1 /* -------------------------------------------------------------------- */
2 /*
3  * lookup3.c, by Bob Jenkins, May 2006, Public Domain.
4  *
5  * These are functions for producing 32-bit hashes for hash table lookup.
6  * jlu32w(), jlu32l(), jlu32lpair(), jlu32b(), _JLU3_MIX(), and _JLU3_FINAL()
7  * are externally useful functions.  Routines to test the hash are included
8  * if SELF_TEST is defined.  You can use this free for any purpose.  It's in
9  * the public domain.  It has no warranty.
10  *
11  * You probably want to use jlu32l().  jlu32l() and jlu32b()
12  * hash byte arrays.  jlu32l() is is faster than jlu32b() on
13  * little-endian machines.  Intel and AMD are little-endian machines.
14  * On second thought, you probably want jlu32lpair(), which is identical to
15  * jlu32l() except it returns two 32-bit hashes for the price of one.
16  * You could implement jlu32bpair() if you wanted but I haven't bothered here.
17  *
18  * If you want to find a hash of, say, exactly 7 integers, do
19  *   a = i1;  b = i2;  c = i3;
20  *   _JLU3_MIX(a,b,c);
21  *   a += i4; b += i5; c += i6;
22  *   _JLU3_MIX(a,b,c);
23  *   a += i7;
24  *   _JLU3_FINAL(a,b,c);
25  * then use c as the hash value.  If you have a variable size array of
26  * 4-byte integers to hash, use jlu32w().  If you have a byte array (like
27  * a character string), use jlu32l().  If you have several byte arrays, or
28  * a mix of things, see the comments above jlu32l().
29  *
30  * Why is this so big?  I read 12 bytes at a time into 3 4-byte integers,
31  * then mix those integers.  This is fast (you can do a lot more thorough
32  * mixing with 12*3 instructions on 3 integers than you can with 3 instructions
33  * on 1 byte), but shoehorning those bytes into integers efficiently is messy.
34 */
35 /* -------------------------------------------------------------------- */
36 
37 #include <stdint.h>
38 
39 #if defined(_JLU3_SELFTEST)
40 # define _JLU3_jlu32w		1
41 # define _JLU3_jlu32l		1
42 # define _JLU3_jlu32lpair	1
43 # define _JLU3_jlu32b		1
44 #endif
45 
46 static const union _dbswap {
47     const uint32_t ui;
48     const unsigned char uc[4];
49 } endian = { .ui = 0x11223344 };
50 # define HASH_LITTLE_ENDIAN	(endian.uc[0] == (unsigned char) 0x44)
51 # define HASH_BIG_ENDIAN	(endian.uc[0] == (unsigned char) 0x11)
52 
53 #ifndef ROTL32
54 # define ROTL32(x, s) (((x) << (s)) | ((x) >> (32 - (s))))
55 #endif
56 
57 /* NOTE: The _size parameter should be in bytes. */
58 #define	_JLU3_INIT(_h, _size)	(0xdeadbeef + ((uint32_t)(_size)) + (_h))
59 
60 /* -------------------------------------------------------------------- */
61 /*
62  * _JLU3_MIX -- mix 3 32-bit values reversibly.
63  *
64  * This is reversible, so any information in (a,b,c) before _JLU3_MIX() is
65  * still in (a,b,c) after _JLU3_MIX().
66  *
67  * If four pairs of (a,b,c) inputs are run through _JLU3_MIX(), or through
68  * _JLU3_MIX() in reverse, there are at least 32 bits of the output that
69  * are sometimes the same for one pair and different for another pair.
70  * This was tested for:
71  * * pairs that differed by one bit, by two bits, in any combination
72  *   of top bits of (a,b,c), or in any combination of bottom bits of
73  *   (a,b,c).
74  * * "differ" is defined as +, -, ^, or ~^.  For + and -, I transformed
75  *   the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
76  *   is commonly produced by subtraction) look like a single 1-bit
77  *   difference.
78  * * the base values were pseudorandom, all zero but one bit set, or
79  *   all zero plus a counter that starts at zero.
80  *
81  * Some k values for my "a-=c; a^=ROTL32(c,k); c+=b;" arrangement that
82  * satisfy this are
83  *     4  6  8 16 19  4
84  *     9 15  3 18 27 15
85  *    14  9  3  7 17  3
86  * Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
87  * for "differ" defined as + with a one-bit base and a two-bit delta.  I
88  * used http://burtleburtle.net/bob/hash/avalanche.html to choose
89  * the operations, constants, and arrangements of the variables.
90  *
91  * This does not achieve avalanche.  There are input bits of (a,b,c)
92  * that fail to affect some output bits of (a,b,c), especially of a.  The
93  * most thoroughly mixed value is c, but it doesn't really even achieve
94  * avalanche in c.
95  *
96  * This allows some parallelism.  Read-after-writes are good at doubling
97  * the number of bits affected, so the goal of mixing pulls in the opposite
98  * direction as the goal of parallelism.  I did what I could.  Rotates
99  * seem to cost as much as shifts on every machine I could lay my hands
100  * on, and rotates are much kinder to the top and bottom bits, so I used
101  * rotates.
