1 #pragma once
2 
3 #include <array> // array
4 #include <cassert> // assert
5 #include <ciso646> // or, and, not
6 #include <cmath>   // signbit, isfinite
7 #include <cstdint> // intN_t, uintN_t
8 #include <cstring> // memcpy, memmove
9 #include <limits> // numeric_limits
10 #include <type_traits> // conditional
11 #include <nlohmann/detail/macro_scope.hpp>
12 
13 namespace nlohmann
14 {
15 namespace detail
16 {
17 
18 /*!
19 @brief implements the Grisu2 algorithm for binary to decimal floating-point
20 conversion.
21 
22 This implementation is a slightly modified version of the reference
23 implementation which may be obtained from
24 http://florian.loitsch.com/publications (bench.tar.gz).
25 
26 The code is distributed under the MIT license, Copyright (c) 2009 Florian Loitsch.
27 
28 For a detailed description of the algorithm see:
29 
30 [1] Loitsch, "Printing Floating-Point Numbers Quickly and Accurately with
31     Integers", Proceedings of the ACM SIGPLAN 2010 Conference on Programming
32     Language Design and Implementation, PLDI 2010
33 [2] Burger, Dybvig, "Printing Floating-Point Numbers Quickly and Accurately",
34     Proceedings of the ACM SIGPLAN 1996 Conference on Programming Language
35     Design and Implementation, PLDI 1996
36 */
37 namespace dtoa_impl
38 {
39 
40 template <typename Target, typename Source>
41 Target reinterpret_bits(const Source source)
42 {
43     static_assert(sizeof(Target) == sizeof(Source), "size mismatch");
44 
45     Target target;
46     std::memcpy(&target, &source, sizeof(Source));
47     return target;
48 }
49 
50 struct diyfp // f * 2^e
51 {
52     static constexpr int kPrecision = 64; // = q
53 
54     std::uint64_t f = 0;
55     int e = 0;
56 
diyfpnlohmann::detail::dtoa_impl::diyfp57     constexpr diyfp(std::uint64_t f_, int e_) noexcept : f(f_), e(e_) {}
58 
59     /*!
60     @brief returns x - y
61     @pre x.e == y.e and x.f >= y.f
62     */
subnlohmann::detail::dtoa_impl::diyfp63     static diyfp sub(const diyfp& x, const diyfp& y) noexcept
64     {
65         assert(x.e == y.e);
66         assert(x.f >= y.f);
67 
68         return {x.f - y.f, x.e};
69     }
70 
71     /*!
72     @brief returns x * y
73     @note The result is rounded. (Only the upper q bits are returned.)
74     */
mulnlohmann::detail::dtoa_impl::diyfp75     static diyfp mul(const diyfp& x, const diyfp& y) noexcept
76     {
77         static_assert(kPrecision == 64, "internal error");
78 
79         // Computes:
80         //  f = round((x.f * y.f) / 2^q)
81         //  e = x.e + y.e + q
82 
83         // Emulate the 64-bit * 64-bit multiplication:
84         //
85         // p = u * v
86         //   = (u_lo + 2^32 u_hi) (v_lo + 2^32 v_hi)
87         //   = (u_lo v_lo         ) + 2^32 ((u_lo v_hi         ) + (u_hi v_lo         )) + 2^64 (u_hi v_hi         )
88         //   = (p0                ) + 2^32 ((p1                ) + (p2                )) + 2^64 (p3                )
89         //   = (p0_lo + 2^32 p0_hi) + 2^32 ((p1_lo + 2^32 p1_hi) + (p2_lo + 2^32 p2_hi)) + 2^64 (p3                )
90         //   = (p0_lo             ) + 2^32 (p0_hi + p1_lo + p2_lo                      ) + 2^64 (p1_hi + p2_hi + p3)
91         //   = (p0_lo             ) + 2^32 (Q                                          ) + 2^64 (H                 )
92         //   = (p0_lo             ) + 2^32 (Q_lo + 2^32 Q_hi                           ) + 2^64 (H                 )
93         //
94         // (Since Q might be larger than 2^32 - 1)
95         //
96         //   = (p0_lo + 2^32 Q_lo) + 2^64 (Q_hi + H)
97         //
98         // (Q_hi + H does not overflow a 64-bit int)
99         //
100         //   = p_lo + 2^64 p_hi
101 
102         const std::uint64_t u_lo = x.f & 0xFFFFFFFFu;
103         const std::uint64_t u_hi = x.f >> 32u;
104         const std::uint64_t v_lo = y.f & 0xFFFFFFFFu;
105         const std::uint64_t v_hi = y.f >> 32u;
106 
107         const std::uint64_t p0 = u_lo * v_lo;
108         const std::uint64_t p1 = u_lo * v_hi;
109         const std::uint64_t p2 = u_hi * v_lo;
110         const std::uint64_t p3 = u_hi * v_hi;
111 
112         const std::uint64_t p0_hi = p0 >> 32u;
113         const std::uint64_t p1_lo = p1 & 0xFFFFFFFFu;
114         const std::uint64_t p1_hi = p1 >> 32u;
115         const std::uint64_t p2_lo = p2 & 0xFFFFFFFFu;
116         const std::uint64_t p2_hi = p2 >> 32u;
117 
118         std::uint64_t Q = p0_hi + p1_lo + p2_lo;
119 
120         // The full product might now be computed as
121         //
122         // p_hi = p3 + p2_hi + p1_hi + (Q >> 32)
123         // p_lo = p0_lo + (Q << 32)
124         //
125         // But in this particular case here, the full p_lo is not required.
126         // Effectively we only need to add the highest bit in p_lo to p_hi (and
127         // Q_hi + 1 does not overflow).
128 
129         Q += std::uint64_t{1} << (64u - 32u - 1u); // round, ties up
130 
131         const std::uint64_t h = p3 + p2_hi + p1_hi + (Q >> 32u);
132 
133         return {h, x.e + y.e + 64};
134     }
135 
136     /*!
