1 /*
2 Copyright (c) 2013 Advanced Micro Devices, Inc.
3 
4 This software is provided 'as-is', without any express or implied warranty.
5 In no event will the authors be held liable for any damages arising from the use of this software.
6 Permission is granted to anyone to use this software for any purpose,
7 including commercial applications, and to alter it and redistribute it freely,
8 subject to the following restrictions:
9 
10 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
11 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
12 3. This notice may not be removed or altered from any source distribution.
13 */
14 //Originally written by Erwin Coumans
15 
16 #ifndef B3_GPU_SOLVER_BODY_H
17 #define B3_GPU_SOLVER_BODY_H
18 
19 #include "Bullet3Common/b3Vector3.h"
20 #include "Bullet3Common/b3Matrix3x3.h"
21 
22 #include "Bullet3Common/b3AlignedAllocator.h"
23 #include "Bullet3Common/b3TransformUtil.h"
24 
25 ///Until we get other contributions, only use SIMD on Windows, when using Visual Studio 2008 or later, and not double precision
26 #ifdef B3_USE_SSE
27 #define USE_SIMD 1
28 #endif  //
29 
30 ///The b3SolverBody is an internal datastructure for the constraint solver. Only necessary data is packed to increase cache coherence/performance.
B3_ATTRIBUTE_ALIGNED16(struct)31 B3_ATTRIBUTE_ALIGNED16(struct)
32 b3GpuSolverBody
33 {
34 	B3_DECLARE_ALIGNED_ALLOCATOR();
35 	//	b3Transform		m_worldTransformUnused;
36 	b3Vector3 m_deltaLinearVelocity;
37 	b3Vector3 m_deltaAngularVelocity;
38 	b3Vector3 m_angularFactor;
39 	b3Vector3 m_linearFactor;
40 	b3Vector3 m_invMass;
41 	b3Vector3 m_pushVelocity;
42 	b3Vector3 m_turnVelocity;
43 	b3Vector3 m_linearVelocity;
44 	b3Vector3 m_angularVelocity;
45 
46 	union {
47 		void* m_originalBody;
48 		int m_originalBodyIndex;
49 	};
50 
51 	int padding[3];
52 
53 	/*
54 	void	setWorldTransform(const b3Transform& worldTransform)
55 	{
56 		m_worldTransform = worldTransform;
57 	}
58 
59 	const b3Transform& getWorldTransform() const
60 	{
61 		return m_worldTransform;
62 	}
63 	*/
64 	B3_FORCE_INLINE void getVelocityInLocalPointObsolete(const b3Vector3& rel_pos, b3Vector3& velocity) const
65 	{
66 		if (m_originalBody)
67 			velocity = m_linearVelocity + m_deltaLinearVelocity + (m_angularVelocity + m_deltaAngularVelocity).cross(rel_pos);
68 		else
69 			velocity.setValue(0, 0, 0);
70 	}
71 
72 	B3_FORCE_INLINE void getAngularVelocity(b3Vector3 & angVel) const
73 	{
74 		if (m_originalBody)
75 			angVel = m_angularVelocity + m_deltaAngularVelocity;
76 		else
77 			angVel.setValue(0, 0, 0);
78 	}
79 
80 	//Optimization for the iterative solver: avoid calculating constant terms involving inertia, normal, relative position
81 	B3_FORCE_INLINE void applyImpulse(const b3Vector3& linearComponent, const b3Vector3& angularComponent, const b3Scalar impulseMagnitude)
82 	{
83 		if (m_originalBody)
84 		{
85 			m_deltaLinearVelocity += linearComponent * impulseMagnitude * m_linearFactor;
86 			m_deltaAngularVelocity += angularComponent * (impulseMagnitude * m_angularFactor);
87 		}
88 	}
89 
90 	B3_FORCE_INLINE void internalApplyPushImpulse(const b3Vector3& linearComponent, const b3Vector3& angularComponent, b3Scalar impulseMagnitude)
91 	{
92 		if (m_originalBody)
93 		{
94 			m_pushVelocity += linearComponent * impulseMagnitude * m_linearFactor;
95 			m_turnVelocity += angularComponent * (impulseMagnitude * m_angularFactor);
