1 /*
2  * jcarith.c
3  *
4  * Developed 1997 by Guido Vollbeding.
5  * This file is part of the Independent JPEG Group's software.
6  * For conditions of distribution and use, see the accompanying README file.
7  *
8  * This file contains portable arithmetic entropy encoding routines for JPEG
9  * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
10  *
11  * Both sequential and progressive modes are supported in this single module.
12  *
13  * Suspension is not currently supported in this module.
14  */
15 
16 #define JPEG_INTERNALS
17 #include "jinclude.h"
18 #include "jpeglib.h"
19 
20 
21 /* Expanded entropy encoder object for arithmetic encoding. */
22 
23 typedef struct {
24   struct jpeg_entropy_encoder pub; /* public fields */
25 
26   INT32 c; /* C register, base of coding interval, layout as in sec. D.1.3 */
27   INT32 a;               /* A register, normalized size of coding interval */
28   INT32 sc;        /* counter for stacked 0xFF values which might overflow */
29   INT32 zc;          /* counter for pending 0x00 output values which might *
30                           * be discarded at the end ("Pacman" termination) */
31   int ct;  /* bit shift counter, determines when next byte will be written */
32   int buffer;                /* buffer for most recent output byte != 0xFF */
33 
34   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
35   int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
36 
37   unsigned int restarts_to_go;	/* MCUs left in this restart interval */
38   int next_restart_num;		/* next restart number to write (0-7) */
39 
40   /* Pointers to statistics areas (these workspaces have image lifespan) */
41   unsigned char * dc_stats[NUM_ARITH_TBLS];
42   unsigned char * ac_stats[NUM_ARITH_TBLS];
43 } arith_entropy_encoder;
44 
45 typedef arith_entropy_encoder * arith_entropy_ptr;
46 
47 /* The following two definitions specify the allocation chunk size
48  * for the statistics area.
49  * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
50  * 49 statistics bins for DC, and 245 statistics bins for AC coding.
51  * Note that we use one additional AC bin for codings with fixed
52  * probability (0.5), thus the minimum number for AC is 246.
53  *
54  * We use a compact representation with 1 byte per statistics bin,
55  * thus the numbers directly represent byte sizes.
56  * This 1 byte per statistics bin contains the meaning of the MPS
57  * (more probable symbol) in the highest bit (mask 0x80), and the
58  * index into the probability estimation state machine table
59  * in the lower bits (mask 0x7F).
60  */
61 
62 #define DC_STAT_BINS 64
63 #define AC_STAT_BINS 256
64 
65 /* NOTE: Uncomment the following #define if you want to use the
66  * given formula for calculating the AC conditioning parameter Kx
67  * for spectral selection progressive coding in section G.1.3.2
68  * of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4).
69  * Although the spec and P&M authors claim that this "has proven
70  * to give good results for 8 bit precision samples", I'm not
71  * convinced yet that this is really beneficial.
72  * Early tests gave only very marginal compression enhancements
73  * (a few - around 5 or so - bytes even for very large files),
74  * which would turn out rather negative if we'd suppress the
75  * DAC (Define Arithmetic Conditioning) marker segments for
76  * the default parameters in the future.
77  * Note that currently the marker writing module emits 12-byte
78  * DAC segments for a full-component scan in a color image.
79  * This is not worth worrying about IMHO. However, since the
80  * spec defines the default values to be used if the tables
81  * are omitted (unlike Huffman tables, which are required
82  * anyway), one might optimize this behaviour in the future,
83  * and then it would be disadvantageous to use custom tables if
84  * they don't provide sufficient gain to exceed the DAC size.
85  *
86  * On the other hand, I'd consider it as a reasonable result
87  * that the conditioning has no significant influence on the
88  * compression performance. This means that the basic
89  * statistical model is already rather stable.
90  *
91  * Thus, at the moment, we use the default conditioning values
92  * anyway, and do not use the custom formula.
93  *
94 #define CALCULATE_SPECTRAL_CONDITIONING
95  */
96 
97 /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
98  * We assume that int right shift is unsigned if INT32 right shift is,
99  * which should be safe.