137     @brief normalize x such that the significand is >= 2^(q-1)
138     @pre x.f != 0
139     */
normalizenlohmann::detail::dtoa_impl::diyfp140     static diyfp normalize(diyfp x) noexcept
141     {
142         assert(x.f != 0);
143 
144         while ((x.f >> 63u) == 0)
145         {
146             x.f <<= 1u;
147             x.e--;
148         }
149 
150         return x;
151     }
152 
153     /*!
154     @brief normalize x such that the result has the exponent E
155     @pre e >= x.e and the upper e - x.e bits of x.f must be zero.
156     */
normalize_tonlohmann::detail::dtoa_impl::diyfp157     static diyfp normalize_to(const diyfp& x, const int target_exponent) noexcept
158     {
159         const int delta = x.e - target_exponent;
160 
161         assert(delta >= 0);
162         assert(((x.f << delta) >> delta) == x.f);
163 
164         return {x.f << delta, target_exponent};
165     }
166 };
167 
168 struct boundaries
169 {
170     diyfp w;
171     diyfp minus;
172     diyfp plus;
173 };
174 
175 /*!
176 Compute the (normalized) diyfp representing the input number 'value' and its
177 boundaries.
178 
179 @pre value must be finite and positive
180 */
181 template <typename FloatType>
compute_boundaries(FloatType value)182 boundaries compute_boundaries(FloatType value)
183 {
184     assert(std::isfinite(value));
185     assert(value > 0);
186 
187     // Convert the IEEE representation into a diyfp.
188     //
189     // If v is denormal:
190     //      value = 0.F * 2^(1 - bias) = (          F) * 2^(1 - bias - (p-1))
191     // If v is normalized:
192     //      value = 1.F * 2^(E - bias) = (2^(p-1) + F) * 2^(E - bias - (p-1))
193 
194     static_assert(std::numeric_limits<FloatType>::is_iec559,
195                   "internal error: dtoa_short requires an IEEE-754 floating-point implementation");
196 
197     constexpr int      kPrecision = std::numeric_limits<FloatType>::digits; // = p (includes the hidden bit)
198     constexpr int      kBias      = std::numeric_limits<FloatType>::max_exponent - 1 + (kPrecision - 1);
199     constexpr int      kMinExp    = 1 - kBias;
200     constexpr std::uint64_t kHiddenBit = std::uint64_t{1} << (kPrecision - 1); // = 2^(p-1)
201 
202     using bits_type = typename std::conditional<kPrecision == 24, std::uint32_t, std::uint64_t >::type;
203 
204     const std::uint64_t bits = reinterpret_bits<bits_type>(value);
205     const std::uint64_t E = bits >> (kPrecision - 1);
206     const std::uint64_t F = bits & (kHiddenBit - 1);
207 
208     const bool is_denormal = E == 0;
209     const diyfp v = is_denormal
210                     ? diyfp(F, kMinExp)
211                     : diyfp(F + kHiddenBit, static_cast<int>(E) - kBias);
212 
213     // Compute the boundaries m- and m+ of the floating-point value
214     // v = f * 2^e.
215     //
216     // Determine v- and v+, the floating-point predecessor and successor if v,
217     // respectively.
218     //
219     //      v- = v - 2^e        if f != 2^(p-1) or e == e_min                (A)
220     //         = v - 2^(e-1)    if f == 2^(p-1) and e > e_min                (B)
221     //
222     //      v+ = v + 2^e
223     //
224     // Let m- = (v- + v) / 2 and m+ = (v + v+) / 2. All real numbers _strictly_
225     // between m- and m+ round to v, regardless of how the input rounding
226     // algorithm breaks ties.
227     //
228     //      ---+-------------+-------------+-------------+-------------+---  (A)
229     //         v-            m-            v             m+            v+
230     //
231     //      -----------------+------+------+-------------+-------------+---  (B)
232     //                       v-     m-     v             m+            v+
233 
234     const bool lower_boundary_is_closer = F == 0 and E > 1;
235     const diyfp m_plus = diyfp(2 * v.f + 1, v.e - 1);
236     const diyfp m_minus = lower_boundary_is_closer
237                           ? diyfp(4 * v.f - 1, v.e - 2)  // (B)
238                           : diyfp(2 * v.f - 1, v.e - 1); // (A)
239 
240     // Determine the normalized w+ = m+.
241     const diyfp w_plus = diyfp::normalize(m_plus);
242 
243     // Determine w- = m- such that e_(w-) = e_(w+).
244     const diyfp w_minus = diyfp::normalize_to(m_minus, w_plus.e);
245 
246     return {diyfp::normalize(v), w_minus, w_plus};
247 }
248 
249 // Given normalized diyfp w, Grisu needs to find a (normalized) cached
250 // power-of-ten c, such that the exponent of the product c * w = f * 2^e lies
251 // within a certain range [alpha, gamma] (Definition 3.2 from [1])
252 //
253 //      alpha <= e = e_c + e_w + q <= gamma
254 //
255 // or
256 //
257 //      f_c * f_w * 2^alpha <= f_c 2^(e_c) * f_w 2^(e_w) * 2^q
258 //                          <= f_c * f_w * 2^gamma
259 //
260 // Since c and w are normalized, i.e. 2^(q-1) <= f < 2^q, this implies
261 //
262 //      2^(q-1) * 2^(q-1) * 2^alpha <= c * w * 2^q < 2^q * 2^q * 2^gamma
263 //
264 // or
265 //
266 //      2^(q - 2 + alpha) <= c * w < 2^(q + gamma)
267 //
268 // The choice of (alpha,gamma) determines the size of the table and the form of
269 // the digit generation procedure. Using (alpha,gamma)=(-60,-32) works out well
270 // in practice:
271 //
272 // The idea is to cut the number c * w = f * 2^e into two parts, which can be
273 // processed independently: An integral part p1, and a fractional part p2:
274 //
275 //      f * 2^e = ( (f div 2^-e) * 2^-e + (f mod 2^-e) ) * 2^e
276 //              = (f div 2^-e) + (f mod 2^-e) * 2^e
277 //              = p1 + p2 * 2^e
278 //
279 // The conversion of p1 into decimal form requires a series of divisions and
280 // modulos by (a power of) 10. These operations are faster for 32-bit than for
281 // 64-bit integers, so p1 should ideally fit into a 32-bit integer. This can be
282 // achieved by choosing
283 //
284 //      -e >= 32   or   e <= -32 := gamma
285 //
286 // In order to convert the fractional part
287 //
288 //      p2 * 2^e = p2 / 2^-e = d[-1] / 10^1 + d[-2] / 10^2 + ...