96 		}
97 	}
98 
99 	const b3Vector3& getDeltaLinearVelocity() const
100 	{
101 		return m_deltaLinearVelocity;
102 	}
103 
104 	const b3Vector3& getDeltaAngularVelocity() const
105 	{
106 		return m_deltaAngularVelocity;
107 	}
108 
109 	const b3Vector3& getPushVelocity() const
110 	{
111 		return m_pushVelocity;
112 	}
113 
114 	const b3Vector3& getTurnVelocity() const
115 	{
116 		return m_turnVelocity;
117 	}
118 
119 	////////////////////////////////////////////////
120 	///some internal methods, don't use them
121 
122 	b3Vector3& internalGetDeltaLinearVelocity()
123 	{
124 		return m_deltaLinearVelocity;
125 	}
126 
127 	b3Vector3& internalGetDeltaAngularVelocity()
128 	{
129 		return m_deltaAngularVelocity;
130 	}
131 
132 	const b3Vector3& internalGetAngularFactor() const
133 	{
134 		return m_angularFactor;
135 	}
136 
137 	const b3Vector3& internalGetInvMass() const
138 	{
139 		return m_invMass;
140 	}
141 
142 	void internalSetInvMass(const b3Vector3& invMass)
143 	{
144 		m_invMass = invMass;
145 	}
146 
147 	b3Vector3& internalGetPushVelocity()
148 	{
149 		return m_pushVelocity;
150 	}
151 
152 	b3Vector3& internalGetTurnVelocity()
153 	{
154 		return m_turnVelocity;
155 	}
156 
157 	B3_FORCE_INLINE void internalGetVelocityInLocalPointObsolete(const b3Vector3& rel_pos, b3Vector3& velocity) const
158 	{
159 		velocity = m_linearVelocity + m_deltaLinearVelocity + (m_angularVelocity + m_deltaAngularVelocity).cross(rel_pos);
160 	}
161 
162 	B3_FORCE_INLINE void internalGetAngularVelocity(b3Vector3 & angVel) const
163 	{
164 		angVel = m_angularVelocity + m_deltaAngularVelocity;
165 	}
166 
167 	//Optimization for the iterative solver: avoid calculating constant terms involving inertia, normal, relative position
168 	B3_FORCE_INLINE void internalApplyImpulse(const b3Vector3& linearComponent, const b3Vector3& angularComponent, const b3Scalar impulseMagnitude)
169 	{
170 		//if (m_originalBody)
171 		{
172 			m_deltaLinearVelocity += linearComponent * impulseMagnitude * m_linearFactor;
173 			m_deltaAngularVelocity += angularComponent * (impulseMagnitude * m_angularFactor);
174 		}
175 	}
176 
177 	void writebackVelocity()
178 	{
179 		//if (m_originalBody>=0)
180 		{
181 			m_linearVelocity += m_deltaLinearVelocity;
182 			m_angularVelocity += m_deltaAngularVelocity;
183 
184 			//m_originalBody->setCompanionId(-1);
185 		}
186 	}
187 
188 	void writebackVelocityAndTransform(b3Scalar timeStep, b3Scalar splitImpulseTurnErp)
189 	{
190 		(void)timeStep;
191 		if (m_originalBody)
192 		{
193 			m_linearVelocity += m_deltaLinearVelocity;
194 			m_angularVelocity += m_deltaAngularVelocity;
195 
196 			//correct the position/orientation based on push/turn recovery
197 			b3Transform newTransform;
198 			if (m_pushVelocity[0] != 0.f || m_pushVelocity[1] != 0 || m_pushVelocity[2] != 0 || m_turnVelocity[0] != 0.f || m_turnVelocity[1] != 0 || m_turnVelocity[2] != 0)
199 			{
200 				//	b3Quaternion orn = m_worldTransform.getRotation();
201 				//				b3TransformUtil::integrateTransform(m_worldTransform,m_pushVelocity,m_turnVelocity*splitImpulseTurnErp,timeStep,newTransform);
202 				//				m_worldTransform = newTransform;
203 			}
204 			//m_worldTransform.setRotation(orn);
205 			//m_originalBody->setCompanionId(-1);
206 		}
207 	}
208 };
209 
210 #endif  //B3_SOLVER_BODY_H
211