1 /*
2  * jdhuff.c
3  *
4  * Copyright (C) 1991-1997, Thomas G. Lane.
5  * Modified 2006-2009 by Guido Vollbeding.
6  * This file is part of the Independent JPEG Group's software.
7  * For conditions of distribution and use, see the accompanying README file.
8  *
9  * This file contains Huffman entropy decoding routines.
10  * Both sequential and progressive modes are supported in this single module.
11  *
12  * Much of the complexity here has to do with supporting input suspension.
13  * If the data source module demands suspension, we want to be able to back
14  * up to the start of the current MCU.  To do this, we copy state variables
15  * into local working storage, and update them back to the permanent
16  * storage only upon successful completion of an MCU.
17  */
18 
19 #define JPEG_INTERNALS
20 #include "jinclude.h"
21 #include "jpeglib.h"
22 
23 
24 /* Derived data constructed for each Huffman table */
25 
26 #define HUFF_LOOKAHEAD	8	/* # of bits of lookahead */
27 
28 typedef struct {
29   /* Basic tables: (element [0] of each array is unused) */
30   INT32 maxcode[18];		/* largest code of length k (-1 if none) */
31   /* (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) */
32   INT32 valoffset[17];		/* huffval[] offset for codes of length k */
33   /* valoffset[k] = huffval[] index of 1st symbol of code length k, less
34    * the smallest code of length k; so given a code of length k, the
35    * corresponding symbol is huffval[code + valoffset[k]]
36    */
37 
38   /* Link to public Huffman table (needed only in jpeg_huff_decode) */
39   JHUFF_TBL *pub;
40 
41   /* Lookahead tables: indexed by the next HUFF_LOOKAHEAD bits of
42    * the input data stream.  If the next Huffman code is no more
43    * than HUFF_LOOKAHEAD bits long, we can obtain its length and
44    * the corresponding symbol directly from these tables.
45    */
46   int look_nbits[1<<HUFF_LOOKAHEAD]; /* # bits, or 0 if too long */
47   UINT8 look_sym[1<<HUFF_LOOKAHEAD]; /* symbol, or unused */
48 } d_derived_tbl;
49 
50 
51 /*
52  * Fetching the next N bits from the input stream is a time-critical operation
53  * for the Huffman decoders.  We implement it with a combination of inline
54  * macros and out-of-line subroutines.  Note that N (the number of bits
55  * demanded at one time) never exceeds 15 for JPEG use.
56  *
57  * We read source bytes into get_buffer and dole out bits as needed.
58  * If get_buffer already contains enough bits, they are fetched in-line
59  * by the macros CHECK_BIT_BUFFER and GET_BITS.  When there aren't enough
60  * bits, jpeg_fill_bit_buffer is called; it will attempt to fill get_buffer
61  * as full as possible (not just to the number of bits needed; this
62  * prefetching reduces the overhead cost of calling jpeg_fill_bit_buffer).
63  * Note that jpeg_fill_bit_buffer may return FALSE to indicate suspension.
64  * On TRUE return, jpeg_fill_bit_buffer guarantees that get_buffer contains
65  * at least the requested number of bits --- dummy zeroes are inserted if
66  * necessary.
67  */
68 
69 typedef INT32 bit_buf_type;	/* type of bit-extraction buffer */
70 #define BIT_BUF_SIZE  32	/* size of buffer in bits */
71 
72 /* If long is > 32 bits on your machine, and shifting/masking longs is
73  * reasonably fast, making bit_buf_type be long and setting BIT_BUF_SIZE
74  * appropriately should be a win.  Unfortunately we can't define the size
75  * with something like  #define BIT_BUF_SIZE (sizeof(bit_buf_type)*8)
76  * because not all machines measure sizeof in 8-bit bytes.
77  */
78 
79 typedef struct {		/* Bitreading state saved across MCUs */
80   bit_buf_type get_buffer;	/* current bit-extraction buffer */
81   int bits_left;		/* # of unused bits in it */
82 } bitread_perm_state;
83 
84 typedef struct {		/* Bitreading working state within an MCU */
85   /* Current data source location */
86   /* We need a copy, rather than munging the original, in case of suspension */
87   const JOCTET * next_input_byte; /* => next byte to read from source */
88   size_t bytes_in_buffer;	/* # of bytes remaining in source buffer */
89   /* Bit input buffer --- note these values are kept in register variables,
90    * not in this struct, inside the inner loops.
91    */
92   bit_buf_type get_buffer;	/* current bit-extraction buffer */
93   int bits_left;		/* # of unused bits in it */
94   /* Pointer needed by jpeg_fill_bit_buffer. */
95   j_decompress_ptr cinfo;	/* back link to decompress master record */
96 } bitread_working_state;
97 
98 /* Macros to declare and load/save bitread local variables. */
99 #define BITREAD_STATE_VARS  \
100 	register bit_buf_type get_buffer;  \
101 	register int bits_left;  \
102 	bitread_working_state br_state
103 
104 #define BITREAD_LOAD_STATE(cinfop,permstate)  \
105 	br_state.cinfo = cinfop; \
106 	br_state.next_input_byte = cinfop->src->next_input_byte; \
107 	br_state.bytes_in_buffer = cinfop->src->bytes_in_buffer; \
108 	get_buffer = permstate.get_buffer; \
109 	bits_left = permstate.bits_left;
110 
111 #define BITREAD_SAVE_STATE(cinfop,permstate)  \
112 	cinfop->src->next_input_byte = br_state.next_input_byte; \
113 	cinfop->src->bytes_in_buffer = br_state.bytes_in_buffer; \
114 	permstate.get_buffer = get_buffer; \
115 	permstate.bits_left = bits_left
116 
117 /*
118  * These macros provide the in-line portion of bit fetching.
119  * Use CHECK_BIT_BUFFER to ensure there are N bits in get_buffer
120  * before using GET_BITS, PEEK_BITS, or DROP_BITS.
121  * The variables get_buffer and bits_left are assumed to be locals,
122  * but the state struct might not be (jpeg_huff_decode needs this).
123  *	CHECK_BIT_BUFFER(state,n,action);
124  *		Ensure there are N bits in get_buffer; if suspend, take action.
125  *      val = GET_BITS(n);
126  *		Fetch next N bits.