102  */
103 /* -------------------------------------------------------------------- */
104 #define _JLU3_MIX(a,b,c) \
105 { \
106   a -= c;  a ^= ROTL32(c, 4);  c += b; \
107   b -= a;  b ^= ROTL32(a, 6);  a += c; \
108   c -= b;  c ^= ROTL32(b, 8);  b += a; \
109   a -= c;  a ^= ROTL32(c,16);  c += b; \
110   b -= a;  b ^= ROTL32(a,19);  a += c; \
111   c -= b;  c ^= ROTL32(b, 4);  b += a; \
112 }
113 
114 /* -------------------------------------------------------------------- */
115 /**
116  * _JLU3_FINAL -- final mixing of 3 32-bit values (a,b,c) into c
117  *
118  * Pairs of (a,b,c) values differing in only a few bits will usually
119  * produce values of c that look totally different.  This was tested for
120  * * pairs that differed by one bit, by two bits, in any combination
121  *   of top bits of (a,b,c), or in any combination of bottom bits of
122  *   (a,b,c).
123  * * "differ" is defined as +, -, ^, or ~^.  For + and -, I transformed
124  *   the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
125  *   is commonly produced by subtraction) look like a single 1-bit
126  *   difference.
127  * * the base values were pseudorandom, all zero but one bit set, or
128  *   all zero plus a counter that starts at zero.
129  *
130  * These constants passed:
131  *  14 11 25 16 4 14 24
132  *  12 14 25 16 4 14 24
133  * and these came close:
134  *   4  8 15 26 3 22 24
135  *  10  8 15 26 3 22 24
136  *  11  8 15 26 3 22 24
137  */
138 /* -------------------------------------------------------------------- */
139 #define _JLU3_FINAL(a,b,c) \
140 { \
141   c ^= b; c -= ROTL32(b,14); \
142   a ^= c; a -= ROTL32(c,11); \
143   b ^= a; b -= ROTL32(a,25); \
144   c ^= b; c -= ROTL32(b,16); \
145   a ^= c; a -= ROTL32(c,4);  \
146   b ^= a; b -= ROTL32(a,14); \
147   c ^= b; c -= ROTL32(b,24); \
148 }
149 
150 #if defined(_JLU3_jlu32w)
151 uint32_t jlu32w(uint32_t h, const uint32_t *k, size_t size);
152 /* -------------------------------------------------------------------- */
153 /**
154  *  This works on all machines.  To be useful, it requires
155  *  -- that the key be an array of uint32_t's, and
156  *  -- that the size be the number of uint32_t's in the key
157  *
158  *  The function jlu32w() is identical to jlu32l() on little-endian
159  *  machines, and identical to jlu32b() on big-endian machines,
160  *  except that the size has to be measured in uint32_ts rather than in
161  *  bytes.  jlu32l() is more complicated than jlu32w() only because
162  *  jlu32l() has to dance around fitting the key bytes into registers.
163  *
164  * @param h		the previous hash, or an arbitrary value
165  * @param *k		the key, an array of uint32_t values
166  * @param size		the size of the key, in uint32_ts
167  * @return		the lookup3 hash
168  */
169 /* -------------------------------------------------------------------- */
jlu32w(uint32_t h,const uint32_t * k,size_t size)170 uint32_t jlu32w(uint32_t h, const uint32_t *k, size_t size)
171 {
172     uint32_t a = _JLU3_INIT(h, (size * sizeof(*k)));
173     uint32_t b = a;
174     uint32_t c = a;
175 
176     if (k == NULL)
177 	goto exit;
178 
179     /*----------------------------------------------- handle most of the key */
180     while (size > 3) {
181 	a += k[0];
182 	b += k[1];
183 	c += k[2];
184 	_JLU3_MIX(a,b,c);
185 	size -= 3;
186 	k += 3;
187     }
188 
189     /*----------------------------------------- handle the last 3 uint32_t's */
190     switch (size) {
191     case 3 : c+=k[2];
192     case 2 : b+=k[1];
193     case 1 : a+=k[0];
194 	_JLU3_FINAL(a,b,c);
195 	/* fallthrough */
196     case 0:
197 	break;
198     }
199     /*---------------------------------------------------- report the result */
200 exit:
201     return c;
202 }
203 #endif	/* defined(_JLU3_jlu32w) */
204 
205 #if defined(_JLU3_jlu32l)
206 uint32_t jlu32l(uint32_t h, const void *key, size_t size);
207 /* -------------------------------------------------------------------- */
208 /*
209  * jlu32l() -- hash a variable-length key into a 32-bit value
210  *   h       : can be any 4-byte value
211  *   k       : the key (the unaligned variable-length array of bytes)
212  *   size    : the size of the key, counting by bytes
213  * Returns a 32-bit value.  Every bit of the key affects every bit of
214  * the return value.  Two keys differing by one or two bits will have
215  * totally different hash values.
216  *
217  * The best hash table sizes are powers of 2.  There is no need to do
218  * mod a prime (mod is sooo slow!).  If you need less than 32 bits,
219  * use a bitmask.  For example, if you need only 10 bits, do
220  *   h = (h & hashmask(10));
221  * In which case, the hash table should have hashsize(10) elements.
222  *
223  * If you are hashing n strings (uint8_t **)k, do it like this:
224  *   for (i=0, h=0; i<n; ++i) h = jlu32l(h, k[i], len[i]);
225  *
226  * By Bob Jenkins, 2006.  bob_jenkins@burtleburtle.net.  You may use this
227  * code any way you wish, private, educational, or commercial.  It's free.
228  *
229  * Use for hash table lookup, or anything where one collision in 2^^32 is
230  * acceptable.  Do NOT use for cryptographic purposes.
