1 //! The Rust abstract syntax tree module.
2 //!
3 //! This module contains common structures forming the language AST.
4 //! Two main entities in the module are [`Item`] (which represents an AST element with
5 //! additional metadata), and [`ItemKind`] (which represents a concrete type and contains
6 //! information specific to the type of the item).
7 //!
8 //! Other module items worth mentioning:
9 //! - [`Ty`] and [`TyKind`]: A parsed Rust type.
10 //! - [`Expr`] and [`ExprKind`]: A parsed Rust expression.
11 //! - [`Pat`] and [`PatKind`]: A parsed Rust pattern. Patterns are often dual to expressions.
12 //! - [`Stmt`] and [`StmtKind`]: An executable action that does not return a value.
13 //! - [`FnDecl`], [`FnHeader`] and [`Param`]: Metadata associated with a function declaration.
14 //! - [`Generics`], [`GenericParam`], [`WhereClause`]: Metadata associated with generic parameters.
15 //! - [`EnumDef`] and [`Variant`]: Enum declaration.
16 //! - [`Lit`] and [`LitKind`]: Literal expressions.
17 //! - [`MacroDef`], [`MacStmtStyle`], [`MacCall`], [`MacDelimiter`]: Macro definition and invocation.
18 //! - [`Attribute`]: Metadata associated with item.
19 //! - [`UnOp`], [`BinOp`], and [`BinOpKind`]: Unary and binary operators.
20 
21 pub use crate::util::parser::ExprPrecedence;
22 pub use GenericArgs::*;
23 pub use UnsafeSource::*;
24 
25 use crate::ptr::P;
26 use crate::token::{self, CommentKind, DelimToken, Token};
27 use crate::tokenstream::{DelimSpan, LazyTokenStream, TokenStream, TokenTree};
28 
29 use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
30 use rustc_data_structures::stack::ensure_sufficient_stack;
31 use rustc_data_structures::sync::Lrc;
32 use rustc_data_structures::thin_vec::ThinVec;
33 use rustc_macros::HashStable_Generic;
34 use rustc_serialize::{self, Decoder, Encoder};
35 use rustc_span::source_map::{respan, Spanned};
36 use rustc_span::symbol::{kw, sym, Ident, Symbol};
37 use rustc_span::{Span, DUMMY_SP};
38 
39 use std::cmp::Ordering;
40 use std::convert::TryFrom;
41 use std::fmt;
42 
43 #[cfg(test)]
44 mod tests;
45 
46 /// A "Label" is an identifier of some point in sources,
47 /// e.g. in the following code:
48 ///
49 /// ```rust
50 /// 'outer: loop {
51 ///     break 'outer;
52 /// }
53 /// ```
54 ///
55 /// `'outer` is a label.
56 #[derive(Clone, Encodable, Decodable, Copy, HashStable_Generic)]
57 pub struct Label {
58     pub ident: Ident,
59 }
60 
61 impl fmt::Debug for Label {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result62     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
63         write!(f, "label({:?})", self.ident)
64     }
65 }
66 
67 /// A "Lifetime" is an annotation of the scope in which variable
68 /// can be used, e.g. `'a` in `&'a i32`.
69 #[derive(Clone, Encodable, Decodable, Copy)]
70 pub struct Lifetime {
71     pub id: NodeId,
72     pub ident: Ident,
73 }
74 
75 impl fmt::Debug for Lifetime {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result76     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
77         write!(f, "lifetime({}: {})", self.id, self)
78     }
79 }
80 
81 impl fmt::Display for Lifetime {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result82     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
83         write!(f, "{}", self.ident.name)
84     }
85 }
86 
87 /// A "Path" is essentially Rust's notion of a name.
88 ///
89 /// It's represented as a sequence of identifiers,
90 /// along with a bunch of supporting information.
91 ///
92 /// E.g., `std::cmp::PartialEq`.
93 #[derive(Clone, Encodable, Decodable, Debug)]
94 pub struct Path {
95     pub span: Span,
96     /// The segments in the path: the things separated by `::`.
97     /// Global paths begin with `kw::PathRoot`.
98     pub segments: Vec<PathSegment>,
99     pub tokens: Option<LazyTokenStream>,
100 }
101 
102 impl PartialEq<Symbol> for Path {
103     #[inline]
eq(&self, symbol: &Symbol) -> bool104     fn eq(&self, symbol: &Symbol) -> bool {
105         self.segments.len() == 1 && { self.segments[0].ident.name == *symbol }
106     }
107 }
108 
109 impl<CTX> HashStable<CTX> for Path {
hash_stable(&self, hcx: &mut CTX, hasher: &mut StableHasher)110     fn hash_stable(&self, hcx: &mut CTX, hasher: &mut StableHasher) {
111         self.segments.len().hash_stable(hcx, hasher);
112         for segment in &self.segments {
113             segment.ident.name.hash_stable(hcx, hasher);
114         }
115     }
116 }
117 
118 impl Path {
119     // Convert a span and an identifier to the corresponding
120     // one-segment path.
from_ident(ident: Ident) -> Path121     pub fn from_ident(ident: Ident) -> Path {
122         Path { segments: vec![PathSegment::from_ident(ident)], span: ident.span, tokens: None }
123     }
124 
is_global(&self) -> bool125     pub fn is_global(&self) -> bool {
126         !self.segments.is_empty() && self.segments[0].ident.name == kw::PathRoot
127     }
128 }
129 
130 /// A segment of a path: an identifier, an optional lifetime, and a set of types.
131 ///
132 /// E.g., `std`, `String` or `Box<T>`.
133 #[derive(Clone, Encodable, Decodable, Debug)]
134 pub struct PathSegment {
135     /// The identifier portion of this path segment.
136     pub ident: Ident,
137 
138     pub id: NodeId,
139 
140     /// Type/lifetime parameters attached to this path. They come in
141     /// two flavors: `Path<A,B,C>` and `Path(A,B) -> C`.
142     /// `None` means that no parameter list is supplied (`Path`),
143     /// `Some` means that parameter list is supplied (`Path<X, Y>`)
144     /// but it can be empty (`Path<>`).
145     /// `P` is used as a size optimization for the common case with no parameters.
146     pub args: Option<P<GenericArgs>>,
147 }
148 
149 impl PathSegment {
from_ident(ident: Ident) -> Self150     pub fn from_ident(ident: Ident) -> Self {
151         PathSegment { ident, id: DUMMY_NODE_ID, args: None }
152     }
153 
path_root(span: Span) -> Self154     pub fn path_root(span: Span) -> Self {
155         PathSegment::from_ident(Ident::new(kw::PathRoot, span))
156     }
157 
span(&self) -> Span158     pub fn span(&self) -> Span {
159         match &self.args {
160             Some(args) => self.ident.span.to(args.span()),
161             None => self.ident.span,
162         }
163     }
164 }
165 
166 /// The arguments of a path segment.
167 ///
168 /// E.g., `<A, B>` as in `Foo<A, B>` or `(A, B)` as in `Foo(A, B)`.
169 #[derive(Clone, Encodable, Decodable, Debug)]
170 pub enum GenericArgs {
171     /// The `<'a, A, B, C>` in `foo::bar::baz::<'a, A, B, C>`.
172     AngleBracketed(AngleBracketedArgs),
173     /// The `(A, B)` and `C` in `Foo(A, B) -> C`.
174     Parenthesized(ParenthesizedArgs),
175 }
176 
177 impl GenericArgs {
is_angle_bracketed(&self) -> bool178     pub fn is_angle_bracketed(&self) -> bool {
179         matches!(self, AngleBracketed(..))
180     }
181 
span(&self) -> Span182     pub fn span(&self) -> Span {
183         match *self {
184             AngleBracketed(ref data) => data.span,
185             Parenthesized(ref data) => data.span,
186         }
187     }
188 }
189 
190 /// Concrete argument in the sequence of generic args.
191 #[derive(Clone, Encodable, Decodable, Debug)]
192 pub enum GenericArg {
193     /// `'a` in `Foo<'a>`
194     Lifetime(Lifetime),
195     /// `Bar` in `Foo<Bar>`
196     Type(P<Ty>),
197     /// `1` in `Foo<1>`
198     Const(AnonConst),
199 }
200 
201 impl GenericArg {
span(&self) -> Span202     pub fn span(&self) -> Span {
203         match self {
204             GenericArg::Lifetime(lt) => lt.ident.span,
205             GenericArg::Type(ty) => ty.span,
206             GenericArg::Const(ct) => ct.value.span,
207         }
208     }
209 }
210 
211 /// A path like `Foo<'a, T>`.
212 #[derive(Clone, Encodable, Decodable, Debug, Default)]
213 pub struct AngleBracketedArgs {
214     /// The overall span.
215     pub span: Span,
216     /// The comma separated parts in the `<...>`.
217     pub args: Vec<AngleBracketedArg>,
218 }
219 
220 /// Either an argument for a parameter e.g., `'a`, `Vec<u8>`, `0`,
221 /// or a constraint on an associated item, e.g., `Item = String` or `Item: Bound`.
222 #[derive(Clone, Encodable, Decodable, Debug)]
223 pub enum AngleBracketedArg {
224     /// Argument for a generic parameter.
225     Arg(GenericArg),
226     /// Constraint for an associated item.
227     Constraint(AssocTyConstraint),
228 }
229 
230 impl AngleBracketedArg {
span(&self) -> Span231     pub fn span(&self) -> Span {
232         match self {
233             AngleBracketedArg::Arg(arg) => arg.span(),
234             AngleBracketedArg::Constraint(constraint) => constraint.span,
235         }
236     }
237 }
238 
239 impl Into<Option<P<GenericArgs>>> for AngleBracketedArgs {
into(self) -> Option<P<GenericArgs>>240     fn into(self) -> Option<P<GenericArgs>> {
241         Some(P(GenericArgs::AngleBracketed(self)))
242     }
243 }
244 
245 impl Into<Option<P<GenericArgs>>> for ParenthesizedArgs {
into(self) -> Option<P<GenericArgs>>246     fn into(self) -> Option<P<GenericArgs>> {
247         Some(P(GenericArgs::Parenthesized(self)))
248     }
249 }
250 
251 /// A path like `Foo(A, B) -> C`.
252 #[derive(Clone, Encodable, Decodable, Debug)]
253 pub struct ParenthesizedArgs {
254     /// ```text
255     /// Foo(A, B) -> C
256     /// ^^^^^^^^^^^^^^
257     /// ```
258     pub span: Span,
259 
260     /// `(A, B)`
261     pub inputs: Vec<P<Ty>>,
262 
263     /// ```text
264     /// Foo(A, B) -> C
265     ///    ^^^^^^
266     /// ```
267     pub inputs_span: Span,
268 
269     /// `C`
270     pub output: FnRetTy,
271 }
272 
273 impl ParenthesizedArgs {
as_angle_bracketed_args(&self) -> AngleBracketedArgs274     pub fn as_angle_bracketed_args(&self) -> AngleBracketedArgs {
275         let args = self
276             .inputs
277             .iter()
278             .cloned()
279             .map(|input| AngleBracketedArg::Arg(GenericArg::Type(input)))
280             .collect();
281         AngleBracketedArgs { span: self.inputs_span, args }
282     }
283 }
284 
285 pub use crate::node_id::{NodeId, CRATE_NODE_ID, DUMMY_NODE_ID};
286 
287 /// A modifier on a bound, e.g., `?Sized` or `?const Trait`.
288 ///
289 /// Negative bounds should also be handled here.
290 #[derive(Copy, Clone, PartialEq, Eq, Encodable, Decodable, Debug)]
291 pub enum TraitBoundModifier {
292     /// No modifiers
293     None,
294 
295     /// `?Trait`
296     Maybe,
297 
298     /// `?const Trait`
299     MaybeConst,
300 
301     /// `?const ?Trait`
302     //
303     // This parses but will be rejected during AST validation.
304     MaybeConstMaybe,
305 }
306 
307 /// The AST represents all type param bounds as types.
308 /// `typeck::collect::compute_bounds` matches these against
309 /// the "special" built-in traits (see `middle::lang_items`) and
310 /// detects `Copy`, `Send` and `Sync`.
311 #[derive(Clone, Encodable, Decodable, Debug)]
312 pub enum GenericBound {
313     Trait(PolyTraitRef, TraitBoundModifier),
314     Outlives(Lifetime),
315 }
316 
317 impl GenericBound {
span(&self) -> Span318     pub fn span(&self) -> Span {
319         match self {
320             GenericBound::Trait(ref t, ..) => t.span,
321             GenericBound::Outlives(ref l) => l.ident.span,
322         }
323     }
324 }
325 
326 pub type GenericBounds = Vec<GenericBound>;
327 
328 /// Specifies the enforced ordering for generic parameters. In the future,
329 /// if we wanted to relax this order, we could override `PartialEq` and
330 /// `PartialOrd`, to allow the kinds to be unordered.
331 #[derive(Hash, Clone, Copy)]
332 pub enum ParamKindOrd {
333     Lifetime,
334     Type,
335     // `unordered` is only `true` if `sess.has_features().const_generics`
336     // is active. Specifically, if it's only `min_const_generics`, it will still require
337     // ordering consts after types.
338     Const { unordered: bool },
339 }
340 
341 impl Ord for ParamKindOrd {
cmp(&self, other: &Self) -> Ordering342     fn cmp(&self, other: &Self) -> Ordering {
343         use ParamKindOrd::*;
344         let to_int = |v| match v {
345             Lifetime => 0,
346             Type | Const { unordered: true } => 1,
347             // technically both consts should be ordered equally,
348             // but only one is ever encountered at a time, so this is
349             // fine.
350             Const { unordered: false } => 2,
351         };
352 
353         to_int(*self).cmp(&to_int(*other))
354     }
355 }
356 impl PartialOrd for ParamKindOrd {
partial_cmp(&self, other: &Self) -> Option<Ordering>357     fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
358         Some(self.cmp(other))
359     }
360 }
361 impl PartialEq for ParamKindOrd {
eq(&self, other: &Self) -> bool362     fn eq(&self, other: &Self) -> bool {
363         self.cmp(other) == Ordering::Equal
364     }
365 }
366 impl Eq for ParamKindOrd {}
367 
368 impl fmt::Display for ParamKindOrd {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result369     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
370         match self {
371             ParamKindOrd::Lifetime => "lifetime".fmt(f),
372             ParamKindOrd::Type => "type".fmt(f),
373             ParamKindOrd::Const { .. } => "const".fmt(f),
374         }
375     }
376 }
377 
378 #[derive(Clone, Encodable, Decodable, Debug)]
379 pub enum GenericParamKind {
380     /// A lifetime definition (e.g., `'a: 'b + 'c + 'd`).