127  *      val = PEEK_BITS(n);
128  *		Fetch next N bits without removing them from the buffer.
129  *	DROP_BITS(n);
130  *		Discard next N bits.
131  * The value N should be a simple variable, not an expression, because it
132  * is evaluated multiple times.
133  */
134 
135 #define CHECK_BIT_BUFFER(state,nbits,action) \
136 	{ if (bits_left < (nbits)) {  \
137 	    if (! jpeg_fill_bit_buffer(&(state),get_buffer,bits_left,nbits))  \
138 	      { action; }  \
139 	    get_buffer = (state).get_buffer; bits_left = (state).bits_left; } }
140 
141 #define GET_BITS(nbits) \
142 	(((int) (get_buffer >> (bits_left -= (nbits)))) & BIT_MASK(nbits))
143 
144 #define PEEK_BITS(nbits) \
145 	(((int) (get_buffer >> (bits_left -  (nbits)))) & BIT_MASK(nbits))
146 
147 #define DROP_BITS(nbits) \
148 	(bits_left -= (nbits))
149 
150 
151 /*
152  * Code for extracting next Huffman-coded symbol from input bit stream.
153  * Again, this is time-critical and we make the main paths be macros.
154  *
155  * We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits
156  * without looping.  Usually, more than 95% of the Huffman codes will be 8
157  * or fewer bits long.  The few overlength codes are handled with a loop,
158  * which need not be inline code.
159  *
160  * Notes about the HUFF_DECODE macro:
161  * 1. Near the end of the data segment, we may fail to get enough bits
162  *    for a lookahead.  In that case, we do it the hard way.
163  * 2. If the lookahead table contains no entry, the next code must be
164  *    more than HUFF_LOOKAHEAD bits long.
165  * 3. jpeg_huff_decode returns -1 if forced to suspend.
166  */
167 
168 #define HUFF_DECODE(result,state,htbl,failaction,slowlabel) \
169 { register int nb, look; \
170   if (bits_left < HUFF_LOOKAHEAD) { \
171     if (! jpeg_fill_bit_buffer(&state,get_buffer,bits_left, 0)) {failaction;} \
172     get_buffer = state.get_buffer; bits_left = state.bits_left; \
173     if (bits_left < HUFF_LOOKAHEAD) { \
174       nb = 1; goto slowlabel; \
175     } \
176   } \
177   look = PEEK_BITS(HUFF_LOOKAHEAD); \
178   if ((nb = htbl->look_nbits[look]) != 0) { \
179     DROP_BITS(nb); \
180     result = htbl->look_sym[look]; \
181   } else { \
182     nb = HUFF_LOOKAHEAD+1; \
183 slowlabel: \
184     if ((result=jpeg_huff_decode(&state,get_buffer,bits_left,htbl,nb)) < 0) \
185 	{ failaction; } \
186     get_buffer = state.get_buffer; bits_left = state.bits_left; \
187   } \
188 }
189 
190 
191 /*
192  * Expanded entropy decoder object for Huffman decoding.
193  *
194  * The savable_state subrecord contains fields that change within an MCU,
195  * but must not be updated permanently until we complete the MCU.
196  */
197 
198 typedef struct {
199   unsigned int EOBRUN;			/* remaining EOBs in EOBRUN */
200   int last_dc_val[MAX_COMPS_IN_SCAN];	/* last DC coef for each component */
201 } savable_state;
202 
203 /* This macro is to work around compilers with missing or broken
204  * structure assignment.  You'll need to fix this code if you have
205  * such a compiler and you change MAX_COMPS_IN_SCAN.
206  */
207 
208 #ifndef NO_STRUCT_ASSIGN
209 #define ASSIGN_STATE(dest,src)  ((dest) = (src))
210 #else
211 #if MAX_COMPS_IN_SCAN == 4
212 #define ASSIGN_STATE(dest,src)  \
213 	((dest).EOBRUN = (src).EOBRUN, \
214 	 (dest).last_dc_val[0] = (src).last_dc_val[0], \
215 	 (dest).last_dc_val[1] = (src).last_dc_val[1], \
216 	 (dest).last_dc_val[2] = (src).last_dc_val[2], \
217 	 (dest).last_dc_val[3] = (src).last_dc_val[3])
218 #endif
219 #endif
220 
221 
222 typedef struct {
223   struct jpeg_entropy_decoder pub; /* public fields */
224 
225   /* These fields are loaded into local variables at start of each MCU.
226    * In case of suspension, we exit WITHOUT updating them.
227    */
228   bitread_perm_state bitstate;	/* Bit buffer at start of MCU */
229   savable_state saved;		/* Other state at start of MCU */
230 
231   /* These fields are NOT loaded into local working state. */
232   unsigned int restarts_to_go;	/* MCUs left in this restart interval */
233 
234   /* Following two fields used only in progressive mode */
235 
236   /* Pointers to derived tables (these workspaces have image lifespan) */
237   d_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
238 
239   d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */
240 
241   /* Following fields used only in sequential mode */
242 
243   /* Pointers to derived tables (these workspaces have image lifespan) */
244   d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
245   d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
246 
247   /* Precalculated info set up by start_pass for use in decode_mcu: */
248 
249   /* Pointers to derived tables to be used for each block within an MCU */
250   d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
251   d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
252   /* Whether we care about the DC and AC coefficient values for each block */
253   int coef_limit[D_MAX_BLOCKS_IN_MCU];
254 } huff_entropy_decoder;
255 
256 typedef huff_entropy_decoder * huff_entropy_ptr;
257 
258 
259 static const int jpeg_zigzag_order[8][8] = {
260   {  0,  1,  5,  6, 14, 15, 27, 28 },
261   {  2,  4,  7, 13, 16, 26, 29, 42 },
262   {  3,  8, 12, 17, 25, 30, 41, 43 },
263   {  9, 11, 18, 24, 31, 40, 44, 53 },
264   { 10, 19, 23, 32, 39, 45, 52, 54 },
265   { 20, 22, 33, 38, 46, 51, 55, 60 },
266   { 21, 34, 37, 47, 50, 56, 59, 61 },
267   { 35, 36, 48, 49, 57, 58, 62, 63 }
268 };
269 
270 
271 /*
272  * Compute the derived values for a Huffman table.