289 //
290 // into decimal form, the fraction is repeatedly multiplied by 10 and the digits
291 // d[-i] are extracted in order:
292 //
293 //      (10 * p2) div 2^-e = d[-1]
294 //      (10 * p2) mod 2^-e = d[-2] / 10^1 + ...
295 //
296 // The multiplication by 10 must not overflow. It is sufficient to choose
297 //
298 //      10 * p2 < 16 * p2 = 2^4 * p2 <= 2^64.
299 //
300 // Since p2 = f mod 2^-e < 2^-e,
301 //
302 //      -e <= 60   or   e >= -60 := alpha
303 
304 constexpr int kAlpha = -60;
305 constexpr int kGamma = -32;
306 
307 struct cached_power // c = f * 2^e ~= 10^k
308 {
309     std::uint64_t f;
310     int e;
311     int k;
312 };
313 
314 /*!
315 For a normalized diyfp w = f * 2^e, this function returns a (normalized) cached
316 power-of-ten c = f_c * 2^e_c, such that the exponent of the product w * c
317 satisfies (Definition 3.2 from [1])
318 
319      alpha <= e_c + e + q <= gamma.
320 */
get_cached_power_for_binary_exponent(int e)321 inline cached_power get_cached_power_for_binary_exponent(int e)
322 {
323     // Now
324     //
325     //      alpha <= e_c + e + q <= gamma                                    (1)
326     //      ==> f_c * 2^alpha <= c * 2^e * 2^q
327     //
328     // and since the c's are normalized, 2^(q-1) <= f_c,
329     //
330     //      ==> 2^(q - 1 + alpha) <= c * 2^(e + q)
331     //      ==> 2^(alpha - e - 1) <= c
332     //
333     // If c were an exact power of ten, i.e. c = 10^k, one may determine k as
334     //
335     //      k = ceil( log_10( 2^(alpha - e - 1) ) )
336     //        = ceil( (alpha - e - 1) * log_10(2) )
337     //
338     // From the paper:
339     // "In theory the result of the procedure could be wrong since c is rounded,
340     //  and the computation itself is approximated [...]. In practice, however,
341     //  this simple function is sufficient."
342     //
343     // For IEEE double precision floating-point numbers converted into
344     // normalized diyfp's w = f * 2^e, with q = 64,
345     //
346     //      e >= -1022      (min IEEE exponent)
347     //           -52        (p - 1)
348     //           -52        (p - 1, possibly normalize denormal IEEE numbers)
349     //           -11        (normalize the diyfp)
350     //         = -1137
351     //
352     // and
353     //
354     //      e <= +1023      (max IEEE exponent)
355     //           -52        (p - 1)
356     //           -11        (normalize the diyfp)
357     //         = 960
358     //
359     // This binary exponent range [-1137,960] results in a decimal exponent
360     // range [-307,324]. One does not need to store a cached power for each
361     // k in this range. For each such k it suffices to find a cached power
362     // such that the exponent of the product lies in [alpha,gamma].
363     // This implies that the difference of the decimal exponents of adjacent
364     // table entries must be less than or equal to
365     //
366     //      floor( (gamma - alpha) * log_10(2) ) = 8.
367     //
368     // (A smaller distance gamma-alpha would require a larger table.)
369 
370     // NB:
371     // Actually this function returns c, such that -60 <= e_c + e + 64 <= -34.
372 
373     constexpr int kCachedPowersMinDecExp = -300;
374     constexpr int kCachedPowersDecStep = 8;
375 
376     static constexpr std::array<cached_power, 79> kCachedPowers =
377     {
378         {
379             { 0xAB70FE17C79AC6CA, -1060, -300 },
380             { 0xFF77B1FCBEBCDC4F, -1034, -292 },
381             { 0xBE5691EF416BD60C, -1007, -284 },
382             { 0x8DD01FAD907FFC3C,  -980, -276 },
383             { 0xD3515C2831559A83,  -954, -268 },
384             { 0x9D71AC8FADA6C9B5,  -927, -260 },
385             { 0xEA9C227723EE8BCB,  -901, -252 },
386             { 0xAECC49914078536D,  -874, -244 },
387             { 0x823C12795DB6CE57,  -847, -236 },
388             { 0xC21094364DFB5637,  -821, -228 },
389             { 0x9096EA6F3848984F,  -794, -220 },
390             { 0xD77485CB25823AC7,  -768, -212 },
391             { 0xA086CFCD97BF97F4,  -741, -204 },
392             { 0xEF340A98172AACE5,  -715, -196 },
393             { 0xB23867FB2A35B28E,  -688, -188 },
394             { 0x84C8D4DFD2C63F3B,  -661, -180 },
395             { 0xC5DD44271AD3CDBA,  -635, -172 },
396             { 0x936B9FCEBB25C996,  -608, -164 },
397             { 0xDBAC6C247D62A584,  -582, -156 },
398             { 0xA3AB66580D5FDAF6,  -555, -148 },
399             { 0xF3E2F893DEC3F126,  -529, -140 },
400             { 0xB5B5ADA8AAFF80B8,  -502, -132 },
401             { 0x87625F056C7C4A8B,  -475, -124 },
402             { 0xC9BCFF6034C13053,  -449, -116 },
403             { 0x964E858C91BA2655,  -422, -108 },
404             { 0xDFF9772470297EBD,  -396, -100 },
405             { 0xA6DFBD9FB8E5B88F,  -369,  -92 },
406             { 0xF8A95FCF88747D94,  -343,  -84 },
407             { 0xB94470938FA89BCF,  -316,  -76 },
408             { 0x8A08F0F8BF0F156B,  -289,  -68 },
409             { 0xCDB02555653131B6,  -263,  -60 },
410             { 0x993FE2C6D07B7FAC,  -236,  -52 },
411             { 0xE45C10C42A2B3B06,  -210,  -44 },
412             { 0xAA242499697392D3,  -183,  -36 },
413             { 0xFD87B5F28300CA0E,  -157,  -28 },
414             { 0xBCE5086492111AEB,  -130,  -20 },
415             { 0x8CBCCC096F5088CC,  -103,  -12 },
416             { 0xD1B71758E219652C,   -77,   -4 },
417             { 0x9C40000000000000,   -50,    4 },
