * pass,size_t pass_len,CBS * param)257 static int pkcs12_pbe_decrypt_init(const struct pbe_suite *suite,
258                                    EVP_CIPHER_CTX *ctx, const char *pass,
259                                    size_t pass_len, CBS *param) {
260   CBS pbe_param, salt;
261   uint64_t iterations;
262   if (!CBS_get_asn1(param, &pbe_param, CBS_ASN1_SEQUENCE) ||
263       !CBS_get_asn1(&pbe_param, &salt, CBS_ASN1_OCTETSTRING) ||
264       !CBS_get_asn1_uint64(&pbe_param, &iterations) ||
265       CBS_len(&pbe_param) != 0 ||
266       CBS_len(param) != 0) {
267     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
268     return 0;
269   }
270 
271   if (!pkcs12_iterations_acceptable(iterations)) {
272     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_ITERATION_COUNT);
273     return 0;
274   }
275 
276   return pkcs12_pbe_cipher_init(suite, ctx, (unsigned)iterations, pass,
277                                 pass_len, CBS_data(&salt), CBS_len(&salt),
278                                 0 /* decrypt */);
279 }
280 
281 static const struct pbe_suite kBuiltinPBE[] = {
282     {
283         NID_pbe_WithSHA1And40BitRC2_CBC,
284         // 1.2.840.113549.1.12.1.6
285         {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x01, 0x06},
286         10,
287         EVP_rc2_40_cbc,
288         EVP_sha1,
289         pkcs12_pbe_decrypt_init,
290     },
291     {
292         NID_pbe_WithSHA1And128BitRC4,
293         // 1.2.840.113549.1.12.1.1
294         {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x01, 0x01},
295         10,
296         EVP_rc4,
297         EVP_sha1,
298         pkcs12_pbe_decrypt_init,
299     },
300     {
301         NID_pbe_WithSHA1And3_Key_TripleDES_CBC,
302         // 1.2.840.113549.1.12.1.3
303         {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x01, 0x03},
304         10,
305         EVP_des_ede3_cbc,
306         EVP_sha1,
307         pkcs12_pbe_decrypt_init,
308     },
309     {
310         NID_pbes2,
311         // 1.2.840.113549.1.5.13
312         {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x05, 0x0d},
313         9,
314         NULL,
315         NULL,
316         PKCS5_pbe2_decrypt_init,
317     },
318 };
319 
get_pkcs12_pbe_suite(int pbe_nid)320 static const struct pbe_suite *get_pkcs12_pbe_suite(int pbe_nid) {
321   for (unsigned i = 0; i < OPENSSL_ARRAY_SIZE(kBuiltinPBE); i++) {
322     if (kBuiltinPBE[i].pbe_nid == pbe_nid &&
323         // If |cipher_func| or |md_func| are missing, this is a PBES2 scheme.
324         kBuiltinPBE[i].cipher_func != NULL &&
325         kBuiltinPBE[i].md_func != NULL) {
326       return &kBuiltinPBE[i];
327     }
328   }
329 
330   return NULL;
331 }
332 
pkcs12_pbe_encrypt_init(CBB * out,EVP_CIPHER_CTX * ctx,int alg,unsigned iterations,const char * pass,size_t pass_len,const uint8_t * salt,size_t salt_len)333 int pkcs12_pbe_encrypt_init(CBB *out, EVP_CIPHER_CTX *ctx, int alg,
334                             unsigned iterations, const char *pass,
335                             size_t pass_len, const uint8_t *salt,
336                             size_t salt_len) {
337   const struct pbe_suite *suite = get_pkcs12_pbe_suite(alg);
338   if (suite == NULL) {
339     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNKNOWN_ALGORITHM);
340     return 0;
341   }
342 
343   // See RFC 2898, appendix A.3.