100  */
101 
102 #ifdef RIGHT_SHIFT_IS_UNSIGNED
103 #define ISHIFT_TEMPS	int ishift_temp;
104 #define IRIGHT_SHIFT(x,shft)  \
105 	((ishift_temp = (x)) < 0 ? \
106 	 (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
107 	 (ishift_temp >> (shft)))
108 #else
109 #define ISHIFT_TEMPS
110 #define IRIGHT_SHIFT(x,shft)	((x) >> (shft))
111 #endif
112 
113 
114 LOCAL(void)
emit_byte(int val,j_compress_ptr cinfo)115 emit_byte (int val, j_compress_ptr cinfo)
116 /* Write next output byte; we do not support suspension in this module. */
117 {
118   struct jpeg_destination_mgr * dest = cinfo->dest;
119 
120   *dest->next_output_byte++ = (JOCTET) val;
121   if (--dest->free_in_buffer == 0)
122     if (! (*dest->empty_output_buffer) (cinfo))
123       ERREXIT(cinfo, JERR_CANT_SUSPEND);
124 }
125 
126 
127 /*
128  * Finish up at the end of an arithmetic-compressed scan.
129  */
130 
131 METHODDEF(void)
finish_pass(j_compress_ptr cinfo)132 finish_pass (j_compress_ptr cinfo)
133 {
134   arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
135   INT32 temp;
136 
137   /* Section D.1.8: Termination of encoding */
138 
139   /* Find the e->c in the coding interval with the largest
140    * number of trailing zero bits */
141   if ((temp = (e->a - 1 + e->c) & 0xFFFF0000L) < e->c)
142     e->c = temp + 0x8000L;
143   else
144     e->c = temp;
145   /* Send remaining bytes to output */
146   e->c <<= e->ct;
147   if (e->c & 0xF8000000L) {
148     /* One final overflow has to be handled */
149     if (e->buffer >= 0) {
150       if (e->zc)
151 	do emit_byte(0x00, cinfo);
152 	while (--e->zc);
153       emit_byte(e->buffer + 1, cinfo);
154       if (e->buffer + 1 == 0xFF)
155 	emit_byte(0x00, cinfo);
156     }
157     e->zc += e->sc;  /* carry-over converts stacked 0xFF bytes to 0x00 */
158     e->sc = 0;
159   } else {
160     if (e->buffer == 0)
161       ++e->zc;
162     else if (e->buffer >= 0) {
163       if (e->zc)
164 	do emit_byte(0x00, cinfo);
165 	while (--e->zc);
166       emit_byte(e->buffer, cinfo);
167     }
168     if (e->sc) {
169       if (e->zc)
170 	do emit_byte(0x00, cinfo);
171 	while (--e->zc);
172       do {
173 	emit_byte(0xFF, cinfo);
174 	emit_byte(0x00, cinfo);
175       } while (--e->sc);
176     }
177   }
178   /* Output final bytes only if they are not 0x00 */
179   if (e->c & 0x7FFF800L) {
180     if (e->zc)  /* output final pending zero bytes */
181       do emit_byte(0x00, cinfo);
182       while (--e->zc);
183     emit_byte((e->c >> 19) & 0xFF, cinfo);
184     if (((e->c >> 19) & 0xFF) == 0xFF)
185       emit_byte(0x00, cinfo);
186     if (e->c & 0x7F800L) {
187       emit_byte((e->c >> 11) & 0xFF, cinfo);
188       if (((e->c >> 11) & 0xFF) == 0xFF)
189 	emit_byte(0x00, cinfo);
190     }
191   }
192 }
193 
194 
195 /*
196  * The core arithmetic encoding routine (common in JPEG and JBIG).
197  * This needs to go as fast as possible.
198  * Machine-dependent optimization facilities
199  * are not utilized in this portable implementation.
200  * However, this code should be fairly efficient and
201  * may be a good base for further optimizations anyway.
202  *
203  * Parameter 'val' to be encoded may be 0 or 1 (binary decision).
204  *
205  * Note: I've added full "Pacman" termination support to the
206  * byte output routines, which is equivalent to the optional
207  * Discard_final_zeros procedure (Figure D.15) in the spec.
208  * Thus, we always produce the shortest possible output
209  * stream compliant to the spec (no trailing zero bytes,
210  * except for FF stuffing).
211  *
212  * I've also introduced a new scheme for accessing
213  * the probability estimation state machine table,
214  * derived from Markus Kuhn's JBIG implementation.