231  *
232  * @param h		the previous hash, or an arbitrary value
233  * @param *k		the key, an array of uint8_t values
234  * @param size		the size of the key
235  * @return		the lookup3 hash
236  */
237 /* -------------------------------------------------------------------- */
jlu32l(uint32_t h,const void * key,size_t size)238 uint32_t jlu32l(uint32_t h, const void *key, size_t size)
239 {
240     union { const void *ptr; size_t i; } u;
241     uint32_t a = _JLU3_INIT(h, size);
242     uint32_t b = a;
243     uint32_t c = a;
244 
245     if (key == NULL)
246 	goto exit;
247 
248     u.ptr = key;
249     if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
250 	const uint32_t *k = (const uint32_t *)key;	/* read 32-bit chunks */
251 #ifdef	VALGRIND
252 	const uint8_t  *k8;
253 #endif
254 
255     /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
256 	while (size > 12) {
257 	    a += k[0];
258 	    b += k[1];
259 	    c += k[2];
260 	    _JLU3_MIX(a,b,c);
261 	    size -= 12;
262 	    k += 3;
263 	}
264 
265 	/*------------------------- handle the last (probably partial) block */
266 	/*
267 	 * "k[2]&0xffffff" actually reads beyond the end of the string, but
268 	 * then masks off the part it's not allowed to read.  Because the
269 	 * string is aligned, the masked-off tail is in the same word as the
270 	 * rest of the string.  Every machine with memory protection I've seen
271 	 * does it on word boundaries, so is OK with this.  But VALGRIND will
272 	 * still catch it and complain.  The masking trick does make the hash
273 	 * noticably faster for short strings (like English words).
274 	 */
275 #ifndef VALGRIND
276 
277 	switch (size) {
278 	case 12:	c += k[2]; b+=k[1]; a+=k[0]; break;
279 	case 11:	c += k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
280 	case 10:	c += k[2]&0xffff; b+=k[1]; a+=k[0]; break;
281 	case  9:	c += k[2]&0xff; b+=k[1]; a+=k[0]; break;
282 	case  8:	b += k[1]; a+=k[0]; break;
283 	case  7:	b += k[1]&0xffffff; a+=k[0]; break;
284 	case  6:	b += k[1]&0xffff; a+=k[0]; break;
285 	case  5:	b += k[1]&0xff; a+=k[0]; break;
286 	case  4:	a += k[0]; break;
287 	case  3:	a += k[0]&0xffffff; break;
288 	case  2:	a += k[0]&0xffff; break;
289 	case  1:	a += k[0]&0xff; break;
290 	case  0:	goto exit;
291 	}
292 
293 #else /* make valgrind happy */
294 
295 	k8 = (const uint8_t *)k;
296 	switch (size) {
297 	case 12:	c += k[2]; b+=k[1]; a+=k[0]	break;
298 	case 11:	c += ((uint32_t)k8[10])<<16;	/* fallthrough */
299 	case 10:	c += ((uint32_t)k8[9])<<8;	/* fallthrough */
300 	case  9:	c += k8[8];			/* fallthrough */
301 	case  8:	b += k[1]; a+=k[0];		break;
302 	case  7:	b += ((uint32_t)k8[6])<<16;	/* fallthrough */
303 	case  6:	b += ((uint32_t)k8[5])<<8;	/* fallthrough */
304 	case  5:	b += k8[4];			/* fallthrough */
305 	case  4:	a += k[0];			break;
306 	case  3:	a += ((uint32_t)k8[2])<<16;	/* fallthrough */
307 	case  2:	a += ((uint32_t)k8[1])<<8;	/* fallthrough */
308 	case  1:	a += k8[0];			break;
309 	case  0:	goto exit;
310 	}
311 
312 #endif /* !valgrind */
313 
314     } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
315 	const uint16_t *k = (const uint16_t *)key;	/* read 16-bit chunks */
316 	const uint8_t  *k8;
317 
318 	/*----------- all but last block: aligned reads and different mixing */
319 	while (size > 12) {
320 	    a += k[0] + (((uint32_t)k[1])<<16);
321 	    b += k[2] + (((uint32_t)k[3])<<16);
322 	    c += k[4] + (((uint32_t)k[5])<<16);
323 	    _JLU3_MIX(a,b,c);
324 	    size -= 12;
325 	    k += 6;
326 	}
327 
328 	/*------------------------- handle the last (probably partial) block */
329 	k8 = (const uint8_t *)k;
330 	switch (size) {
331 	case 12:
332 	    c += k[4]+(((uint32_t)k[5])<<16);
333 	    b += k[2]+(((uint32_t)k[3])<<16);
334 	    a += k[0]+(((uint32_t)k[1])<<16);
335 	    break;
336 	case 11:
337 	    c += ((uint32_t)k8[10])<<16;
338 	    /* fallthrough */
339 	case 10:
340 	    c += (uint32_t)k[4];
341 	    b += k[2]+(((uint32_t)k[3])<<16);
342 	    a += k[0]+(((uint32_t)k[1])<<16);
343 	    break;
344 	case  9:
345 	    c += (uint32_t)k8[8];
346 	    /* fallthrough */
347 	case  8:
348 	    b += k[2]+(((uint32_t)k[3])<<16);
349 	    a += k[0]+(((uint32_t)k[1])<<16);
350 	    break;
351 	case  7:
352 	    b += ((uint32_t)k8[6])<<16;
353 	    /* fallthrough */
354 	case  6:
355 	    b += (uint32_t)k[2];
356 	    a += k[0]+(((uint32_t)k[1])<<16);