381     Lifetime,
382     Type {
383         default: Option<P<Ty>>,
384     },
385     Const {
386         ty: P<Ty>,
387         /// Span of the `const` keyword.
388         kw_span: Span,
389         /// Optional default value for the const generic param
390         default: Option<AnonConst>,
391     },
392 }
393 
394 #[derive(Clone, Encodable, Decodable, Debug)]
395 pub struct GenericParam {
396     pub id: NodeId,
397     pub ident: Ident,
398     pub attrs: AttrVec,
399     pub bounds: GenericBounds,
400     pub is_placeholder: bool,
401     pub kind: GenericParamKind,
402 }
403 
404 /// Represents lifetime, type and const parameters attached to a declaration of
405 /// a function, enum, trait, etc.
406 #[derive(Clone, Encodable, Decodable, Debug)]
407 pub struct Generics {
408     pub params: Vec<GenericParam>,
409     pub where_clause: WhereClause,
410     pub span: Span,
411 }
412 
413 impl Default for Generics {
414     /// Creates an instance of `Generics`.
default() -> Generics415     fn default() -> Generics {
416         Generics {
417             params: Vec::new(),
418             where_clause: WhereClause {
419                 has_where_token: false,
420                 predicates: Vec::new(),
421                 span: DUMMY_SP,
422             },
423             span: DUMMY_SP,
424         }
425     }
426 }
427 
428 /// A where-clause in a definition.
429 #[derive(Clone, Encodable, Decodable, Debug)]
430 pub struct WhereClause {
431     /// `true` if we ate a `where` token: this can happen
432     /// if we parsed no predicates (e.g. `struct Foo where {}`).
433     /// This allows us to accurately pretty-print
434     /// in `nt_to_tokenstream`
435     pub has_where_token: bool,
436     pub predicates: Vec<WherePredicate>,
437     pub span: Span,
438 }
439 
440 /// A single predicate in a where-clause.
441 #[derive(Clone, Encodable, Decodable, Debug)]
442 pub enum WherePredicate {
443     /// A type binding (e.g., `for<'c> Foo: Send + Clone + 'c`).
444     BoundPredicate(WhereBoundPredicate),
445     /// A lifetime predicate (e.g., `'a: 'b + 'c`).
446     RegionPredicate(WhereRegionPredicate),
447     /// An equality predicate (unsupported).
448     EqPredicate(WhereEqPredicate),
449 }
450 
451 impl WherePredicate {
span(&self) -> Span452     pub fn span(&self) -> Span {
453         match self {
454             WherePredicate::BoundPredicate(p) => p.span,
455             WherePredicate::RegionPredicate(p) => p.span,
456             WherePredicate::EqPredicate(p) => p.span,
457         }
458     }
459 }
460 
461 /// A type bound.
462 ///
463 /// E.g., `for<'c> Foo: Send + Clone + 'c`.
464 #[derive(Clone, Encodable, Decodable, Debug)]
465 pub struct WhereBoundPredicate {
466     pub span: Span,
467     /// Any generics from a `for` binding.
468     pub bound_generic_params: Vec<GenericParam>,
469     /// The type being bounded.
470     pub bounded_ty: P<Ty>,
471     /// Trait and lifetime bounds (`Clone + Send + 'static`).
472     pub bounds: GenericBounds,
473 }
474 
475 /// A lifetime predicate.
476 ///
477 /// E.g., `'a: 'b + 'c`.
478 #[derive(Clone, Encodable, Decodable, Debug)]
479 pub struct WhereRegionPredicate {
480     pub span: Span,
481     pub lifetime: Lifetime,
482     pub bounds: GenericBounds,
483 }
484 
485 /// An equality predicate (unsupported).
486 ///
487 /// E.g., `T = int`.
488 #[derive(Clone, Encodable, Decodable, Debug)]
489 pub struct WhereEqPredicate {
490     pub id: NodeId,
491     pub span: Span,
492     pub lhs_ty: P<Ty>,
493     pub rhs_ty: P<Ty>,
494 }
495 
496 #[derive(Clone, Encodable, Decodable, Debug)]
497 pub struct Crate {
498     pub attrs: Vec<Attribute>,
499     pub items: Vec<P<Item>>,
500     pub span: Span,
501     /// The order of items in the HIR is unrelated to the order of
502     /// items in the AST. However, we generate proc macro harnesses
503     /// based on the AST order, and later refer to these harnesses
504     /// from the HIR. This field keeps track of the order in which
505     /// we generated proc macros harnesses, so that we can map
506     /// HIR proc macros items back to their harness items.
507     pub proc_macros: Vec<NodeId>,
508 }
509 
510 /// Possible values inside of compile-time attribute lists.
511 ///
512 /// E.g., the '..' in `#[name(..)]`.
513 #[derive(Clone, Encodable, Decodable, Debug, HashStable_Generic)]
514 pub enum NestedMetaItem {
515     /// A full MetaItem, for recursive meta items.
516     MetaItem(MetaItem),
517     /// A literal.
518     ///
519     /// E.g., `"foo"`, `64`, `true`.
520     Literal(Lit),
521 }
522 
523 /// A spanned compile-time attribute item.
524 ///
525 /// E.g., `#[test]`, `#[derive(..)]`, `#[rustfmt::skip]` or `#[feature = "foo"]`.
526 #[derive(Clone, Encodable, Decodable, Debug, HashStable_Generic)]
527 pub struct MetaItem {
528     pub path: Path,
529     pub kind: MetaItemKind,
530     pub span: Span,
531 }
532 
533 /// A compile-time attribute item.
534 ///
535 /// E.g., `#[test]`, `#[derive(..)]` or `#[feature = "foo"]`.
536 #[derive(Clone, Encodable, Decodable, Debug, HashStable_Generic)]
537 pub enum MetaItemKind {
538     /// Word meta item.
539     ///
540     /// E.g., `test` as in `#[test]`.
541     Word,
542     /// List meta item.
543     ///
544     /// E.g., `derive(..)` as in `#[derive(..)]`.
545     List(Vec<NestedMetaItem>),
546     /// Name value meta item.
547     ///
548     /// E.g., `feature = "foo"` as in `#[feature = "foo"]`.
549     NameValue(Lit),
550 }
551 
552 /// A block (`{ .. }`).
553 ///
554 /// E.g., `{ .. }` as in `fn foo() { .. }`.
555 #[derive(Clone, Encodable, Decodable, Debug)]
556 pub struct Block {
557     /// The statements in the block.
558     pub stmts: Vec<Stmt>,
559     pub id: NodeId,
560     /// Distinguishes between `unsafe { ... }` and `{ ... }`.
561     pub rules: BlockCheckMode,
562     pub span: Span,
563     pub tokens: Option<LazyTokenStream>,
564 }
565 
566 /// A match pattern.
567 ///
568 /// Patterns appear in match statements and some other contexts, such as `let` and `if let`.
569 #[derive(Clone, Encodable, Decodable, Debug)]
570 pub struct Pat {
571     pub id: NodeId,
572     pub kind: PatKind,
573     pub span: Span,
574     pub tokens: Option<LazyTokenStream>,
575 }
576 
577 impl Pat {
578     /// Attempt reparsing the pattern as a type.
579     /// This is intended for use by diagnostics.
to_ty(&self) -> Option<P<Ty>>580     pub fn to_ty(&self) -> Option<P<Ty>> {
581         let kind = match &self.kind {
582             // In a type expression `_` is an inference variable.
583             PatKind::Wild => TyKind::Infer,
584             // An IDENT pattern with no binding mode would be valid as path to a type. E.g. `u32`.
585             PatKind::Ident(BindingMode::ByValue(Mutability::Not), ident, None) => {
586                 TyKind::Path(None, Path::from_ident(*ident))
587             }
588             PatKind::Path(qself, path) => TyKind::Path(qself.clone(), path.clone()),
589             PatKind::MacCall(mac) => TyKind::MacCall(mac.clone()),
590             // `&mut? P` can be reinterpreted as `&mut? T` where `T` is `P` reparsed as a type.
591             PatKind::Ref(pat, mutbl) => {
592                 pat.to_ty().map(|ty| TyKind::Rptr(None, MutTy { ty, mutbl: *mutbl }))?
593             }
594             // A slice/array pattern `[P]` can be reparsed as `[T]`, an unsized array,
595             // when `P` can be reparsed as a type `T`.
596             PatKind::Slice(pats) if pats.len() == 1 => pats[0].to_ty().map(TyKind::Slice)?,
597             // A tuple pattern `(P0, .., Pn)` can be reparsed as `(T0, .., Tn)`
598             // assuming `T0` to `Tn` are all syntactically valid as types.
599             PatKind::Tuple(pats) => {
600                 let mut tys = Vec::with_capacity(pats.len());
601                 // FIXME(#48994) - could just be collected into an Option<Vec>
602                 for pat in pats {
603                     tys.push(pat.to_ty()?);
604                 }
605                 TyKind::Tup(tys)
606             }
607             _ => return None,
608         };
609 
610         Some(P(Ty { kind, id: self.id, span: self.span, tokens: None }))
611     }
612 
613     /// Walk top-down and call `it` in each place where a pattern occurs
614     /// starting with the root pattern `walk` is called on. If `it` returns
615     /// false then we will descend no further but siblings will be processed.
walk(&self, it: &mut impl FnMut(&Pat) -> bool)616     pub fn walk(&self, it: &mut impl FnMut(&Pat) -> bool) {
617         if !it(self) {
618             return;
619         }
620 
621         match &self.kind {
622             // Walk into the pattern associated with `Ident` (if any).
623             PatKind::Ident(_, _, Some(p)) => p.walk(it),
624 
625             // Walk into each field of struct.
626             PatKind::Struct(_, fields, _) => fields.iter().for_each(|field| field.pat.walk(it)),
627 
628             // Sequence of patterns.
629             PatKind::TupleStruct(_, s) | PatKind::Tuple(s) | PatKind::Slice(s) | PatKind::Or(s) => {
630                 s.iter().for_each(|p| p.walk(it))
631             }
632 
633             // Trivial wrappers over inner patterns.
634             PatKind::Box(s) | PatKind::Ref(s, _) | PatKind::Paren(s) => s.walk(it),
635 
636             // These patterns do not contain subpatterns, skip.
637             PatKind::Wild
638             | PatKind::Rest
639             | PatKind::Lit(_)
640             | PatKind::Range(..)
641             | PatKind::Ident(..)
642             | PatKind::Path(..)
643             | PatKind::MacCall(_) => {}
644         }
645     }
646 
647     /// Is this a `..` pattern?
is_rest(&self) -> bool648     pub fn is_rest(&self) -> bool {
649         matches!(self.kind, PatKind::Rest)
650     }
651 }
652 
653 /// A single field in a struct pattern.
654 ///
655 /// Patterns like the fields of `Foo { x, ref y, ref mut z }`
656 /// are treated the same as `x: x, y: ref y, z: ref mut z`,
657 /// except when `is_shorthand` is true.
658 #[derive(Clone, Encodable, Decodable, Debug)]
659 pub struct PatField {
660     /// The identifier for the field.
661     pub ident: Ident,
662     /// The pattern the field is destructured to.
663     pub pat: P<Pat>,
664     pub is_shorthand: bool,
665     pub attrs: AttrVec,
666     pub id: NodeId,
667     pub span: Span,
668     pub is_placeholder: bool,
669 }
670 
671 #[derive(Clone, PartialEq, Encodable, Decodable, Debug, Copy)]
672 pub enum BindingMode {
673     ByRef(Mutability),
674     ByValue(Mutability),
675 }
676 
677 #[derive(Clone, Encodable, Decodable, Debug)]
678 pub enum RangeEnd {
679     Included(RangeSyntax),
680     Excluded,
681 }
682 
683 #[derive(Clone, Encodable, Decodable, Debug)]
684 pub enum RangeSyntax {
685     /// `...`
686     DotDotDot,
687     /// `..=`
688     DotDotEq,
689 }
690 
691 #[derive(Clone, Encodable, Decodable, Debug)]
692 pub enum PatKind {
693     /// Represents a wildcard pattern (`_`).
694     Wild,
695 
696     /// A `PatKind::Ident` may either be a new bound variable (`ref mut binding @ OPT_SUBPATTERN`),
697     /// or a unit struct/variant pattern, or a const pattern (in the last two cases the third
698     /// field must be `None`). Disambiguation cannot be done with parser alone, so it happens
699     /// during name resolution.
700     Ident(BindingMode, Ident, Option<P<Pat>>),
701 
702     /// A struct or struct variant pattern (e.g., `Variant {x, y, ..}`).
703     /// The `bool` is `true` in the presence of a `..`.
704     Struct(Path, Vec<PatField>, /* recovered */ bool),
705 
706     /// A tuple struct/variant pattern (`Variant(x, y, .., z)`).
707     TupleStruct(Path, Vec<P<Pat>>),
708 
709     /// An or-pattern `A | B | C`.
710     /// Invariant: `pats.len() >= 2`.
711     Or(Vec<P<Pat>>),
712 
713     /// A possibly qualified path pattern.
714     /// Unqualified path patterns `A::B::C` can legally refer to variants, structs, constants
715     /// or associated constants. Qualified path patterns `<A>::B::C`/`<A as Trait>::B::C` can
716     /// only legally refer to associated constants.
717     Path(Option<QSelf>, Path),
718 
719     /// A tuple pattern (`(a, b)`).
720     Tuple(Vec<P<Pat>>),
721 
722     /// A `box` pattern.
723     Box(P<Pat>),
724 
725     /// A reference pattern (e.g., `&mut (a, b)`).
726     Ref(P<Pat>, Mutability),
727 
728     /// A literal.
729     Lit(P<Expr>),
730 
731     /// A range pattern (e.g., `1...2`, `1..=2` or `1..2`).
732     Range(Option<P<Expr>>, Option<P<Expr>>, Spanned<RangeEnd>),
733 
734     /// A slice pattern `[a, b, c]`.
735     Slice(Vec<P<Pat>>),
736 
737     /// A rest pattern `..`.
738     ///
739     /// Syntactically it is valid anywhere.
740     ///
741     /// Semantically however, it only has meaning immediately inside:
742     /// - a slice pattern: `[a, .., b]`,
743     /// - a binding pattern immediately inside a slice pattern: `[a, r @ ..]`,
744     /// - a tuple pattern: `(a, .., b)`,
745     /// - a tuple struct/variant pattern: `$path(a, .., b)`.
746     ///
747     /// In all of these cases, an additional restriction applies,
748     /// only one rest pattern may occur in the pattern sequences.
749     Rest,
750 
751     /// Parentheses in patterns used for grouping (i.e., `(PAT)`).