215  */
216 
217 LOCAL(void)
arith_encode(j_compress_ptr cinfo,unsigned char * st,int val)218 arith_encode (j_compress_ptr cinfo, unsigned char *st, int val)
219 {
220   extern const INT32 jaritab[];
221   register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
222   register unsigned char nl, nm;
223   register INT32 qe, temp;
224   register int sv;
225 
226   /* Fetch values from our compact representation of Table D.2:
227    * Qe values and probability estimation state machine
228    */
229   sv = *st;
230   qe = jaritab[sv & 0x7F];	/* => Qe_Value */
231   nl = qe & 0xFF; qe >>= 8;	/* Next_Index_LPS + Switch_MPS */
232   nm = qe & 0xFF; qe >>= 8;	/* Next_Index_MPS */
233 
234   /* Encode & estimation procedures per sections D.1.4 & D.1.5 */
235   e->a -= qe;
236   if (val != (sv >> 7)) {
237     /* Encode the less probable symbol */
238     if (e->a >= qe) {
239       /* If the interval size (qe) for the less probable symbol (LPS)
240        * is larger than the interval size for the MPS, then exchange
241        * the two symbols for coding efficiency, otherwise code the LPS
242        * as usual: */
243       e->c += e->a;
244       e->a = qe;
245     }
246     *st = (sv & 0x80) ^ nl;	/* Estimate_after_LPS */
247   } else {
248     /* Encode the more probable symbol */
249     if (e->a >= 0x8000L)
250       return;  /* A >= 0x8000 -> ready, no renormalization required */
251     if (e->a < qe) {
252       /* If the interval size (qe) for the less probable symbol (LPS)
253        * is larger than the interval size for the MPS, then exchange
254        * the two symbols for coding efficiency: */
255       e->c += e->a;
256       e->a = qe;
257     }
258     *st = (sv & 0x80) ^ nm;	/* Estimate_after_MPS */
259   }
260 
261   /* Renormalization & data output per section D.1.6 */
262   do {
263     e->a <<= 1;
264     e->c <<= 1;
265     if (--e->ct == 0) {
266       /* Another byte is ready for output */
267       temp = e->c >> 19;
268       if (temp > 0xFF) {
269 	/* Handle overflow over all stacked 0xFF bytes */
270 	if (e->buffer >= 0) {
271 	  if (e->zc)
272 	    do emit_byte(0x00, cinfo);
273 	    while (--e->zc);
274 	  emit_byte(e->buffer + 1, cinfo);
275 	  if (e->buffer + 1 == 0xFF)
276 	    emit_byte(0x00, cinfo);
277 	}
278 	e->zc += e->sc;  /* carry-over converts stacked 0xFF bytes to 0x00 */
279 	e->sc = 0;
280 	/* Note: The 3 spacer bits in the C register guarantee
281 	 * that the new buffer byte can't be 0xFF here
282 	 * (see page 160 in the P&M JPEG book). */
283 	e->buffer = temp & 0xFF;  /* new output byte, might overflow later */
284       } else if (temp == 0xFF) {
285 	++e->sc;  /* stack 0xFF byte (which might overflow later) */
286       } else {
287 	/* Output all stacked 0xFF bytes, they will not overflow any more */
288 	if (e->buffer == 0)
289 	  ++e->zc;
290 	else if (e->buffer >= 0) {
291 	  if (e->zc)
292 	    do emit_byte(0x00, cinfo);
293 	    while (--e->zc);
294 	  emit_byte(e->buffer, cinfo);
295 	}
296 	if (e->sc) {
297 	  if (e->zc)
298 	    do emit_byte(0x00, cinfo);
299 	    while (--e->zc);
300 	  do {
301 	    emit_byte(0xFF, cinfo);
302 	    emit_byte(0x00, cinfo);
303 	  } while (--e->sc);
304 	}
305 	e->buffer = temp & 0xFF;  /* new output byte (can still overflow) */
306       }
307       e->c &= 0x7FFFFL;
308       e->ct += 8;
309     }
310   } while (e->a < 0x8000L);
311 }
312 
313 
314 /*
315  * Emit a restart marker & resynchronize predictions.
