1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 
30 
31 // Google Test - The Google C++ Testing and Mocking Framework
32 //
33 // This file implements a universal value printer that can print a
34 // value of any type T:
35 //
36 //   void ::testing::internal::UniversalPrinter<T>::Print(value, ostream_ptr);
37 //
38 // A user can teach this function how to print a class type T by
39 // defining either operator<<() or PrintTo() in the namespace that
40 // defines T.  More specifically, the FIRST defined function in the
41 // following list will be used (assuming T is defined in namespace
42 // foo):
43 //
44 //   1. foo::PrintTo(const T&, ostream*)
45 //   2. operator<<(ostream&, const T&) defined in either foo or the
46 //      global namespace.
47 //
48 // However if T is an STL-style container then it is printed element-wise
49 // unless foo::PrintTo(const T&, ostream*) is defined. Note that
50 // operator<<() is ignored for container types.
51 //
52 // If none of the above is defined, it will print the debug string of
53 // the value if it is a protocol buffer, or print the raw bytes in the
54 // value otherwise.
55 //
56 // To aid debugging: when T is a reference type, the address of the
57 // value is also printed; when T is a (const) char pointer, both the
58 // pointer value and the NUL-terminated string it points to are
59 // printed.
60 //
61 // We also provide some convenient wrappers:
62 //
63 //   // Prints a value to a string.  For a (const or not) char
64 //   // pointer, the NUL-terminated string (but not the pointer) is
65 //   // printed.
66 //   std::string ::testing::PrintToString(const T& value);
67 //
68 //   // Prints a value tersely: for a reference type, the referenced
69 //   // value (but not the address) is printed; for a (const or not) char
70 //   // pointer, the NUL-terminated string (but not the pointer) is
71 //   // printed.
72 //   void ::testing::internal::UniversalTersePrint(const T& value, ostream*);
73 //
74 //   // Prints value using the type inferred by the compiler.  The difference
75 //   // from UniversalTersePrint() is that this function prints both the
76 //   // pointer and the NUL-terminated string for a (const or not) char pointer.
77 //   void ::testing::internal::UniversalPrint(const T& value, ostream*);
78 //
79 //   // Prints the fields of a tuple tersely to a string vector, one
80 //   // element for each field. Tuple support must be enabled in
81 //   // gtest-port.h.
82 //   std::vector<string> UniversalTersePrintTupleFieldsToStrings(
83 //       const Tuple& value);
84 //
85 // Known limitation:
86 //
87 // The print primitives print the elements of an STL-style container
88 // using the compiler-inferred type of *iter where iter is a
89 // const_iterator of the container.  When const_iterator is an input
90 // iterator but not a forward iterator, this inferred type may not
91 // match value_type, and the print output may be incorrect.  In
92 // practice, this is rarely a problem as for most containers
93 // const_iterator is a forward iterator.  We'll fix this if there's an
94 // actual need for it.  Note that this fix cannot rely on value_type
95 // being defined as many user-defined container types don't have
96 // value_type.
97 
98 // GOOGLETEST_CM0001 DO NOT DELETE
99 
100 #ifndef GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_
101 #define GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_
102 
103 #include <functional>
104 #include <ostream>  // NOLINT
105 #include <sstream>
106 #include <string>
107 #include <tuple>
108 #include <type_traits>
109 #include <utility>
110 #include <vector>
111 #include "gtest/internal/gtest-internal.h"
112 #include "gtest/internal/gtest-port.h"
113 
114 #if GTEST_HAS_ABSL
115 #include "absl/strings/string_view.h"
116 #include "absl/types/optional.h"
117 #include "absl/types/variant.h"
118 #endif  // GTEST_HAS_ABSL
119 
120 namespace testing {
121 
122 // Definitions in the 'internal' and 'internal2' name spaces are
123 // subject to change without notice.  DO NOT USE THEM IN USER CODE!
124 namespace internal2 {
125 
126 // Prints the given number of bytes in the given object to the given
127 // ostream.
128 GTEST_API_ void PrintBytesInObjectTo(const unsigned char* obj_bytes,
129                                      size_t count,
130                                      ::std::ostream* os);
131 
132 // For selecting which printer to use when a given type has neither <<
133 // nor PrintTo().
134 enum TypeKind {
135   kProtobuf,              // a protobuf type
136   kConvertibleToInteger,  // a type implicitly convertible to BiggestInt
137                           // (e.g. a named or unnamed enum type)
138 #if GTEST_HAS_ABSL
139   kConvertibleToStringView,  // a type implicitly convertible to
140                              // absl::string_view
141 #endif
142   kOtherType  // anything else
143 };
144 
145 // TypeWithoutFormatter<T, kTypeKind>::PrintValue(value, os) is called
146 // by the universal printer to print a value of type T when neither
147 // operator<< nor PrintTo() is defined for T, where kTypeKind is the
148 // "kind" of T as defined by enum TypeKind.
149 template <typename T, TypeKind kTypeKind>
150 class TypeWithoutFormatter {
151  public:
152   // This default version is called when kTypeKind is kOtherType.