357 	    break;
358 	case  5:
359 	    b += (uint32_t)k8[4];
360 	    /* fallthrough */
361 	case  4:
362 	    a += k[0]+(((uint32_t)k[1])<<16);
363 	    break;
364 	case  3:
365 	    a += ((uint32_t)k8[2])<<16;
366 	    /* fallthrough */
367 	case  2:
368 	    a += (uint32_t)k[0];
369 	    break;
370 	case  1:
371 	    a += (uint32_t)k8[0];
372 	    break;
373 	case  0:
374 	    goto exit;
375 	}
376 
377     } else {		/* need to read the key one byte at a time */
378 	const uint8_t *k = (const uint8_t *)key;
379 
380 	/*----------- all but the last block: affect some 32 bits of (a,b,c) */
381 	while (size > 12) {
382 	    a += (uint32_t)k[0];
383 	    a += ((uint32_t)k[1])<<8;
384 	    a += ((uint32_t)k[2])<<16;
385 	    a += ((uint32_t)k[3])<<24;
386 	    b += (uint32_t)k[4];
387 	    b += ((uint32_t)k[5])<<8;
388 	    b += ((uint32_t)k[6])<<16;
389 	    b += ((uint32_t)k[7])<<24;
390 	    c += (uint32_t)k[8];
391 	    c += ((uint32_t)k[9])<<8;
392 	    c += ((uint32_t)k[10])<<16;
393 	    c += ((uint32_t)k[11])<<24;
394 	    _JLU3_MIX(a,b,c);
395 	    size -= 12;
396 	    k += 12;
397 	}
398 
399 	/*---------------------------- last block: affect all 32 bits of (c) */
400 	switch (size) {
401 	case 12:	c += ((uint32_t)k[11])<<24;	/* fallthrough */
402 	case 11:	c += ((uint32_t)k[10])<<16;	/* fallthrough */
403 	case 10:	c += ((uint32_t)k[9])<<8;	/* fallthrough */
404 	case  9:	c += (uint32_t)k[8];		/* fallthrough */
405 	case  8:	b += ((uint32_t)k[7])<<24;	/* fallthrough */
406 	case  7:	b += ((uint32_t)k[6])<<16;	/* fallthrough */
407 	case  6:	b += ((uint32_t)k[5])<<8;	/* fallthrough */
408 	case  5:	b += (uint32_t)k[4];		/* fallthrough */
409 	case  4:	a += ((uint32_t)k[3])<<24;	/* fallthrough */
410 	case  3:	a += ((uint32_t)k[2])<<16;	/* fallthrough */
411 	case  2:	a += ((uint32_t)k[1])<<8;	/* fallthrough */
412 	case  1:	a += (uint32_t)k[0];
413 	    break;
414 	case  0:
415 	    goto exit;
416 	}
417     }
418 
419     _JLU3_FINAL(a,b,c);
420 
421 exit:
422     return c;
423 }
424 #endif	/* defined(_JLU3_jlu32l) */
425 
426 #if defined(_JLU3_jlu32lpair)
427 /**
428  * jlu32lpair: return 2 32-bit hash values.
429  *
430  * This is identical to jlu32l(), except it returns two 32-bit hash
431  * values instead of just one.  This is good enough for hash table
432  * lookup with 2^^64 buckets, or if you want a second hash if you're not
433  * happy with the first, or if you want a probably-unique 64-bit ID for
434  * the key.  *pc is better mixed than *pb, so use *pc first.  If you want
435  * a 64-bit value do something like "*pc + (((uint64_t)*pb)<<32)".
436  *
437  * @param h		the previous hash, or an arbitrary value
438  * @param *key		the key, an array of uint8_t values
439  * @param size		the size of the key in bytes
440  * @retval *pc,		IN: primary initval, OUT: primary hash
441  * *retval *pb		IN: secondary initval, OUT: secondary hash
442  */
jlu32lpair(const void * key,size_t size,uint32_t * pc,uint32_t * pb)443 void jlu32lpair(const void *key, size_t size, uint32_t *pc, uint32_t *pb)
444 {
445     union { const void *ptr; size_t i; } u;
446     uint32_t a = _JLU3_INIT(*pc, size);
447     uint32_t b = a;
448     uint32_t c = a;
449 
450     if (key == NULL)
451 	goto exit;
452 
453     c += *pb;	/* Add the secondary hash. */
454 
455     u.ptr = key;
456     if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
457 	const uint32_t *k = (const uint32_t *)key;	/* read 32-bit chunks */
458 #ifdef	VALGRIND
459 	const uint8_t  *k8;
460 #endif
461 
462 	/*-- all but last block: aligned reads and affect 32 bits of (a,b,c) */
463 	while (size > (size_t)12) {
464 	    a += k[0];
465 	    b += k[1];
466 	    c += k[2];
467 	    _JLU3_MIX(a,b,c);
468 	    size -= 12;
469 	    k += 3;
470 	}
471 	/*------------------------- handle the last (probably partial) block */
472 	/*
473 	 * "k[2]&0xffffff" actually reads beyond the end of the string, but
474 	 * then masks off the part it's not allowed to read.  Because the
475 	 * string is aligned, the masked-off tail is in the same word as the
476 	 * rest of the string.  Every machine with memory protection I've seen
477 	 * does it on word boundaries, so is OK with this.  But VALGRIND will
478 	 * still catch it and complain.  The masking trick does make the hash
479 	 * noticably faster for short strings (like English words).