316  */
317 
318 LOCAL(void)
emit_restart(j_compress_ptr cinfo,int restart_num)319 emit_restart (j_compress_ptr cinfo, int restart_num)
320 {
321   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
322   int ci;
323   jpeg_component_info * compptr;
324 
325   finish_pass(cinfo);
326 
327   emit_byte(0xFF, cinfo);
328   emit_byte(JPEG_RST0 + restart_num, cinfo);
329 
330   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
331     compptr = cinfo->cur_comp_info[ci];
332     /* Re-initialize statistics areas */
333     if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
334       MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
335       /* Reset DC predictions to 0 */
336       entropy->last_dc_val[ci] = 0;
337       entropy->dc_context[ci] = 0;
338     }
339     if (cinfo->progressive_mode == 0 || cinfo->Ss) {
340       MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
341     }
342   }
343 
344   /* Reset arithmetic encoding variables */
345   entropy->c = 0;
346   entropy->a = 0x10000L;
347   entropy->sc = 0;
348   entropy->zc = 0;
349   entropy->ct = 11;
350   entropy->buffer = -1;  /* empty */
351 }
352 
353 
354 /*
355  * MCU encoding for DC initial scan (either spectral selection,
356  * or first pass of successive approximation).
357  */
358 
359 METHODDEF(boolean)
encode_mcu_DC_first(j_compress_ptr cinfo,JBLOCKROW * MCU_data)360 encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
361 {
362   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
363   JBLOCKROW block;
364   unsigned char *st;
365   int blkn, ci, tbl;
366   int v, v2, m;
367   ISHIFT_TEMPS
368 
369   /* Emit restart marker if needed */
370   if (cinfo->restart_interval) {
371     if (entropy->restarts_to_go == 0) {
372       emit_restart(cinfo, entropy->next_restart_num);
373       entropy->restarts_to_go = cinfo->restart_interval;
374       entropy->next_restart_num++;
375       entropy->next_restart_num &= 7;
376     }
377     entropy->restarts_to_go--;
378   }
379 
380   /* Encode the MCU data blocks */
381   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
382     block = MCU_data[blkn];
383     ci = cinfo->MCU_membership[blkn];
384     tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
385 
386     /* Compute the DC value after the required point transform by Al.
387      * This is simply an arithmetic right shift.
388      */
389     m = IRIGHT_SHIFT((int) ((*block)[0]), cinfo->Al);
390 
391     /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
392 
393     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
394     st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
395 
396     /* Figure F.4: Encode_DC_DIFF */
397     if ((v = m - entropy->last_dc_val[ci]) == 0) {
398       arith_encode(cinfo, st, 0);
399       entropy->dc_context[ci] = 0;	/* zero diff category */
400     } else {
401       entropy->last_dc_val[ci] = m;
402       arith_encode(cinfo, st, 1);
403       /* Figure F.6: Encoding nonzero value v */
404       /* Figure F.7: Encoding the sign of v */
405       if (v > 0) {
406 	arith_encode(cinfo, st + 1, 0);	/* Table F.4: SS = S0 + 1 */
407 	st += 2;			/* Table F.4: SP = S0 + 2 */
408 	entropy->dc_context[ci] = 4;	/* small positive diff category */
409       } else {
410 	v = -v;
411 	arith_encode(cinfo, st + 1, 1);	/* Table F.4: SS = S0 + 1 */
412 	st += 3;			/* Table F.4: SN = S0 + 3 */
413 	entropy->dc_context[ci] = 8;	/* small negative diff category */
414       }
415       /* Figure F.8: Encoding the magnitude category of v */
416       m = 0;
417       if (v -= 1) {
418 	arith_encode(cinfo, st, 1);
419 	m = 1;
420 	v2 = v;
421 	st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
422 	while (v2 >>= 1) {
423 	  arith_encode(cinfo, st, 1);
424 	  m <<= 1;
425 	  st += 1;
426 	}
427       }
428       arith_encode(cinfo, st, 0);
429       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
430       if (m < (int) (((INT32) 1 << cinfo->arith_dc_L[tbl]) >> 1))
431 	entropy->dc_context[ci] = 0;	/* zero diff category */
432       else if (m > (int) (((INT32) 1 << cinfo->arith_dc_U[tbl]) >> 1))
433 	entropy->dc_context[ci] += 8;	/* large diff category */
434       /* Figure F.9: Encoding the magnitude bit pattern of v */
435       st += 14;
436       while (m >>= 1)
437 	arith_encode(cinfo, st, (m & v) ? 1 : 0);
438     }
439   }
440 
441   return TRUE;
442 }
443 
444 
445 /*
446  * MCU encoding for AC initial scan (either spectral selection,
447  * or first pass of successive approximation).