344   CBB algorithm, oid, param, salt_cbb;
345   if (!CBB_add_asn1(out, &algorithm, CBS_ASN1_SEQUENCE) ||
346       !CBB_add_asn1(&algorithm, &oid, CBS_ASN1_OBJECT) ||
347       !CBB_add_bytes(&oid, suite->oid, suite->oid_len) ||
348       !CBB_add_asn1(&algorithm, &param, CBS_ASN1_SEQUENCE) ||
349       !CBB_add_asn1(&param, &salt_cbb, CBS_ASN1_OCTETSTRING) ||
350       !CBB_add_bytes(&salt_cbb, salt, salt_len) ||
351       !CBB_add_asn1_uint64(&param, iterations) ||
352       !CBB_flush(out)) {
353     return 0;
354   }
355 
356   return pkcs12_pbe_cipher_init(suite, ctx, iterations, pass, pass_len, salt,
357                                 salt_len, 1 /* encrypt */);
358 }
359 
pkcs8_pbe_decrypt(uint8_t ** out,size_t * out_len,CBS * algorithm,const char * pass,size_t pass_len,const uint8_t * in,size_t in_len)360 int pkcs8_pbe_decrypt(uint8_t **out, size_t *out_len, CBS *algorithm,
361                       const char *pass, size_t pass_len, const uint8_t *in,
362                       size_t in_len) {
363   int ret = 0;
364   uint8_t *buf = NULL;;
365   EVP_CIPHER_CTX ctx;
366   EVP_CIPHER_CTX_init(&ctx);
367 
368   CBS obj;
369   if (!CBS_get_asn1(algorithm, &obj, CBS_ASN1_OBJECT)) {
370     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
371     goto err;
372   }
373 
374   const struct pbe_suite *suite = NULL;
375   for (unsigned i = 0; i < OPENSSL_ARRAY_SIZE(kBuiltinPBE); i++) {
376     if (CBS_mem_equal(&obj, kBuiltinPBE[i].oid, kBuiltinPBE[i].oid_len)) {
377       suite = &kBuiltinPBE[i];
378       break;
379     }
380   }
381   if (suite == NULL) {
382     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNKNOWN_ALGORITHM);
383     goto err;
384   }
385 
386   if (!suite->decrypt_init(suite, &ctx, pass, pass_len, algorithm)) {
387     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_KEYGEN_FAILURE);
388     goto err;
389   }
390 
391   buf = OPENSSL_malloc(in_len);
392   if (buf == NULL) {
393     OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE);
394     goto err;
395   }
396 
397   if (in_len > INT_MAX) {
398     OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW);
399     goto err;
400   }
401 
402   int n1, n2;
403   if (!EVP_DecryptUpdate(&ctx, buf, &n1, in, (int)in_len) ||
404       !EVP_DecryptFinal_ex(&ctx, buf + n1, &n2)) {
405     goto err;
406   }
407 
408   *out = buf;
409   *out_len = n1 + n2;
410   ret = 1;
411   buf = NULL;
412 
413 err:
414   OPENSSL_free(buf);
415   EVP_CIPHER_CTX_cleanup(&ctx);
416   return ret;
417 }
418 
PKCS8_parse_encrypted_private_key(CBS * cbs,const char * pass,size_t pass_len)419 EVP_PKEY *PKCS8_parse_encrypted_private_key(CBS *cbs, const char *pass,
420                                             size_t pass_len) {
421   // See RFC 5208, section 6.