752     Paren(P<Pat>),
753 
754     /// A macro pattern; pre-expansion.
755     MacCall(MacCall),
756 }
757 
758 #[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, Copy)]
759 #[derive(HashStable_Generic, Encodable, Decodable)]
760 pub enum Mutability {
761     Mut,
762     Not,
763 }
764 
765 impl Mutability {
invert(self) -> Self766     pub fn invert(self) -> Self {
767         match self {
768             Mutability::Mut => Mutability::Not,
769             Mutability::Not => Mutability::Mut,
770         }
771     }
772 
prefix_str(&self) -> &'static str773     pub fn prefix_str(&self) -> &'static str {
774         match self {
775             Mutability::Mut => "mut ",
776             Mutability::Not => "",
777         }
778     }
779 }
780 
781 /// The kind of borrow in an `AddrOf` expression,
782 /// e.g., `&place` or `&raw const place`.
783 #[derive(Clone, Copy, PartialEq, Eq, Debug)]
784 #[derive(Encodable, Decodable, HashStable_Generic)]
785 pub enum BorrowKind {
786     /// A normal borrow, `&$expr` or `&mut $expr`.
787     /// The resulting type is either `&'a T` or `&'a mut T`
788     /// where `T = typeof($expr)` and `'a` is some lifetime.
789     Ref,
790     /// A raw borrow, `&raw const $expr` or `&raw mut $expr`.
791     /// The resulting type is either `*const T` or `*mut T`
792     /// where `T = typeof($expr)`.
793     Raw,
794 }
795 
796 #[derive(Clone, PartialEq, Encodable, Decodable, Debug, Copy)]
797 pub enum BinOpKind {
798     /// The `+` operator (addition)
799     Add,
800     /// The `-` operator (subtraction)
801     Sub,
802     /// The `*` operator (multiplication)
803     Mul,
804     /// The `/` operator (division)
805     Div,
806     /// The `%` operator (modulus)
807     Rem,
808     /// The `&&` operator (logical and)
809     And,
810     /// The `||` operator (logical or)
811     Or,
812     /// The `^` operator (bitwise xor)
813     BitXor,
814     /// The `&` operator (bitwise and)
815     BitAnd,
816     /// The `|` operator (bitwise or)
817     BitOr,
818     /// The `<<` operator (shift left)
819     Shl,
820     /// The `>>` operator (shift right)
821     Shr,
822     /// The `==` operator (equality)
823     Eq,
824     /// The `<` operator (less than)
825     Lt,
826     /// The `<=` operator (less than or equal to)
827     Le,
828     /// The `!=` operator (not equal to)
829     Ne,
830     /// The `>=` operator (greater than or equal to)
831     Ge,
832     /// The `>` operator (greater than)
833     Gt,
834 }
835 
836 impl BinOpKind {
to_string(&self) -> &'static str837     pub fn to_string(&self) -> &'static str {
838         use BinOpKind::*;
839         match *self {
840             Add => "+",
841             Sub => "-",
842             Mul => "*",
843             Div => "/",
844             Rem => "%",
845             And => "&&",
846             Or => "||",
847             BitXor => "^",
848             BitAnd => "&",
849             BitOr => "|",
850             Shl => "<<",
851             Shr => ">>",
852             Eq => "==",
853             Lt => "<",
854             Le => "<=",
855             Ne => "!=",
856             Ge => ">=",
857             Gt => ">",
858         }
859     }
lazy(&self) -> bool860     pub fn lazy(&self) -> bool {
861         matches!(self, BinOpKind::And | BinOpKind::Or)
862     }
863 
is_comparison(&self) -> bool864     pub fn is_comparison(&self) -> bool {
865         use BinOpKind::*;
866         // Note for developers: please keep this as is;
867         // we want compilation to fail if another variant is added.
868         match *self {
869             Eq | Lt | Le | Ne | Gt | Ge => true,
870             And | Or | Add | Sub | Mul | Div | Rem | BitXor | BitAnd | BitOr | Shl | Shr => false,
871         }
872     }
873 }
874 
875 pub type BinOp = Spanned<BinOpKind>;
876 
877 /// Unary operator.
878 ///
879 /// Note that `&data` is not an operator, it's an `AddrOf` expression.
880 #[derive(Clone, Encodable, Decodable, Debug, Copy)]
881 pub enum UnOp {
882     /// The `*` operator for dereferencing
883     Deref,
884     /// The `!` operator for logical inversion
885     Not,
886     /// The `-` operator for negation
887     Neg,
888 }
889 
890 impl UnOp {
to_string(op: UnOp) -> &'static str891     pub fn to_string(op: UnOp) -> &'static str {
892         match op {
893             UnOp::Deref => "*",
894             UnOp::Not => "!",
895             UnOp::Neg => "-",
896         }
897     }
898 }
899 
900 /// A statement
901 #[derive(Clone, Encodable, Decodable, Debug)]
902 pub struct Stmt {
903     pub id: NodeId,
904     pub kind: StmtKind,
905     pub span: Span,
906 }
907 
908 impl Stmt {
tokens(&self) -> Option<&LazyTokenStream>909     pub fn tokens(&self) -> Option<&LazyTokenStream> {
910         match self.kind {
911             StmtKind::Local(ref local) => local.tokens.as_ref(),
912             StmtKind::Item(ref item) => item.tokens.as_ref(),
913             StmtKind::Expr(ref expr) | StmtKind::Semi(ref expr) => expr.tokens.as_ref(),
914             StmtKind::Empty => None,
915             StmtKind::MacCall(ref mac) => mac.tokens.as_ref(),
916         }
917     }
918 
has_trailing_semicolon(&self) -> bool919     pub fn has_trailing_semicolon(&self) -> bool {
920         match &self.kind {
921             StmtKind::Semi(_) => true,
922             StmtKind::MacCall(mac) => matches!(mac.style, MacStmtStyle::Semicolon),
923             _ => false,
924         }
925     }
926 
927     /// Converts a parsed `Stmt` to a `Stmt` with
928     /// a trailing semicolon.
929     ///
930     /// This only modifies the parsed AST struct, not the attached
931     /// `LazyTokenStream`. The parser is responsible for calling
932     /// `CreateTokenStream::add_trailing_semi` when there is actually
933     /// a semicolon in the tokenstream.
add_trailing_semicolon(mut self) -> Self934     pub fn add_trailing_semicolon(mut self) -> Self {
935         self.kind = match self.kind {
936             StmtKind::Expr(expr) => StmtKind::Semi(expr),
937             StmtKind::MacCall(mac) => {
938                 StmtKind::MacCall(mac.map(|MacCallStmt { mac, style: _, attrs, tokens }| {
939                     MacCallStmt { mac, style: MacStmtStyle::Semicolon, attrs, tokens }
940                 }))
941             }
942             kind => kind,
943         };
944 
945         self
946     }
947 
is_item(&self) -> bool948     pub fn is_item(&self) -> bool {
949         matches!(self.kind, StmtKind::Item(_))
950     }
951 
is_expr(&self) -> bool952     pub fn is_expr(&self) -> bool {
953         matches!(self.kind, StmtKind::Expr(_))
954     }
955 }
956 
957 #[derive(Clone, Encodable, Decodable, Debug)]
958 pub enum StmtKind {
959     /// A local (let) binding.
960     Local(P<Local>),
961     /// An item definition.
962     Item(P<Item>),
963     /// Expr without trailing semi-colon.
964     Expr(P<Expr>),
965     /// Expr with a trailing semi-colon.
966     Semi(P<Expr>),
967     /// Just a trailing semi-colon.
968     Empty,
969     /// Macro.
970     MacCall(P<MacCallStmt>),
971 }
972 
973 #[derive(Clone, Encodable, Decodable, Debug)]
974 pub struct MacCallStmt {
975     pub mac: MacCall,
976     pub style: MacStmtStyle,
977     pub attrs: AttrVec,
978     pub tokens: Option<LazyTokenStream>,
979 }
980 
981 #[derive(Clone, Copy, PartialEq, Encodable, Decodable, Debug)]
982 pub enum MacStmtStyle {
983     /// The macro statement had a trailing semicolon (e.g., `foo! { ... };`
984     /// `foo!(...);`, `foo![...];`).
985     Semicolon,
986     /// The macro statement had braces (e.g., `foo! { ... }`).
987     Braces,
988     /// The macro statement had parentheses or brackets and no semicolon (e.g.,
989     /// `foo!(...)`). All of these will end up being converted into macro
990     /// expressions.
991     NoBraces,
992 }
993 
994 /// Local represents a `let` statement, e.g., `let <pat>:<ty> = <expr>;`.
995 #[derive(Clone, Encodable, Decodable, Debug)]
996 pub struct Local {
997     pub id: NodeId,
998     pub pat: P<Pat>,
999     pub ty: Option<P<Ty>>,
1000     /// Initializer expression to set the value, if any.
1001     pub init: Option<P<Expr>>,
1002     pub span: Span,
1003     pub attrs: AttrVec,
1004     pub tokens: Option<LazyTokenStream>,
1005 }
1006 
1007 /// An arm of a 'match'.
1008 ///
1009 /// E.g., `0..=10 => { println!("match!") }` as in
1010 ///
1011 /// ```
1012 /// match 123 {
1013 ///     0..=10 => { println!("match!") },
1014 ///     _ => { println!("no match!") },
1015 /// }
1016 /// ```
1017 #[derive(Clone, Encodable, Decodable, Debug)]
1018 pub struct Arm {
1019     pub attrs: Vec<Attribute>,
1020     /// Match arm pattern, e.g. `10` in `match foo { 10 => {}, _ => {} }`
1021     pub pat: P<Pat>,
1022     /// Match arm guard, e.g. `n > 10` in `match foo { n if n > 10 => {}, _ => {} }`
1023     pub guard: Option<P<Expr>>,
1024     /// Match arm body.
1025     pub body: P<Expr>,
1026     pub span: Span,
1027     pub id: NodeId,
1028     pub is_placeholder: bool,
1029 }
1030 
1031 /// A single field in a struct expression, e.g. `x: value` and `y` in `Foo { x: value, y }`.
1032 #[derive(Clone, Encodable, Decodable, Debug)]
1033 pub struct ExprField {
1034     pub attrs: AttrVec,
1035     pub id: NodeId,
1036     pub span: Span,
1037     pub ident: Ident,
1038     pub expr: P<Expr>,
1039     pub is_shorthand: bool,
1040     pub is_placeholder: bool,
1041 }
1042 
1043 #[derive(Clone, PartialEq, Encodable, Decodable, Debug, Copy)]
1044 pub enum BlockCheckMode {
1045     Default,
1046     Unsafe(UnsafeSource),
1047 }
1048 
1049 #[derive(Clone, PartialEq, Encodable, Decodable, Debug, Copy)]
1050 pub enum UnsafeSource {
1051     CompilerGenerated,
1052     UserProvided,
1053 }
1054 
1055 /// A constant (expression) that's not an item or associated item,
1056 /// but needs its own `DefId` for type-checking, const-eval, etc.
1057 /// These are usually found nested inside types (e.g., array lengths)
1058 /// or expressions (e.g., repeat counts), and also used to define
1059 /// explicit discriminant values for enum variants.
1060 #[derive(Clone, Encodable, Decodable, Debug)]
1061 pub struct AnonConst {
1062     pub id: NodeId,
1063     pub value: P<Expr>,
1064 }
1065 
1066 /// An expression.
1067 #[derive(Clone, Encodable, Decodable, Debug)]
1068 pub struct Expr {
1069     pub id: NodeId,
1070     pub kind: ExprKind,
1071     pub span: Span,
1072     pub attrs: AttrVec,
1073     pub tokens: Option<LazyTokenStream>,
1074 }
1075 
1076 // `Expr` is used a lot. Make sure it doesn't unintentionally get bigger.
1077 #[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
1078 rustc_data_structures::static_assert_size!(Expr, 104);
1079 
1080 impl Expr {
1081     /// Returns `true` if this expression would be valid somewhere that expects a value;
1082     /// for example, an `if` condition.
returns(&self) -> bool1083     pub fn returns(&self) -> bool {
1084         if let ExprKind::Block(ref block, _) = self.kind {
1085             match block.stmts.last().map(|last_stmt| &last_stmt.kind) {
1086                 // Implicit return
1087                 Some(StmtKind::Expr(_)) => true,
1088                 // Last statement is an explicit return?
1089                 Some(StmtKind::Semi(expr)) => matches!(expr.kind, ExprKind::Ret(_)),
1090                 // This is a block that doesn't end in either an implicit or explicit return.
1091                 _ => false,
1092             }
1093         } else {
1094             // This is not a block, it is a value.
1095             true
1096         }
1097     }
1098 
1099     /// Is this expr either `N`, or `{ N }`.
1100     ///
1101     /// If this is not the case, name resolution does not resolve `N` when using
1102     /// `min_const_generics` as more complex expressions are not supported.
is_potential_trivial_const_param(&self) -> bool1103     pub fn is_potential_trivial_const_param(&self) -> bool {
1104         let this = if let ExprKind::Block(ref block, None) = self.kind {
1105             if block.stmts.len() == 1 {
1106                 if let StmtKind::Expr(ref expr) = block.stmts[0].kind { expr } else { self }
1107             } else {
1108                 self
1109             }
1110         } else {
1111             self
1112         };
1113 
1114         if let ExprKind::Path(None, ref path) = this.kind {
1115             if path.segments.len() == 1 && path.segments[0].args.is_none() {
1116                 return true;
1117             }
1118         }
1119 
1120         false
1121     }
1122 
to_bound(&self) -> Option<GenericBound>1123     pub fn to_bound(&self) -> Option<GenericBound> {
1124         match &self.kind {
1125             ExprKind::Path(None, path) => Some(GenericBound::Trait(
1126                 PolyTraitRef::new(Vec::new(), path.clone(), self.span),
1127                 TraitBoundModifier::None,
1128             )),
1129             _ => None,
1130         }
1131     }
1132 
peel_parens(&self) -> &Expr1133     pub fn peel_parens(&self) -> &Expr {
1134         let mut expr = self;
1135         while let ExprKind::Paren(inner) = &expr.kind {
1136             expr = &inner;
1137         }
1138         expr
1139     }
1140 
1141     /// Attempts to reparse as `Ty` (for diagnostic purposes).
to_ty(&self) -> Option<P<Ty>>1142     pub fn to_ty(&self) -> Option<P<Ty>> {
1143         let kind = match &self.kind {
1144             // Trivial conversions.