PrintValue(const T & value,::std::ostream * os)153   static void PrintValue(const T& value, ::std::ostream* os) {
154     PrintBytesInObjectTo(static_cast<const unsigned char*>(
155                              reinterpret_cast<const void*>(&value)),
156                          sizeof(value), os);
157   }
158 };
159 
160 // We print a protobuf using its ShortDebugString() when the string
161 // doesn't exceed this many characters; otherwise we print it using
162 // DebugString() for better readability.
163 const size_t kProtobufOneLinerMaxLength = 50;
164 
165 template <typename T>
166 class TypeWithoutFormatter<T, kProtobuf> {
167  public:
PrintValue(const T & value,::std::ostream * os)168   static void PrintValue(const T& value, ::std::ostream* os) {
169     std::string pretty_str = value.ShortDebugString();
170     if (pretty_str.length() > kProtobufOneLinerMaxLength) {
171       pretty_str = "\n" + value.DebugString();
172     }
173     *os << ("<" + pretty_str + ">");
174   }
175 };
176 
177 template <typename T>
178 class TypeWithoutFormatter<T, kConvertibleToInteger> {
179  public:
180   // Since T has no << operator or PrintTo() but can be implicitly
181   // converted to BiggestInt, we print it as a BiggestInt.
182   //
183   // Most likely T is an enum type (either named or unnamed), in which
184   // case printing it as an integer is the desired behavior.  In case
185   // T is not an enum, printing it as an integer is the best we can do
186   // given that it has no user-defined printer.
PrintValue(const T & value,::std::ostream * os)187   static void PrintValue(const T& value, ::std::ostream* os) {
188     const internal::BiggestInt kBigInt = value;
189     *os << kBigInt;
190   }
191 };
192 
193 #if GTEST_HAS_ABSL
194 template <typename T>
195 class TypeWithoutFormatter<T, kConvertibleToStringView> {
196  public:
197   // Since T has neither operator<< nor PrintTo() but can be implicitly
198   // converted to absl::string_view, we print it as a absl::string_view.
199   //
200   // Note: the implementation is further below, as it depends on
201   // internal::PrintTo symbol which is defined later in the file.
202   static void PrintValue(const T& value, ::std::ostream* os);
203 };
204 #endif
205 
206 // Prints the given value to the given ostream.  If the value is a
207 // protocol message, its debug string is printed; if it's an enum or
208 // of a type implicitly convertible to BiggestInt, it's printed as an
209 // integer; otherwise the bytes in the value are printed.  This is
210 // what UniversalPrinter<T>::Print() does when it knows nothing about
211 // type T and T has neither << operator nor PrintTo().
212 //
213 // A user can override this behavior for a class type Foo by defining
214 // a << operator in the namespace where Foo is defined.
215 //
216 // We put this operator in namespace 'internal2' instead of 'internal'
217 // to simplify the implementation, as much code in 'internal' needs to
218 // use << in STL, which would conflict with our own << were it defined
219 // in 'internal'.
220 //
221 // Note that this operator<< takes a generic std::basic_ostream<Char,
222 // CharTraits> type instead of the more restricted std::ostream.  If
223 // we define it to take an std::ostream instead, we'll get an
224 // "ambiguous overloads" compiler error when trying to print a type
225 // Foo that supports streaming to std::basic_ostream<Char,
226 // CharTraits>, as the compiler cannot tell whether
227 // operator<<(std::ostream&, const T&) or
228 // operator<<(std::basic_stream<Char, CharTraits>, const Foo&) is more
229 // specific.
230 template <typename Char, typename CharTraits, typename T>
231 ::std::basic_ostream<Char, CharTraits>& operator<<(
232     ::std::basic_ostream<Char, CharTraits>& os, const T& x) {
233   TypeWithoutFormatter<T, (internal::IsAProtocolMessage<T>::value
234                                ? kProtobuf
235                                : std::is_convertible<
236                                      const T&, internal::BiggestInt>::value
237                                      ? kConvertibleToInteger
238                                      :
239 #if GTEST_HAS_ABSL
240                                      std::is_convertible<
241                                          const T&, absl::string_view>::value
242                                          ? kConvertibleToStringView
243                                          :
244 #endif
245                                          kOtherType)>::PrintValue(x, &os);
246   return os;
247 }
248 
249 }  // namespace internal2
250 }  // namespace testing
251 
252 // This namespace MUST NOT BE NESTED IN ::testing, or the name look-up
253 // magic needed for implementing UniversalPrinter won't work.
254 namespace testing_internal {
255 
256 // Used to print a value that is not an STL-style container when the
257 // user doesn't define PrintTo() for it.
258 template <typename T>
DefaultPrintNonContainerTo(const T & value,::std::ostream * os)259 void DefaultPrintNonContainerTo(const T& value, ::std::ostream* os) {
260   // With the following statement, during unqualified name lookup,
261   // testing::internal2::operator<< appears as if it was declared in
262   // the nearest enclosing namespace that contains both
263   // ::testing_internal and ::testing::internal2, i.e. the global
264   // namespace.  For more details, refer to the C++ Standard section
265   // 7.3.4-1 [namespace.udir].  This allows us to fall back onto
266   // testing::internal2::operator<< in case T doesn't come with a <<
267   // operator.