448  */
449 
450 METHODDEF(boolean)
encode_mcu_AC_first(j_compress_ptr cinfo,JBLOCKROW * MCU_data)451 encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
452 {
453   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
454   JBLOCKROW block;
455   unsigned char *st;
456   int tbl, k, ke;
457   int v, v2, m;
458 
459   /* Emit restart marker if needed */
460   if (cinfo->restart_interval) {
461     if (entropy->restarts_to_go == 0) {
462       emit_restart(cinfo, entropy->next_restart_num);
463       entropy->restarts_to_go = cinfo->restart_interval;
464       entropy->next_restart_num++;
465       entropy->next_restart_num &= 7;
466     }
467     entropy->restarts_to_go--;
468   }
469 
470   /* Encode the MCU data block */
471   block = MCU_data[0];
472   tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
473 
474   /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
475 
476   /* Establish EOB (end-of-block) index */
477   for (ke = cinfo->Se + 1; ke > 1; ke--)
478     /* We must apply the point transform by Al.  For AC coefficients this
479      * is an integer division with rounding towards 0.  To do this portably
480      * in C, we shift after obtaining the absolute value.
481      */
482     if ((v = (*block)[jpeg_natural_order[ke - 1]]) >= 0) {
483       if (v >>= cinfo->Al) break;
484     } else {
485       v = -v;
486       if (v >>= cinfo->Al) break;
487     }
488 
489   /* Figure F.5: Encode_AC_Coefficients */
490   for (k = cinfo->Ss; k < ke; k++) {
491     st = entropy->ac_stats[tbl] + 3 * (k - 1);
492     arith_encode(cinfo, st, 0);		/* EOB decision */
493     entropy->ac_stats[tbl][245] = 0;
494     for (;;) {
495       if ((v = (*block)[jpeg_natural_order[k]]) >= 0) {
496 	if (v >>= cinfo->Al) {
497 	  arith_encode(cinfo, st + 1, 1);
498 	  arith_encode(cinfo, entropy->ac_stats[tbl] + 245, 0);
499 	  break;
500 	}
501       } else {
502 	v = -v;
503 	if (v >>= cinfo->Al) {
504 	  arith_encode(cinfo, st + 1, 1);
505 	  arith_encode(cinfo, entropy->ac_stats[tbl] + 245, 1);
506 	  break;
507 	}
508       }
509       arith_encode(cinfo, st + 1, 0); st += 3; k++;
510     }
511     st += 2;
512     /* Figure F.8: Encoding the magnitude category of v */
513     m = 0;
514     if (v -= 1) {
515       arith_encode(cinfo, st, 1);
516       m = 1;
517       v2 = v;
518       if (v2 >>= 1) {
519 	arith_encode(cinfo, st, 1);
520 	m <<= 1;
521 	st = entropy->ac_stats[tbl] +
522 	     (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
523 	while (v2 >>= 1) {
524 	  arith_encode(cinfo, st, 1);
525 	  m <<= 1;
526 	  st += 1;
527 	}
528       }
529     }
530     arith_encode(cinfo, st, 0);
531     /* Figure F.9: Encoding the magnitude bit pattern of v */
532     st += 14;
533     while (m >>= 1)
534       arith_encode(cinfo, st, (m & v) ? 1 : 0);
535   }
536   /* Encode EOB decision only if k <= cinfo->Se */
537   if (k <= cinfo->Se) {
538     st = entropy->ac_stats[tbl] + 3 * (k - 1);
539     arith_encode(cinfo, st, 1);
540   }
541 
542   return TRUE;
543 }
544 
545 
546 /*
547  * MCU encoding for DC successive approximation refinement scan.
548  */
549 
550 METHODDEF(boolean)
encode_mcu_DC_refine(j_compress_ptr cinfo,JBLOCKROW * MCU_data)551 encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
552 {
553   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
554   unsigned char st[4];
555   int Al, blkn;
556 
557   /* Emit restart marker if needed */
558   if (cinfo->restart_interval) {
559     if (entropy->restarts_to_go == 0) {
560       emit_restart(cinfo, entropy->next_restart_num);
561       entropy->restarts_to_go = cinfo->restart_interval;
562       entropy->next_restart_num++;
563       entropy->next_restart_num &= 7;
564     }
565     entropy->restarts_to_go--;
566   }
567 
568   Al = cinfo->Al;
569 
570   /* Encode the MCU data blocks */
571   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
572     st[0] = 0;	/* use fixed probability estimation */
573     /* We simply emit the Al'th bit of the DC coefficient value. */
574     arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1);
575   }
576 
577   return TRUE;
578 }
579 
580 
581 /*
582  * MCU encoding for AC successive approximation refinement scan.