480 	 */
481 #ifndef VALGRIND
482 
483 	switch (size) {
484 	case 12:	c += k[2]; b+=k[1]; a+=k[0]; break;
485 	case 11:	c += k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
486 	case 10:	c += k[2]&0xffff; b+=k[1]; a+=k[0]; break;
487 	case  9:	c += k[2]&0xff; b+=k[1]; a+=k[0]; break;
488 	case  8:	b += k[1]; a+=k[0]; break;
489 	case  7:	b += k[1]&0xffffff; a+=k[0]; break;
490 	case  6:	b += k[1]&0xffff; a+=k[0]; break;
491 	case  5:	b += k[1]&0xff; a+=k[0]; break;
492 	case  4:	a += k[0]; break;
493 	case  3:	a += k[0]&0xffffff; break;
494 	case  2:	a += k[0]&0xffff; break;
495 	case  1:	a += k[0]&0xff; break;
496 	case  0:	goto exit;
497 	}
498 
499 #else /* make valgrind happy */
500 
501 	k8 = (const uint8_t *)k;
502 	switch (size) {
503 	case 12:	c += k[2]; b+=k[1]; a+=k[0];	break;
504 	case 11:	c += ((uint32_t)k8[10])<<16;	/* fallthrough */
505 	case 10:	c += ((uint32_t)k8[9])<<8;	/* fallthrough */
506 	case  9:	c += k8[8];			/* fallthrough */
507 	case  8:	b += k[1]; a+=k[0];		break;
508 	case  7:	b += ((uint32_t)k8[6])<<16;	/* fallthrough */
509 	case  6:	b += ((uint32_t)k8[5])<<8;	/* fallthrough */
510 	case  5:	b += k8[4];			/* fallthrough */
511 	case  4:	a += k[0];			break;
512 	case  3:	a += ((uint32_t)k8[2])<<16;	/* fallthrough */
513 	case  2:	a += ((uint32_t)k8[1])<<8;	/* fallthrough */
514 	case  1:	a += k8[0];			break;
515 	case  0:	goto exit;
516 	}
517 
518 #endif /* !valgrind */
519 
520     } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
521 	const uint16_t *k = (const uint16_t *)key;	/* read 16-bit chunks */
522 	const uint8_t  *k8;
523 
524 	/*----------- all but last block: aligned reads and different mixing */
525 	while (size > (size_t)12) {
526 	    a += k[0] + (((uint32_t)k[1])<<16);
527 	    b += k[2] + (((uint32_t)k[3])<<16);
528 	    c += k[4] + (((uint32_t)k[5])<<16);
529 	    _JLU3_MIX(a,b,c);
530 	    size -= 12;
531 	    k += 6;
532 	}
533 
534 	/*------------------------- handle the last (probably partial) block */
535 	k8 = (const uint8_t *)k;
536 	switch (size) {
537 	case 12:
538 	    c += k[4]+(((uint32_t)k[5])<<16);
539 	    b += k[2]+(((uint32_t)k[3])<<16);
540 	    a += k[0]+(((uint32_t)k[1])<<16);
541 	    break;
542 	case 11:
543 	    c += ((uint32_t)k8[10])<<16;
544 	    /* fallthrough */
545 	case 10:
546 	    c += k[4];
547 	    b += k[2]+(((uint32_t)k[3])<<16);
548 	    a += k[0]+(((uint32_t)k[1])<<16);
549 	    break;
550 	case  9:
551 	    c += k8[8];
552 	    /* fallthrough */
553 	case  8:
554 	    b += k[2]+(((uint32_t)k[3])<<16);
555 	    a += k[0]+(((uint32_t)k[1])<<16);
556 	    break;
557 	case  7:
558 	    b += ((uint32_t)k8[6])<<16;
559 	    /* fallthrough */
560 	case  6:
561 	    b += k[2];
562 	    a += k[0]+(((uint32_t)k[1])<<16);
563 	    break;
564 	case  5:
565 	    b += k8[4];
566 	    /* fallthrough */
567 	case  4:
568 	    a += k[0]+(((uint32_t)k[1])<<16);
569 	    break;
570 	case  3:
571 	    a += ((uint32_t)k8[2])<<16;
572 	    /* fallthrough */
573 	case  2:
574 	    a += k[0];
575 	    break;
576 	case  1:
577 	    a += k8[0];
578 	    break;
579 	case  0:
580 	    goto exit;
581 	}
582 
583     } else {		/* need to read the key one byte at a time */
584 	const uint8_t *k = (const uint8_t *)key;
585 
586 	/*----------- all but the last block: affect some 32 bits of (a,b,c) */
587 	while (size > (size_t)12) {
588 	    a += k[0];
589 	    a += ((uint32_t)k[1])<<8;
590 	    a += ((uint32_t)k[2])<<16;
591 	    a += ((uint32_t)k[3])<<24;
592 	    b += k[4];
593 	    b += ((uint32_t)k[5])<<8;
594 	    b += ((uint32_t)k[6])<<16;
595 	    b += ((uint32_t)k[7])<<24;
596 	    c += k[8];
597 	    c += ((uint32_t)k[9])<<8;
598 	    c += ((uint32_t)k[10])<<16;
599 	    c += ((uint32_t)k[11])<<24;
600 	    _JLU3_MIX(a,b,c);
601 	    size -= 12;
602 	    k += 12;
603 	}
604 
605 	/*---------------------------- last block: affect all 32 bits of (c) */
606 	switch (size) {
607 	case 12:	c += ((uint32_t)k[11])<<24;	/* fallthrough */
608 	case 11:	c += ((uint32_t)k[10])<<16;	/* fallthrough */
609 	case 10:	c += ((uint32_t)k[9])<<8;	/* fallthrough */
610 	case  9:	c += k[8];			/* fallthrough */
611 	case  8:	b += ((uint32_t)k[7])<<24;	/* fallthrough */
612 	case  7:	b += ((uint32_t)k[6])<<16;	/* fallthrough */
613 	case  6:	b += ((uint32_t)k[5])<<8;	/* fallthrough */
614 	case  5:	b += k[4];			/* fallthrough */
615 	case  4:	a += ((uint32_t)k[3])<<24;	/* fallthrough */
616 	case  3:	a += ((uint32_t)k[2])<<16;	/* fallthrough */
617 	case  2:	a += ((uint32_t)k[1])<<8;	/* fallthrough */
618 	case  1:	a += k[0];
619 	    break;
620 	case  0:
621 	    goto exit;
622 	}
623     }
624 
625     _JLU3_FINAL(a,b,c);
626 
627 exit:
628     *pc = c;
629     *pb = b;
630     return;
631 }
632 #endif	/* defined(_JLU3_jlu32lpair) */
633 
634 #if defined(_JLU3_jlu32b)
635 uint32_t jlu32b(uint32_t h, const void *key, size_t size);
636 /*
637  * jlu32b():
638  * This is the same as jlu32w() on big-endian machines.  It is different
639  * from jlu32l() on all machines.  jlu32b() takes advantage of
640  * big-endian byte ordering.