273  * This routine also performs some validation checks on the table.
274  */
275 
276 LOCAL(void)
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo,boolean isDC,int tblno,d_derived_tbl ** pdtbl)277 jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
278 			 d_derived_tbl ** pdtbl)
279 {
280   JHUFF_TBL *htbl;
281   d_derived_tbl *dtbl;
282   int p, i, l, si, numsymbols;
283   int lookbits, ctr;
284   char huffsize[257];
285   unsigned int huffcode[257];
286   unsigned int code;
287 
288   /* Note that huffsize[] and huffcode[] are filled in code-length order,
289    * paralleling the order of the symbols themselves in htbl->huffval[].
290    */
291 
292   /* Find the input Huffman table */
293   if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
294     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
295   htbl =
296     isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
297   if (htbl == NULL)
298     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
299 
300   /* Allocate a workspace if we haven't already done so. */
301   if (*pdtbl == NULL)
302     *pdtbl = (d_derived_tbl *)
303       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
304 				  SIZEOF(d_derived_tbl));
305   dtbl = *pdtbl;
306   dtbl->pub = htbl;		/* fill in back link */
307 
308   /* Figure C.1: make table of Huffman code length for each symbol */
309 
310   p = 0;
311   for (l = 1; l <= 16; l++) {
312     i = (int) htbl->bits[l];
313     if (i < 0 || p + i > 256)	/* protect against table overrun */
314       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
315     while (i--)
316       huffsize[p++] = (char) l;
317   }
318   huffsize[p] = 0;
319   numsymbols = p;
320 
321   /* Figure C.2: generate the codes themselves */
322   /* We also validate that the counts represent a legal Huffman code tree. */
323 
324   code = 0;
325   si = huffsize[0];
326   p = 0;
327   while (huffsize[p]) {
328     while (((int) huffsize[p]) == si) {
329       huffcode[p++] = code;
330       code++;
331     }
332     /* code is now 1 more than the last code used for codelength si; but
333      * it must still fit in si bits, since no code is allowed to be all ones.
334      */
335     if (((INT32) code) >= (((INT32) 1) << si))
336       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
337     code <<= 1;
338     si++;
339   }
340 
341   /* Figure F.15: generate decoding tables for bit-sequential decoding */
342 
343   p = 0;
344   for (l = 1; l <= 16; l++) {
345     if (htbl->bits[l]) {
346       /* valoffset[l] = huffval[] index of 1st symbol of code length l,
347        * minus the minimum code of length l
348        */
349       dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
350       p += htbl->bits[l];
351       dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
352     } else {
353       dtbl->maxcode[l] = -1;	/* -1 if no codes of this length */
354     }
355   }
356   dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
357 
358   /* Compute lookahead tables to speed up decoding.
359    * First we set all the table entries to 0, indicating "too long";
360    * then we iterate through the Huffman codes that are short enough and
361    * fill in all the entries that correspond to bit sequences starting
362    * with that code.
363    */
364 
365   MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
366 
367   p = 0;
368   for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
369     for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
370       /* l = current code's length, p = its index in huffcode[] & huffval[]. */
371       /* Generate left-justified code followed by all possible bit sequences */
372       lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
373       for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
374 	dtbl->look_nbits[lookbits] = l;
375 	dtbl->look_sym[lookbits] = htbl->huffval[p];
376 	lookbits++;
377       }
378     }
379   }
380 
381   /* Validate symbols as being reasonable.
382    * For AC tables, we make no check, but accept all byte values 0..255.
383    * For DC tables, we require the symbols to be in range 0..15.
384    * (Tighter bounds could be applied depending on the data depth and mode,
385    * but this is sufficient to ensure safe decoding.)
386    */
387   if (isDC) {
388     for (i = 0; i < numsymbols; i++) {
389       int sym = htbl->huffval[i];
390       if (sym < 0 || sym > 15)
391 	ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
392     }
393   }
394 }
395 
396 
397 /*
398  * Out-of-line code for bit fetching.
399  * Note: current values of get_buffer and bits_left are passed as parameters,
400  * but are returned in the corresponding fields of the state struct.
401  *
402  * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
403  * of get_buffer to be used.  (On machines with wider words, an even larger
404  * buffer could be used.)  However, on some machines 32-bit shifts are
405  * quite slow and take time proportional to the number of places shifted.
406  * (This is true with most PC compilers, for instance.)  In this case it may
407  * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
408  * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
409  */
410 
411 #ifdef SLOW_SHIFT_32
412 #define MIN_GET_BITS  15	/* minimum allowable value */
413 #else
414 #define MIN_GET_BITS  (BIT_BUF_SIZE-7)
415 #endif
416 
417 
418 LOCAL(boolean)
jpeg_fill_bit_buffer(bitread_working_state * state,register bit_buf_type get_buffer,register int bits_left,int nbits)419 jpeg_fill_bit_buffer (bitread_working_state * state,
420 		      register bit_buf_type get_buffer, register int bits_left,
421 		      int nbits)
422 /* Load up the bit buffer to a depth of at least nbits */
423 {
424   /* Copy heavily used state fields into locals (hopefully registers) */
425   register const JOCTET * next_input_byte = state->next_input_byte;
426   register size_t bytes_in_buffer = state->bytes_in_buffer;
427   j_decompress_ptr cinfo = state->cinfo;
428 
429   /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
430   /* (It is assumed that no request will be for more than that many bits.) */
431   /* We fail to do so only if we hit a marker or are forced to suspend. */
432 
433   if (cinfo->unread_marker == 0) {	/* cannot advance past a marker */
434     while (bits_left < MIN_GET_BITS) {
435       register int c;
436 
437       /* Attempt to read a byte */
438       if (bytes_in_buffer == 0) {
439 	if (! (*cinfo->src->fill_input_buffer) (cinfo))
440 	  return FALSE;
441 	next_input_byte = cinfo->src->next_input_byte;
442 	bytes_in_buffer = cinfo->src->bytes_in_buffer;
443       }
444       bytes_in_buffer--;
445       c = GETJOCTET(*next_input_byte++);
446 
447       /* If it's 0xFF, check and discard stuffed zero byte */
448       if (c == 0xFF) {
449 	/* Loop here to discard any padding FF's on terminating marker,
450 	 * so that we can save a valid unread_marker value.  NOTE: we will
451 	 * accept multiple FF's followed by a 0 as meaning a single FF data
452 	 * byte.  This data pattern is not valid according to the standard.