1145             ExprKind::Path(qself, path) => TyKind::Path(qself.clone(), path.clone()),
1146             ExprKind::MacCall(mac) => TyKind::MacCall(mac.clone()),
1147 
1148             ExprKind::Paren(expr) => expr.to_ty().map(TyKind::Paren)?,
1149 
1150             ExprKind::AddrOf(BorrowKind::Ref, mutbl, expr) => {
1151                 expr.to_ty().map(|ty| TyKind::Rptr(None, MutTy { ty, mutbl: *mutbl }))?
1152             }
1153 
1154             ExprKind::Repeat(expr, expr_len) => {
1155                 expr.to_ty().map(|ty| TyKind::Array(ty, expr_len.clone()))?
1156             }
1157 
1158             ExprKind::Array(exprs) if exprs.len() == 1 => exprs[0].to_ty().map(TyKind::Slice)?,
1159 
1160             ExprKind::Tup(exprs) => {
1161                 let tys = exprs.iter().map(|expr| expr.to_ty()).collect::<Option<Vec<_>>>()?;
1162                 TyKind::Tup(tys)
1163             }
1164 
1165             // If binary operator is `Add` and both `lhs` and `rhs` are trait bounds,
1166             // then type of result is trait object.
1167             // Otherwise we don't assume the result type.
1168             ExprKind::Binary(binop, lhs, rhs) if binop.node == BinOpKind::Add => {
1169                 if let (Some(lhs), Some(rhs)) = (lhs.to_bound(), rhs.to_bound()) {
1170                     TyKind::TraitObject(vec![lhs, rhs], TraitObjectSyntax::None)
1171                 } else {
1172                     return None;
1173                 }
1174             }
1175 
1176             // This expression doesn't look like a type syntactically.
1177             _ => return None,
1178         };
1179 
1180         Some(P(Ty { kind, id: self.id, span: self.span, tokens: None }))
1181     }
1182 
precedence(&self) -> ExprPrecedence1183     pub fn precedence(&self) -> ExprPrecedence {
1184         match self.kind {
1185             ExprKind::Box(_) => ExprPrecedence::Box,
1186             ExprKind::Array(_) => ExprPrecedence::Array,
1187             ExprKind::ConstBlock(_) => ExprPrecedence::ConstBlock,
1188             ExprKind::Call(..) => ExprPrecedence::Call,
1189             ExprKind::MethodCall(..) => ExprPrecedence::MethodCall,
1190             ExprKind::Tup(_) => ExprPrecedence::Tup,
1191             ExprKind::Binary(op, ..) => ExprPrecedence::Binary(op.node),
1192             ExprKind::Unary(..) => ExprPrecedence::Unary,
1193             ExprKind::Lit(_) => ExprPrecedence::Lit,
1194             ExprKind::Type(..) | ExprKind::Cast(..) => ExprPrecedence::Cast,
1195             ExprKind::Let(..) => ExprPrecedence::Let,
1196             ExprKind::If(..) => ExprPrecedence::If,
1197             ExprKind::While(..) => ExprPrecedence::While,
1198             ExprKind::ForLoop(..) => ExprPrecedence::ForLoop,
1199             ExprKind::Loop(..) => ExprPrecedence::Loop,
1200             ExprKind::Match(..) => ExprPrecedence::Match,
1201             ExprKind::Closure(..) => ExprPrecedence::Closure,
1202             ExprKind::Block(..) => ExprPrecedence::Block,
1203             ExprKind::TryBlock(..) => ExprPrecedence::TryBlock,
1204             ExprKind::Async(..) => ExprPrecedence::Async,
1205             ExprKind::Await(..) => ExprPrecedence::Await,
1206             ExprKind::Assign(..) => ExprPrecedence::Assign,
1207             ExprKind::AssignOp(..) => ExprPrecedence::AssignOp,
1208             ExprKind::Field(..) => ExprPrecedence::Field,
1209             ExprKind::Index(..) => ExprPrecedence::Index,
1210             ExprKind::Range(..) => ExprPrecedence::Range,
1211             ExprKind::Underscore => ExprPrecedence::Path,
1212             ExprKind::Path(..) => ExprPrecedence::Path,
1213             ExprKind::AddrOf(..) => ExprPrecedence::AddrOf,
1214             ExprKind::Break(..) => ExprPrecedence::Break,
1215             ExprKind::Continue(..) => ExprPrecedence::Continue,
1216             ExprKind::Ret(..) => ExprPrecedence::Ret,
1217             ExprKind::InlineAsm(..) | ExprKind::LlvmInlineAsm(..) => ExprPrecedence::InlineAsm,
1218             ExprKind::MacCall(..) => ExprPrecedence::Mac,
1219             ExprKind::Struct(..) => ExprPrecedence::Struct,
1220             ExprKind::Repeat(..) => ExprPrecedence::Repeat,
1221             ExprKind::Paren(..) => ExprPrecedence::Paren,
1222             ExprKind::Try(..) => ExprPrecedence::Try,
1223             ExprKind::Yield(..) => ExprPrecedence::Yield,
1224             ExprKind::Err => ExprPrecedence::Err,
1225         }
1226     }
1227 }
1228 
1229 /// Limit types of a range (inclusive or exclusive)
1230 #[derive(Copy, Clone, PartialEq, Encodable, Decodable, Debug)]
1231 pub enum RangeLimits {
1232     /// Inclusive at the beginning, exclusive at the end
1233     HalfOpen,
1234     /// Inclusive at the beginning and end
1235     Closed,
1236 }
1237 
1238 #[derive(Clone, Encodable, Decodable, Debug)]
1239 pub enum StructRest {
1240     /// `..x`.
1241     Base(P<Expr>),
1242     /// `..`.
1243     Rest(Span),
1244     /// No trailing `..` or expression.
1245     None,
1246 }
1247 
1248 #[derive(Clone, Encodable, Decodable, Debug)]
1249 pub struct StructExpr {
1250     pub path: Path,
1251     pub fields: Vec<ExprField>,
1252     pub rest: StructRest,
1253 }
1254 
1255 #[derive(Clone, Encodable, Decodable, Debug)]
1256 pub enum ExprKind {
1257     /// A `box x` expression.
1258     Box(P<Expr>),
1259     /// An array (`[a, b, c, d]`)
1260     Array(Vec<P<Expr>>),
1261     /// Allow anonymous constants from an inline `const` block
1262     ConstBlock(AnonConst),
1263     /// A function call
1264     ///
1265     /// The first field resolves to the function itself,
1266     /// and the second field is the list of arguments.
1267     /// This also represents calling the constructor of
1268     /// tuple-like ADTs such as tuple structs and enum variants.
1269     Call(P<Expr>, Vec<P<Expr>>),
1270     /// A method call (`x.foo::<'static, Bar, Baz>(a, b, c, d)`)
1271     ///
1272     /// The `PathSegment` represents the method name and its generic arguments
1273     /// (within the angle brackets).
1274     /// The first element of the vector of an `Expr` is the expression that evaluates
1275     /// to the object on which the method is being called on (the receiver),
1276     /// and the remaining elements are the rest of the arguments.
1277     /// Thus, `x.foo::<Bar, Baz>(a, b, c, d)` is represented as
1278     /// `ExprKind::MethodCall(PathSegment { foo, [Bar, Baz] }, [x, a, b, c, d])`.
1279     /// This `Span` is the span of the function, without the dot and receiver
1280     /// (e.g. `foo(a, b)` in `x.foo(a, b)`
1281     MethodCall(PathSegment, Vec<P<Expr>>, Span),
1282     /// A tuple (e.g., `(a, b, c, d)`).
1283     Tup(Vec<P<Expr>>),
1284     /// A binary operation (e.g., `a + b`, `a * b`).
1285     Binary(BinOp, P<Expr>, P<Expr>),
1286     /// A unary operation (e.g., `!x`, `*x`).
1287     Unary(UnOp, P<Expr>),
1288     /// A literal (e.g., `1`, `"foo"`).
1289     Lit(Lit),
1290     /// A cast (e.g., `foo as f64`).
1291     Cast(P<Expr>, P<Ty>),
1292     /// A type ascription (e.g., `42: usize`).
1293     Type(P<Expr>, P<Ty>),
1294     /// A `let pat = expr` expression that is only semantically allowed in the condition
1295     /// of `if` / `while` expressions. (e.g., `if let 0 = x { .. }`).
1296     Let(P<Pat>, P<Expr>),
1297     /// An `if` block, with an optional `else` block.
1298     ///
1299     /// `if expr { block } else { expr }`
1300     If(P<Expr>, P<Block>, Option<P<Expr>>),
1301     /// A while loop, with an optional label.
1302     ///
1303     /// `'label: while expr { block }`
1304     While(P<Expr>, P<Block>, Option<Label>),
1305     /// A `for` loop, with an optional label.
1306     ///
1307     /// `'label: for pat in expr { block }`
1308     ///
1309     /// This is desugared to a combination of `loop` and `match` expressions.
1310     ForLoop(P<Pat>, P<Expr>, P<Block>, Option<Label>),
1311     /// Conditionless loop (can be exited with `break`, `continue`, or `return`).
1312     ///
1313     /// `'label: loop { block }`
1314     Loop(P<Block>, Option<Label>),
1315     /// A `match` block.
1316     Match(P<Expr>, Vec<Arm>),
1317     /// A closure (e.g., `move |a, b, c| a + b + c`).
1318     ///
1319     /// The final span is the span of the argument block `|...|`.
1320     Closure(CaptureBy, Async, Movability, P<FnDecl>, P<Expr>, Span),
1321     /// A block (`'label: { ... }`).
1322     Block(P<Block>, Option<Label>),
1323     /// An async block (`async move { ... }`).
1324     ///
1325     /// The `NodeId` is the `NodeId` for the closure that results from
1326     /// desugaring an async block, just like the NodeId field in the
1327     /// `Async::Yes` variant. This is necessary in order to create a def for the
1328     /// closure which can be used as a parent of any child defs. Defs
1329     /// created during lowering cannot be made the parent of any other
1330     /// preexisting defs.
1331     Async(CaptureBy, NodeId, P<Block>),
1332     /// An await expression (`my_future.await`).
1333     Await(P<Expr>),
1334 
1335     /// A try block (`try { ... }`).
1336     TryBlock(P<Block>),
1337 
1338     /// An assignment (`a = foo()`).
1339     /// The `Span` argument is the span of the `=` token.
1340     Assign(P<Expr>, P<Expr>, Span),
1341     /// An assignment with an operator.
1342     ///
1343     /// E.g., `a += 1`.
1344     AssignOp(BinOp, P<Expr>, P<Expr>),
1345     /// Access of a named (e.g., `obj.foo`) or unnamed (e.g., `obj.0`) struct field.
1346     Field(P<Expr>, Ident),
1347     /// An indexing operation (e.g., `foo[2]`).
1348     Index(P<Expr>, P<Expr>),
1349     /// A range (e.g., `1..2`, `1..`, `..2`, `1..=2`, `..=2`; and `..` in destructuring assignment).
1350     Range(Option<P<Expr>>, Option<P<Expr>>, RangeLimits),
1351     /// An underscore, used in destructuring assignment to ignore a value.
1352     Underscore,
1353 
1354     /// Variable reference, possibly containing `::` and/or type
1355     /// parameters (e.g., `foo::bar::<baz>`).
1356     ///
1357     /// Optionally "qualified" (e.g., `<Vec<T> as SomeTrait>::SomeType`).
1358     Path(Option<QSelf>, Path),
1359 
1360     /// A referencing operation (`&a`, `&mut a`, `&raw const a` or `&raw mut a`).
1361     AddrOf(BorrowKind, Mutability, P<Expr>),
1362     /// A `break`, with an optional label to break, and an optional expression.
1363     Break(Option<Label>, Option<P<Expr>>),
1364     /// A `continue`, with an optional label.
1365     Continue(Option<Label>),
1366     /// A `return`, with an optional value to be returned.
1367     Ret(Option<P<Expr>>),
1368 
1369     /// Output of the `asm!()` macro.
1370     InlineAsm(P<InlineAsm>),
1371     /// Output of the `llvm_asm!()` macro.
1372     LlvmInlineAsm(P<LlvmInlineAsm>),
1373 
1374     /// A macro invocation; pre-expansion.
1375     MacCall(MacCall),
1376 
1377     /// A struct literal expression.
1378     ///
1379     /// E.g., `Foo {x: 1, y: 2}`, or `Foo {x: 1, .. rest}`.
1380     Struct(P<StructExpr>),
1381 
1382     /// An array literal constructed from one repeated element.
1383     ///
1384     /// E.g., `[1; 5]`. The expression is the element to be
1385     /// repeated; the constant is the number of times to repeat it.
1386     Repeat(P<Expr>, AnonConst),
1387 
1388     /// No-op: used solely so we can pretty-print faithfully.
1389     Paren(P<Expr>),
1390 
1391     /// A try expression (`expr?`).
1392     Try(P<Expr>),
1393 
1394     /// A `yield`, with an optional value to be yielded.
1395     Yield(Option<P<Expr>>),
1396 
1397     /// Placeholder for an expression that wasn't syntactically well formed in some way.
1398     Err,
1399 }
1400 
1401 /// The explicit `Self` type in a "qualified path". The actual
1402 /// path, including the trait and the associated item, is stored
1403 /// separately. `position` represents the index of the associated
1404 /// item qualified with this `Self` type.
1405 ///
1406 /// ```ignore (only-for-syntax-highlight)
1407 /// <Vec<T> as a::b::Trait>::AssociatedItem
1408 ///  ^~~~~     ~~~~~~~~~~~~~~^
1409 ///  ty        position = 3
1410 ///
1411 /// <Vec<T>>::AssociatedItem
1412 ///  ^~~~~    ^
1413 ///  ty       position = 0
1414 /// ```
1415 #[derive(Clone, Encodable, Decodable, Debug)]
1416 pub struct QSelf {
1417     pub ty: P<Ty>,
1418 
1419     /// The span of `a::b::Trait` in a path like `<Vec<T> as
1420     /// a::b::Trait>::AssociatedItem`; in the case where `position ==
1421     /// 0`, this is an empty span.
1422     pub path_span: Span,
1423     pub position: usize,
1424 }
1425 
1426 /// A capture clause used in closures and `async` blocks.
1427 #[derive(Clone, Copy, PartialEq, Encodable, Decodable, Debug, HashStable_Generic)]
1428 pub enum CaptureBy {
1429     /// `move |x| y + x`.
1430     Value,
1431     /// `move` keyword was not specified.
1432     Ref,
1433 }
1434 
1435 /// The movability of a generator / closure literal:
1436 /// whether a generator contains self-references, causing it to be `!Unpin`.
1437 #[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Encodable, Decodable, Debug, Copy)]
1438 #[derive(HashStable_Generic)]
1439 pub enum Movability {
1440     /// May contain self-references, `!Unpin`.
