1 /* adler32.c -- compute the Adler-32 checksum of a data stream
2  * Copyright (C) 1995-2011, 2016 Mark Adler
3  * For conditions of distribution and use, see copyright notice in zlib.h
4  */
5 
6 /* @(#) $Id$ */
7 
8 #include "zutil.h"
9 
10 #define local static
11 
12 local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2));
13 
14 #define BASE 65521U     /* largest prime smaller than 65536 */
15 #define NMAX 5552
16 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
17 
18 #define DO1(buf,i)  {adler += (buf)[i]; sum2 += adler;}
19 #define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
20 #define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
21 #define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
22 #define DO16(buf)   DO8(buf,0); DO8(buf,8);
23 
24 /* use NO_DIVIDE if your processor does not do division in hardware --
25    try it both ways to see which is faster */
26 #ifdef NO_DIVIDE
27 /* note that this assumes BASE is 65521, where 65536 % 65521 == 15
28    (thank you to John Reiser for pointing this out) */
29 #  define CHOP(a) \
30     do { \
31         unsigned long tmp = a >> 16; \
32         a &= 0xffffUL; \
33         a += (tmp << 4) - tmp; \
34     } while (0)
35 #  define MOD28(a) \
36     do { \
37         CHOP(a); \
38         if (a >= BASE) a -= BASE; \
39     } while (0)
40 #  define MOD(a) \
41     do { \
42         CHOP(a); \
43         MOD28(a); \
44     } while (0)
45 #  define MOD63(a) \
46     do { /* this assumes a is not negative */ \
47         z_off64_t tmp = a >> 32; \
48         a &= 0xffffffffL; \
49         a += (tmp << 8) - (tmp << 5) + tmp; \
50         tmp = a >> 16; \
51         a &= 0xffffL; \
52         a += (tmp << 4) - tmp; \
53         tmp = a >> 16; \
54         a &= 0xffffL; \
55         a += (tmp << 4) - tmp; \
56         if (a >= BASE) a -= BASE; \
57     } while (0)
58 #else
59 #  define MOD(a) a %= BASE
60 #  define MOD28(a) a %= BASE
61 #  define MOD63(a) a %= BASE
62 #endif
63 
64 /* ========================================================================= */
adler32_z(adler,buf,len)65 uLong ZEXPORT adler32_z(adler, buf, len)
66     uLong adler;
67     const Bytef *buf;
68     z_size_t len;
69 {
70     unsigned long sum2;
71     unsigned n;
72 
73     /* split Adler-32 into component sums */
74     sum2 = (adler >> 16) & 0xffff;
75     adler &= 0xffff;
76 
77     /* in case user likes doing a byte at a time, keep it fast */
78     if (len == 1) {
79         adler += buf[0];
80         if (adler >= BASE)
81             adler -= BASE;
82         sum2 += adler;
83         if (sum2 >= BASE)
84             sum2 -= BASE;
85         return adler | (sum2 << 16);
86     }
87 
88     /* initial Adler-32 value (deferred check for len == 1 speed) */
89     if (buf == Z_NULL)
90         return 1L;
91 
92     /* in case short lengths are provided, keep it somewhat fast */
93     if (len < 16) {
94         while (len--) {
95             adler += *buf++;
96             sum2 += adler;
97         }
98         if (adler >= BASE)
99             adler -= BASE;
100         MOD28(sum2);            /* only added so many BASE's */
101         return adler | (sum2 << 16);
102     }
103 
104     /* do length NMAX blocks -- requires just one modulo operation */
105     while (len >= NMAX) {
106         len -= NMAX;
107         n = NMAX / 16;          /* NMAX is divisible by 16 */
108         do {
109             DO16(buf);          /* 16 sums unrolled */
110             buf += 16;
111         } while (--n);
112         MOD(adler);
113         MOD(sum2);
114     }
115 
116     /* do remaining bytes (less than NMAX, still just one modulo) */
117     if (len) {                  /* avoid modulos if none remaining */
118         while (len >= 16) {
119             len -= 16;
120             DO16(buf);
121             buf += 16;
122         }
123         while (len--) {
124             adler += *buf++;
125             sum2 += adler;
126         }
127         MOD(adler);
128         MOD(sum2);
129     }
130 
131     /* return recombined sums */
132     return adler | (sum2 << 16);
133 }
134 
135 /* ========================================================================= */
adler32(adler,buf,len)136 uLong ZEXPORT adler32(adler, buf, len)
137     uLong adler;
138     const Bytef *buf;
139     uInt len;
140 {
141     return adler32_z(adler, buf, len);
142 }
143 
144 /* ========================================================================= */
adler32_combine_(adler1,adler2,len2)145 local uLong adler32_combine_(adler1, adler2, len2)
146     uLong adler1;
147     uLong adler2;
148     z_off64_t len2;
149 {
150     unsigned long sum1;
151     unsigned long sum2;
152     unsigned rem;
153 
154     /* for negative len, return invalid adler32 as a clue for debugging */
155     if (len2 < 0)
156         return 0xffffffffUL;
157 
158     /* the derivation of this formula is left as an exercise for the reader */
159     MOD63(len2);                /* assumes len2 >= 0 */
160     rem = (unsigned)len2;
161     sum1 = adler1 & 0xffff;
162     sum2 = rem * sum1;
163     MOD(sum2);
164     sum1 += (adler2 & 0xffff) + BASE - 1;
165     sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
166     if (sum1 >= BASE) sum1 -= BASE;
167     if (sum1 >= BASE) sum1 -= BASE;
168     if (sum2 >= ((unsigned long)BASE << 1)) sum2 -= ((unsigned long)BASE << 1);
169     if (sum2 >= BASE) sum2 -= BASE;
170     return sum1 | (sum2 << 16);
171 }
172 
173 /* ========================================================================= */
adler32_combine(adler1,adler2,len2)174 uLong ZEXPORT adler32_combine(adler1, adler2, len2)
175     uLong adler1;
176     uLong adler2;
177     z_off_t len2;
178 {
179     return adler32_combine_(adler1, adler2, len2);
180 }
181 
adler32_combine64(adler1,adler2,len2)182 uLong ZEXPORT adler32_combine64(adler1, adler2, len2)
183     uLong adler1;
184     uLong adler2;
185     z_off64_t len2;
186 {
187     return adler32_combine_(adler1, adler2, len2);
188 }
189