268   //
269   // We cannot write 'using ::testing::internal2::operator<<;', which
270   // gcc 3.3 fails to compile due to a compiler bug.
271   using namespace ::testing::internal2;  // NOLINT
272 
273   // Assuming T is defined in namespace foo, in the next statement,
274   // the compiler will consider all of:
275   //
276   //   1. foo::operator<< (thanks to Koenig look-up),
277   //   2. ::operator<< (as the current namespace is enclosed in ::),
278   //   3. testing::internal2::operator<< (thanks to the using statement above).
279   //
280   // The operator<< whose type matches T best will be picked.
281   //
282   // We deliberately allow #2 to be a candidate, as sometimes it's
283   // impossible to define #1 (e.g. when foo is ::std, defining
284   // anything in it is undefined behavior unless you are a compiler
285   // vendor.).
286   *os << value;
287 }
288 
289 }  // namespace testing_internal
290 
291 namespace testing {
292 namespace internal {
293 
294 // FormatForComparison<ToPrint, OtherOperand>::Format(value) formats a
295 // value of type ToPrint that is an operand of a comparison assertion
296 // (e.g. ASSERT_EQ).  OtherOperand is the type of the other operand in
297 // the comparison, and is used to help determine the best way to
298 // format the value.  In particular, when the value is a C string
299 // (char pointer) and the other operand is an STL string object, we
300 // want to format the C string as a string, since we know it is
301 // compared by value with the string object.  If the value is a char
302 // pointer but the other operand is not an STL string object, we don't
303 // know whether the pointer is supposed to point to a NUL-terminated
304 // string, and thus want to print it as a pointer to be safe.
305 //
306 // INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM.
307 
308 // The default case.
309 template <typename ToPrint, typename OtherOperand>
310 class FormatForComparison {
311  public:
Format(const ToPrint & value)312   static ::std::string Format(const ToPrint& value) {
313     return ::testing::PrintToString(value);
314   }
315 };
316 
317 // Array.
318 template <typename ToPrint, size_t N, typename OtherOperand>
319 class FormatForComparison<ToPrint[N], OtherOperand> {
320  public:
Format(const ToPrint * value)321   static ::std::string Format(const ToPrint* value) {
322     return FormatForComparison<const ToPrint*, OtherOperand>::Format(value);
323   }
324 };
325 
326 // By default, print C string as pointers to be safe, as we don't know
327 // whether they actually point to a NUL-terminated string.
328 
329 #define GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(CharType)                \
330   template <typename OtherOperand>                                      \
331   class FormatForComparison<CharType*, OtherOperand> {                  \
332    public:                                                              \
333     static ::std::string Format(CharType* value) {                      \
334       return ::testing::PrintToString(static_cast<const void*>(value)); \
335     }                                                                   \
336   }
337 
338 GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(char);
339 GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const char);
340 GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(wchar_t);
341 GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_(const wchar_t);
342 
343 #undef GTEST_IMPL_FORMAT_C_STRING_AS_POINTER_
344 
345 // If a C string is compared with an STL string object, we know it's meant
346 // to point to a NUL-terminated string, and thus can print it as a string.
347 
348 #define GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(CharType, OtherStringType) \
349   template <>                                                           \
350   class FormatForComparison<CharType*, OtherStringType> {               \
351    public:                                                              \
352     static ::std::string Format(CharType* value) {                      \
353       return ::testing::PrintToString(value);                           \
354     }                                                                   \
355   }
356 
357 GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(char, ::std::string);
358 GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const char, ::std::string);
359 
360 #if GTEST_HAS_GLOBAL_STRING
361 GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(char, ::string);
362 GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const char, ::string);
363 #endif
364 
365 #if GTEST_HAS_GLOBAL_WSTRING
366 GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(wchar_t, ::wstring);
367 GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const wchar_t, ::wstring);
368 #endif
369 
370 #if GTEST_HAS_STD_WSTRING
371 GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(wchar_t, ::std::wstring);
372 GTEST_IMPL_FORMAT_C_STRING_AS_STRING_(const wchar_t, ::std::wstring);
373 #endif
374 
375 #undef GTEST_IMPL_FORMAT_C_STRING_AS_STRING_
376 
377 // Formats a comparison assertion (e.g. ASSERT_EQ, EXPECT_LT, and etc)
378 // operand to be used in a failure message.  The type (but not value)
379 // of the other operand may affect the format.  This allows us to
380 // print a char* as a raw pointer when it is compared against another
381 // char* or void*, and print it as a C string when it is compared
382 // against an std::string object, for example.
383 //
384 // INTERNAL IMPLEMENTATION - DO NOT USE IN A USER PROGRAM.