422   CBS epki, algorithm, ciphertext;
423   if (!CBS_get_asn1(cbs, &epki, CBS_ASN1_SEQUENCE) ||
424       !CBS_get_asn1(&epki, &algorithm, CBS_ASN1_SEQUENCE) ||
425       !CBS_get_asn1(&epki, &ciphertext, CBS_ASN1_OCTETSTRING) ||
426       CBS_len(&epki) != 0) {
427     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
428     return 0;
429   }
430 
431   uint8_t *out;
432   size_t out_len;
433   if (!pkcs8_pbe_decrypt(&out, &out_len, &algorithm, pass, pass_len,
434                          CBS_data(&ciphertext), CBS_len(&ciphertext))) {
435     return 0;
436   }
437 
438   CBS pki;
439   CBS_init(&pki, out, out_len);
440   EVP_PKEY *ret = EVP_parse_private_key(&pki);
441   OPENSSL_free(out);
442   return ret;
443 }
444 
PKCS8_marshal_encrypted_private_key(CBB * out,int pbe_nid,const EVP_CIPHER * cipher,const char * pass,size_t pass_len,const uint8_t * salt,size_t salt_len,int iterations,const EVP_PKEY * pkey)445 int PKCS8_marshal_encrypted_private_key(CBB *out, int pbe_nid,
446                                         const EVP_CIPHER *cipher,
447                                         const char *pass, size_t pass_len,
448                                         const uint8_t *salt, size_t salt_len,
449                                         int iterations, const EVP_PKEY *pkey) {
450   int ret = 0;
451   uint8_t *plaintext = NULL, *salt_buf = NULL;
452   size_t plaintext_len = 0;
453   EVP_CIPHER_CTX ctx;
454   EVP_CIPHER_CTX_init(&ctx);
455 
456   // Generate a random salt if necessary.
457   if (salt == NULL) {
458     if (salt_len == 0) {
459       salt_len = PKCS5_SALT_LEN;
460     }
461 
462     salt_buf = OPENSSL_malloc(salt_len);
463     if (salt_buf == NULL ||
464         !RAND_bytes(salt_buf, salt_len)) {
465       goto err;
466     }
467 
468     salt = salt_buf;
469   }
470 
471   if (iterations <= 0) {
472     iterations = PKCS5_DEFAULT_ITERATIONS;
473   }
474 
475   // Serialize the input key.
476   CBB plaintext_cbb;
477   if (!CBB_init(&plaintext_cbb, 128) ||
478       !EVP_marshal_private_key(&plaintext_cbb, pkey) ||
479       !CBB_finish(&plaintext_cbb, &plaintext, &plaintext_len)) {
480     CBB_cleanup(&plaintext_cbb);
481     goto err;
482   }
483 
484   CBB epki;
485   if (!CBB_add_asn1(out, &epki, CBS_ASN1_SEQUENCE)) {
486     goto err;
487   }
488 
489   // TODO(davidben): OpenSSL has since extended |pbe_nid| to control either the
490   // PBES1 scheme or the PBES2 PRF. E.g. passing |NID_hmacWithSHA256| will
491   // select PBES2 with HMAC-SHA256 as the PRF. Implement this if anything uses
492   // it. See 5693a30813a031d3921a016a870420e7eb93ec90 in OpenSSL.
493   int alg_ok;
494   if (pbe_nid == -1) {
495     alg_ok = PKCS5_pbe2_encrypt_init(&epki, &ctx, cipher, (unsigned)iterations,
496                                      pass, pass_len, salt, salt_len);
497   } else {
498     alg_ok = pkcs12_pbe_encrypt_init(&epki, &ctx, pbe_nid, (unsigned)iterations,
499                                      pass, pass_len, salt, salt_len);
500   }
501   if (!alg_ok) {
502     goto err;
503   }
504 
505   size_t max_out = plaintext_len + EVP_CIPHER_CTX_block_size(&ctx);
506   if (max_out < plaintext_len) {
507     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_TOO_LONG);
508     goto err;
509   }
510 
511   CBB ciphertext;
512   uint8_t *ptr;
513   int n1, n2;
514   if (!CBB_add_asn1(&epki, &ciphertext, CBS_ASN1_OCTETSTRING) ||
515       !CBB_reserve(&ciphertext, &ptr, max_out) ||
516       !EVP_CipherUpdate(&ctx, ptr, &n1, plaintext, plaintext_len) ||
517       !EVP_CipherFinal_ex(&ctx, ptr + n1, &n2) ||
518       !CBB_did_write(&ciphertext, n1 + n2) ||
519       !CBB_flush(out)) {
520     goto err;
521   }
522 
523   ret = 1;
524 
525 err:
526   OPENSSL_free(plaintext);
527   OPENSSL_free(salt_buf);
528   EVP_CIPHER_CTX_cleanup(&ctx);
529   return ret;
530 }
531