1441     Static,
1442     /// Must not contain self-references, `Unpin`.
1443     Movable,
1444 }
1445 
1446 /// Represents a macro invocation. The `path` indicates which macro
1447 /// is being invoked, and the `args` are arguments passed to it.
1448 #[derive(Clone, Encodable, Decodable, Debug)]
1449 pub struct MacCall {
1450     pub path: Path,
1451     pub args: P<MacArgs>,
1452     pub prior_type_ascription: Option<(Span, bool)>,
1453 }
1454 
1455 impl MacCall {
span(&self) -> Span1456     pub fn span(&self) -> Span {
1457         self.path.span.to(self.args.span().unwrap_or(self.path.span))
1458     }
1459 }
1460 
1461 /// Arguments passed to an attribute or a function-like macro.
1462 #[derive(Clone, Encodable, Decodable, Debug, HashStable_Generic)]
1463 pub enum MacArgs {
1464     /// No arguments - `#[attr]`.
1465     Empty,
1466     /// Delimited arguments - `#[attr()/[]/{}]` or `mac!()/[]/{}`.
1467     Delimited(DelimSpan, MacDelimiter, TokenStream),
1468     /// Arguments of a key-value attribute - `#[attr = "value"]`.
1469     Eq(
1470         /// Span of the `=` token.
1471         Span,
1472         /// "value" as a nonterminal token.
1473         Token,
1474     ),
1475 }
1476 
1477 impl MacArgs {
delim(&self) -> DelimToken1478     pub fn delim(&self) -> DelimToken {
1479         match self {
1480             MacArgs::Delimited(_, delim, _) => delim.to_token(),
1481             MacArgs::Empty | MacArgs::Eq(..) => token::NoDelim,
1482         }
1483     }
1484 
span(&self) -> Option<Span>1485     pub fn span(&self) -> Option<Span> {
1486         match self {
1487             MacArgs::Empty => None,
1488             MacArgs::Delimited(dspan, ..) => Some(dspan.entire()),
1489             MacArgs::Eq(eq_span, token) => Some(eq_span.to(token.span)),
1490         }
1491     }
1492 
1493     /// Tokens inside the delimiters or after `=`.
1494     /// Proc macros see these tokens, for example.
inner_tokens(&self) -> TokenStream1495     pub fn inner_tokens(&self) -> TokenStream {
1496         match self {
1497             MacArgs::Empty => TokenStream::default(),
1498             MacArgs::Delimited(.., tokens) => tokens.clone(),
1499             MacArgs::Eq(.., token) => TokenTree::Token(token.clone()).into(),
1500         }
1501     }
1502 
1503     /// Whether a macro with these arguments needs a semicolon
1504     /// when used as a standalone item or statement.
need_semicolon(&self) -> bool1505     pub fn need_semicolon(&self) -> bool {
1506         !matches!(self, MacArgs::Delimited(_, MacDelimiter::Brace, _))
1507     }
1508 }
1509 
1510 #[derive(Copy, Clone, PartialEq, Eq, Encodable, Decodable, Debug, HashStable_Generic)]
1511 pub enum MacDelimiter {
1512     Parenthesis,
1513     Bracket,
1514     Brace,
1515 }
1516 
1517 impl MacDelimiter {
to_token(self) -> DelimToken1518     pub fn to_token(self) -> DelimToken {
1519         match self {
1520             MacDelimiter::Parenthesis => DelimToken::Paren,
1521             MacDelimiter::Bracket => DelimToken::Bracket,
1522             MacDelimiter::Brace => DelimToken::Brace,
1523         }
1524     }
1525 
from_token(delim: DelimToken) -> Option<MacDelimiter>1526     pub fn from_token(delim: DelimToken) -> Option<MacDelimiter> {
1527         match delim {
1528             token::Paren => Some(MacDelimiter::Parenthesis),
1529             token::Bracket => Some(MacDelimiter::Bracket),
1530             token::Brace => Some(MacDelimiter::Brace),
1531             token::NoDelim => None,
1532         }
1533     }
1534 }
1535 
1536 /// Represents a macro definition.
1537 #[derive(Clone, Encodable, Decodable, Debug, HashStable_Generic)]
1538 pub struct MacroDef {
1539     pub body: P<MacArgs>,
1540     /// `true` if macro was defined with `macro_rules`.
1541     pub macro_rules: bool,
1542 }
1543 
1544 #[derive(Clone, Encodable, Decodable, Debug, Copy, Hash, Eq, PartialEq)]
1545 #[derive(HashStable_Generic)]
1546 pub enum StrStyle {
1547     /// A regular string, like `"foo"`.
1548     Cooked,
1549     /// A raw string, like `r##"foo"##`.
1550     ///
1551     /// The value is the number of `#` symbols used.
1552     Raw(u16),
1553 }
1554 
1555 /// An AST literal.
1556 #[derive(Clone, Encodable, Decodable, Debug, HashStable_Generic)]
1557 pub struct Lit {
1558     /// The original literal token as written in source code.
1559     pub token: token::Lit,
1560     /// The "semantic" representation of the literal lowered from the original tokens.
1561     /// Strings are unescaped, hexadecimal forms are eliminated, etc.
1562     /// FIXME: Remove this and only create the semantic representation during lowering to HIR.
1563     pub kind: LitKind,
1564     pub span: Span,
1565 }
1566 
1567 /// Same as `Lit`, but restricted to string literals.
1568 #[derive(Clone, Copy, Encodable, Decodable, Debug)]
1569 pub struct StrLit {
1570     /// The original literal token as written in source code.
1571     pub style: StrStyle,
1572     pub symbol: Symbol,
1573     pub suffix: Option<Symbol>,
1574     pub span: Span,
1575     /// The unescaped "semantic" representation of the literal lowered from the original token.
1576     /// FIXME: Remove this and only create the semantic representation during lowering to HIR.
1577     pub symbol_unescaped: Symbol,
1578 }
1579 
1580 impl StrLit {
as_lit(&self) -> Lit1581     pub fn as_lit(&self) -> Lit {
1582         let token_kind = match self.style {
1583             StrStyle::Cooked => token::Str,
1584             StrStyle::Raw(n) => token::StrRaw(n),
1585         };
1586         Lit {
1587             token: token::Lit::new(token_kind, self.symbol, self.suffix),
1588             span: self.span,
1589             kind: LitKind::Str(self.symbol_unescaped, self.style),
1590         }
1591     }
1592 }
1593 
1594 /// Type of the integer literal based on provided suffix.
1595 #[derive(Clone, Copy, Encodable, Decodable, Debug, Hash, Eq, PartialEq)]
1596 #[derive(HashStable_Generic)]
1597 pub enum LitIntType {
1598     /// e.g. `42_i32`.
1599     Signed(IntTy),
1600     /// e.g. `42_u32`.
1601     Unsigned(UintTy),
1602     /// e.g. `42`.
1603     Unsuffixed,
1604 }
1605 
1606 /// Type of the float literal based on provided suffix.
1607 #[derive(Clone, Copy, Encodable, Decodable, Debug, Hash, Eq, PartialEq)]
1608 #[derive(HashStable_Generic)]
1609 pub enum LitFloatType {
1610     /// A float literal with a suffix (`1f32` or `1E10f32`).
1611     Suffixed(FloatTy),
1612     /// A float literal without a suffix (`1.0 or 1.0E10`).
1613     Unsuffixed,
1614 }
1615 
1616 /// Literal kind.
1617 ///
1618 /// E.g., `"foo"`, `42`, `12.34`, or `bool`.
1619 #[derive(Clone, Encodable, Decodable, Debug, Hash, Eq, PartialEq, HashStable_Generic)]
1620 pub enum LitKind {
1621     /// A string literal (`"foo"`).
1622     Str(Symbol, StrStyle),
1623     /// A byte string (`b"foo"`).
1624     ByteStr(Lrc<[u8]>),
1625     /// A byte char (`b'f'`).
1626     Byte(u8),
1627     /// A character literal (`'a'`).
1628     Char(char),
1629     /// An integer literal (`1`).
1630     Int(u128, LitIntType),
1631     /// A float literal (`1f64` or `1E10f64`).
1632     Float(Symbol, LitFloatType),
1633     /// A boolean literal.
1634     Bool(bool),
1635     /// Placeholder for a literal that wasn't well-formed in some way.
1636     Err(Symbol),
1637 }
1638 
1639 impl LitKind {
1640     /// Returns `true` if this literal is a string.
is_str(&self) -> bool1641     pub fn is_str(&self) -> bool {
1642         matches!(self, LitKind::Str(..))
1643     }
1644 
1645     /// Returns `true` if this literal is byte literal string.
is_bytestr(&self) -> bool1646     pub fn is_bytestr(&self) -> bool {
1647         matches!(self, LitKind::ByteStr(_))
1648     }
1649 
1650     /// Returns `true` if this is a numeric literal.
is_numeric(&self) -> bool1651     pub fn is_numeric(&self) -> bool {
1652         matches!(self, LitKind::Int(..) | LitKind::Float(..))
1653     }
1654 
1655     /// Returns `true` if this literal has no suffix.
1656     /// Note: this will return true for literals with prefixes such as raw strings and byte strings.
is_unsuffixed(&self) -> bool1657     pub fn is_unsuffixed(&self) -> bool {
1658         !self.is_suffixed()
1659     }
1660 
1661     /// Returns `true` if this literal has a suffix.
is_suffixed(&self) -> bool1662     pub fn is_suffixed(&self) -> bool {
1663         match *self {
1664             // suffixed variants
1665             LitKind::Int(_, LitIntType::Signed(..) | LitIntType::Unsigned(..))
1666             | LitKind::Float(_, LitFloatType::Suffixed(..)) => true,
1667             // unsuffixed variants
1668             LitKind::Str(..)
1669             | LitKind::ByteStr(..)
1670             | LitKind::Byte(..)
1671             | LitKind::Char(..)
1672             | LitKind::Int(_, LitIntType::Unsuffixed)
1673             | LitKind::Float(_, LitFloatType::Unsuffixed)
1674             | LitKind::Bool(..)
1675             | LitKind::Err(..) => false,
1676         }
1677     }
1678 }
1679 
1680 // N.B., If you change this, you'll probably want to change the corresponding
1681 // type structure in `middle/ty.rs` as well.
1682 #[derive(Clone, Encodable, Decodable, Debug)]
1683 pub struct MutTy {
1684     pub ty: P<Ty>,
1685     pub mutbl: Mutability,
1686 }
1687 
1688 /// Represents a function's signature in a trait declaration,
1689 /// trait implementation, or free function.
1690 #[derive(Clone, Encodable, Decodable, Debug)]
1691 pub struct FnSig {
1692     pub header: FnHeader,
1693     pub decl: P<FnDecl>,
1694     pub span: Span,
1695 }
1696 
1697 #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
1698 #[derive(Encodable, Decodable, HashStable_Generic)]
1699 pub enum FloatTy {
1700     F32,
1701     F64,
1702 }
1703 
1704 impl FloatTy {
name_str(self) -> &'static str1705     pub fn name_str(self) -> &'static str {
1706         match self {
1707             FloatTy::F32 => "f32",
1708             FloatTy::F64 => "f64",
1709         }
1710     }
1711 
name(self) -> Symbol1712     pub fn name(self) -> Symbol {
1713         match self {
1714             FloatTy::F32 => sym::f32,
1715             FloatTy::F64 => sym::f64,
1716         }
1717     }
1718 }
1719 
1720 #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
1721 #[derive(Encodable, Decodable, HashStable_Generic)]
1722 pub enum IntTy {
1723     Isize,
1724     I8,
1725     I16,
1726     I32,
1727     I64,
1728     I128,
1729 }
1730 
1731 impl IntTy {
name_str(&self) -> &'static str1732     pub fn name_str(&self) -> &'static str {
1733         match *self {
1734             IntTy::Isize => "isize",
1735             IntTy::I8 => "i8",
1736             IntTy::I16 => "i16",
1737             IntTy::I32 => "i32",
1738             IntTy::I64 => "i64",
1739             IntTy::I128 => "i128",
1740         }
1741     }
1742 
name(&self) -> Symbol1743     pub fn name(&self) -> Symbol {
1744         match *self {
1745             IntTy::Isize => sym::isize,
1746             IntTy::I8 => sym::i8,
1747             IntTy::I16 => sym::i16,
1748             IntTy::I32 => sym::i32,
1749             IntTy::I64 => sym::i64,
1750             IntTy::I128 => sym::i128,
1751         }
1752     }
1753 }
1754 
1755 #[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Copy, Debug)]
1756 #[derive(Encodable, Decodable, HashStable_Generic)]
1757 pub enum UintTy {
1758     Usize,
1759     U8,
1760     U16,
1761     U32,
1762     U64,
1763     U128,
1764 }
1765 
1766 impl UintTy {
name_str(&self) -> &'static str1767     pub fn name_str(&self) -> &'static str {
1768         match *self {
1769             UintTy::Usize => "usize",
1770             UintTy::U8 => "u8",
1771             UintTy::U16 => "u16",
1772             UintTy::U32 => "u32",
1773             UintTy::U64 => "u64",
1774             UintTy::U128 => "u128",
1775         }
1776     }
1777 
name(&self) -> Symbol1778     pub fn name(&self) -> Symbol {
1779         match *self {
1780             UintTy::Usize => sym::usize,
1781             UintTy::U8 => sym::u8,
1782             UintTy::U16 => sym::u16,
1783             UintTy::U32 => sym::u32,
1784             UintTy::U64 => sym::u64,
1785             UintTy::U128 => sym::u128,
1786         }
1787     }
1788 }
1789 
1790 /// A constraint on an associated type (e.g., `A = Bar` in `Foo<A = Bar>` or
1791 /// `A: TraitA + TraitB` in `Foo<A: TraitA + TraitB>`).
1792 #[derive(Clone, Encodable, Decodable, Debug)]
1793 pub struct AssocTyConstraint {
1794     pub id: NodeId,
1795     pub ident: Ident,
1796     pub gen_args: Option<GenericArgs>,
1797     pub kind: AssocTyConstraintKind,
1798     pub span: Span,
1799 }
1800 
1801 /// The kinds of an `AssocTyConstraint`.
1802 #[derive(Clone, Encodable, Decodable, Debug)]
1803 pub enum AssocTyConstraintKind {
1804     /// E.g., `A = Bar` in `Foo<A = Bar>`.
1805     Equality { ty: P<Ty> },
1806     /// E.g. `A: TraitA + TraitB` in `Foo<A: TraitA + TraitB>`.