641  *
642  * @param h		the previous hash, or an arbitrary value
643  * @param *k		the key, an array of uint8_t values
644  * @param size		the size of the key
645  * @return		the lookup3 hash
646  */
jlu32b(uint32_t h,const void * key,size_t size)647 uint32_t jlu32b(uint32_t h, const void *key, size_t size)
648 {
649     union { const void *ptr; size_t i; } u;
650     uint32_t a = _JLU3_INIT(h, size);
651     uint32_t b = a;
652     uint32_t c = a;
653 
654     if (key == NULL)
655 	return h;
656 
657     u.ptr = key;
658     if (HASH_BIG_ENDIAN && ((u.i & 0x3) == 0)) {
659 	const uint32_t *k = (const uint32_t *)key;	/* read 32-bit chunks */
660 #ifdef	VALGRIND
661 	const uint8_t  *k8;
662 #endif
663 
664 	/*-- all but last block: aligned reads and affect 32 bits of (a,b,c) */
665 	while (size > 12) {
666 	    a += k[0];
667 	    b += k[1];
668 	    c += k[2];
669 	    _JLU3_MIX(a,b,c);
670 	    size -= 12;
671 	    k += 3;
672 	}
673 
674 	/*------------------------- handle the last (probably partial) block */
675 	/*
676 	 * "k[2]<<8" actually reads beyond the end of the string, but
677 	 * then shifts out the part it's not allowed to read.  Because the
678 	 * string is aligned, the illegal read is in the same word as the
679 	 * rest of the string.  Every machine with memory protection I've seen
680 	 * does it on word boundaries, so is OK with this.  But VALGRIND will
681 	 * still catch it and complain.  The masking trick does make the hash
682 	 * noticably faster for short strings (like English words).
683 	 */
684 #ifndef VALGRIND
685 
686 	switch (size) {
687 	case 12:	c += k[2]; b+=k[1]; a+=k[0]; break;
688 	case 11:	c += k[2]&0xffffff00; b+=k[1]; a+=k[0]; break;
689 	case 10:	c += k[2]&0xffff0000; b+=k[1]; a+=k[0]; break;
690 	case  9:	c += k[2]&0xff000000; b+=k[1]; a+=k[0]; break;
691 	case  8:	b += k[1]; a+=k[0]; break;
692 	case  7:	b += k[1]&0xffffff00; a+=k[0]; break;
693 	case  6:	b += k[1]&0xffff0000; a+=k[0]; break;
694 	case  5:	b += k[1]&0xff000000; a+=k[0]; break;
695 	case  4:	a += k[0]; break;
696 	case  3:	a += k[0]&0xffffff00; break;
697 	case  2:	a += k[0]&0xffff0000; break;
698 	case  1:	a += k[0]&0xff000000; break;
699 	case  0:	goto exit;
700     }
701 
702 #else  /* make valgrind happy */
703 
704 	k8 = (const uint8_t *)k;
705 	switch (size) {	/* all the case statements fall through */
706 	case 12:	c += k[2]; b+=k[1]; a+=k[0];	break;
707 	case 11:	c += ((uint32_t)k8[10])<<8;	/* fallthrough */
708 	case 10:	c += ((uint32_t)k8[9])<<16;	/* fallthrough */
709 	case  9:	c += ((uint32_t)k8[8])<<24;	/* fallthrough */
710 	case  8:	b += k[1]; a+=k[0];		break;
711 	case  7:	b += ((uint32_t)k8[6])<<8;	/* fallthrough */
712 	case  6:	b += ((uint32_t)k8[5])<<16;	/* fallthrough */
713 	case  5:	b += ((uint32_t)k8[4])<<24;	/* fallthrough */
714 	case  4:	a += k[0];			break;
715 	case  3:	a += ((uint32_t)k8[2])<<8;	/* fallthrough */
716 	case  2:	a += ((uint32_t)k8[1])<<16;	/* fallthrough */
717 	case  1:	a += ((uint32_t)k8[0])<<24;	break;
718 	case  0:	goto exit;
719     }
720 
721 #endif /* !VALGRIND */
722 
723     } else {                        /* need to read the key one byte at a time */
724 	const uint8_t *k = (const uint8_t *)key;
725 
726 	/*----------- all but the last block: affect some 32 bits of (a,b,c) */
727 	while (size > 12) {
728 	    a += ((uint32_t)k[0])<<24;
729 	    a += ((uint32_t)k[1])<<16;
730 	    a += ((uint32_t)k[2])<<8;
731 	    a += ((uint32_t)k[3]);
732 	    b += ((uint32_t)k[4])<<24;
733 	    b += ((uint32_t)k[5])<<16;
734 	    b += ((uint32_t)k[6])<<8;
735 	    b += ((uint32_t)k[7]);
736 	    c += ((uint32_t)k[8])<<24;
737 	    c += ((uint32_t)k[9])<<16;
738 	    c += ((uint32_t)k[10])<<8;
739 	    c += ((uint32_t)k[11]);
740 	    _JLU3_MIX(a,b,c);
741 	    size -= 12;
742 	    k += 12;
743 	}
744 
745 	/*---------------------------- last block: affect all 32 bits of (c) */
746 	switch (size) {	/* all the case statements fall through */