418             { 0xE8D4A51000000000,   -24,   12 },
419             { 0xAD78EBC5AC620000,     3,   20 },
420             { 0x813F3978F8940984,    30,   28 },
421             { 0xC097CE7BC90715B3,    56,   36 },
422             { 0x8F7E32CE7BEA5C70,    83,   44 },
423             { 0xD5D238A4ABE98068,   109,   52 },
424             { 0x9F4F2726179A2245,   136,   60 },
425             { 0xED63A231D4C4FB27,   162,   68 },
426             { 0xB0DE65388CC8ADA8,   189,   76 },
427             { 0x83C7088E1AAB65DB,   216,   84 },
428             { 0xC45D1DF942711D9A,   242,   92 },
429             { 0x924D692CA61BE758,   269,  100 },
430             { 0xDA01EE641A708DEA,   295,  108 },
431             { 0xA26DA3999AEF774A,   322,  116 },
432             { 0xF209787BB47D6B85,   348,  124 },
433             { 0xB454E4A179DD1877,   375,  132 },
434             { 0x865B86925B9BC5C2,   402,  140 },
435             { 0xC83553C5C8965D3D,   428,  148 },
436             { 0x952AB45CFA97A0B3,   455,  156 },
437             { 0xDE469FBD99A05FE3,   481,  164 },
438             { 0xA59BC234DB398C25,   508,  172 },
439             { 0xF6C69A72A3989F5C,   534,  180 },
440             { 0xB7DCBF5354E9BECE,   561,  188 },
441             { 0x88FCF317F22241E2,   588,  196 },
442             { 0xCC20CE9BD35C78A5,   614,  204 },
443             { 0x98165AF37B2153DF,   641,  212 },
444             { 0xE2A0B5DC971F303A,   667,  220 },
445             { 0xA8D9D1535CE3B396,   694,  228 },
446             { 0xFB9B7CD9A4A7443C,   720,  236 },
447             { 0xBB764C4CA7A44410,   747,  244 },
448             { 0x8BAB8EEFB6409C1A,   774,  252 },
449             { 0xD01FEF10A657842C,   800,  260 },
450             { 0x9B10A4E5E9913129,   827,  268 },
451             { 0xE7109BFBA19C0C9D,   853,  276 },
452             { 0xAC2820D9623BF429,   880,  284 },
453             { 0x80444B5E7AA7CF85,   907,  292 },
454             { 0xBF21E44003ACDD2D,   933,  300 },
455             { 0x8E679C2F5E44FF8F,   960,  308 },
456             { 0xD433179D9C8CB841,   986,  316 },
457             { 0x9E19DB92B4E31BA9,  1013,  324 },
458         }
459     };
460 
461     // This computation gives exactly the same results for k as
462     //      k = ceil((kAlpha - e - 1) * 0.30102999566398114)
463     // for |e| <= 1500, but doesn't require floating-point operations.
464     // NB: log_10(2) ~= 78913 / 2^18
465     assert(e >= -1500);
466     assert(e <=  1500);
467     const int f = kAlpha - e - 1;
468     const int k = (f * 78913) / (1 << 18) + static_cast<int>(f > 0);
469 
470     const int index = (-kCachedPowersMinDecExp + k + (kCachedPowersDecStep - 1)) / kCachedPowersDecStep;
471     assert(index >= 0);
472     assert(static_cast<std::size_t>(index) < kCachedPowers.size());
473 
474     const cached_power cached = kCachedPowers[static_cast<std::size_t>(index)];
475     assert(kAlpha <= cached.e + e + 64);
476     assert(kGamma >= cached.e + e + 64);
477 
478     return cached;
479 }
480 
481 /*!
482 For n != 0, returns k, such that pow10 := 10^(k-1) <= n < 10^k.
483 For n == 0, returns 1 and sets pow10 := 1.
484 */
find_largest_pow10(const std::uint32_t n,std::uint32_t & pow10)485 inline int find_largest_pow10(const std::uint32_t n, std::uint32_t& pow10)
486 {
487     // LCOV_EXCL_START
488     if (n >= 1000000000)
489     {
490         pow10 = 1000000000;
491         return 10;
492     }
493     // LCOV_EXCL_STOP
494     else if (n >= 100000000)
495     {
496         pow10 = 100000000;
497         return  9;
498     }
499     else if (n >= 10000000)
500     {
501         pow10 = 10000000;
502         return  8;
503     }
504     else if (n >= 1000000)
505     {
506         pow10 = 1000000;
507         return  7;
508     }
509     else if (n >= 100000)
510     {
511         pow10 = 100000;
512         return  6;
513     }
514     else if (n >= 10000)
515     {
516         pow10 = 10000;
517         return  5;
518     }
519     else if (n >= 1000)
520     {
521         pow10 = 1000;
522         return  4;
523     }
524     else if (n >= 100)
525     {
526         pow10 = 100;
527         return  3;
528     }
529     else if (n >= 10)
530     {
531         pow10 = 10;
532         return  2;
533     }
534     else
535     {
536         pow10 = 1;
537         return 1;
538     }
539 }
540 
grisu2_round(char * buf,int len,std::uint64_t dist,std::uint64_t delta,std::uint64_t rest,std::uint64_t ten_k)541 inline void grisu2_round(char* buf, int len, std::uint64_t dist, std::uint64_t delta,
542                          std::uint64_t rest, std::uint64_t ten_k)
543 {
544     assert(len >= 1);
545     assert(dist <= delta);
546     assert(rest <= delta);
547     assert(ten_k > 0);
548 
549     //               <--------------------------- delta ---->
550     //                                  <---- dist --------->
551     // --------------[------------------+-------------------]--------------
552     //               M-                 w                   M+
553     //
554     //                                  ten_k
555     //                                <------>
556     //                                       <---- rest ---->
557     // --------------[------------------+----+--------------]--------------
558     //                                  w    V
559     //                                       = buf * 10^k
560     //
561     // ten_k represents a unit-in-the-last-place in the decimal representation
562     // stored in buf.