385 template <typename T1, typename T2>
FormatForComparisonFailureMessage(const T1 & value,const T2 &)386 std::string FormatForComparisonFailureMessage(
387     const T1& value, const T2& /* other_operand */) {
388   return FormatForComparison<T1, T2>::Format(value);
389 }
390 
391 // UniversalPrinter<T>::Print(value, ostream_ptr) prints the given
392 // value to the given ostream.  The caller must ensure that
393 // 'ostream_ptr' is not NULL, or the behavior is undefined.
394 //
395 // We define UniversalPrinter as a class template (as opposed to a
396 // function template), as we need to partially specialize it for
397 // reference types, which cannot be done with function templates.
398 template <typename T>
399 class UniversalPrinter;
400 
401 template <typename T>
402 void UniversalPrint(const T& value, ::std::ostream* os);
403 
404 enum DefaultPrinterType {
405   kPrintContainer,
406   kPrintPointer,
407   kPrintFunctionPointer,
408   kPrintOther,
409 };
410 template <DefaultPrinterType type> struct WrapPrinterType {};
411 
412 // Used to print an STL-style container when the user doesn't define
413 // a PrintTo() for it.
414 template <typename C>
DefaultPrintTo(WrapPrinterType<kPrintContainer>,const C & container,::std::ostream * os)415 void DefaultPrintTo(WrapPrinterType<kPrintContainer> /* dummy */,
416                     const C& container, ::std::ostream* os) {
417   const size_t kMaxCount = 32;  // The maximum number of elements to print.
418   *os << '{';
419   size_t count = 0;
420   for (typename C::const_iterator it = container.begin();
421        it != container.end(); ++it, ++count) {
422     if (count > 0) {
423       *os << ',';
424       if (count == kMaxCount) {  // Enough has been printed.
425         *os << " ...";
426         break;
427       }
428     }
429     *os << ' ';
430     // We cannot call PrintTo(*it, os) here as PrintTo() doesn't
431     // handle *it being a native array.
432     internal::UniversalPrint(*it, os);
433   }
434 
435   if (count > 0) {
436     *os << ' ';
437   }
438   *os << '}';
439 }
440 
441 // Used to print a pointer that is neither a char pointer nor a member
442 // pointer, when the user doesn't define PrintTo() for it.  (A member
443 // variable pointer or member function pointer doesn't really point to
444 // a location in the address space.  Their representation is
445 // implementation-defined.  Therefore they will be printed as raw
446 // bytes.)
447 template <typename T>
DefaultPrintTo(WrapPrinterType<kPrintPointer>,T * p,::std::ostream * os)448 void DefaultPrintTo(WrapPrinterType<kPrintPointer> /* dummy */,
449                     T* p, ::std::ostream* os) {
450   if (p == nullptr) {
451     *os << "NULL";
452   } else {
453     // T is not a function type.  We just call << to print p,
454     // relying on ADL to pick up user-defined << for their pointer
455     // types, if any.
456     *os << p;
457   }
458 }
459 template <typename T>
DefaultPrintTo(WrapPrinterType<kPrintFunctionPointer>,T * p,::std::ostream * os)460 void DefaultPrintTo(WrapPrinterType<kPrintFunctionPointer> /* dummy */,
461                     T* p, ::std::ostream* os) {
462   if (p == nullptr) {
463     *os << "NULL";
464   } else {
465     // T is a function type, so '*os << p' doesn't do what we want
466     // (it just prints p as bool).  We want to print p as a const
467     // void*.
468     *os << reinterpret_cast<const void*>(p);
469   }
470 }
471 
472 // Used to print a non-container, non-pointer value when the user
473 // doesn't define PrintTo() for it.
474 template <typename T>
DefaultPrintTo(WrapPrinterType<kPrintOther>,const T & value,::std::ostream * os)475 void DefaultPrintTo(WrapPrinterType<kPrintOther> /* dummy */,
476                     const T& value, ::std::ostream* os) {
477   ::testing_internal::DefaultPrintNonContainerTo(value, os);
478 }
479 
480 // Prints the given value using the << operator if it has one;
481 // otherwise prints the bytes in it.  This is what
482 // UniversalPrinter<T>::Print() does when PrintTo() is not specialized
483 // or overloaded for type T.
484 //
485 // A user can override this behavior for a class type Foo by defining
486 // an overload of PrintTo() in the namespace where Foo is defined.  We
487 // give the user this option as sometimes defining a << operator for
488 // Foo is not desirable (e.g. the coding style may prevent doing it,
489 // or there is already a << operator but it doesn't do what the user
490 // wants).
491 template <typename T>
PrintTo(const T & value,::std::ostream * os)492 void PrintTo(const T& value, ::std::ostream* os) {
493   // DefaultPrintTo() is overloaded.  The type of its first argument
494   // determines which version will be picked.
495   //
496   // Note that we check for container types here, prior to we check
497   // for protocol message types in our operator<<.  The rationale is:
498   //
499   // For protocol messages, we want to give people a chance to
500   // override Google Mock's format by defining a PrintTo() or
501   // operator<<.  For STL containers, other formats can be
502   // incompatible with Google Mock's format for the container
503   // elements; therefore we check for container types here to ensure
504   // that our format is used.