453 	 */
454 	do {
455 	  if (bytes_in_buffer == 0) {
456 	    if (! (*cinfo->src->fill_input_buffer) (cinfo))
457 	      return FALSE;
458 	    next_input_byte = cinfo->src->next_input_byte;
459 	    bytes_in_buffer = cinfo->src->bytes_in_buffer;
460 	  }
461 	  bytes_in_buffer--;
462 	  c = GETJOCTET(*next_input_byte++);
463 	} while (c == 0xFF);
464 
465 	if (c == 0) {
466 	  /* Found FF/00, which represents an FF data byte */
467 	  c = 0xFF;
468 	} else {
469 	  /* Oops, it's actually a marker indicating end of compressed data.
470 	   * Save the marker code for later use.
471 	   * Fine point: it might appear that we should save the marker into
472 	   * bitread working state, not straight into permanent state.  But
473 	   * once we have hit a marker, we cannot need to suspend within the
474 	   * current MCU, because we will read no more bytes from the data
475 	   * source.  So it is OK to update permanent state right away.
476 	   */
477 	  cinfo->unread_marker = c;
478 	  /* See if we need to insert some fake zero bits. */
479 	  goto no_more_bytes;
480 	}
481       }
482 
483       /* OK, load c into get_buffer */
484       get_buffer = (get_buffer << 8) | c;
485       bits_left += 8;
486     } /* end while */
487   } else {
488   no_more_bytes:
489     /* We get here if we've read the marker that terminates the compressed
490      * data segment.  There should be enough bits in the buffer register
491      * to satisfy the request; if so, no problem.
492      */
493     if (nbits > bits_left) {
494       /* Uh-oh.  Report corrupted data to user and stuff zeroes into
495        * the data stream, so that we can produce some kind of image.
496        * We use a nonvolatile flag to ensure that only one warning message
497        * appears per data segment.
498        */
499       if (! cinfo->entropy->insufficient_data) {
500 	WARNMS(cinfo, JWRN_HIT_MARKER);
501 	cinfo->entropy->insufficient_data = TRUE;
502       }
503       /* Fill the buffer with zero bits */
504       get_buffer <<= MIN_GET_BITS - bits_left;
505       bits_left = MIN_GET_BITS;
506     }
507   }
508 
509   /* Unload the local registers */
510   state->next_input_byte = next_input_byte;
511   state->bytes_in_buffer = bytes_in_buffer;
512   state->get_buffer = get_buffer;
513   state->bits_left = bits_left;
514 
515   return TRUE;
516 }
517 
518 
519 /*
520  * Figure F.12: extend sign bit.
521  * On some machines, a shift and sub will be faster than a table lookup.
522  */
523 
524 #ifdef AVOID_TABLES
525 
526 #define BIT_MASK(nbits)   ((1<<(nbits))-1)
527 #define HUFF_EXTEND(x,s)  ((x) < (1<<((s)-1)) ? (x) - ((1<<(s))-1) : (x))
528 
529 #else
530 
531 #define BIT_MASK(nbits)   bmask[nbits]
532 #define HUFF_EXTEND(x,s)  ((x) <= bmask[(s) - 1] ? (x) - bmask[s] : (x))
533 
534 static const int bmask[16] =	/* bmask[n] is mask for n rightmost bits */
535   { 0, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF,
536     0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF };
537 
538 #endif /* AVOID_TABLES */
539 
540 
541 /*
542  * Out-of-line code for Huffman code decoding.
543  */
544 
545 LOCAL(int)
jpeg_huff_decode(bitread_working_state * state,register bit_buf_type get_buffer,register int bits_left,d_derived_tbl * htbl,int min_bits)546 jpeg_huff_decode (bitread_working_state * state,
547 		  register bit_buf_type get_buffer, register int bits_left,
548 		  d_derived_tbl * htbl, int min_bits)
549 {
550   register int l = min_bits;
551   register INT32 code;
552 
553   /* HUFF_DECODE has determined that the code is at least min_bits */
554   /* bits long, so fetch that many bits in one swoop. */
555 
556   CHECK_BIT_BUFFER(*state, l, return -1);
557   code = GET_BITS(l);
558 
559   /* Collect the rest of the Huffman code one bit at a time. */
560   /* This is per Figure F.16 in the JPEG spec. */
561 
562   while (code > htbl->maxcode[l]) {
563     code <<= 1;
564     CHECK_BIT_BUFFER(*state, 1, return -1);
565     code |= GET_BITS(1);
566     l++;
567   }
568 
569   /* Unload the local registers */
570   state->get_buffer = get_buffer;
571   state->bits_left = bits_left;
572 
573   /* With garbage input we may reach the sentinel value l = 17. */
574 
575   if (l > 16) {
576     WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
577     return 0;			/* fake a zero as the safest result */
578   }
579 
580   return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
581 }
582 
583 
584 /*
585  * Check for a restart marker & resynchronize decoder.
586  * Returns FALSE if must suspend.
587  */
588 
589 LOCAL(boolean)
process_restart(j_decompress_ptr cinfo)590 process_restart (j_decompress_ptr cinfo)
591 {
592   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
593   int ci;
594 
595   /* Throw away any unused bits remaining in bit buffer; */
596   /* include any full bytes in next_marker's count of discarded bytes */
597   cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
598   entropy->bitstate.bits_left = 0;
599 
600   /* Advance past the RSTn marker */
601   if (! (*cinfo->marker->read_restart_marker) (cinfo))
602     return FALSE;
603 
604   /* Re-initialize DC predictions to 0 */
605   for (ci = 0; ci < cinfo->comps_in_scan; ci++)
606     entropy->saved.last_dc_val[ci] = 0;
607   /* Re-init EOB run count, too */
608   entropy->saved.EOBRUN = 0;
609 
610   /* Reset restart counter */
611   entropy->restarts_to_go = cinfo->restart_interval;
612 
613   /* Reset out-of-data flag, unless read_restart_marker left us smack up
614    * against a marker.  In that case we will end up treating the next data
615    * segment as empty, and we can avoid producing bogus output pixels by
616    * leaving the flag set.