563     // Decrement buf by ten_k while this takes buf closer to w.
564 
565     // The tests are written in this order to avoid overflow in unsigned
566     // integer arithmetic.
567 
568     while (rest < dist
569             and delta - rest >= ten_k
570             and (rest + ten_k < dist or dist - rest > rest + ten_k - dist))
571     {
572         assert(buf[len - 1] != '0');
573         buf[len - 1]--;
574         rest += ten_k;
575     }
576 }
577 
578 /*!
579 Generates V = buffer * 10^decimal_exponent, such that M- <= V <= M+.
580 M- and M+ must be normalized and share the same exponent -60 <= e <= -32.
581 */
grisu2_digit_gen(char * buffer,int & length,int & decimal_exponent,diyfp M_minus,diyfp w,diyfp M_plus)582 inline void grisu2_digit_gen(char* buffer, int& length, int& decimal_exponent,
583                              diyfp M_minus, diyfp w, diyfp M_plus)
584 {
585     static_assert(kAlpha >= -60, "internal error");
586     static_assert(kGamma <= -32, "internal error");
587 
588     // Generates the digits (and the exponent) of a decimal floating-point
589     // number V = buffer * 10^decimal_exponent in the range [M-, M+]. The diyfp's
590     // w, M- and M+ share the same exponent e, which satisfies alpha <= e <= gamma.
591     //
592     //               <--------------------------- delta ---->
593     //                                  <---- dist --------->
594     // --------------[------------------+-------------------]--------------
595     //               M-                 w                   M+
596     //
597     // Grisu2 generates the digits of M+ from left to right and stops as soon as
598     // V is in [M-,M+].
599 
600     assert(M_plus.e >= kAlpha);
601     assert(M_plus.e <= kGamma);
602 
603     std::uint64_t delta = diyfp::sub(M_plus, M_minus).f; // (significand of (M+ - M-), implicit exponent is e)
604     std::uint64_t dist  = diyfp::sub(M_plus, w      ).f; // (significand of (M+ - w ), implicit exponent is e)
605 
606     // Split M+ = f * 2^e into two parts p1 and p2 (note: e < 0):
607     //
608     //      M+ = f * 2^e
609     //         = ((f div 2^-e) * 2^-e + (f mod 2^-e)) * 2^e
610     //         = ((p1        ) * 2^-e + (p2        )) * 2^e
611     //         = p1 + p2 * 2^e
612 
613     const diyfp one(std::uint64_t{1} << -M_plus.e, M_plus.e);
614 
615     auto p1 = static_cast<std::uint32_t>(M_plus.f >> -one.e); // p1 = f div 2^-e (Since -e >= 32, p1 fits into a 32-bit int.)
616     std::uint64_t p2 = M_plus.f & (one.f - 1);                    // p2 = f mod 2^-e
617 
618     // 1)
619     //
620     // Generate the digits of the integral part p1 = d[n-1]...d[1]d[0]
621 
622     assert(p1 > 0);
623 
624     std::uint32_t pow10;
625     const int k = find_largest_pow10(p1, pow10);
626 
627     //      10^(k-1) <= p1 < 10^k, pow10 = 10^(k-1)
628     //
629     //      p1 = (p1 div 10^(k-1)) * 10^(k-1) + (p1 mod 10^(k-1))
630     //         = (d[k-1]         ) * 10^(k-1) + (p1 mod 10^(k-1))
631     //
632     //      M+ = p1                                             + p2 * 2^e
633     //         = d[k-1] * 10^(k-1) + (p1 mod 10^(k-1))          + p2 * 2^e
634     //         = d[k-1] * 10^(k-1) + ((p1 mod 10^(k-1)) * 2^-e + p2) * 2^e
635     //         = d[k-1] * 10^(k-1) + (                         rest) * 2^e
636     //
637     // Now generate the digits d[n] of p1 from left to right (n = k-1,...,0)
638     //
639     //      p1 = d[k-1]...d[n] * 10^n + d[n-1]...d[0]
640     //
641     // but stop as soon as
642     //
643     //      rest * 2^e = (d[n-1]...d[0] * 2^-e + p2) * 2^e <= delta * 2^e
644 
645     int n = k;
646     while (n > 0)
647     {
648         // Invariants:
649         //      M+ = buffer * 10^n + (p1 + p2 * 2^e)    (buffer = 0 for n = k)
650         //      pow10 = 10^(n-1) <= p1 < 10^n
651         //
652         const std::uint32_t d = p1 / pow10;  // d = p1 div 10^(n-1)
653         const std::uint32_t r = p1 % pow10;  // r = p1 mod 10^(n-1)
654         //
655         //      M+ = buffer * 10^n + (d * 10^(n-1) + r) + p2 * 2^e
656         //         = (buffer * 10 + d) * 10^(n-1) + (r + p2 * 2^e)
657         //
658         assert(d <= 9);
659         buffer[length++] = static_cast<char>('0' + d); // buffer := buffer * 10 + d
660         //
661         //      M+ = buffer * 10^(n-1) + (r + p2 * 2^e)
662         //
663         p1 = r;
664         n--;
665         //
666         //      M+ = buffer * 10^n + (p1 + p2 * 2^e)
667         //      pow10 = 10^n
668         //
669 
670         // Now check if enough digits have been generated.