1807     Bound { bounds: GenericBounds },
1808 }
1809 
1810 #[derive(Encodable, Decodable, Debug)]
1811 pub struct Ty {
1812     pub id: NodeId,
1813     pub kind: TyKind,
1814     pub span: Span,
1815     pub tokens: Option<LazyTokenStream>,
1816 }
1817 
1818 impl Clone for Ty {
clone(&self) -> Self1819     fn clone(&self) -> Self {
1820         ensure_sufficient_stack(|| Self {
1821             id: self.id,
1822             kind: self.kind.clone(),
1823             span: self.span,
1824             tokens: self.tokens.clone(),
1825         })
1826     }
1827 }
1828 
1829 impl Ty {
peel_refs(&self) -> &Self1830     pub fn peel_refs(&self) -> &Self {
1831         let mut final_ty = self;
1832         while let TyKind::Rptr(_, MutTy { ty, .. }) = &final_ty.kind {
1833             final_ty = &ty;
1834         }
1835         final_ty
1836     }
1837 }
1838 
1839 #[derive(Clone, Encodable, Decodable, Debug)]
1840 pub struct BareFnTy {
1841     pub unsafety: Unsafe,
1842     pub ext: Extern,
1843     pub generic_params: Vec<GenericParam>,
1844     pub decl: P<FnDecl>,
1845 }
1846 
1847 /// The various kinds of type recognized by the compiler.
1848 #[derive(Clone, Encodable, Decodable, Debug)]
1849 pub enum TyKind {
1850     /// A variable-length slice (`[T]`).
1851     Slice(P<Ty>),
1852     /// A fixed length array (`[T; n]`).
1853     Array(P<Ty>, AnonConst),
1854     /// A raw pointer (`*const T` or `*mut T`).
1855     Ptr(MutTy),
1856     /// A reference (`&'a T` or `&'a mut T`).
1857     Rptr(Option<Lifetime>, MutTy),
1858     /// A bare function (e.g., `fn(usize) -> bool`).
1859     BareFn(P<BareFnTy>),
1860     /// The never type (`!`).
1861     Never,
1862     /// A tuple (`(A, B, C, D,...)`).
1863     Tup(Vec<P<Ty>>),
1864     /// An anonymous struct type i.e. `struct { foo: Type }`
1865     AnonymousStruct(Vec<FieldDef>, bool),
1866     /// An anonymous union type i.e. `union { bar: Type }`
1867     AnonymousUnion(Vec<FieldDef>, bool),
1868     /// A path (`module::module::...::Type`), optionally
1869     /// "qualified", e.g., `<Vec<T> as SomeTrait>::SomeType`.
1870     ///
1871     /// Type parameters are stored in the `Path` itself.
1872     Path(Option<QSelf>, Path),
1873     /// A trait object type `Bound1 + Bound2 + Bound3`
1874     /// where `Bound` is a trait or a lifetime.
1875     TraitObject(GenericBounds, TraitObjectSyntax),
1876     /// An `impl Bound1 + Bound2 + Bound3` type
1877     /// where `Bound` is a trait or a lifetime.
1878     ///
1879     /// The `NodeId` exists to prevent lowering from having to
1880     /// generate `NodeId`s on the fly, which would complicate
1881     /// the generation of opaque `type Foo = impl Trait` items significantly.
1882     ImplTrait(NodeId, GenericBounds),
1883     /// No-op; kept solely so that we can pretty-print faithfully.
1884     Paren(P<Ty>),
1885     /// Unused for now.
1886     Typeof(AnonConst),
1887     /// This means the type should be inferred instead of it having been
1888     /// specified. This can appear anywhere in a type.
1889     Infer,
1890     /// Inferred type of a `self` or `&self` argument in a method.
1891     ImplicitSelf,
1892     /// A macro in the type position.
1893     MacCall(MacCall),
1894     /// Placeholder for a kind that has failed to be defined.
1895     Err,
1896     /// Placeholder for a `va_list`.
1897     CVarArgs,
1898 }
1899 
1900 impl TyKind {
is_implicit_self(&self) -> bool1901     pub fn is_implicit_self(&self) -> bool {
1902         matches!(self, TyKind::ImplicitSelf)
1903     }
1904 
is_unit(&self) -> bool1905     pub fn is_unit(&self) -> bool {
1906         matches!(self, TyKind::Tup(tys) if tys.is_empty())
1907     }
1908 }
1909 
1910 /// Syntax used to declare a trait object.
1911 #[derive(Clone, Copy, PartialEq, Encodable, Decodable, Debug, HashStable_Generic)]
1912 pub enum TraitObjectSyntax {
1913     Dyn,
1914     None,
1915 }
1916 
1917 /// Inline assembly operand explicit register or register class.
1918 ///
1919 /// E.g., `"eax"` as in `asm!("mov eax, 2", out("eax") result)`.
1920 #[derive(Clone, Copy, Encodable, Decodable, Debug)]
1921 pub enum InlineAsmRegOrRegClass {
1922     Reg(Symbol),
1923     RegClass(Symbol),
1924 }
1925 
1926 bitflags::bitflags! {
1927     #[derive(Encodable, Decodable, HashStable_Generic)]
1928     pub struct InlineAsmOptions: u8 {
1929         const PURE = 1 << 0;
1930         const NOMEM = 1 << 1;
1931         const READONLY = 1 << 2;
1932         const PRESERVES_FLAGS = 1 << 3;
1933         const NORETURN = 1 << 4;
1934         const NOSTACK = 1 << 5;
1935         const ATT_SYNTAX = 1 << 6;
1936     }
1937 }
1938 
1939 #[derive(Clone, PartialEq, PartialOrd, Encodable, Decodable, Debug, Hash, HashStable_Generic)]
1940 pub enum InlineAsmTemplatePiece {
1941     String(String),
1942     Placeholder { operand_idx: usize, modifier: Option<char>, span: Span },
1943 }
1944 
1945 impl fmt::Display for InlineAsmTemplatePiece {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result1946     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1947         match self {
1948             Self::String(s) => {
1949                 for c in s.chars() {
1950                     match c {
1951                         '{' => f.write_str("{{")?,
1952                         '}' => f.write_str("}}")?,
1953                         _ => c.fmt(f)?,
1954                     }
1955                 }
1956                 Ok(())
1957             }
1958             Self::Placeholder { operand_idx, modifier: Some(modifier), .. } => {
1959                 write!(f, "{{{}:{}}}", operand_idx, modifier)
1960             }
1961             Self::Placeholder { operand_idx, modifier: None, .. } => {
1962                 write!(f, "{{{}}}", operand_idx)
1963             }
1964         }
1965     }
1966 }
1967 
1968 impl InlineAsmTemplatePiece {
1969     /// Rebuilds the asm template string from its pieces.
to_string(s: &[Self]) -> String1970     pub fn to_string(s: &[Self]) -> String {
1971         use fmt::Write;
1972         let mut out = String::new();
1973         for p in s.iter() {
1974             let _ = write!(out, "{}", p);
1975         }
1976         out
1977     }
1978 }
1979 
1980 /// Inline assembly operand.
1981 ///
1982 /// E.g., `out("eax") result` as in `asm!("mov eax, 2", out("eax") result)`.
1983 #[derive(Clone, Encodable, Decodable, Debug)]
1984 pub enum InlineAsmOperand {
1985     In {
1986         reg: InlineAsmRegOrRegClass,
1987         expr: P<Expr>,
1988     },
1989     Out {
1990         reg: InlineAsmRegOrRegClass,
1991         late: bool,
1992         expr: Option<P<Expr>>,
1993     },
1994     InOut {
1995         reg: InlineAsmRegOrRegClass,
1996         late: bool,
1997         expr: P<Expr>,
1998     },
1999     SplitInOut {
2000         reg: InlineAsmRegOrRegClass,
2001         late: bool,
2002         in_expr: P<Expr>,
2003         out_expr: Option<P<Expr>>,
2004     },
2005     Const {
2006         anon_const: AnonConst,
2007     },
2008     Sym {
2009         expr: P<Expr>,
2010     },
2011 }
2012 
2013 /// Inline assembly.
2014 ///
2015 /// E.g., `asm!("NOP");`.
2016 #[derive(Clone, Encodable, Decodable, Debug)]
2017 pub struct InlineAsm {
2018     pub template: Vec<InlineAsmTemplatePiece>,
2019     pub operands: Vec<(InlineAsmOperand, Span)>,
2020     pub options: InlineAsmOptions,
2021     pub line_spans: Vec<Span>,
2022 }
2023 
2024 /// Inline assembly dialect.
2025 ///
2026 /// E.g., `"intel"` as in `llvm_asm!("mov eax, 2" : "={eax}"(result) : : : "intel")`.
2027 #[derive(Clone, PartialEq, Encodable, Decodable, Debug, Copy, Hash, HashStable_Generic)]
2028 pub enum LlvmAsmDialect {
2029     Att,
2030     Intel,
2031 }
2032 
2033 /// LLVM-style inline assembly.
2034 ///
2035 /// E.g., `"={eax}"(result)` as in `llvm_asm!("mov eax, 2" : "={eax}"(result) : : : "intel")`.
2036 #[derive(Clone, Encodable, Decodable, Debug)]
2037 pub struct LlvmInlineAsmOutput {
2038     pub constraint: Symbol,
2039     pub expr: P<Expr>,
2040     pub is_rw: bool,
2041     pub is_indirect: bool,
2042 }
2043 
2044 /// LLVM-style inline assembly.
2045 ///
2046 /// E.g., `llvm_asm!("NOP");`.
2047 #[derive(Clone, Encodable, Decodable, Debug)]
2048 pub struct LlvmInlineAsm {
2049     pub asm: Symbol,
2050     pub asm_str_style: StrStyle,
2051     pub outputs: Vec<LlvmInlineAsmOutput>,
2052     pub inputs: Vec<(Symbol, P<Expr>)>,
2053     pub clobbers: Vec<Symbol>,
2054     pub volatile: bool,
2055     pub alignstack: bool,
2056     pub dialect: LlvmAsmDialect,
2057 }
2058 
2059 /// A parameter in a function header.
2060 ///
2061 /// E.g., `bar: usize` as in `fn foo(bar: usize)`.
2062 #[derive(Clone, Encodable, Decodable, Debug)]
2063 pub struct Param {
2064     pub attrs: AttrVec,
2065     pub ty: P<Ty>,
2066     pub pat: P<Pat>,
2067     pub id: NodeId,
2068     pub span: Span,
2069     pub is_placeholder: bool,
2070 }
2071 
2072 /// Alternative representation for `Arg`s describing `self` parameter of methods.
2073 ///
2074 /// E.g., `&mut self` as in `fn foo(&mut self)`.
2075 #[derive(Clone, Encodable, Decodable, Debug)]
2076 pub enum SelfKind {
2077     /// `self`, `mut self`
2078     Value(Mutability),
2079     /// `&'lt self`, `&'lt mut self`
2080     Region(Option<Lifetime>, Mutability),
2081     /// `self: TYPE`, `mut self: TYPE`
2082     Explicit(P<Ty>, Mutability),
2083 }
2084 
2085 pub type ExplicitSelf = Spanned<SelfKind>;
2086 
2087 impl Param {
2088     /// Attempts to cast parameter to `ExplicitSelf`.
to_self(&self) -> Option<ExplicitSelf>2089     pub fn to_self(&self) -> Option<ExplicitSelf> {
2090         if let PatKind::Ident(BindingMode::ByValue(mutbl), ident, _) = self.pat.kind {
2091             if ident.name == kw::SelfLower {
2092                 return match self.ty.kind {
2093                     TyKind::ImplicitSelf => Some(respan(self.pat.span, SelfKind::Value(mutbl))),
2094                     TyKind::Rptr(lt, MutTy { ref ty, mutbl }) if ty.kind.is_implicit_self() => {
2095                         Some(respan(self.pat.span, SelfKind::Region(lt, mutbl)))
2096                     }
2097                     _ => Some(respan(
2098                         self.pat.span.to(self.ty.span),
2099                         SelfKind::Explicit(self.ty.clone(), mutbl),
2100                     )),
2101                 };
2102             }
2103         }
2104         None
2105     }
2106 
2107     /// Returns `true` if parameter is `self`.
is_self(&self) -> bool2108     pub fn is_self(&self) -> bool {
2109         if let PatKind::Ident(_, ident, _) = self.pat.kind {
2110             ident.name == kw::SelfLower
2111         } else {
2112             false
2113         }
2114     }
2115 
2116     /// Builds a `Param` object from `ExplicitSelf`.
from_self(attrs: AttrVec, eself: ExplicitSelf, eself_ident: Ident) -> Param2117     pub fn from_self(attrs: AttrVec, eself: ExplicitSelf, eself_ident: Ident) -> Param {
2118         let span = eself.span.to(eself_ident.span);
2119         let infer_ty = P(Ty { id: DUMMY_NODE_ID, kind: TyKind::ImplicitSelf, span, tokens: None });
2120         let param = |mutbl, ty| Param {
2121             attrs,
2122             pat: P(Pat {
2123                 id: DUMMY_NODE_ID,
2124                 kind: PatKind::Ident(BindingMode::ByValue(mutbl), eself_ident, None),
2125                 span,
2126                 tokens: None,
2127             }),
2128             span,
2129             ty,
2130             id: DUMMY_NODE_ID,
2131             is_placeholder: false,
2132         };
2133         match eself.node {
2134             SelfKind::Explicit(ty, mutbl) => param(mutbl, ty),
2135             SelfKind::Value(mutbl) => param(mutbl, infer_ty),
2136             SelfKind::Region(lt, mutbl) => param(
2137                 Mutability::Not,
2138                 P(Ty {
2139                     id: DUMMY_NODE_ID,
2140                     kind: TyKind::Rptr(lt, MutTy { ty: infer_ty, mutbl }),
2141                     span,
2142                     tokens: None,
2143                 }),
2144             ),
2145         }
2146     }
2147 }
2148 
2149 /// A signature (not the body) of a function declaration.
2150 ///
2151 /// E.g., `fn foo(bar: baz)`.
2152 ///
2153 /// Please note that it's different from `FnHeader` structure
2154 /// which contains metadata about function safety, asyncness, constness and ABI.
2155 #[derive(Clone, Encodable, Decodable, Debug)]
2156 pub struct FnDecl {
2157     pub inputs: Vec<Param>,
2158     pub output: FnRetTy,
2159 }
2160 
2161 impl FnDecl {
has_self(&self) -> bool2162     pub fn has_self(&self) -> bool {
2163         self.inputs.get(0).map_or(false, Param::is_self)
2164     }
c_variadic(&self) -> bool2165     pub fn c_variadic(&self) -> bool {
2166         self.inputs.last().map_or(false, |arg| matches!(arg.ty.kind, TyKind::CVarArgs))
2167     }
2168 }
2169 
2170 /// Is the trait definition an auto trait?