747 	case 12:	c += k[11];			/* fallthrough */
748 	case 11:	c += ((uint32_t)k[10])<<8;	/* fallthrough */
749 	case 10:	c += ((uint32_t)k[9])<<16;	/* fallthrough */
750 	case  9:	c += ((uint32_t)k[8])<<24;	/* fallthrough */
751 	case  8:	b += k[7];			/* fallthrough */
752 	case  7:	b += ((uint32_t)k[6])<<8;	/* fallthrough */
753 	case  6:	b += ((uint32_t)k[5])<<16;	/* fallthrough */
754 	case  5:	b += ((uint32_t)k[4])<<24;	/* fallthrough */
755 	case  4:	a += k[3];			/* fallthrough */
756 	case  3:	a += ((uint32_t)k[2])<<8;	/* fallthrough */
757 	case  2:	a += ((uint32_t)k[1])<<16;	/* fallthrough */
758 	case  1:	a += ((uint32_t)k[0])<<24;	/* fallthrough */
759 	    break;
760 	case  0:
761 	    goto exit;
762 	}
763     }
764 
765     _JLU3_FINAL(a,b,c);
766 
767 exit:
768     return c;
769 }
770 #endif	/* defined(_JLU3_jlu32b) */
771 
772 #if defined(_JLU3_SELFTEST)
773 
774 /* used for timings */
driver1(void)775 static void driver1(void)
776 {
777     uint8_t buf[256];
778     uint32_t i;
779     uint32_t h=0;
780     time_t a,z;
781 
782     time(&a);
783     for (i=0; i<256; ++i) buf[i] = 'x';
784     for (i=0; i<1; ++i) {
785 	h = jlu32l(h, &buf[0], sizeof(buf[0]));
786     }
787     time(&z);
788     if (z-a > 0) printf("time %d %.8x\n", (int)(z-a), h);
789 }
790 
791 /* check that every input bit changes every output bit half the time */
792 #define HASHSTATE 1
793 #define HASHLEN   1
794 #define MAXPAIR 60
795 #define MAXLEN  70
driver2(void)796 static void driver2(void)
797 {
798     uint8_t qa[MAXLEN+1], qb[MAXLEN+2], *a = &qa[0], *b = &qb[1];
799     uint32_t c[HASHSTATE], d[HASHSTATE], i=0, j=0, k, l, m=0, z;
800     uint32_t e[HASHSTATE],f[HASHSTATE],g[HASHSTATE],h[HASHSTATE];
801     uint32_t x[HASHSTATE],y[HASHSTATE];
802     uint32_t hlen;
803 
804     printf("No more than %d trials should ever be needed \n",MAXPAIR/2);
805     for (hlen=0; hlen < MAXLEN; ++hlen) {
806 	z=0;
807 	for (i=0; i<hlen; ++i) {	/*-------------- for each input byte, */
808 	    for (j=0; j<8; ++j) {	/*--------------- for each input bit, */
809 		for (m=1; m<8; ++m) {	/*--- for serveral possible initvals, */
810 		    for (l=0; l<HASHSTATE; ++l)
811 			e[l]=f[l]=g[l]=h[l]=x[l]=y[l]=~((uint32_t)0);
812 
813 		    /* check that every output bit is affected by that input bit */
814 		    for (k=0; k<MAXPAIR; k+=2) {
815 			uint32_t finished=1;
816 			/* keys have one bit different */
817 			for (l=0; l<hlen+1; ++l) {a[l] = b[l] = (uint8_t)0;}
818 			/* have a and b be two keys differing in only one bit */
819 			a[i] ^= (k<<j);
820 			a[i] ^= (k>>(8-j));
821 			c[0] = jlu32l(m, a, hlen);
822 			b[i] ^= ((k+1)<<j);
823 			b[i] ^= ((k+1)>>(8-j));
824 			d[0] = jlu32l(m, b, hlen);
825 			/* check every bit is 1, 0, set, and not set at least once */
826 			for (l=0; l<HASHSTATE; ++l) {
827 			    e[l] &= (c[l]^d[l]);
828 			    f[l] &= ~(c[l]^d[l]);
829 			    g[l] &= c[l];
830 			    h[l] &= ~c[l];
831 			    x[l] &= d[l];
832 			    y[l] &= ~d[l];
833 			    if (e[l]|f[l]|g[l]|h[l]|x[l]|y[l]) finished=0;
834 			}
835 			if (finished) break;
836 		    }
837 		    if (k>z) z=k;
838 		    if (k == MAXPAIR) {
839 			printf("Some bit didn't change: ");
840 			printf("%.8x %.8x %.8x %.8x %.8x %.8x  ",
841 				e[0],f[0],g[0],h[0],x[0],y[0]);
842 			printf("i %d j %d m %d len %d\n", i, j, m, hlen);
843 		    }
844 		    if (z == MAXPAIR) goto done;
845 		}
846 	    }
847 	}
848    done:
849 	if (z < MAXPAIR) {
850 	    printf("Mix success  %2d bytes  %2d initvals  ",i,m);
851 	    printf("required  %d  trials\n", z/2);
852 	}
853     }
854     printf("\n");
855 }
856 
857 /* Check for reading beyond the end of the buffer and alignment problems */
driver3(void)858 static void driver3(void)
859 {
860     uint8_t buf[MAXLEN+20], *b;
861     uint32_t len;
862     uint8_t q[] = "This is the time for all good men to come to the aid of their country...";
863     uint32_t h;