505   //
506   // Note that MSVC and clang-cl do allow an implicit conversion from
507   // pointer-to-function to pointer-to-object, but clang-cl warns on it.
508   // So don't use ImplicitlyConvertible if it can be helped since it will
509   // cause this warning, and use a separate overload of DefaultPrintTo for
510   // function pointers so that the `*os << p` in the object pointer overload
511   // doesn't cause that warning either.
512   DefaultPrintTo(
513       WrapPrinterType <
514                   (sizeof(IsContainerTest<T>(0)) == sizeof(IsContainer)) &&
515               !IsRecursiveContainer<T>::value
516           ? kPrintContainer
517           : !std::is_pointer<T>::value
518                 ? kPrintOther
519                 : std::is_function<typename std::remove_pointer<T>::type>::value
520                       ? kPrintFunctionPointer
521                       : kPrintPointer > (),
522       value, os);
523 }
524 
525 // The following list of PrintTo() overloads tells
526 // UniversalPrinter<T>::Print() how to print standard types (built-in
527 // types, strings, plain arrays, and pointers).
528 
529 // Overloads for various char types.
530 GTEST_API_ void PrintTo(unsigned char c, ::std::ostream* os);
531 GTEST_API_ void PrintTo(signed char c, ::std::ostream* os);
PrintTo(char c,::std::ostream * os)532 inline void PrintTo(char c, ::std::ostream* os) {
533   // When printing a plain char, we always treat it as unsigned.  This
534   // way, the output won't be affected by whether the compiler thinks
535   // char is signed or not.
536   PrintTo(static_cast<unsigned char>(c), os);
537 }
538 
539 // Overloads for other simple built-in types.
PrintTo(bool x,::std::ostream * os)540 inline void PrintTo(bool x, ::std::ostream* os) {
541   *os << (x ? "true" : "false");
542 }
543 
544 // Overload for wchar_t type.
545 // Prints a wchar_t as a symbol if it is printable or as its internal
546 // code otherwise and also as its decimal code (except for L'\0').
547 // The L'\0' char is printed as "L'\\0'". The decimal code is printed
548 // as signed integer when wchar_t is implemented by the compiler
549 // as a signed type and is printed as an unsigned integer when wchar_t
550 // is implemented as an unsigned type.
551 GTEST_API_ void PrintTo(wchar_t wc, ::std::ostream* os);
552 
553 // Overloads for C strings.
554 GTEST_API_ void PrintTo(const char* s, ::std::ostream* os);
PrintTo(char * s,::std::ostream * os)555 inline void PrintTo(char* s, ::std::ostream* os) {
556   PrintTo(ImplicitCast_<const char*>(s), os);
557 }
558 
559 // signed/unsigned char is often used for representing binary data, so
560 // we print pointers to it as void* to be safe.
PrintTo(const signed char * s,::std::ostream * os)561 inline void PrintTo(const signed char* s, ::std::ostream* os) {
562   PrintTo(ImplicitCast_<const void*>(s), os);
563 }
PrintTo(signed char * s,::std::ostream * os)564 inline void PrintTo(signed char* s, ::std::ostream* os) {
565   PrintTo(ImplicitCast_<const void*>(s), os);
566 }
PrintTo(const unsigned char * s,::std::ostream * os)567 inline void PrintTo(const unsigned char* s, ::std::ostream* os) {
568   PrintTo(ImplicitCast_<const void*>(s), os);
569 }
PrintTo(unsigned char * s,::std::ostream * os)570 inline void PrintTo(unsigned char* s, ::std::ostream* os) {
571   PrintTo(ImplicitCast_<const void*>(s), os);
572 }
573 
574 // MSVC can be configured to define wchar_t as a typedef of unsigned
575 // short.  It defines _NATIVE_WCHAR_T_DEFINED when wchar_t is a native
576 // type.  When wchar_t is a typedef, defining an overload for const
577 // wchar_t* would cause unsigned short* be printed as a wide string,
578 // possibly causing invalid memory accesses.
579 #if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED)
580 // Overloads for wide C strings
581 GTEST_API_ void PrintTo(const wchar_t* s, ::std::ostream* os);
PrintTo(wchar_t * s,::std::ostream * os)582 inline void PrintTo(wchar_t* s, ::std::ostream* os) {
583   PrintTo(ImplicitCast_<const wchar_t*>(s), os);
584 }
585 #endif
586 
587 // Overload for C arrays.  Multi-dimensional arrays are printed
588 // properly.
589 
590 // Prints the given number of elements in an array, without printing
591 // the curly braces.
592 template <typename T>
PrintRawArrayTo(const T a[],size_t count,::std::ostream * os)593 void PrintRawArrayTo(const T a[], size_t count, ::std::ostream* os) {
594   UniversalPrint(a[0], os);
595   for (size_t i = 1; i != count; i++) {
596     *os << ", ";
597     UniversalPrint(a[i], os);
598   }
599 }
600 
601 // Overloads for ::string and ::std::string.