671         // Compute
672         //
673         //      p1 + p2 * 2^e = (p1 * 2^-e + p2) * 2^e = rest * 2^e
674         //
675         // Note:
676         // Since rest and delta share the same exponent e, it suffices to
677         // compare the significands.
678         const std::uint64_t rest = (std::uint64_t{p1} << -one.e) + p2;
679         if (rest <= delta)
680         {
681             // V = buffer * 10^n, with M- <= V <= M+.
682 
683             decimal_exponent += n;
684 
685             // We may now just stop. But instead look if the buffer could be
686             // decremented to bring V closer to w.
687             //
688             // pow10 = 10^n is now 1 ulp in the decimal representation V.
689             // The rounding procedure works with diyfp's with an implicit
690             // exponent of e.
691             //
692             //      10^n = (10^n * 2^-e) * 2^e = ulp * 2^e
693             //
694             const std::uint64_t ten_n = std::uint64_t{pow10} << -one.e;
695             grisu2_round(buffer, length, dist, delta, rest, ten_n);
696 
697             return;
698         }
699 
700         pow10 /= 10;
701         //
702         //      pow10 = 10^(n-1) <= p1 < 10^n
703         // Invariants restored.
704     }
705 
706     // 2)
707     //
708     // The digits of the integral part have been generated:
709     //
710     //      M+ = d[k-1]...d[1]d[0] + p2 * 2^e
711     //         = buffer            + p2 * 2^e
712     //
713     // Now generate the digits of the fractional part p2 * 2^e.
714     //
715     // Note:
716     // No decimal point is generated: the exponent is adjusted instead.
717     //
718     // p2 actually represents the fraction
719     //
720     //      p2 * 2^e
721     //          = p2 / 2^-e
722     //          = d[-1] / 10^1 + d[-2] / 10^2 + ...
723     //
724     // Now generate the digits d[-m] of p1 from left to right (m = 1,2,...)
725     //
726     //      p2 * 2^e = d[-1]d[-2]...d[-m] * 10^-m
727     //                      + 10^-m * (d[-m-1] / 10^1 + d[-m-2] / 10^2 + ...)
728     //
729     // using
730     //
731     //      10^m * p2 = ((10^m * p2) div 2^-e) * 2^-e + ((10^m * p2) mod 2^-e)
732     //                = (                   d) * 2^-e + (                   r)
733     //
734     // or
735     //      10^m * p2 * 2^e = d + r * 2^e
736     //
737     // i.e.
738     //
739     //      M+ = buffer + p2 * 2^e
740     //         = buffer + 10^-m * (d + r * 2^e)
741     //         = (buffer * 10^m + d) * 10^-m + 10^-m * r * 2^e
742     //
743     // and stop as soon as 10^-m * r * 2^e <= delta * 2^e
744 
745     assert(p2 > delta);
746 
747     int m = 0;
748     for (;;)
749     {
750         // Invariant:
751         //      M+ = buffer * 10^-m + 10^-m * (d[-m-1] / 10 + d[-m-2] / 10^2 + ...) * 2^e
752         //         = buffer * 10^-m + 10^-m * (p2                                 ) * 2^e
753         //         = buffer * 10^-m + 10^-m * (1/10 * (10 * p2)                   ) * 2^e
754         //         = buffer * 10^-m + 10^-m * (1/10 * ((10*p2 div 2^-e) * 2^-e + (10*p2 mod 2^-e)) * 2^e
755         //
756         assert(p2 <= (std::numeric_limits<std::uint64_t>::max)() / 10);
757         p2 *= 10;
758         const std::uint64_t d = p2 >> -one.e;     // d = (10 * p2) div 2^-e
759         const std::uint64_t r = p2 & (one.f - 1); // r = (10 * p2) mod 2^-e
760         //
761         //      M+ = buffer * 10^-m + 10^-m * (1/10 * (d * 2^-e + r) * 2^e
762         //         = buffer * 10^-m + 10^-m * (1/10 * (d + r * 2^e))
763         //         = (buffer * 10 + d) * 10^(-m-1) + 10^(-m-1) * r * 2^e
764         //
765         assert(d <= 9);
766         buffer[length++] = static_cast<char>('0' + d); // buffer := buffer * 10 + d
767         //
768         //      M+ = buffer * 10^(-m-1) + 10^(-m-1) * r * 2^e
769         //
770         p2 = r;
771         m++;
772         //
773         //      M+ = buffer * 10^-m + 10^-m * p2 * 2^e
774         // Invariant restored.
775 
776         // Check if enough digits have been generated.
777         //
778         //      10^-m * p2 * 2^e <= delta * 2^e
779         //              p2 * 2^e <= 10^m * delta * 2^e
780         //                    p2 <= 10^m * delta
781         delta *= 10;
782         dist  *= 10;
783         if (p2 <= delta)
784         {
785             break;
786         }
787     }
788 
789     // V = buffer * 10^-m, with M- <= V <= M+.
790 
791     decimal_exponent -= m;
792 
793     // 1 ulp in the decimal representation is now 10^-m.
794     // Since delta and dist are now scaled by 10^m, we need to do the
795     // same with ulp in order to keep the units in sync.
796     //
797     //      10^m * 10^-m = 1 = 2^-e * 2^e = ten_m * 2^e
798     //
799     const std::uint64_t ten_m = one.f;
800     grisu2_round(buffer, length, dist, delta, p2, ten_m);
801 
802     // By construction this algorithm generates the shortest possible decimal
803     // number (Loitsch, Theorem 6.2) which rounds back to w.