864     uint8_t qq[] = "xThis is the time for all good men to come to the aid of their country...";
865     uint32_t i;
866     uint8_t qqq[] = "xxThis is the time for all good men to come to the aid of their country...";
867     uint32_t j;
868     uint8_t qqqq[] = "xxxThis is the time for all good men to come to the aid of their country...";
869     uint32_t ref,x,y;
870     uint8_t *p;
871     uint32_t m = 13;
872 
873     printf("Endianness.  These lines should all be the same (for values filled in):\n");
874     printf("%.8x                            %.8x                            %.8x\n",
875 	jlu32w(m, (const uint32_t *)q, (sizeof(q)-1)/4),
876 	jlu32w(m, (const uint32_t *)q, (sizeof(q)-5)/4),
877 	jlu32w(m, (const uint32_t *)q, (sizeof(q)-9)/4));
878     p = q;
879     printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
880 	jlu32l(m, p, sizeof(q)-1), jlu32l(m, p, sizeof(q)-2),
881 	jlu32l(m, p, sizeof(q)-3), jlu32l(m, p, sizeof(q)-4),
882 	jlu32l(m, p, sizeof(q)-5), jlu32l(m, p, sizeof(q)-6),
883 	jlu32l(m, p, sizeof(q)-7), jlu32l(m, p, sizeof(q)-8),
884 	jlu32l(m, p, sizeof(q)-9), jlu32l(m, p, sizeof(q)-10),
885 	jlu32l(m, p, sizeof(q)-11), jlu32l(m, p, sizeof(q)-12));
886     p = &qq[1];
887     printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
888 	jlu32l(m, p, sizeof(q)-1), jlu32l(m, p, sizeof(q)-2),
889 	jlu32l(m, p, sizeof(q)-3), jlu32l(m, p, sizeof(q)-4),
890 	jlu32l(m, p, sizeof(q)-5), jlu32l(m, p, sizeof(q)-6),
891 	jlu32l(m, p, sizeof(q)-7), jlu32l(m, p, sizeof(q)-8),
892 	jlu32l(m, p, sizeof(q)-9), jlu32l(m, p, sizeof(q)-10),
893 	jlu32l(m, p, sizeof(q)-11), jlu32l(m, p, sizeof(q)-12));
894     p = &qqq[2];
895     printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
896 	jlu32l(m, p, sizeof(q)-1), jlu32l(m, p, sizeof(q)-2),
897 	jlu32l(m, p, sizeof(q)-3), jlu32l(m, p, sizeof(q)-4),
898 	jlu32l(m, p, sizeof(q)-5), jlu32l(m, p, sizeof(q)-6),
899 	jlu32l(m, p, sizeof(q)-7), jlu32l(m, p, sizeof(q)-8),
900 	jlu32l(m, p, sizeof(q)-9), jlu32l(m, p, sizeof(q)-10),
901 	jlu32l(m, p, sizeof(q)-11), jlu32l(m, p, sizeof(q)-12));
902     p = &qqqq[3];
903     printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n",
904 	jlu32l(m, p, sizeof(q)-1), jlu32l(m, p, sizeof(q)-2),
905 	jlu32l(m, p, sizeof(q)-3), jlu32l(m, p, sizeof(q)-4),
906 	jlu32l(m, p, sizeof(q)-5), jlu32l(m, p, sizeof(q)-6),
907 	jlu32l(m, p, sizeof(q)-7), jlu32l(m, p, sizeof(q)-8),
908 	jlu32l(m, p, sizeof(q)-9), jlu32l(m, p, sizeof(q)-10),
909 	jlu32l(m, p, sizeof(q)-11), jlu32l(m, p, sizeof(q)-12));
910     printf("\n");
911     for (h=0, b=buf+1; h<8; ++h, ++b) {
912 	for (i=0; i<MAXLEN; ++i) {
913 	    len = i;
914 	    for (j=0; j<i; ++j)
915 		*(b+j)=0;
916 
917 	    /* these should all be equal */
918 	    m = 1;
919 	    ref = jlu32l(m, b, len);
920 	    *(b+i)=(uint8_t)~0;
921 	    *(b-1)=(uint8_t)~0;
922 	    x = jlu32l(m, b, len);
923 	    y = jlu32l(m, b, len);
924 	    if ((ref != x) || (ref != y))
925 		printf("alignment error: %.8x %.8x %.8x %d %d\n",ref,x,y, h, i);
926 	}
927     }
928 }
929 
930 /* check for problems with nulls */
driver4(void)931 static void driver4(void)
932 {
933     uint8_t buf[1];
934     uint32_t h;
935     uint32_t i;
936     uint32_t state[HASHSTATE];
937 
938     buf[0] = ~0;
939     for (i=0; i<HASHSTATE; ++i)
940 	state[i] = 1;
941     printf("These should all be different\n");
942     h = 0;
943     for (i=0; i<8; ++i) {
944 	h = jlu32l(h, buf, 0);
945 	printf("%2ld  0-byte strings, hash is  %.8x\n", (long)i, h);
946     }
947 }
948 
949 
main(int argc,char ** argv)950 int main(int argc, char ** argv)
951 {
952     driver1();	/* test that the key is hashed: used for timings */
953     driver2();	/* test that whole key is hashed thoroughly */
954     driver3();	/* test that nothing but the key is hashed */
955     driver4();	/* test hashing multiple buffers (all buffers are null) */
956     return 1;
957 }
958 
959 #endif  /* _JLU3_SELFTEST */
960