617    */
618   if (cinfo->unread_marker == 0)
619     entropy->pub.insufficient_data = FALSE;
620 
621   return TRUE;
622 }
623 
624 
625 /*
626  * Huffman MCU decoding.
627  * Each of these routines decodes and returns one MCU's worth of
628  * Huffman-compressed coefficients.
629  * The coefficients are reordered from zigzag order into natural array order,
630  * but are not dequantized.
631  *
632  * The i'th block of the MCU is stored into the block pointed to by
633  * MCU_data[i].  WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
634  * (Wholesale zeroing is usually a little faster than retail...)
635  *
636  * We return FALSE if data source requested suspension.  In that case no
637  * changes have been made to permanent state.  (Exception: some output
638  * coefficients may already have been assigned.  This is harmless for
639  * spectral selection, since we'll just re-assign them on the next call.
640  * Successive approximation AC refinement has to be more careful, however.)
641  */
642 
643 /*
644  * MCU decoding for DC initial scan (either spectral selection,
645  * or first pass of successive approximation).
646  */
647 
648 METHODDEF(boolean)
decode_mcu_DC_first(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)649 decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
650 {
651   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
652   int Al = cinfo->Al;
653   register int s, r;
654   int blkn, ci;
655   JBLOCKROW block;
656   BITREAD_STATE_VARS;
657   savable_state state;
658   d_derived_tbl * tbl;
659   jpeg_component_info * compptr;
660 
661   /* Process restart marker if needed; may have to suspend */
662   if (cinfo->restart_interval) {
663     if (entropy->restarts_to_go == 0)
664       if (! process_restart(cinfo))
665 	return FALSE;
666   }
667 
668   /* If we've run out of data, just leave the MCU set to zeroes.
669    * This way, we return uniform gray for the remainder of the segment.
670    */
671   if (! entropy->pub.insufficient_data) {
672 
673     /* Load up working state */
674     BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
675     ASSIGN_STATE(state, entropy->saved);
676 
677     /* Outer loop handles each block in the MCU */
678 
679     for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
680       block = MCU_data[blkn];
681       ci = cinfo->MCU_membership[blkn];
682       compptr = cinfo->cur_comp_info[ci];
683       tbl = entropy->derived_tbls[compptr->dc_tbl_no];
684 
685       /* Decode a single block's worth of coefficients */
686 
687       /* Section F.2.2.1: decode the DC coefficient difference */
688       HUFF_DECODE(s, br_state, tbl, return FALSE, label1);
689       if (s) {
690 	CHECK_BIT_BUFFER(br_state, s, return FALSE);
691 	r = GET_BITS(s);
692 	s = HUFF_EXTEND(r, s);
693       }
694 
695       /* Convert DC difference to actual value, update last_dc_val */
696       s += state.last_dc_val[ci];
697       state.last_dc_val[ci] = s;
698       /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */
699       (*block)[0] = (JCOEF) (s << Al);
700     }
701 
702     /* Completed MCU, so update state */
703     BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
704     ASSIGN_STATE(entropy->saved, state);
705   }
706 
707   /* Account for restart interval (no-op if not using restarts) */
708   entropy->restarts_to_go--;
709 
710   return TRUE;
711 }
712 
713 
714 /*
715  * MCU decoding for AC initial scan (either spectral selection,
716  * or first pass of successive approximation).
717  */
718 
719 METHODDEF(boolean)
decode_mcu_AC_first(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)720 decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
721 {
722   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
723   int Se = cinfo->Se;
724   int Al = cinfo->Al;
725   register int s, k, r;
726   unsigned int EOBRUN;
727   JBLOCKROW block;
728   BITREAD_STATE_VARS;
729   d_derived_tbl * tbl;
730 
731   /* Process restart marker if needed; may have to suspend */
732   if (cinfo->restart_interval) {
733     if (entropy->restarts_to_go == 0)
734       if (! process_restart(cinfo))
735 	return FALSE;
736   }
737 
738   /* If we've run out of data, just leave the MCU set to zeroes.
739    * This way, we return uniform gray for the remainder of the segment.
740    */
741   if (! entropy->pub.insufficient_data) {
742 
743     /* Load up working state.
744      * We can avoid loading/saving bitread state if in an EOB run.
745      */
746     EOBRUN = entropy->saved.EOBRUN;	/* only part of saved state we need */
747 
748     /* There is always only one block per MCU */
749 
750     if (EOBRUN > 0)		/* if it's a band of zeroes... */
751       EOBRUN--;			/* ...process it now (we do nothing) */
752     else {
753       BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
754       block = MCU_data[0];
755       tbl = entropy->ac_derived_tbl;
756 
757       for (k = cinfo->Ss; k <= Se; k++) {
758 	HUFF_DECODE(s, br_state, tbl, return FALSE, label2);
759 	r = s >> 4;
760 	s &= 15;
761 	if (s) {
762 	  k += r;
763 	  CHECK_BIT_BUFFER(br_state, s, return FALSE);
764 	  r = GET_BITS(s);
765 	  s = HUFF_EXTEND(r, s);
766 	  /* Scale and output coefficient in natural (dezigzagged) order */
767 	  (*block)[jpeg_natural_order[k]] = (JCOEF) (s << Al);
768 	} else {
769 	  if (r == 15) {	/* ZRL */
770 	    k += 15;		/* skip 15 zeroes in band */
771 	  } else {		/* EOBr, run length is 2^r + appended bits */
772 	    EOBRUN = 1 << r;
773 	    if (r) {		/* EOBr, r > 0 */
774 	      CHECK_BIT_BUFFER(br_state, r, return FALSE);
775 	      r = GET_BITS(r);
776 	      EOBRUN += r;
777 	    }
778 	    EOBRUN--;		/* this band is processed at this moment */
779 	    break;		/* force end-of-band */
780 	  }
781 	}
782       }
783 
784       BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
785     }
786 
787     /* Completed MCU, so update state */
788     entropy->saved.EOBRUN = EOBRUN;	/* only part of saved state we need */
789   }
790 
791   /* Account for restart interval (no-op if not using restarts) */
792   entropy->restarts_to_go--;
793 
794   return TRUE;
795 }
796 
797 
798 /*
799  * MCU decoding for DC successive approximation refinement scan.