583  */
584 
585 METHODDEF(boolean)
encode_mcu_AC_refine(j_compress_ptr cinfo,JBLOCKROW * MCU_data)586 encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
587 {
588   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
589   JBLOCKROW block;
590   unsigned char *st;
591   int tbl, k, ke, kex;
592   int v;
593 
594   /* Emit restart marker if needed */
595   if (cinfo->restart_interval) {
596     if (entropy->restarts_to_go == 0) {
597       emit_restart(cinfo, entropy->next_restart_num);
598       entropy->restarts_to_go = cinfo->restart_interval;
599       entropy->next_restart_num++;
600       entropy->next_restart_num &= 7;
601     }
602     entropy->restarts_to_go--;
603   }
604 
605   /* Encode the MCU data block */
606   block = MCU_data[0];
607   tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
608 
609   /* Section G.1.3.3: Encoding of AC coefficients */
610 
611   /* Establish EOB (end-of-block) index */
612   for (ke = cinfo->Se + 1; ke > 1; ke--)
613     /* We must apply the point transform by Al.  For AC coefficients this
614      * is an integer division with rounding towards 0.  To do this portably
615      * in C, we shift after obtaining the absolute value.
616      */
617     if ((v = (*block)[jpeg_natural_order[ke - 1]]) >= 0) {
618       if (v >>= cinfo->Al) break;
619     } else {
620       v = -v;
621       if (v >>= cinfo->Al) break;
622     }
623 
624   /* Establish EOBx (previous stage end-of-block) index */
625   for (kex = ke; kex > 1; kex--)
626     if ((v = (*block)[jpeg_natural_order[kex - 1]]) >= 0) {
627       if (v >>= cinfo->Ah) break;
628     } else {
629       v = -v;
630       if (v >>= cinfo->Ah) break;
631     }
632 
633   /* Figure G.10: Encode_AC_Coefficients_SA */
634   for (k = cinfo->Ss; k < ke; k++) {
635     st = entropy->ac_stats[tbl] + 3 * (k - 1);
636     if (k >= kex)
637       arith_encode(cinfo, st, 0);	/* EOB decision */
638     entropy->ac_stats[tbl][245] = 0;
639     for (;;) {
640       if ((v = (*block)[jpeg_natural_order[k]]) >= 0) {
641 	if (v >>= cinfo->Al) {
642 	  if (v >> 1)		/* previously nonzero coef */
643 	    arith_encode(cinfo, st + 2, (v & 1));
644 	  else {		/* newly nonzero coef */
645 	    arith_encode(cinfo, st + 1, 1);
646 	    arith_encode(cinfo, entropy->ac_stats[tbl] + 245, 0);
647 	  }
648 	  break;
649 	}
650       } else {
651 	v = -v;
652 	if (v >>= cinfo->Al) {
653 	  if (v >> 1)		/* previously nonzero coef */
654 	    arith_encode(cinfo, st + 2, (v & 1));
655 	  else {		/* newly nonzero coef */
656 	    arith_encode(cinfo, st + 1, 1);
657 	    arith_encode(cinfo, entropy->ac_stats[tbl] + 245, 1);
658 	  }
659 	  break;
660 	}
661       }
662       arith_encode(cinfo, st + 1, 0); st += 3; k++;
663     }
664   }
665   /* Encode EOB decision only if k <= cinfo->Se */
666   if (k <= cinfo->Se) {
667     st = entropy->ac_stats[tbl] + 3 * (k - 1);
668     arith_encode(cinfo, st, 1);
669   }
670 
671   return TRUE;
672 }
673 
674 
675 /*
676  * Encode and output one MCU's worth of arithmetic-compressed coefficients.
