1 // Copyright (C) 2002-2009 Nikolaus Gebhardt
2 // This file is part of the "irrKlang" library.
3 // For conditions of distribution and use, see copyright notice in irrKlang.h
4 
5 #ifndef __IRR_IRRKLANG_VEC_3D_H_INCLUDED__
6 #define __IRR_IRRKLANG_VEC_3D_H_INCLUDED__
7 
8 #include <math.h>
9 #include "ik_irrKlangTypes.h"
10 
11 
12 namespace irrklang
13 {
14 
15 	//! a 3d vector template class for representing vectors and points in 3d
16 	template <class T>
17 	class vec3d
18 	{
19 	public:
20 
vec3d()21 		vec3d(): X(0), Y(0), Z(0) {};
vec3d(T nx,T ny,T nz)22 		vec3d(T nx, T ny, T nz) : X(nx), Y(ny), Z(nz) {};
vec3d(const vec3d<T> & other)23 		vec3d(const vec3d<T>& other)	:X(other.X), Y(other.Y), Z(other.Z) {};
24 
25 		//! constructor creating an irrklang vec3d from an irrlicht vector.
26 		#ifdef __IRR_POINT_3D_H_INCLUDED__
27 		template<class B>
vec3d(const B & other)28 		vec3d(const B& other)	:X(other.X), Y(other.Y), Z(other.Z) {};
29 		#endif // __IRR_POINT_3D_H_INCLUDED__
30 
31 		// operators
32 
33 		vec3d<T> operator-() const { return vec3d<T>(-X, -Y, -Z);   }
34 
35 		vec3d<T>& operator=(const vec3d<T>& other)	{ X = other.X; Y = other.Y; Z = other.Z; return *this; }
36 
37 		vec3d<T> operator+(const vec3d<T>& other) const { return vec3d<T>(X + other.X, Y + other.Y, Z + other.Z);	}
38 		vec3d<T>& operator+=(const vec3d<T>& other)	{ X+=other.X; Y+=other.Y; Z+=other.Z; return *this; }
39 
40 		vec3d<T> operator-(const vec3d<T>& other) const { return vec3d<T>(X - other.X, Y - other.Y, Z - other.Z);	}
41 		vec3d<T>& operator-=(const vec3d<T>& other)	{ X-=other.X; Y-=other.Y; Z-=other.Z; return *this; }
42 
43 		vec3d<T> operator*(const vec3d<T>& other) const { return vec3d<T>(X * other.X, Y * other.Y, Z * other.Z);	}
44 		vec3d<T>& operator*=(const vec3d<T>& other)	{ X*=other.X; Y*=other.Y; Z*=other.Z; return *this; }
45 		vec3d<T> operator*(const T v) const { return vec3d<T>(X * v, Y * v, Z * v);	}
46 		vec3d<T>& operator*=(const T v) { X*=v; Y*=v; Z*=v; return *this; }
47 
48 		vec3d<T> operator/(const vec3d<T>& other) const { return vec3d<T>(X / other.X, Y / other.Y, Z / other.Z);	}
49 		vec3d<T>& operator/=(const vec3d<T>& other)	{ X/=other.X; Y/=other.Y; Z/=other.Z; return *this; }
50 		vec3d<T> operator/(const T v) const { T i=(T)1.0/v; return vec3d<T>(X * i, Y * i, Z * i);	}
51 		vec3d<T>& operator/=(const T v) { T i=(T)1.0/v; X*=i; Y*=i; Z*=i; return *this; }
52 
53 		bool operator<=(const vec3d<T>&other) const { return X<=other.X && Y<=other.Y && Z<=other.Z;};
54 		bool operator>=(const vec3d<T>&other) const { return X>=other.X && Y>=other.Y && Z>=other.Z;};
55 
56 		bool operator==(const vec3d<T>& other) const { return other.X==X && other.Y==Y && other.Z==Z; }
57 		bool operator!=(const vec3d<T>& other) const { return other.X!=X || other.Y!=Y || other.Z!=Z; }
58 
59 		// functions
60 
61 		//! returns if this vector equalsfloat the other one, taking floating point rounding errors into account
equals(const vec3d<T> & other)62 		bool equals(const vec3d<T>& other)
63 		{
64 			return equalsfloat(X, other.X) &&
65 				   equalsfloat(Y, other.Y) &&
66 				   equalsfloat(Z, other.Z);
67 		}
68 
set(const T nx,const T ny,const T nz)69 		void set(const T nx, const T ny, const T nz) {X=nx; Y=ny; Z=nz; }
set(const vec3d<T> & p)70 		void set(const vec3d<T>& p) { X=p.X; Y=p.Y; Z=p.Z;}
71 
72 		//! Returns length of the vector.
getLength()73 		ik_f64 getLength() const { return sqrt(X*X + Y*Y + Z*Z); }
74 
75 		//! Returns squared length of the vector.