602 #if GTEST_HAS_GLOBAL_STRING
603 GTEST_API_ void PrintStringTo(const ::string&s, ::std::ostream* os);
PrintTo(const::string & s,::std::ostream * os)604 inline void PrintTo(const ::string& s, ::std::ostream* os) {
605   PrintStringTo(s, os);
606 }
607 #endif  // GTEST_HAS_GLOBAL_STRING
608 
609 GTEST_API_ void PrintStringTo(const ::std::string&s, ::std::ostream* os);
PrintTo(const::std::string & s,::std::ostream * os)610 inline void PrintTo(const ::std::string& s, ::std::ostream* os) {
611   PrintStringTo(s, os);
612 }
613 
614 // Overloads for ::wstring and ::std::wstring.
615 #if GTEST_HAS_GLOBAL_WSTRING
616 GTEST_API_ void PrintWideStringTo(const ::wstring&s, ::std::ostream* os);
PrintTo(const::wstring & s,::std::ostream * os)617 inline void PrintTo(const ::wstring& s, ::std::ostream* os) {
618   PrintWideStringTo(s, os);
619 }
620 #endif  // GTEST_HAS_GLOBAL_WSTRING
621 
622 #if GTEST_HAS_STD_WSTRING
623 GTEST_API_ void PrintWideStringTo(const ::std::wstring&s, ::std::ostream* os);
PrintTo(const::std::wstring & s,::std::ostream * os)624 inline void PrintTo(const ::std::wstring& s, ::std::ostream* os) {
625   PrintWideStringTo(s, os);
626 }
627 #endif  // GTEST_HAS_STD_WSTRING
628 
629 #if GTEST_HAS_ABSL
630 // Overload for absl::string_view.
PrintTo(absl::string_view sp,::std::ostream * os)631 inline void PrintTo(absl::string_view sp, ::std::ostream* os) {
632   PrintTo(::std::string(sp), os);
633 }
634 #endif  // GTEST_HAS_ABSL
635 
PrintTo(std::nullptr_t,::std::ostream * os)636 inline void PrintTo(std::nullptr_t, ::std::ostream* os) { *os << "(nullptr)"; }
637 
638 template <typename T>
PrintTo(std::reference_wrapper<T> ref,::std::ostream * os)639 void PrintTo(std::reference_wrapper<T> ref, ::std::ostream* os) {
640   UniversalPrinter<T&>::Print(ref.get(), os);
641 }
642 
643 // Helper function for printing a tuple.  T must be instantiated with
644 // a tuple type.
645 template <typename T>
PrintTupleTo(const T &,std::integral_constant<size_t,0>,::std::ostream *)646 void PrintTupleTo(const T&, std::integral_constant<size_t, 0>,
647                   ::std::ostream*) {}
648 
649 template <typename T, size_t I>
PrintTupleTo(const T & t,std::integral_constant<size_t,I>,::std::ostream * os)650 void PrintTupleTo(const T& t, std::integral_constant<size_t, I>,
651                   ::std::ostream* os) {
652   PrintTupleTo(t, std::integral_constant<size_t, I - 1>(), os);
653   GTEST_INTENTIONAL_CONST_COND_PUSH_()
654   if (I > 1) {
655     GTEST_INTENTIONAL_CONST_COND_POP_()
656     *os << ", ";
657   }
658   UniversalPrinter<typename std::tuple_element<I - 1, T>::type>::Print(
659       std::get<I - 1>(t), os);
660 }
661 
662 template <typename... Types>
PrintTo(const::std::tuple<Types...> & t,::std::ostream * os)663 void PrintTo(const ::std::tuple<Types...>& t, ::std::ostream* os) {
664   *os << "(";
665   PrintTupleTo(t, std::integral_constant<size_t, sizeof...(Types)>(), os);
666   *os << ")";
667 }
668 
669 // Overload for std::pair.
670 template <typename T1, typename T2>
PrintTo(const::std::pair<T1,T2> & value,::std::ostream * os)671 void PrintTo(const ::std::pair<T1, T2>& value, ::std::ostream* os) {
672   *os << '(';
673   // We cannot use UniversalPrint(value.first, os) here, as T1 may be
674   // a reference type.  The same for printing value.second.
675   UniversalPrinter<T1>::Print(value.first, os);
676   *os << ", ";
677   UniversalPrinter<T2>::Print(value.second, os);
678   *os << ')';
679 }
680 
681 // Implements printing a non-reference type T by letting the compiler
682 // pick the right overload of PrintTo() for T.
683 template <typename T>
684 class UniversalPrinter {
685  public:
686   // MSVC warns about adding const to a function type, so we want to
687   // disable the warning.
688   GTEST_DISABLE_MSC_WARNINGS_PUSH_(4180)
689 
690   // Note: we deliberately don't call this PrintTo(), as that name
691   // conflicts with ::testing::internal::PrintTo in the body of the
692   // function.