677  */
678 
679 METHODDEF(boolean)
encode_mcu(j_compress_ptr cinfo,JBLOCKROW * MCU_data)680 encode_mcu (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
681 {
682   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
683   jpeg_component_info * compptr;
684   JBLOCKROW block;
685   unsigned char *st;
686   int blkn, ci, tbl, k, ke;
687   int v, v2, m;
688 
689   /* Emit restart marker if needed */
690   if (cinfo->restart_interval) {
691     if (entropy->restarts_to_go == 0) {
692       emit_restart(cinfo, entropy->next_restart_num);
693       entropy->restarts_to_go = cinfo->restart_interval;
694       entropy->next_restart_num++;
695       entropy->next_restart_num &= 7;
696     }
697     entropy->restarts_to_go--;
698   }
699 
700   /* Encode the MCU data blocks */
701   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
702     block = MCU_data[blkn];
703     ci = cinfo->MCU_membership[blkn];
704     compptr = cinfo->cur_comp_info[ci];
705 
706     /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
707 
708     tbl = compptr->dc_tbl_no;
709 
710     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
711     st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
712 
713     /* Figure F.4: Encode_DC_DIFF */
714     if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) {
715       arith_encode(cinfo, st, 0);
716       entropy->dc_context[ci] = 0;	/* zero diff category */
717     } else {
718       entropy->last_dc_val[ci] = (*block)[0];
719       arith_encode(cinfo, st, 1);
720       /* Figure F.6: Encoding nonzero value v */
721       /* Figure F.7: Encoding the sign of v */
722       if (v > 0) {
723 	arith_encode(cinfo, st + 1, 0);	/* Table F.4: SS = S0 + 1 */
724 	st += 2;			/* Table F.4: SP = S0 + 2 */
725 	entropy->dc_context[ci] = 4;	/* small positive diff category */
726       } else {
727 	v = -v;
728 	arith_encode(cinfo, st + 1, 1);	/* Table F.4: SS = S0 + 1 */
729 	st += 3;			/* Table F.4: SN = S0 + 3 */
730 	entropy->dc_context[ci] = 8;	/* small negative diff category */
731       }
732       /* Figure F.8: Encoding the magnitude category of v */
733       m = 0;
734       if (v -= 1) {
735 	arith_encode(cinfo, st, 1);
736 	m = 1;
737 	v2 = v;
738 	st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
739 	while (v2 >>= 1) {
740 	  arith_encode(cinfo, st, 1);
741 	  m <<= 1;
742 	  st += 1;
743 	}
744       }
745       arith_encode(cinfo, st, 0);
746       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
747       if (m < (int) (((INT32) 1 << cinfo->arith_dc_L[tbl]) >> 1))
748 	entropy->dc_context[ci] = 0;	/* zero diff category */
749       else if (m > (int) (((INT32) 1 << cinfo->arith_dc_U[tbl]) >> 1))
750 	entropy->dc_context[ci] += 8;	/* large diff category */
751       /* Figure F.9: Encoding the magnitude bit pattern of v */
752       st += 14;
753       while (m >>= 1)
754 	arith_encode(cinfo, st, (m & v) ? 1 : 0);
755     }
756 
757     /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
758 
759     tbl = compptr->ac_tbl_no;
760 
761     /* Establish EOB (end-of-block) index */
762     for (ke = DCTSIZE2; ke > 1; ke--)
763       if ((*block)[jpeg_natural_order[ke - 1]]) break;
764 
765     /* Figure F.5: Encode_AC_Coefficients */
766     for (k = 1; k < ke; k++) {
767       st = entropy->ac_stats[tbl] + 3 * (k - 1);
768       arith_encode(cinfo, st, 0);	/* EOB decision */
769       while ((v = (*block)[jpeg_natural_order[k]]) == 0) {
770 	arith_encode(cinfo, st + 1, 0); st += 3; k++;
771       }
772       arith_encode(cinfo, st + 1, 1);
773       /* Figure F.6: Encoding nonzero value v */
774       /* Figure F.7: Encoding the sign of v */
775       entropy->ac_stats[tbl][245] = 0;
776       if (v > 0) {
777 	arith_encode(cinfo, entropy->ac_stats[tbl] + 245, 0);
778       } else {
779 	v = -v;
780 	arith_encode(cinfo, entropy->ac_stats[tbl] + 245, 1);
781       }
782       st += 2;
783       /* Figure F.8: Encoding the magnitude category of v */
784       m = 0;
785       if (v -= 1) {
786 	arith_encode(cinfo, st, 1);
787 	m = 1;
788 	v2 = v;
789 	if (v2 >>= 1) {
790 	  arith_encode(cinfo, st, 1);
791 	  m <<= 1;
792 	  st = entropy->ac_stats[tbl] +
793 	       (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
794 	  while (v2 >>= 1) {
795 	    arith_encode(cinfo, st, 1);
796 	    m <<= 1;
797 	    st += 1;
798 	  }
799 	}
800       }
801       arith_encode(cinfo, st, 0);
802       /* Figure F.9: Encoding the magnitude bit pattern of v */
803       st += 14;
804       while (m >>= 1)
805 	arith_encode(cinfo, st, (m & v) ? 1 : 0);
806     }
807     /* Encode EOB decision only if k < DCTSIZE2 */
808     if (k < DCTSIZE2) {
809       st = entropy->ac_stats[tbl] + 3 * (k - 1);
810       arith_encode(cinfo, st, 1);
811     }
812   }
813 
814   return TRUE;
815 }
816 
817 
818 /*
819  * Initialize for an arithmetic-compressed scan.