804     // For an input number of precision p, at least
805     //
806     //      N = 1 + ceil(p * log_10(2))
807     //
808     // decimal digits are sufficient to identify all binary floating-point
809     // numbers (Matula, "In-and-Out conversions").
810     // This implies that the algorithm does not produce more than N decimal
811     // digits.
812     //
813     //      N = 17 for p = 53 (IEEE double precision)
814     //      N = 9  for p = 24 (IEEE single precision)
815 }
816 
817 /*!
818 v = buf * 10^decimal_exponent
819 len is the length of the buffer (number of decimal digits)
820 The buffer must be large enough, i.e. >= max_digits10.
821 */
822 JSON_HEDLEY_NON_NULL(1)
grisu2(char * buf,int & len,int & decimal_exponent,diyfp m_minus,diyfp v,diyfp m_plus)823 inline void grisu2(char* buf, int& len, int& decimal_exponent,
824                    diyfp m_minus, diyfp v, diyfp m_plus)
825 {
826     assert(m_plus.e == m_minus.e);
827     assert(m_plus.e == v.e);
828 
829     //  --------(-----------------------+-----------------------)--------    (A)
830     //          m-                      v                       m+
831     //
832     //  --------------------(-----------+-----------------------)--------    (B)
833     //                      m-          v                       m+
834     //
835     // First scale v (and m- and m+) such that the exponent is in the range
836     // [alpha, gamma].
837 
838     const cached_power cached = get_cached_power_for_binary_exponent(m_plus.e);
839 
840     const diyfp c_minus_k(cached.f, cached.e); // = c ~= 10^-k
841 
842     // The exponent of the products is = v.e + c_minus_k.e + q and is in the range [alpha,gamma]
843     const diyfp w       = diyfp::mul(v,       c_minus_k);
844     const diyfp w_minus = diyfp::mul(m_minus, c_minus_k);
845     const diyfp w_plus  = diyfp::mul(m_plus,  c_minus_k);
846 
847     //  ----(---+---)---------------(---+---)---------------(---+---)----
848     //          w-                      w                       w+
849     //          = c*m-                  = c*v                   = c*m+
850     //
851     // diyfp::mul rounds its result and c_minus_k is approximated too. w, w- and
852     // w+ are now off by a small amount.
853     // In fact:
854     //
855     //      w - v * 10^k < 1 ulp
856     //
857     // To account for this inaccuracy, add resp. subtract 1 ulp.
858     //
859     //  --------+---[---------------(---+---)---------------]---+--------
860     //          w-  M-                  w                   M+  w+
861     //
862     // Now any number in [M-, M+] (bounds included) will round to w when input,
863     // regardless of how the input rounding algorithm breaks ties.
864     //
865     // And digit_gen generates the shortest possible such number in [M-, M+].
866     // Note that this does not mean that Grisu2 always generates the shortest
867     // possible number in the interval (m-, m+).
868     const diyfp M_minus(w_minus.f + 1, w_minus.e);
869     const diyfp M_plus (w_plus.f  - 1, w_plus.e );
870 
871     decimal_exponent = -cached.k; // = -(-k) = k
872 
873     grisu2_digit_gen(buf, len, decimal_exponent, M_minus, w, M_plus);
874 }
875 
876 /*!
877 v = buf * 10^decimal_exponent
878 len is the length of the buffer (number of decimal digits)
879 The buffer must be large enough, i.e. >= max_digits10.
880 */
881 template <typename FloatType>
882 JSON_HEDLEY_NON_NULL(1)
grisu2(char * buf,int & len,int & decimal_exponent,FloatType value)883 void grisu2(char* buf, int& len, int& decimal_exponent, FloatType value)
884 {
885     static_assert(diyfp::kPrecision >= std::numeric_limits<FloatType>::digits + 3,
886                   "internal error: not enough precision");
887 
888     assert(std::isfinite(value));
889     assert(value > 0);
890 
891     // If the neighbors (and boundaries) of 'value' are always computed for double-precision
892     // numbers, all float's can be recovered using strtod (and strtof). However, the resulting
893     // decimal representations are not exactly "short".
894     //
895     // The documentation for 'std::to_chars' (https://en.cppreference.com/w/cpp/utility/to_chars)
896     // says "value is converted to a string as if by std::sprintf in the default ("C") locale"
897     // and since sprintf promotes float's to double's, I think this is exactly what 'std::to_chars'
898     // does.
899     // On the other hand, the documentation for 'std::to_chars' requires that "parsing the
900     // representation using the corresponding std::from_chars function recovers value exactly". That
901     // indicates that single precision floating-point numbers should be recovered using
902     // 'std::strtof'.
903     //
904     // NB: If the neighbors are computed for single-precision numbers, there is a single float
905     //     (7.0385307e-26f) which can't be recovered using strtod. The resulting double precision
906     //     value is off by 1 ulp.
907 #if 0
908     const boundaries w = compute_boundaries(static_cast<double>(value));
909 #else
910     const boundaries w = compute_boundaries(value);
911 #endif
912 
913     grisu2(buf, len, decimal_exponent, w.minus, w.w, w.plus);
914 }
915 
916 /*!
917 @brief appends a decimal representation of e to buf
918 @return a pointer to the element following the exponent.
919 @pre -1000 < e < 1000
920 */
921 JSON_HEDLEY_NON_NULL(1)
922 JSON_HEDLEY_RETURNS_NON_NULL
append_exponent(char * buf,int e)923 inline char* append_exponent(char* buf, int e)
924 {
925     assert(e > -1000);
926     assert(e <  1000);
927 
928     if (e < 0)
929     {
930         e = -e;
931         *buf++ = '-';
932     }
933     else
934     {
935         *buf++ = '+';
936     }
937 
938     auto k = static_cast<std::uint32_t>(e);
939     if (k < 10)
940     {
941         // Always print at least two digits in the exponent.
942         // This is for compatibility with printf("%g").