Print(const T & value,::std::ostream * os)693   static void Print(const T& value, ::std::ostream* os) {
694     // By default, ::testing::internal::PrintTo() is used for printing
695     // the value.
696     //
697     // Thanks to Koenig look-up, if T is a class and has its own
698     // PrintTo() function defined in its namespace, that function will
699     // be visible here.  Since it is more specific than the generic ones
700     // in ::testing::internal, it will be picked by the compiler in the
701     // following statement - exactly what we want.
702     PrintTo(value, os);
703   }
704 
705   GTEST_DISABLE_MSC_WARNINGS_POP_()
706 };
707 
708 #if GTEST_HAS_ABSL
709 
710 // Printer for absl::optional
711 
712 template <typename T>
713 class UniversalPrinter<::absl::optional<T>> {
714  public:
Print(const::absl::optional<T> & value,::std::ostream * os)715   static void Print(const ::absl::optional<T>& value, ::std::ostream* os) {
716     *os << '(';
717     if (!value) {
718       *os << "nullopt";
719     } else {
720       UniversalPrint(*value, os);
721     }
722     *os << ')';
723   }
724 };
725 
726 // Printer for absl::variant
727 
728 template <typename... T>
729 class UniversalPrinter<::absl::variant<T...>> {
730  public:
Print(const::absl::variant<T...> & value,::std::ostream * os)731   static void Print(const ::absl::variant<T...>& value, ::std::ostream* os) {
732     *os << '(';
733     absl::visit(Visitor{os}, value);
734     *os << ')';
735   }
736 
737  private:
738   struct Visitor {
739     template <typename U>
operatorVisitor740     void operator()(const U& u) const {
741       *os << "'" << GetTypeName<U>() << "' with value ";
742       UniversalPrint(u, os);
743     }
744     ::std::ostream* os;
745   };
746 };
747 
748 #endif  // GTEST_HAS_ABSL
749 
750 // UniversalPrintArray(begin, len, os) prints an array of 'len'
751 // elements, starting at address 'begin'.
752 template <typename T>
UniversalPrintArray(const T * begin,size_t len,::std::ostream * os)753 void UniversalPrintArray(const T* begin, size_t len, ::std::ostream* os) {
754   if (len == 0) {
755     *os << "{}";
756   } else {
757     *os << "{ ";
758     const size_t kThreshold = 18;
759     const size_t kChunkSize = 8;
760     // If the array has more than kThreshold elements, we'll have to
761     // omit some details by printing only the first and the last
762     // kChunkSize elements.
763     if (len <= kThreshold) {
764       PrintRawArrayTo(begin, len, os);
765     } else {
766       PrintRawArrayTo(begin, kChunkSize, os);
767       *os << ", ..., ";
768       PrintRawArrayTo(begin + len - kChunkSize, kChunkSize, os);
769     }
770     *os << " }";
771   }
772 }
773 // This overload prints a (const) char array compactly.
774 GTEST_API_ void UniversalPrintArray(
775     const char* begin, size_t len, ::std::ostream* os);
776 
777 // This overload prints a (const) wchar_t array compactly.
778 GTEST_API_ void UniversalPrintArray(
779     const wchar_t* begin, size_t len, ::std::ostream* os);
780 
781 // Implements printing an array type T[N].
782 template <typename T, size_t N>
783 class UniversalPrinter<T[N]> {
784  public:
785   // Prints the given array, omitting some elements when there are too
786   // many.
Print(const T (& a)[N],::std::ostream * os)787   static void Print(const T (&a)[N], ::std::ostream* os) {
788     UniversalPrintArray(a, N, os);
789   }
790 };
791 
792 // Implements printing a reference type T&.
793 template <typename T>
794 class UniversalPrinter<T&> {
795  public:
796   // MSVC warns about adding const to a function type, so we want to
797   // disable the warning.
798   GTEST_DISABLE_MSC_WARNINGS_PUSH_(4180)
799 
Print(const T & value,::std::ostream * os)800   static void Print(const T& value, ::std::ostream* os) {
801     // Prints the address of the value.  We use reinterpret_cast here
802     // as static_cast doesn't compile when T is a function type.
803     *os << "@" << reinterpret_cast<const void*>(&value) << " ";
804 
805     // Then prints the value itself.
806     UniversalPrint(value, os);
807   }
808 
809   GTEST_DISABLE_MSC_WARNINGS_POP_()
810 };
811 
812 // Prints a value tersely: for a reference type, the referenced value
813 // (but not the address) is printed; for a (const) char pointer, the
814 // NUL-terminated string (but not the pointer) is printed.