820  */
821 
822 METHODDEF(void)
start_pass(j_compress_ptr cinfo,boolean gather_statistics)823 start_pass (j_compress_ptr cinfo, boolean gather_statistics)
824 {
825   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
826   int ci, tbl;
827   jpeg_component_info * compptr;
828 
829   if (gather_statistics)
830     /* Make sure to avoid that in the master control logic!
831      * We are fully adaptive here and need no extra
832      * statistics gathering pass!
833      */
834     ERREXIT(cinfo, JERR_NOT_COMPILED);
835 
836   /* We assume jcmaster.c already validated the progressive scan parameters. */
837 
838   /* Select execution routines */
839   if (cinfo->progressive_mode) {
840     if (cinfo->Ah == 0) {
841       if (cinfo->Ss == 0)
842 	entropy->pub.encode_mcu = encode_mcu_DC_first;
843       else
844 	entropy->pub.encode_mcu = encode_mcu_AC_first;
845     } else {
846       if (cinfo->Ss == 0)
847 	entropy->pub.encode_mcu = encode_mcu_DC_refine;
848       else
849 	entropy->pub.encode_mcu = encode_mcu_AC_refine;
850     }
851   } else
852     entropy->pub.encode_mcu = encode_mcu;
853 
854   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
855     compptr = cinfo->cur_comp_info[ci];
856     /* Allocate & initialize requested statistics areas */
857     if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
858       tbl = compptr->dc_tbl_no;
859       if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
860 	ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
861       if (entropy->dc_stats[tbl] == NULL)
862 	entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
863 	  ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
864       MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
865       /* Initialize DC predictions to 0 */
866       entropy->last_dc_val[ci] = 0;
867       entropy->dc_context[ci] = 0;
868     }
869     if (cinfo->progressive_mode == 0 || cinfo->Ss) {
870       tbl = compptr->ac_tbl_no;
871       if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
872 	ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
873       if (entropy->ac_stats[tbl] == NULL)
874 	entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
875 	  ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
876       MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
877 #ifdef CALCULATE_SPECTRAL_CONDITIONING
878       if (cinfo->progressive_mode)
879 	/* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */
880 	cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4);
881 #endif
882     }
883   }
884 
885   /* Initialize arithmetic encoding variables */
886   entropy->c = 0;
887   entropy->a = 0x10000L;
888   entropy->sc = 0;
889   entropy->zc = 0;
890   entropy->ct = 11;
891   entropy->buffer = -1;  /* empty */
892 
893   /* Initialize restart stuff */
894   entropy->restarts_to_go = cinfo->restart_interval;
895   entropy->next_restart_num = 0;
896 }
897 
898 
899 /*
900  * Module initialization routine for arithmetic entropy encoding.
901  */
902 
903 GLOBAL(void)
jinit_arith_encoder(j_compress_ptr cinfo)904 jinit_arith_encoder (j_compress_ptr cinfo)
905 {
906   arith_entropy_ptr entropy;
907   int i;
908 
909   entropy = (arith_entropy_ptr)
910     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
911 				SIZEOF(arith_entropy_encoder));
912   cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
913   entropy->pub.start_pass = start_pass;
914   entropy->pub.finish_pass = finish_pass;
915 
916   /* Mark tables unallocated */
917   for (i = 0; i < NUM_ARITH_TBLS; i++) {
918     entropy->dc_stats[i] = NULL;
919     entropy->ac_stats[i] = NULL;
920   }
921 }
922