800  * Note: we assume such scans can be multi-component, although the spec
801  * is not very clear on the point.
802  */
803 
804 METHODDEF(boolean)
decode_mcu_DC_refine(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)805 decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
806 {
807   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
808   int p1 = 1 << cinfo->Al;	/* 1 in the bit position being coded */
809   int blkn;
810   JBLOCKROW block;
811   BITREAD_STATE_VARS;
812 
813   /* Process restart marker if needed; may have to suspend */
814   if (cinfo->restart_interval) {
815     if (entropy->restarts_to_go == 0)
816       if (! process_restart(cinfo))
817 	return FALSE;
818   }
819 
820   /* Not worth the cycles to check insufficient_data here,
821    * since we will not change the data anyway if we read zeroes.
822    */
823 
824   /* Load up working state */
825   BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
826 
827   /* Outer loop handles each block in the MCU */
828 
829   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
830     block = MCU_data[blkn];
831 
832     /* Encoded data is simply the next bit of the two's-complement DC value */
833     CHECK_BIT_BUFFER(br_state, 1, return FALSE);
834     if (GET_BITS(1))
835       (*block)[0] |= p1;
836     /* Note: since we use |=, repeating the assignment later is safe */
837   }
838 
839   /* Completed MCU, so update state */
840   BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
841 
842   /* Account for restart interval (no-op if not using restarts) */
843   entropy->restarts_to_go--;
844 
845   return TRUE;
846 }
847 
848 
849 /*
850  * MCU decoding for AC successive approximation refinement scan.
851  */
852 
853 METHODDEF(boolean)
decode_mcu_AC_refine(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)854 decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
855 {
856   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
857   int Se = cinfo->Se;
858   int p1 = 1 << cinfo->Al;	/* 1 in the bit position being coded */
859   int m1 = (-1) << cinfo->Al;	/* -1 in the bit position being coded */
860   register int s, k, r;
861   unsigned int EOBRUN;
862   JBLOCKROW block;
863   JCOEFPTR thiscoef;
864   BITREAD_STATE_VARS;
865   d_derived_tbl * tbl;
866   int num_newnz;
867   int newnz_pos[DCTSIZE2];
868 
869   /* Process restart marker if needed; may have to suspend */
870   if (cinfo->restart_interval) {
871     if (entropy->restarts_to_go == 0)
872       if (! process_restart(cinfo))
873 	return FALSE;
874   }
875 
876   /* If we've run out of data, don't modify the MCU.
877    */
878   if (! entropy->pub.insufficient_data) {
879 
880     /* Load up working state */
881     BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
882     EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
883 
884     /* There is always only one block per MCU */
885     block = MCU_data[0];
886     tbl = entropy->ac_derived_tbl;
887 
888     /* If we are forced to suspend, we must undo the assignments to any newly
889      * nonzero coefficients in the block, because otherwise we'd get confused
890      * next time about which coefficients were already nonzero.
891      * But we need not undo addition of bits to already-nonzero coefficients;
892      * instead, we can test the current bit to see if we already did it.
893      */
894     num_newnz = 0;
895 
896     /* initialize coefficient loop counter to start of band */
897     k = cinfo->Ss;
898 
899     if (EOBRUN == 0) {
900       for (; k <= Se; k++) {
901 	HUFF_DECODE(s, br_state, tbl, goto undoit, label3);
902 	r = s >> 4;
903 	s &= 15;
904 	if (s) {
905 	  if (s != 1)		/* size of new coef should always be 1 */
906 	    WARNMS(cinfo, JWRN_HUFF_BAD_CODE);
907 	  CHECK_BIT_BUFFER(br_state, 1, goto undoit);
908 	  if (GET_BITS(1))
909 	    s = p1;		/* newly nonzero coef is positive */
910 	  else
911 	    s = m1;		/* newly nonzero coef is negative */
912 	} else {
913 	  if (r != 15) {
914 	    EOBRUN = 1 << r;	/* EOBr, run length is 2^r + appended bits */
915 	    if (r) {
916 	      CHECK_BIT_BUFFER(br_state, r, goto undoit);
917 	      r = GET_BITS(r);
918 	      EOBRUN += r;
919 	    }
920 	    break;		/* rest of block is handled by EOB logic */
921 	  }
922 	  /* note s = 0 for processing ZRL */
923 	}
924 	/* Advance over already-nonzero coefs and r still-zero coefs,
925 	 * appending correction bits to the nonzeroes.  A correction bit is 1
926 	 * if the absolute value of the coefficient must be increased.
927 	 */
928 	do {
929 	  thiscoef = *block + jpeg_natural_order[k];
930 	  if (*thiscoef != 0) {
931 	    CHECK_BIT_BUFFER(br_state, 1, goto undoit);
932 	    if (GET_BITS(1)) {
933 	      if ((*thiscoef & p1) == 0) { /* do nothing if already set it */
934 		if (*thiscoef >= 0)
935 		  *thiscoef += p1;
936 		else
937 		  *thiscoef += m1;
938 	      }
939 	    }
940 	  } else {
941 	    if (--r < 0)
942 	      break;		/* reached target zero coefficient */
943 	  }
944 	  k++;
945 	} while (k <= Se);
946 	if (s) {
947 	  int pos = jpeg_natural_order[k];
948 	  /* Output newly nonzero coefficient */
949 	  (*block)[pos] = (JCOEF) s;
950 	  /* Remember its position in case we have to suspend */
951 	  newnz_pos[num_newnz++] = pos;
952 	}
953       }
954     }
955 
956     if (EOBRUN > 0) {
957       /* Scan any remaining coefficient positions after the end-of-band
958        * (the last newly nonzero coefficient, if any).  Append a correction
959        * bit to each already-nonzero coefficient.  A correction bit is 1
960        * if the absolute value of the coefficient must be increased.