76 		/** This is useful because it is much faster then
77 		getLength(). */
getLengthSQ()78 		ik_f64 getLengthSQ() const { return X*X + Y*Y + Z*Z; }
79 
80 		//! Returns the dot product with another vector.
dotProduct(const vec3d<T> & other)81 		T dotProduct(const vec3d<T>& other) const
82 		{
83 			return X*other.X + Y*other.Y + Z*other.Z;
84 		}
85 
86 		//! Returns distance from an other point.
87 		/** Here, the vector is interpreted as point in 3 dimensional space. */
getDistanceFrom(const vec3d<T> & other)88 		ik_f64 getDistanceFrom(const vec3d<T>& other) const
89 		{
90 			ik_f64 vx = X - other.X; ik_f64 vy = Y - other.Y; ik_f64 vz = Z - other.Z;
91 			return sqrt(vx*vx + vy*vy + vz*vz);
92 		}
93 
94 		//! Returns squared distance from an other point.
95 		/** Here, the vector is interpreted as point in 3 dimensional space. */
getDistanceFromSQ(const vec3d<T> & other)96 		ik_f32 getDistanceFromSQ(const vec3d<T>& other) const
97 		{
98 			ik_f32 vx = X - other.X; ik_f32 vy = Y - other.Y; ik_f32 vz = Z - other.Z;
99 			return (vx*vx + vy*vy + vz*vz);
100 		}
101 
102 		//! Calculates the cross product with another vector
crossProduct(const vec3d<T> & p)103 		vec3d<T> crossProduct(const vec3d<T>& p) const
104 		{
105 			return vec3d<T>(Y * p.Z - Z * p.Y, Z * p.X - X * p.Z, X * p.Y - Y * p.X);
106 		}
107 
108 		//! Returns if this vector interpreted as a point is on a line between two other points.
109 		/** It is assumed that the point is on the line. */
isBetweenPoints(const vec3d<T> & begin,const vec3d<T> & end)110 		bool isBetweenPoints(const vec3d<T>& begin, const vec3d<T>& end) const
111 		{
112 			ik_f32 f = (ik_f32)(end - begin).getLengthSQ();
113 			return (ik_f32)getDistanceFromSQ(begin) < f &&
114 				(ik_f32)getDistanceFromSQ(end) < f;
115 		}
116 
117 		//! Normalizes the vector.
normalize()118 		vec3d<T>& normalize()
119 		{
120 			T l = (T)getLength();
121 			if (l == 0)
122 				return *this;
123 
124 			l = (T)1.0 / l;
125 			X *= l;
126 			Y *= l;
127 			Z *= l;
128 			return *this;
129 		}
130 
131 		//! Sets the lenght of the vector to a new value
setLength(T newlength)132 		void setLength(T newlength)
133 		{
134 			normalize();
135 			*this *= newlength;
136 		}
137 
138 		//! Inverts the vector.
invert()139 		void invert()
140 		{
141 			X *= -1.0f;
142 			Y *= -1.0f;
143 			Z *= -1.0f;
144 		}
145 
146 		//! Rotates the vector by a specified number of degrees around the Y
147 		//! axis and the specified center.
148 		//! \param degrees: Number of degrees to rotate around the Y axis.
149 		//! \param center: The center of the rotation.
rotateXZBy(ik_f64 degrees,const vec3d<T> & center)150 		void rotateXZBy(ik_f64 degrees, const vec3d<T>& center)
151 		{
152 			degrees *= IK_DEGTORAD64;
153 			T cs = (T)cos(degrees);
154 			T sn = (T)sin(degrees);
155 			X -= center.X;
156 			Z -= center.Z;
157 			set(X*cs - Z*sn, Y, X*sn + Z*cs);
158 			X += center.X;
159 			Z += center.Z;
160 		}
161 
162 		//! Rotates the vector by a specified number of degrees around the Z
163 		//! axis and the specified center.