2171 #[derive(Copy, Clone, PartialEq, Encodable, Decodable, Debug, HashStable_Generic)]
2172 pub enum IsAuto {
2173     Yes,
2174     No,
2175 }
2176 
2177 #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Encodable, Decodable, Debug)]
2178 #[derive(HashStable_Generic)]
2179 pub enum Unsafe {
2180     Yes(Span),
2181     No,
2182 }
2183 
2184 #[derive(Copy, Clone, Encodable, Decodable, Debug)]
2185 pub enum Async {
2186     Yes { span: Span, closure_id: NodeId, return_impl_trait_id: NodeId },
2187     No,
2188 }
2189 
2190 impl Async {
is_async(self) -> bool2191     pub fn is_async(self) -> bool {
2192         matches!(self, Async::Yes { .. })
2193     }
2194 
2195     /// In this case this is an `async` return, the `NodeId` for the generated `impl Trait` item.
opt_return_id(self) -> Option<NodeId>2196     pub fn opt_return_id(self) -> Option<NodeId> {
2197         match self {
2198             Async::Yes { return_impl_trait_id, .. } => Some(return_impl_trait_id),
2199             Async::No => None,
2200         }
2201     }
2202 }
2203 
2204 #[derive(Copy, Clone, PartialEq, Eq, Hash, Encodable, Decodable, Debug)]
2205 #[derive(HashStable_Generic)]
2206 pub enum Const {
2207     Yes(Span),
2208     No,
2209 }
2210 
2211 /// Item defaultness.
2212 /// For details see the [RFC #2532](https://github.com/rust-lang/rfcs/pull/2532).
2213 #[derive(Copy, Clone, PartialEq, Encodable, Decodable, Debug, HashStable_Generic)]
2214 pub enum Defaultness {
2215     Default(Span),
2216     Final,
2217 }
2218 
2219 #[derive(Copy, Clone, PartialEq, Encodable, Decodable, HashStable_Generic)]
2220 pub enum ImplPolarity {
2221     /// `impl Trait for Type`
2222     Positive,
2223     /// `impl !Trait for Type`
2224     Negative(Span),
2225 }
2226 
2227 impl fmt::Debug for ImplPolarity {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result2228     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2229         match *self {
2230             ImplPolarity::Positive => "positive".fmt(f),
2231             ImplPolarity::Negative(_) => "negative".fmt(f),
2232         }
2233     }
2234 }
2235 
2236 #[derive(Clone, Encodable, Decodable, Debug)]
2237 pub enum FnRetTy {
2238     /// Returns type is not specified.
2239     ///
2240     /// Functions default to `()` and closures default to inference.
2241     /// Span points to where return type would be inserted.
2242     Default(Span),
2243     /// Everything else.
2244     Ty(P<Ty>),
2245 }
2246 
2247 impl FnRetTy {
span(&self) -> Span2248     pub fn span(&self) -> Span {
2249         match *self {
2250             FnRetTy::Default(span) => span,
2251             FnRetTy::Ty(ref ty) => ty.span,
2252         }
2253     }
2254 }
2255 
2256 #[derive(Clone, Copy, PartialEq, Encodable, Decodable, Debug)]
2257 pub enum Inline {
2258     Yes,
2259     No,
2260 }
2261 
2262 /// Module item kind.
2263 #[derive(Clone, Encodable, Decodable, Debug)]
2264 pub enum ModKind {
2265     /// Module with inlined definition `mod foo { ... }`,
2266     /// or with definition outlined to a separate file `mod foo;` and already loaded from it.
2267     /// The inner span is from the first token past `{` to the last token until `}`,
2268     /// or from the first to the last token in the loaded file.
2269     Loaded(Vec<P<Item>>, Inline, Span),
2270     /// Module with definition outlined to a separate file `mod foo;` but not yet loaded from it.
2271     Unloaded,
2272 }
2273 
2274 /// Foreign module declaration.
2275 ///
2276 /// E.g., `extern { .. }` or `extern "C" { .. }`.
2277 #[derive(Clone, Encodable, Decodable, Debug)]
2278 pub struct ForeignMod {
2279     /// `unsafe` keyword accepted syntactically for macro DSLs, but not
2280     /// semantically by Rust.
2281     pub unsafety: Unsafe,
2282     pub abi: Option<StrLit>,
2283     pub items: Vec<P<ForeignItem>>,
2284 }
2285 
2286 #[derive(Clone, Encodable, Decodable, Debug)]
2287 pub struct EnumDef {
2288     pub variants: Vec<Variant>,
2289 }
2290 /// Enum variant.
2291 #[derive(Clone, Encodable, Decodable, Debug)]
2292 pub struct Variant {
2293     /// Attributes of the variant.
2294     pub attrs: Vec<Attribute>,
2295     /// Id of the variant (not the constructor, see `VariantData::ctor_id()`).
2296     pub id: NodeId,
2297     /// Span
2298     pub span: Span,
2299     /// The visibility of the variant. Syntactically accepted but not semantically.
2300     pub vis: Visibility,
2301     /// Name of the variant.
2302     pub ident: Ident,
2303 
2304     /// Fields and constructor id of the variant.
2305     pub data: VariantData,
2306     /// Explicit discriminant, e.g., `Foo = 1`.
2307     pub disr_expr: Option<AnonConst>,
2308     /// Is a macro placeholder
2309     pub is_placeholder: bool,
2310 }
2311 
2312 /// Part of `use` item to the right of its prefix.
2313 #[derive(Clone, Encodable, Decodable, Debug)]
2314 pub enum UseTreeKind {
2315     /// `use prefix` or `use prefix as rename`
2316     ///
2317     /// The extra `NodeId`s are for HIR lowering, when additional statements are created for each
2318     /// namespace.
2319     Simple(Option<Ident>, NodeId, NodeId),
2320     /// `use prefix::{...}`
2321     Nested(Vec<(UseTree, NodeId)>),
2322     /// `use prefix::*`
2323     Glob,
2324 }
2325 
2326 /// A tree of paths sharing common prefixes.
2327 /// Used in `use` items both at top-level and inside of braces in import groups.
2328 #[derive(Clone, Encodable, Decodable, Debug)]
2329 pub struct UseTree {
2330     pub prefix: Path,
2331     pub kind: UseTreeKind,
2332     pub span: Span,
2333 }
2334 
2335 impl UseTree {
ident(&self) -> Ident2336     pub fn ident(&self) -> Ident {
2337         match self.kind {
2338             UseTreeKind::Simple(Some(rename), ..) => rename,
2339             UseTreeKind::Simple(None, ..) => {
2340                 self.prefix.segments.last().expect("empty prefix in a simple import").ident
2341             }
2342             _ => panic!("`UseTree::ident` can only be used on a simple import"),
2343         }
2344     }
2345 }
2346 
2347 /// Distinguishes between `Attribute`s that decorate items and Attributes that
2348 /// are contained as statements within items. These two cases need to be
2349 /// distinguished for pretty-printing.
2350 #[derive(Clone, PartialEq, Encodable, Decodable, Debug, Copy, HashStable_Generic)]
2351 pub enum AttrStyle {
2352     Outer,
2353     Inner,
2354 }
2355 
2356 rustc_index::newtype_index! {
2357     pub struct AttrId {
2358         ENCODABLE = custom
2359         DEBUG_FORMAT = "AttrId({})"
2360     }
2361 }
2362 
2363 impl<S: Encoder> rustc_serialize::Encodable<S> for AttrId {
encode(&self, s: &mut S) -> Result<(), S::Error>2364     fn encode(&self, s: &mut S) -> Result<(), S::Error> {
2365         s.emit_unit()
2366     }
2367 }
2368 
2369 impl<D: Decoder> rustc_serialize::Decodable<D> for AttrId {
decode(d: &mut D) -> Result<AttrId, D::Error>2370     fn decode(d: &mut D) -> Result<AttrId, D::Error> {
2371         d.read_nil().map(|_| crate::attr::mk_attr_id())
2372     }
2373 }
2374 
2375 #[derive(Clone, Encodable, Decodable, Debug, HashStable_Generic)]
2376 pub struct AttrItem {
2377     pub path: Path,
2378     pub args: MacArgs,
2379     pub tokens: Option<LazyTokenStream>,
2380 }
2381 
2382 /// A list of attributes.
2383 pub type AttrVec = ThinVec<Attribute>;
2384 
2385 /// Metadata associated with an item.
2386 #[derive(Clone, Encodable, Decodable, Debug)]
2387 pub struct Attribute {
2388     pub kind: AttrKind,
2389     pub id: AttrId,
2390     /// Denotes if the attribute decorates the following construct (outer)
2391     /// or the construct this attribute is contained within (inner).
2392     pub style: AttrStyle,
2393     pub span: Span,
2394 }
2395 
2396 #[derive(Clone, Encodable, Decodable, Debug)]
2397 pub enum AttrKind {
2398     /// A normal attribute.
2399     Normal(AttrItem, Option<LazyTokenStream>),
2400 
2401     /// A doc comment (e.g. `/// ...`, `//! ...`, `/** ... */`, `/*! ... */`).
2402     /// Doc attributes (e.g. `#[doc="..."]`) are represented with the `Normal`
2403     /// variant (which is much less compact and thus more expensive).
2404     DocComment(CommentKind, Symbol),
2405 }
2406 
2407 /// `TraitRef`s appear in impls.
2408 ///
2409 /// Resolution maps each `TraitRef`'s `ref_id` to its defining trait; that's all
2410 /// that the `ref_id` is for. The `impl_id` maps to the "self type" of this impl.
2411 /// If this impl is an `ItemKind::Impl`, the `impl_id` is redundant (it could be the
2412 /// same as the impl's `NodeId`).
2413 #[derive(Clone, Encodable, Decodable, Debug)]
2414 pub struct TraitRef {
2415     pub path: Path,
2416     pub ref_id: NodeId,
2417 }
2418 
2419 #[derive(Clone, Encodable, Decodable, Debug)]
2420 pub struct PolyTraitRef {
2421     /// The `'a` in `<'a> Foo<&'a T>`.
2422     pub bound_generic_params: Vec<GenericParam>,
2423 
2424     /// The `Foo<&'a T>` in `<'a> Foo<&'a T>`.
2425     pub trait_ref: TraitRef,
2426 
2427     pub span: Span,
2428 }
2429 
2430 impl PolyTraitRef {
new(generic_params: Vec<GenericParam>, path: Path, span: Span) -> Self2431     pub fn new(generic_params: Vec<GenericParam>, path: Path, span: Span) -> Self {
2432         PolyTraitRef {
2433             bound_generic_params: generic_params,
2434             trait_ref: TraitRef { path, ref_id: DUMMY_NODE_ID },
2435             span,
2436         }
2437     }
2438 }
2439 
2440 #[derive(Copy, Clone, Encodable, Decodable, Debug, HashStable_Generic)]
2441 pub enum CrateSugar {
2442     /// Source is `pub(crate)`.
2443     PubCrate,
2444 
2445     /// Source is (just) `crate`.
2446     JustCrate,
2447 }
2448 
2449 #[derive(Clone, Encodable, Decodable, Debug)]
2450 pub struct Visibility {
2451     pub kind: VisibilityKind,
2452     pub span: Span,
2453     pub tokens: Option<LazyTokenStream>,
2454 }
2455 
2456 #[derive(Clone, Encodable, Decodable, Debug)]
2457 pub enum VisibilityKind {
2458     Public,
2459     Crate(CrateSugar),
2460     Restricted { path: P<Path>, id: NodeId },
2461     Inherited,
2462 }
2463 
2464 impl VisibilityKind {
is_pub(&self) -> bool2465     pub fn is_pub(&self) -> bool {
2466         matches!(self, VisibilityKind::Public)
2467     }
2468 }
2469 
2470 /// Field definition in a struct, variant or union.
2471 ///
2472 /// E.g., `bar: usize` as in `struct Foo { bar: usize }`.
2473 #[derive(Clone, Encodable, Decodable, Debug)]
2474 pub struct FieldDef {
2475     pub attrs: Vec<Attribute>,
2476     pub id: NodeId,
2477     pub span: Span,
2478     pub vis: Visibility,
2479     pub ident: Option<Ident>,
2480 
2481     pub ty: P<Ty>,
2482     pub is_placeholder: bool,
2483 }
2484 
2485 /// Fields and constructor ids of enum variants and structs.
2486 #[derive(Clone, Encodable, Decodable, Debug)]
2487 pub enum VariantData {
2488     /// Struct variant.
2489     ///
2490     /// E.g., `Bar { .. }` as in `enum Foo { Bar { .. } }`.
2491     Struct(Vec<FieldDef>, bool),
2492     /// Tuple variant.
2493     ///
2494     /// E.g., `Bar(..)` as in `enum Foo { Bar(..) }`.
2495     Tuple(Vec<FieldDef>, NodeId),
2496     /// Unit variant.
2497     ///
2498     /// E.g., `Bar = ..` as in `enum Foo { Bar = .. }`.
2499     Unit(NodeId),
2500 }
2501 
2502 impl VariantData {
2503     /// Return the fields of this variant.
fields(&self) -> &[FieldDef]2504     pub fn fields(&self) -> &[FieldDef] {
2505         match *self {
2506             VariantData::Struct(ref fields, ..) | VariantData::Tuple(ref fields, _) => fields,
2507             _ => &[],
2508         }
2509     }
2510 
2511     /// Return the `NodeId` of this variant's constructor, if it has one.
ctor_id(&self) -> Option<NodeId>2512     pub fn ctor_id(&self) -> Option<NodeId> {
2513         match *self {
2514             VariantData::Struct(..) => None,
2515             VariantData::Tuple(_, id) | VariantData::Unit(id) => Some(id),
2516         }
2517     }
2518 }
2519 
2520 /// An item definition.
2521 #[derive(Clone, Encodable, Decodable, Debug)]
2522 pub struct Item<K = ItemKind> {
2523     pub attrs: Vec<Attribute>,
2524     pub id: NodeId,
2525     pub span: Span,
2526     pub vis: Visibility,
2527     /// The name of the item.
2528     /// It might be a dummy name in case of anonymous items.
2529     pub ident: Ident,
2530 
2531     pub kind: K,
2532 
2533     /// Original tokens this item was parsed from. This isn't necessarily
2534     /// available for all items, although over time more and more items should
2535     /// have this be `Some`. Right now this is primarily used for procedural
2536     /// macros, notably custom attributes.
2537     ///
2538     /// Note that the tokens here do not include the outer attributes, but will
2539     /// include inner attributes.