815 
816 template <typename T>
817 class UniversalTersePrinter {
818  public:
Print(const T & value,::std::ostream * os)819   static void Print(const T& value, ::std::ostream* os) {
820     UniversalPrint(value, os);
821   }
822 };
823 template <typename T>
824 class UniversalTersePrinter<T&> {
825  public:
Print(const T & value,::std::ostream * os)826   static void Print(const T& value, ::std::ostream* os) {
827     UniversalPrint(value, os);
828   }
829 };
830 template <typename T, size_t N>
831 class UniversalTersePrinter<T[N]> {
832  public:
Print(const T (& value)[N],::std::ostream * os)833   static void Print(const T (&value)[N], ::std::ostream* os) {
834     UniversalPrinter<T[N]>::Print(value, os);
835   }
836 };
837 template <>
838 class UniversalTersePrinter<const char*> {
839  public:
Print(const char * str,::std::ostream * os)840   static void Print(const char* str, ::std::ostream* os) {
841     if (str == nullptr) {
842       *os << "NULL";
843     } else {
844       UniversalPrint(std::string(str), os);
845     }
846   }
847 };
848 template <>
849 class UniversalTersePrinter<char*> {
850  public:
Print(char * str,::std::ostream * os)851   static void Print(char* str, ::std::ostream* os) {
852     UniversalTersePrinter<const char*>::Print(str, os);
853   }
854 };
855 
856 #if GTEST_HAS_STD_WSTRING
857 template <>
858 class UniversalTersePrinter<const wchar_t*> {
859  public:
Print(const wchar_t * str,::std::ostream * os)860   static void Print(const wchar_t* str, ::std::ostream* os) {
861     if (str == nullptr) {
862       *os << "NULL";
863     } else {
864       UniversalPrint(::std::wstring(str), os);
865     }
866   }
867 };
868 #endif
869 
870 template <>
871 class UniversalTersePrinter<wchar_t*> {
872  public:
Print(wchar_t * str,::std::ostream * os)873   static void Print(wchar_t* str, ::std::ostream* os) {
874     UniversalTersePrinter<const wchar_t*>::Print(str, os);
875   }
876 };
877 
878 template <typename T>
UniversalTersePrint(const T & value,::std::ostream * os)879 void UniversalTersePrint(const T& value, ::std::ostream* os) {
880   UniversalTersePrinter<T>::Print(value, os);
881 }
882 
883 // Prints a value using the type inferred by the compiler.  The
884 // difference between this and UniversalTersePrint() is that for a
885 // (const) char pointer, this prints both the pointer and the
886 // NUL-terminated string.
887 template <typename T>
UniversalPrint(const T & value,::std::ostream * os)888 void UniversalPrint(const T& value, ::std::ostream* os) {
889   // A workarond for the bug in VC++ 7.1 that prevents us from instantiating
890   // UniversalPrinter with T directly.
891   typedef T T1;
892   UniversalPrinter<T1>::Print(value, os);
893 }
894 
895 typedef ::std::vector< ::std::string> Strings;
896 
897   // Tersely prints the first N fields of a tuple to a string vector,
898   // one element for each field.
899 template <typename Tuple>
TersePrintPrefixToStrings(const Tuple &,std::integral_constant<size_t,0>,Strings *)900 void TersePrintPrefixToStrings(const Tuple&, std::integral_constant<size_t, 0>,
901                                Strings*) {}
902 template <typename Tuple, size_t I>
TersePrintPrefixToStrings(const Tuple & t,std::integral_constant<size_t,I>,Strings * strings)903 void TersePrintPrefixToStrings(const Tuple& t,
904                                std::integral_constant<size_t, I>,
905                                Strings* strings) {
906   TersePrintPrefixToStrings(t, std::integral_constant<size_t, I - 1>(),
907                             strings);
908   ::std::stringstream ss;
909   UniversalTersePrint(std::get<I - 1>(t), &ss);
910   strings->push_back(ss.str());
911 }
912 
913 // Prints the fields of a tuple tersely to a string vector, one
914 // element for each field.  See the comment before
915 // UniversalTersePrint() for how we define "tersely".
916 template <typename Tuple>
UniversalTersePrintTupleFieldsToStrings(const Tuple & value)917 Strings UniversalTersePrintTupleFieldsToStrings(const Tuple& value) {
918   Strings result;
919   TersePrintPrefixToStrings(
920       value, std::integral_constant<size_t, std::tuple_size<Tuple>::value>(),
921       &result);
922   return result;
923 }
924 
925 }  // namespace internal
926 
927 #if GTEST_HAS_ABSL
928 namespace internal2 {
929 template <typename T>
PrintValue(const T & value,::std::ostream * os)930 void TypeWithoutFormatter<T, kConvertibleToStringView>::PrintValue(
931     const T& value, ::std::ostream* os) {
932   internal::PrintTo(absl::string_view(value), os);
933 }
934 }  // namespace internal2
935 #endif
936 
937 template <typename T>
PrintToString(const T & value)938 ::std::string PrintToString(const T& value) {
939   ::std::stringstream ss;
940   internal::UniversalTersePrinter<T>::Print(value, &ss);
941   return ss.str();
942 }
943 
944 }  // namespace testing
945 
946 // Include any custom printer added by the local installation.
947 // We must include this header at the end to make sure it can use the
948 // declarations from this file.
949 #include "gtest/internal/custom/gtest-printers.h"
950 
951 #endif  // GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_
952