164 		//! \param degrees: Number of degrees to rotate around the Z axis.
165 		//! \param center: The center of the rotation.
rotateXYBy(ik_f64 degrees,const vec3d<T> & center)166 		void rotateXYBy(ik_f64 degrees, const vec3d<T>& center)
167 		{
168 			degrees *= IK_DEGTORAD64;
169 			T cs = (T)cos(degrees);
170 			T sn = (T)sin(degrees);
171 			X -= center.X;
172 			Y -= center.Y;
173 			set(X*cs - Y*sn, X*sn + Y*cs, Z);
174 			X += center.X;
175 			Y += center.Y;
176 		}
177 
178 		//! Rotates the vector by a specified number of degrees around the X
179 		//! axis and the specified center.
180 		//! \param degrees: Number of degrees to rotate around the X axis.
181 		//! \param center: The center of the rotation.
rotateYZBy(ik_f64 degrees,const vec3d<T> & center)182 		void rotateYZBy(ik_f64 degrees, const vec3d<T>& center)
183 		{
184 			degrees *= IK_DEGTORAD64;
185 			T cs = (T)cos(degrees);
186 			T sn = (T)sin(degrees);
187 			Z -= center.Z;
188 			Y -= center.Y;
189 			set(X, Y*cs - Z*sn, Y*sn + Z*cs);
190 			Z += center.Z;
191 			Y += center.Y;
192 		}
193 
194 		//! Returns interpolated vector.
195 		/** \param other: other vector to interpolate between
196 		\param d: value between 0.0f and 1.0f. */
getInterpolated(const vec3d<T> & other,ik_f32 d)197 		vec3d<T> getInterpolated(const vec3d<T>& other, ik_f32 d) const
198 		{
199 			ik_f32 inv = 1.0f - d;
200 			return vec3d<T>(other.X*inv + X*d,
201 								other.Y*inv + Y*d,
202 								other.Z*inv + Z*d);
203 		}
204 
205 		//! Gets the Y and Z rotations of a vector.
206 		/** Thanks to Arras on the Irrlicht forums to add this method.
207 		 \return A vector representing the rotation in degrees of
208 		this vector. The Z component of the vector will always be 0. */
getHorizontalAngle()209 		vec3d<T> getHorizontalAngle()
210 		{
211 			vec3d<T> angle;
212 
213 			angle.Y = (T)atan2(X, Z);
214 			angle.Y *= (ik_f32)IK_RADTODEG;
215 
216 			if (angle.Y < 0.0f) angle.Y += 360.0f;
217 			if (angle.Y >= 360.0f) angle.Y -= 360.0f;
218 
219 			ik_f32 z1 = (T)sqrt(X*X + Z*Z);
220 
221 			angle.X = (T)atan2(z1, Y);
222 			angle.X *= (ik_f32)IK_RADTODEG;
223 			angle.X -= 90.0f;
224 
225 			if (angle.X < 0.0f) angle.X += 360.0f;
226 			if (angle.X >= 360) angle.X -= 360.0f;
227 
228 			return angle;
229 		}
230 
231 		//! Fills an array of 4 values with the vector data (usually floats).
232 		/** Useful for setting in shader constants for example. The fourth value
233 		 will always be 0. */
getAs4Values(T * array)234 		void getAs4Values(T* array)
235 		{
236 			array[0] = X;
237 			array[1] = Y;
238 			array[2] = Z;
239 			array[3] = 0;
240 		}
241 
242 
243 		// member variables
244 
245 		T X, Y, Z;
246 	};
247 
248 
249 	//! Typedef for a ik_f32 3d vector, a vector using floats for X, Y and Z
250 	typedef vec3d<ik_f32> vec3df;
251 
252 	//! Typedef for an integer 3d vector, a vector using ints for X, Y and Z
253 	typedef vec3d<ik_s32> vec3di;
254 
255 	template<class S, class T> vec3d<T> operator*(const S scalar, const vec3d<T>& vector) { return vector*scalar; }
256 
257 } // end namespace irrklang
258 
259 
260 #endif
261 
262