943         *buf++ = '0';
944         *buf++ = static_cast<char>('0' + k);
945     }
946     else if (k < 100)
947     {
948         *buf++ = static_cast<char>('0' + k / 10);
949         k %= 10;
950         *buf++ = static_cast<char>('0' + k);
951     }
952     else
953     {
954         *buf++ = static_cast<char>('0' + k / 100);
955         k %= 100;
956         *buf++ = static_cast<char>('0' + k / 10);
957         k %= 10;
958         *buf++ = static_cast<char>('0' + k);
959     }
960 
961     return buf;
962 }
963 
964 /*!
965 @brief prettify v = buf * 10^decimal_exponent
966 
967 If v is in the range [10^min_exp, 10^max_exp) it will be printed in fixed-point
968 notation. Otherwise it will be printed in exponential notation.
969 
970 @pre min_exp < 0
971 @pre max_exp > 0
972 */
973 JSON_HEDLEY_NON_NULL(1)
974 JSON_HEDLEY_RETURNS_NON_NULL
format_buffer(char * buf,int len,int decimal_exponent,int min_exp,int max_exp)975 inline char* format_buffer(char* buf, int len, int decimal_exponent,
976                            int min_exp, int max_exp)
977 {
978     assert(min_exp < 0);
979     assert(max_exp > 0);
980 
981     const int k = len;
982     const int n = len + decimal_exponent;
983 
984     // v = buf * 10^(n-k)
985     // k is the length of the buffer (number of decimal digits)
986     // n is the position of the decimal point relative to the start of the buffer.
987 
988     if (k <= n and n <= max_exp)
989     {
990         // digits[000]
991         // len <= max_exp + 2
992 
993         std::memset(buf + k, '0', static_cast<size_t>(n - k));
994         // Make it look like a floating-point number (#362, #378)
995         buf[n + 0] = '.';
996         buf[n + 1] = '0';
997         return buf + (n + 2);
998     }
999 
1000     if (0 < n and n <= max_exp)
1001     {
1002         // dig.its
1003         // len <= max_digits10 + 1
1004 
1005         assert(k > n);
1006 
1007         std::memmove(buf + (n + 1), buf + n, static_cast<size_t>(k - n));
1008         buf[n] = '.';
1009         return buf + (k + 1);
1010     }
1011 
1012     if (min_exp < n and n <= 0)
1013     {
1014         // 0.[000]digits
1015         // len <= 2 + (-min_exp - 1) + max_digits10
1016 
1017         std::memmove(buf + (2 + -n), buf, static_cast<size_t>(k));
1018         buf[0] = '0';
1019         buf[1] = '.';
1020         std::memset(buf + 2, '0', static_cast<size_t>(-n));
1021         return buf + (2 + (-n) + k);
1022     }
1023 
1024     if (k == 1)
1025     {
1026         // dE+123
1027         // len <= 1 + 5
1028 
1029         buf += 1;
1030     }
1031     else
1032     {
1033         // d.igitsE+123
1034         // len <= max_digits10 + 1 + 5
1035 
1036         std::memmove(buf + 2, buf + 1, static_cast<size_t>(k - 1));
1037         buf[1] = '.';
1038         buf += 1 + k;
1039     }
1040 
1041     *buf++ = 'e';
1042     return append_exponent(buf, n - 1);
1043 }
1044 
1045 } // namespace dtoa_impl
1046 
1047 /*!
1048 @brief generates a decimal representation of the floating-point number value in [first, last).
1049 
1050 The format of the resulting decimal representation is similar to printf's %g
1051 format. Returns an iterator pointing past-the-end of the decimal representation.
1052 
1053 @note The input number must be finite, i.e. NaN's and Inf's are not supported.
1054 @note The buffer must be large enough.
1055 @note The result is NOT null-terminated.
1056 */
1057 template <typename FloatType>
1058 JSON_HEDLEY_NON_NULL(1, 2)
1059 JSON_HEDLEY_RETURNS_NON_NULL
to_chars(char * first,const char * last,FloatType value)1060 char* to_chars(char* first, const char* last, FloatType value)
1061 {
1062     static_cast<void>(last); // maybe unused - fix warning
1063     assert(std::isfinite(value));
1064 
1065     // Use signbit(value) instead of (value < 0) since signbit works for -0.
1066     if (std::signbit(value))
1067     {
1068         value = -value;
1069         *first++ = '-';
1070     }
1071 
1072     if (value == 0) // +-0
1073     {
1074         *first++ = '0';
1075         // Make it look like a floating-point number (#362, #378)
1076         *first++ = '.';
1077         *first++ = '0';
1078         return first;
1079     }
1080 
1081     assert(last - first >= std::numeric_limits<FloatType>::max_digits10);
1082 
1083     // Compute v = buffer * 10^decimal_exponent.
1084     // The decimal digits are stored in the buffer, which needs to be interpreted
1085     // as an unsigned decimal integer.
1086     // len is the length of the buffer, i.e. the number of decimal digits.
1087     int len = 0;
1088     int decimal_exponent = 0;
1089     dtoa_impl::grisu2(first, len, decimal_exponent, value);
1090 
1091     assert(len <= std::numeric_limits<FloatType>::max_digits10);
1092 
1093     // Format the buffer like printf("%.*g", prec, value)
1094     constexpr int kMinExp = -4;
1095     // Use digits10 here to increase compatibility with version 2.
1096     constexpr int kMaxExp = std::numeric_limits<FloatType>::digits10;
1097 
1098     assert(last - first >= kMaxExp + 2);
1099     assert(last - first >= 2 + (-kMinExp - 1) + std::numeric_limits<FloatType>::max_digits10);
1100     assert(last - first >= std::numeric_limits<FloatType>::max_digits10 + 6);
1101 
1102     return dtoa_impl::format_buffer(first, len, decimal_exponent, kMinExp, kMaxExp);
1103 }
1104 
1105 } // namespace detail
1106 } // namespace nlohmann
1107