961        */
962       for (; k <= Se; k++) {
963 	thiscoef = *block + jpeg_natural_order[k];
964 	if (*thiscoef != 0) {
965 	  CHECK_BIT_BUFFER(br_state, 1, goto undoit);
966 	  if (GET_BITS(1)) {
967 	    if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */
968 	      if (*thiscoef >= 0)
969 		*thiscoef += p1;
970 	      else
971 		*thiscoef += m1;
972 	    }
973 	  }
974 	}
975       }
976       /* Count one block completed in EOB run */
977       EOBRUN--;
978     }
979 
980     /* Completed MCU, so update state */
981     BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
982     entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
983   }
984 
985   /* Account for restart interval (no-op if not using restarts) */
986   entropy->restarts_to_go--;
987 
988   return TRUE;
989 
990 undoit:
991   /* Re-zero any output coefficients that we made newly nonzero */
992   while (num_newnz > 0)
993     (*block)[newnz_pos[--num_newnz]] = 0;
994 
995   return FALSE;
996 }
997 
998 
999 /*
1000  * Decode one MCU's worth of Huffman-compressed coefficients.
1001  */
1002 
1003 METHODDEF(boolean)
decode_mcu(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)1004 decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
1005 {
1006   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
1007   int blkn;
1008   BITREAD_STATE_VARS;
1009   savable_state state;
1010 
1011   /* Process restart marker if needed; may have to suspend */
1012   if (cinfo->restart_interval) {
1013     if (entropy->restarts_to_go == 0)
1014       if (! process_restart(cinfo))
1015 	return FALSE;
1016   }
1017 
1018   /* If we've run out of data, just leave the MCU set to zeroes.
1019    * This way, we return uniform gray for the remainder of the segment.
1020    */
1021   if (! entropy->pub.insufficient_data) {
1022 
1023     /* Load up working state */
1024     BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
1025     ASSIGN_STATE(state, entropy->saved);
1026 
1027     /* Outer loop handles each block in the MCU */
1028 
1029     for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
1030       JBLOCKROW block = MCU_data[blkn];
1031       d_derived_tbl * htbl;
1032       register int s, k, r;
1033       int coef_limit, ci;
1034 
1035       /* Decode a single block's worth of coefficients */
1036 
1037       /* Section F.2.2.1: decode the DC coefficient difference */
1038       htbl = entropy->dc_cur_tbls[blkn];
1039       HUFF_DECODE(s, br_state, htbl, return FALSE, label1);
1040 
1041       htbl = entropy->ac_cur_tbls[blkn];
1042       k = 1;
1043       coef_limit = entropy->coef_limit[blkn];
1044       if (coef_limit) {
1045 	/* Convert DC difference to actual value, update last_dc_val */
1046 	if (s) {
1047 	  CHECK_BIT_BUFFER(br_state, s, return FALSE);
1048 	  r = GET_BITS(s);
1049 	  s = HUFF_EXTEND(r, s);
1050 	}
1051 	ci = cinfo->MCU_membership[blkn];
1052 	s += state.last_dc_val[ci];
1053 	state.last_dc_val[ci] = s;
1054 	/* Output the DC coefficient */
1055 	(*block)[0] = (JCOEF) s;
1056 
1057 	/* Section F.2.2.2: decode the AC coefficients */
1058 	/* Since zeroes are skipped, output area must be cleared beforehand */
1059 	for (; k < coef_limit; k++) {
1060 	  HUFF_DECODE(s, br_state, htbl, return FALSE, label2);
1061 
1062 	  r = s >> 4;
1063 	  s &= 15;
1064 
1065 	  if (s) {
1066 	    k += r;
1067 	    CHECK_BIT_BUFFER(br_state, s, return FALSE);
1068 	    r = GET_BITS(s);
1069 	    s = HUFF_EXTEND(r, s);
1070 	    /* Output coefficient in natural (dezigzagged) order.
1071 	     * Note: the extra entries in jpeg_natural_order[] will save us
1072 	     * if k >= DCTSIZE2, which could happen if the data is corrupted.
1073 	     */
1074 	    (*block)[jpeg_natural_order[k]] = (JCOEF) s;
1075 	  } else {
1076 	    if (r != 15)
1077 	      goto EndOfBlock;
1078 	    k += 15;
1079 	  }
1080 	}
1081       } else {
1082 	if (s) {
1083 	  CHECK_BIT_BUFFER(br_state, s, return FALSE);
1084 	  DROP_BITS(s);
1085 	}
1086       }
1087 
1088       /* Section F.2.2.2: decode the AC coefficients */
1089       /* In this path we just discard the values */
1090       for (; k < DCTSIZE2; k++) {
1091 	HUFF_DECODE(s, br_state, htbl, return FALSE, label3);
1092 
1093 	r = s >> 4;
1094 	s &= 15;
1095 
1096 	if (s) {
1097 	  k += r;
1098 	  CHECK_BIT_BUFFER(br_state, s, return FALSE);
1099 	  DROP_BITS(s);
1100 	} else {
1101 	  if (r != 15)
1102 	    break;
1103 	  k += 15;
1104 	}
1105       }
1106 
1107       EndOfBlock: ;
1108     }
1109 
1110     /* Completed MCU, so update state */
1111     BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
1112     ASSIGN_STATE(entropy->saved, state);
1113   }
1114 
1115   /* Account for restart interval (no-op if not using restarts) */
1116   entropy->restarts_to_go--;
1117 
1118   return TRUE;
1119 }
1120 
1121 
1122 /*
1123  * Initialize for a Huffman-compressed scan.
1124  */
1125 
1126 METHODDEF(void)
start_pass_huff_decoder(j_decompress_ptr cinfo)1127 start_pass_huff_decoder (j_decompress_ptr cinfo)
1128 {
1129   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
1130   int ci, blkn, dctbl, actbl, i;
1131   jpeg_component_info * compptr;
1132 
1133   if (cinfo->progressive_mode) {
1134     /* Validate progressive scan parameters */
1135     if (cinfo->Ss == 0) {
1136       if (cinfo->Se != 0)
1137 	goto bad;
1138     } else {
1139       /* need not check Ss/Se < 0 since they came from unsigned bytes */
1140       if (cinfo->Se < cinfo->Ss || cinfo->Se >= DCTSIZE2)
1141 	goto bad;
1142       /* AC scans may have only one component */
1143       if (cinfo->comps_in_scan != 1)
1144 	goto bad;
1145     }
1146     if (cinfo->Ah != 0) {
1147       /* Successive approximation refinement scan: must have Al = Ah-1. */
1148       if (cinfo->Ah-1 != cinfo->Al)
1149 	goto bad;
1150     }
1151     if (cinfo->Al > 13) {	/* need not check for < 0 */
1152       /* Arguably the maximum Al value should be less than 13 for 8-bit precision,
1153        * but the spec doesn't say so, and we try to be liberal about what we
1154        * accept.  Note: large Al values could result in out-of-range DC
1155        * coefficients during early scans, leading to bizarre displays due to
1156        * overflows in the IDCT math.  But we won't crash.