2540     pub tokens: Option<LazyTokenStream>,
2541 }
2542 
2543 impl Item {
2544     /// Return the span that encompasses the attributes.
span_with_attributes(&self) -> Span2545     pub fn span_with_attributes(&self) -> Span {
2546         self.attrs.iter().fold(self.span, |acc, attr| acc.to(attr.span))
2547     }
2548 }
2549 
2550 impl<K: Into<ItemKind>> Item<K> {
into_item(self) -> Item2551     pub fn into_item(self) -> Item {
2552         let Item { attrs, id, span, vis, ident, kind, tokens } = self;
2553         Item { attrs, id, span, vis, ident, kind: kind.into(), tokens }
2554     }
2555 }
2556 
2557 /// `extern` qualifier on a function item or function type.
2558 #[derive(Clone, Copy, Encodable, Decodable, Debug)]
2559 pub enum Extern {
2560     None,
2561     Implicit,
2562     Explicit(StrLit),
2563 }
2564 
2565 impl Extern {
from_abi(abi: Option<StrLit>) -> Extern2566     pub fn from_abi(abi: Option<StrLit>) -> Extern {
2567         abi.map_or(Extern::Implicit, Extern::Explicit)
2568     }
2569 }
2570 
2571 /// A function header.
2572 ///
2573 /// All the information between the visibility and the name of the function is
2574 /// included in this struct (e.g., `async unsafe fn` or `const extern "C" fn`).
2575 #[derive(Clone, Copy, Encodable, Decodable, Debug)]
2576 pub struct FnHeader {
2577     pub unsafety: Unsafe,
2578     pub asyncness: Async,
2579     pub constness: Const,
2580     pub ext: Extern,
2581 }
2582 
2583 impl FnHeader {
2584     /// Does this function header have any qualifiers or is it empty?
has_qualifiers(&self) -> bool2585     pub fn has_qualifiers(&self) -> bool {
2586         let Self { unsafety, asyncness, constness, ext } = self;
2587         matches!(unsafety, Unsafe::Yes(_))
2588             || asyncness.is_async()
2589             || matches!(constness, Const::Yes(_))
2590             || !matches!(ext, Extern::None)
2591     }
2592 }
2593 
2594 impl Default for FnHeader {
default() -> FnHeader2595     fn default() -> FnHeader {
2596         FnHeader {
2597             unsafety: Unsafe::No,
2598             asyncness: Async::No,
2599             constness: Const::No,
2600             ext: Extern::None,
2601         }
2602     }
2603 }
2604 
2605 #[derive(Clone, Encodable, Decodable, Debug)]
2606 pub struct TraitKind(
2607     pub IsAuto,
2608     pub Unsafe,
2609     pub Generics,
2610     pub GenericBounds,
2611     pub Vec<P<AssocItem>>,
2612 );
2613 
2614 #[derive(Clone, Encodable, Decodable, Debug)]
2615 pub struct TyAliasKind(pub Defaultness, pub Generics, pub GenericBounds, pub Option<P<Ty>>);
2616 
2617 #[derive(Clone, Encodable, Decodable, Debug)]
2618 pub struct ImplKind {
2619     pub unsafety: Unsafe,
2620     pub polarity: ImplPolarity,
2621     pub defaultness: Defaultness,
2622     pub constness: Const,
2623     pub generics: Generics,
2624 
2625     /// The trait being implemented, if any.
2626     pub of_trait: Option<TraitRef>,
2627 
2628     pub self_ty: P<Ty>,
2629     pub items: Vec<P<AssocItem>>,
2630 }
2631 
2632 #[derive(Clone, Encodable, Decodable, Debug)]
2633 pub struct FnKind(pub Defaultness, pub FnSig, pub Generics, pub Option<P<Block>>);
2634 
2635 #[derive(Clone, Encodable, Decodable, Debug)]
2636 pub enum ItemKind {
2637     /// An `extern crate` item, with the optional *original* crate name if the crate was renamed.
2638     ///
2639     /// E.g., `extern crate foo` or `extern crate foo_bar as foo`.
2640     ExternCrate(Option<Symbol>),
2641     /// A use declaration item (`use`).
2642     ///
2643     /// E.g., `use foo;`, `use foo::bar;` or `use foo::bar as FooBar;`.
2644     Use(UseTree),
2645     /// A static item (`static`).
2646     ///
2647     /// E.g., `static FOO: i32 = 42;` or `static FOO: &'static str = "bar";`.
2648     Static(P<Ty>, Mutability, Option<P<Expr>>),
2649     /// A constant item (`const`).
2650     ///
2651     /// E.g., `const FOO: i32 = 42;`.
2652     Const(Defaultness, P<Ty>, Option<P<Expr>>),
2653     /// A function declaration (`fn`).
2654     ///
2655     /// E.g., `fn foo(bar: usize) -> usize { .. }`.
2656     Fn(Box<FnKind>),
2657     /// A module declaration (`mod`).
2658     ///
2659     /// E.g., `mod foo;` or `mod foo { .. }`.
2660     /// `unsafe` keyword on modules is accepted syntactically for macro DSLs, but not
2661     /// semantically by Rust.
2662     Mod(Unsafe, ModKind),
2663     /// An external module (`extern`).
2664     ///
2665     /// E.g., `extern {}` or `extern "C" {}`.
2666     ForeignMod(ForeignMod),
2667     /// Module-level inline assembly (from `global_asm!()`).
2668     GlobalAsm(InlineAsm),
2669     /// A type alias (`type`).
2670     ///
2671     /// E.g., `type Foo = Bar<u8>;`.
2672     TyAlias(Box<TyAliasKind>),
2673     /// An enum definition (`enum`).
2674     ///
2675     /// E.g., `enum Foo<A, B> { C<A>, D<B> }`.
2676     Enum(EnumDef, Generics),
2677     /// A struct definition (`struct`).
2678     ///
2679     /// E.g., `struct Foo<A> { x: A }`.
2680     Struct(VariantData, Generics),
2681     /// A union definition (`union`).
2682     ///
2683     /// E.g., `union Foo<A, B> { x: A, y: B }`.
2684     Union(VariantData, Generics),
2685     /// A trait declaration (`trait`).
2686     ///
2687     /// E.g., `trait Foo { .. }`, `trait Foo<T> { .. }` or `auto trait Foo {}`.
2688     Trait(Box<TraitKind>),
2689     /// Trait alias
2690     ///
2691     /// E.g., `trait Foo = Bar + Quux;`.
2692     TraitAlias(Generics, GenericBounds),
2693     /// An implementation.
2694     ///
2695     /// E.g., `impl<A> Foo<A> { .. }` or `impl<A> Trait for Foo<A> { .. }`.
2696     Impl(Box<ImplKind>),
2697     /// A macro invocation.
2698     ///
2699     /// E.g., `foo!(..)`.
2700     MacCall(MacCall),
2701 
2702     /// A macro definition.
2703     MacroDef(MacroDef),
2704 }
2705 
2706 #[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
2707 rustc_data_structures::static_assert_size!(ItemKind, 112);
2708 
2709 impl ItemKind {
article(&self) -> &str2710     pub fn article(&self) -> &str {
2711         use ItemKind::*;
2712         match self {
2713             Use(..) | Static(..) | Const(..) | Fn(..) | Mod(..) | GlobalAsm(..) | TyAlias(..)
2714             | Struct(..) | Union(..) | Trait(..) | TraitAlias(..) | MacroDef(..) => "a",
2715             ExternCrate(..) | ForeignMod(..) | MacCall(..) | Enum(..) | Impl { .. } => "an",
2716         }
2717     }
2718 
descr(&self) -> &str2719     pub fn descr(&self) -> &str {
2720         match self {
2721             ItemKind::ExternCrate(..) => "extern crate",
2722             ItemKind::Use(..) => "`use` import",
2723             ItemKind::Static(..) => "static item",
2724             ItemKind::Const(..) => "constant item",
2725             ItemKind::Fn(..) => "function",
2726             ItemKind::Mod(..) => "module",
2727             ItemKind::ForeignMod(..) => "extern block",
2728             ItemKind::GlobalAsm(..) => "global asm item",
2729             ItemKind::TyAlias(..) => "type alias",
2730             ItemKind::Enum(..) => "enum",
2731             ItemKind::Struct(..) => "struct",
2732             ItemKind::Union(..) => "union",
2733             ItemKind::Trait(..) => "trait",
2734             ItemKind::TraitAlias(..) => "trait alias",
2735             ItemKind::MacCall(..) => "item macro invocation",
2736             ItemKind::MacroDef(..) => "macro definition",
2737             ItemKind::Impl { .. } => "implementation",
2738         }
2739     }
2740 
generics(&self) -> Option<&Generics>2741     pub fn generics(&self) -> Option<&Generics> {
2742         match self {
2743             Self::Fn(box FnKind(_, _, generics, _))
2744             | Self::TyAlias(box TyAliasKind(_, generics, ..))
2745             | Self::Enum(_, generics)
2746             | Self::Struct(_, generics)
2747             | Self::Union(_, generics)
2748             | Self::Trait(box TraitKind(_, _, generics, ..))
2749             | Self::TraitAlias(generics, _)
2750             | Self::Impl(box ImplKind { generics, .. }) => Some(generics),
2751             _ => None,
2752         }
2753     }
2754 }
2755 
2756 /// Represents associated items.
2757 /// These include items in `impl` and `trait` definitions.
2758 pub type AssocItem = Item<AssocItemKind>;
2759 
2760 /// Represents associated item kinds.
2761 ///
2762 /// The term "provided" in the variants below refers to the item having a default
2763 /// definition / body. Meanwhile, a "required" item lacks a definition / body.
2764 /// In an implementation, all items must be provided.
2765 /// The `Option`s below denote the bodies, where `Some(_)`
2766 /// means "provided" and conversely `None` means "required".
2767 #[derive(Clone, Encodable, Decodable, Debug)]
2768 pub enum AssocItemKind {
2769     /// An associated constant, `const $ident: $ty $def?;` where `def ::= "=" $expr? ;`.
2770     /// If `def` is parsed, then the constant is provided, and otherwise required.
2771     Const(Defaultness, P<Ty>, Option<P<Expr>>),
2772     /// An associated function.
2773     Fn(Box<FnKind>),
2774     /// An associated type.
2775     TyAlias(Box<TyAliasKind>),
2776     /// A macro expanding to associated items.
2777     MacCall(MacCall),
2778 }
2779 
2780 #[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
2781 rustc_data_structures::static_assert_size!(AssocItemKind, 72);
2782 
2783 impl AssocItemKind {
defaultness(&self) -> Defaultness2784     pub fn defaultness(&self) -> Defaultness {
2785         match *self {
2786             Self::Const(def, ..)
2787             | Self::Fn(box FnKind(def, ..))
2788             | Self::TyAlias(box TyAliasKind(def, ..)) => def,
2789             Self::MacCall(..) => Defaultness::Final,
2790         }
2791     }
2792 }
2793 
2794 impl From<AssocItemKind> for ItemKind {
from(assoc_item_kind: AssocItemKind) -> ItemKind2795     fn from(assoc_item_kind: AssocItemKind) -> ItemKind {
2796         match assoc_item_kind {
2797             AssocItemKind::Const(a, b, c) => ItemKind::Const(a, b, c),
2798             AssocItemKind::Fn(fn_kind) => ItemKind::Fn(fn_kind),
2799             AssocItemKind::TyAlias(ty_alias_kind) => ItemKind::TyAlias(ty_alias_kind),
2800             AssocItemKind::MacCall(a) => ItemKind::MacCall(a),
2801         }
2802     }
2803 }
2804 
2805 impl TryFrom<ItemKind> for AssocItemKind {
2806     type Error = ItemKind;
2807 
try_from(item_kind: ItemKind) -> Result<AssocItemKind, ItemKind>2808     fn try_from(item_kind: ItemKind) -> Result<AssocItemKind, ItemKind> {
2809         Ok(match item_kind {
2810             ItemKind::Const(a, b, c) => AssocItemKind::Const(a, b, c),
2811             ItemKind::Fn(fn_kind) => AssocItemKind::Fn(fn_kind),
2812             ItemKind::TyAlias(ty_alias_kind) => AssocItemKind::TyAlias(ty_alias_kind),
2813             ItemKind::MacCall(a) => AssocItemKind::MacCall(a),
2814             _ => return Err(item_kind),
2815         })
2816     }
2817 }
2818 
2819 /// An item in `extern` block.
2820 #[derive(Clone, Encodable, Decodable, Debug)]
2821 pub enum ForeignItemKind {
2822     /// A foreign static item (`static FOO: u8`).
2823     Static(P<Ty>, Mutability, Option<P<Expr>>),
2824     /// An foreign function.
2825     Fn(Box<FnKind>),
2826     /// An foreign type.
2827     TyAlias(Box<TyAliasKind>),
2828     /// A macro expanding to foreign items.
2829     MacCall(MacCall),
2830 }
2831 
2832 #[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
2833 rustc_data_structures::static_assert_size!(ForeignItemKind, 72);
2834 
2835 impl From<ForeignItemKind> for ItemKind {
from(foreign_item_kind: ForeignItemKind) -> ItemKind2836     fn from(foreign_item_kind: ForeignItemKind) -> ItemKind {
2837         match foreign_item_kind {
2838             ForeignItemKind::Static(a, b, c) => ItemKind::Static(a, b, c),
2839             ForeignItemKind::Fn(fn_kind) => ItemKind::Fn(fn_kind),
2840             ForeignItemKind::TyAlias(ty_alias_kind) => ItemKind::TyAlias(ty_alias_kind),
2841             ForeignItemKind::MacCall(a) => ItemKind::MacCall(a),
2842         }
2843     }
2844 }
2845 
2846 impl TryFrom<ItemKind> for ForeignItemKind {
2847     type Error = ItemKind;
2848 
try_from(item_kind: ItemKind) -> Result<ForeignItemKind, ItemKind>2849     fn try_from(item_kind: ItemKind) -> Result<ForeignItemKind, ItemKind> {
2850         Ok(match item_kind {
2851             ItemKind::Static(a, b, c) => ForeignItemKind::Static(a, b, c),
2852             ItemKind::Fn(fn_kind) => ForeignItemKind::Fn(fn_kind),
2853             ItemKind::TyAlias(ty_alias_kind) => ForeignItemKind::TyAlias(ty_alias_kind),
2854             ItemKind::MacCall(a) => ForeignItemKind::MacCall(a),
2855             _ => return Err(item_kind),
2856         })
2857     }
2858 }
2859 
2860 pub type ForeignItem = Item<ForeignItemKind>;
2861