1157        */
1158       bad:
1159       ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
1160 	       cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
1161     }
1162     /* Update progression status, and verify that scan order is legal.
1163      * Note that inter-scan inconsistencies are treated as warnings
1164      * not fatal errors ... not clear if this is right way to behave.
1165      */
1166     for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
1167       int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
1168       int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
1169       if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
1170 	WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
1171       for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
1172 	int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
1173 	if (cinfo->Ah != expected)
1174 	  WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
1175 	coef_bit_ptr[coefi] = cinfo->Al;
1176       }
1177     }
1178 
1179     /* Select MCU decoding routine */
1180     if (cinfo->Ah == 0) {
1181       if (cinfo->Ss == 0)
1182 	entropy->pub.decode_mcu = decode_mcu_DC_first;
1183       else
1184 	entropy->pub.decode_mcu = decode_mcu_AC_first;
1185     } else {
1186       if (cinfo->Ss == 0)
1187 	entropy->pub.decode_mcu = decode_mcu_DC_refine;
1188       else
1189 	entropy->pub.decode_mcu = decode_mcu_AC_refine;
1190     }
1191 
1192     for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
1193       compptr = cinfo->cur_comp_info[ci];
1194       /* Make sure requested tables are present, and compute derived tables.
1195        * We may build same derived table more than once, but it's not expensive.
1196        */
1197       if (cinfo->Ss == 0) {
1198 	if (cinfo->Ah == 0) {	/* DC refinement needs no table */
1199 	  i = compptr->dc_tbl_no;
1200 	  jpeg_make_d_derived_tbl(cinfo, TRUE, i,
1201 				  & entropy->derived_tbls[i]);
1202 	}
1203       } else {
1204 	i = compptr->ac_tbl_no;
1205 	jpeg_make_d_derived_tbl(cinfo, FALSE, i,
1206 				& entropy->derived_tbls[i]);
1207 	/* remember the single active table */
1208 	entropy->ac_derived_tbl = entropy->derived_tbls[i];
1209       }
1210       /* Initialize DC predictions to 0 */
1211       entropy->saved.last_dc_val[ci] = 0;
1212     }
1213 
1214     /* Initialize private state variables */
1215     entropy->saved.EOBRUN = 0;
1216   } else {
1217     /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
1218      * This ought to be an error condition, but we make it a warning because
1219      * there are some baseline files out there with all zeroes in these bytes.
1220      */
1221     if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
1222 	cinfo->Ah != 0 || cinfo->Al != 0)
1223       WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
1224 
1225     /* Select MCU decoding routine */
1226     entropy->pub.decode_mcu = decode_mcu;
1227 
1228     for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
1229       compptr = cinfo->cur_comp_info[ci];
1230       dctbl = compptr->dc_tbl_no;
1231       actbl = compptr->ac_tbl_no;
1232       /* Compute derived values for Huffman tables */
1233       /* We may do this more than once for a table, but it's not expensive */
1234       jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl,
1235 			      & entropy->dc_derived_tbls[dctbl]);
1236       jpeg_make_d_derived_tbl(cinfo, FALSE, actbl,
1237 			      & entropy->ac_derived_tbls[actbl]);
1238       /* Initialize DC predictions to 0 */
1239       entropy->saved.last_dc_val[ci] = 0;
1240     }
1241 
1242     /* Precalculate decoding info for each block in an MCU of this scan */
1243     for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
1244       ci = cinfo->MCU_membership[blkn];
1245       compptr = cinfo->cur_comp_info[ci];
1246       /* Precalculate which table to use for each block */
1247       entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
1248       entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
1249       /* Decide whether we really care about the coefficient values */
1250       if (compptr->component_needed) {
1251 	ci = compptr->DCT_v_scaled_size;
1252 	if (ci <= 0 || ci > 8) ci = 8;
1253 	i = compptr->DCT_h_scaled_size;
1254 	if (i <= 0 || i > 8) i = 8;
1255 	entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order[ci - 1][i - 1];
1256       } else {
1257 	entropy->coef_limit[blkn] = 0;
1258       }
1259     }
1260   }
1261 
1262   /* Initialize bitread state variables */
1263   entropy->bitstate.bits_left = 0;
1264   entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
1265   entropy->pub.insufficient_data = FALSE;
1266 
1267   /* Initialize restart counter */
1268   entropy->restarts_to_go = cinfo->restart_interval;
1269 }
1270 
1271 
1272 /*
1273  * Module initialization routine for Huffman entropy decoding.
1274  */
1275 
1276 GLOBAL(void)
jinit_huff_decoder(j_decompress_ptr cinfo)1277 jinit_huff_decoder (j_decompress_ptr cinfo)
1278 {
1279   huff_entropy_ptr entropy;
1280   int i;
1281 
1282   entropy = (huff_entropy_ptr)
1283     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1284 				SIZEOF(huff_entropy_decoder));
1285   cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
1286   entropy->pub.start_pass = start_pass_huff_decoder;
1287 
1288   if (cinfo->progressive_mode) {
1289     /* Create progression status table */
1290     int *coef_bit_ptr, ci;
1291     cinfo->coef_bits = (int (*)[DCTSIZE2])
1292       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1293 				  cinfo->num_components*DCTSIZE2*SIZEOF(int));
1294     coef_bit_ptr = & cinfo->coef_bits[0][0];
1295     for (ci = 0; ci < cinfo->num_components; ci++)
1296       for (i = 0; i < DCTSIZE2; i++)
1297 	*coef_bit_ptr++ = -1;
1298 
1299     /* Mark derived tables unallocated */
1300     for (i = 0; i < NUM_HUFF_TBLS; i++) {
1301       entropy->derived_tbls[i] = NULL;
1302     }
1303   } else {
1304     /* Mark tables unallocated */
1305     for (i = 0; i < NUM_HUFF_TBLS; i++) {
1306       entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
1307     }
1308   }
1309 }
1310