1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5/*
6 * Line tables
7 */
8
9package gosym
10
11import (
12	"encoding/binary"
13	"sync"
14)
15
16// A LineTable is a data structure mapping program counters to line numbers.
17//
18// In Go 1.1 and earlier, each function (represented by a Func) had its own LineTable,
19// and the line number corresponded to a numbering of all source lines in the
20// program, across all files. That absolute line number would then have to be
21// converted separately to a file name and line number within the file.
22//
23// In Go 1.2, the format of the data changed so that there is a single LineTable
24// for the entire program, shared by all Funcs, and there are no absolute line
25// numbers, just line numbers within specific files.
26//
27// For the most part, LineTable's methods should be treated as an internal
28// detail of the package; callers should use the methods on Table instead.
29type LineTable struct {
30	Data []byte
31	PC   uint64
32	Line int
33
34	// Go 1.2 state
35	mu       sync.Mutex
36	go12     int // is this in Go 1.2 format? -1 no, 0 unknown, 1 yes
37	binary   binary.ByteOrder
38	quantum  uint32
39	ptrsize  uint32
40	functab  []byte
41	nfunctab uint32
42	filetab  []byte
43	nfiletab uint32
44	fileMap  map[string]uint32
45}
46
47// NOTE(rsc): This is wrong for GOARCH=arm, which uses a quantum of 4,
48// but we have no idea whether we're using arm or not. This only
49// matters in the old (pre-Go 1.2) symbol table format, so it's not worth
50// fixing.
51const oldQuantum = 1
52
53func (t *LineTable) parse(targetPC uint64, targetLine int) (b []byte, pc uint64, line int) {
54	// The PC/line table can be thought of as a sequence of
55	//  <pc update>* <line update>
56	// batches. Each update batch results in a (pc, line) pair,
57	// where line applies to every PC from pc up to but not
58	// including the pc of the next pair.
59	//
60	// Here we process each update individually, which simplifies
61	// the code, but makes the corner cases more confusing.
62	b, pc, line = t.Data, t.PC, t.Line
63	for pc <= targetPC && line != targetLine && len(b) > 0 {
64		code := b[0]
65		b = b[1:]
66		switch {
67		case code == 0:
68			if len(b) < 4 {
69				b = b[0:0]
70				break
71			}
72			val := binary.BigEndian.Uint32(b)
73			b = b[4:]
74			line += int(val)
75		case code <= 64:
76			line += int(code)
77		case code <= 128:
78			line -= int(code - 64)
79		default:
80			pc += oldQuantum * uint64(code-128)
81			continue
82		}
83		pc += oldQuantum
84	}
85	return b, pc, line
86}
87
88func (t *LineTable) slice(pc uint64) *LineTable {
89	data, pc, line := t.parse(pc, -1)
90	return &LineTable{Data: data, PC: pc, Line: line}
91}
92
93// PCToLine returns the line number for the given program counter.
94// Callers should use Table's PCToLine method instead.
95func (t *LineTable) PCToLine(pc uint64) int {
96	if t.isGo12() {
97		return t.go12PCToLine(pc)
98	}
99	_, _, line := t.parse(pc, -1)
100	return line
101}
102
103// LineToPC returns the program counter for the given line number,
104// considering only program counters before maxpc.
105// Callers should use Table's LineToPC method instead.
106func (t *LineTable) LineToPC(line int, maxpc uint64) uint64 {
107	if t.isGo12() {
108		return 0
109	}
110	_, pc, line1 := t.parse(maxpc, line)
111	if line1 != line {
112		return 0
113	}
114	// Subtract quantum from PC to account for post-line increment
115	return pc - oldQuantum
116}
117
118// NewLineTable returns a new PC/line table
119// corresponding to the encoded data.
120// Text must be the start address of the
121// corresponding text segment.
122func NewLineTable(data []byte, text uint64) *LineTable {
123	return &LineTable{Data: data, PC: text, Line: 0}
124}
125
126// Go 1.2 symbol table format.
127// See golang.org/s/go12symtab.
128//
129// A general note about the methods here: rather than try to avoid
130// index out of bounds errors, we trust Go to detect them, and then
131// we recover from the panics and treat them as indicative of a malformed
132// or incomplete table.
133//
134// The methods called by symtab.go, which begin with "go12" prefixes,
135// are expected to have that recovery logic.
136
137// isGo12 reports whether this is a Go 1.2 (or later) symbol table.
138func (t *LineTable) isGo12() bool {
139	t.go12Init()
140	return t.go12 == 1
141}
142
143const go12magic = 0xfffffffb
144
145// uintptr returns the pointer-sized value encoded at b.
146// The pointer size is dictated by the table being read.
147func (t *LineTable) uintptr(b []byte) uint64 {
148	if t.ptrsize == 4 {
149		return uint64(t.binary.Uint32(b))
150	}
151	return t.binary.Uint64(b)
152}
153
154// go12init initializes the Go 1.2 metadata if t is a Go 1.2 symbol table.
155func (t *LineTable) go12Init() {
156	t.mu.Lock()
157	defer t.mu.Unlock()
158	if t.go12 != 0 {
159		return
160	}
161
162	defer func() {
163		// If we panic parsing, assume it's not a Go 1.2 symbol table.
164		recover()
165	}()
166
167	// Check header: 4-byte magic, two zeros, pc quantum, pointer size.
168	t.go12 = -1 // not Go 1.2 until proven otherwise
169	if len(t.Data) < 16 || t.Data[4] != 0 || t.Data[5] != 0 ||
170		(t.Data[6] != 1 && t.Data[6] != 2 && t.Data[6] != 4) || // pc quantum
171		(t.Data[7] != 4 && t.Data[7] != 8) { // pointer size
172		return
173	}
174
175	switch uint32(go12magic) {
176	case binary.LittleEndian.Uint32(t.Data):
177		t.binary = binary.LittleEndian
178	case binary.BigEndian.Uint32(t.Data):
179		t.binary = binary.BigEndian
180	default:
181		return
182	}
183
184	t.quantum = uint32(t.Data[6])
185	t.ptrsize = uint32(t.Data[7])
186
187	t.nfunctab = uint32(t.uintptr(t.Data[8:]))
188	t.functab = t.Data[8+t.ptrsize:]
189	functabsize := t.nfunctab*2*t.ptrsize + t.ptrsize
190	fileoff := t.binary.Uint32(t.functab[functabsize:])
191	t.functab = t.functab[:functabsize]
192	t.filetab = t.Data[fileoff:]
193	t.nfiletab = t.binary.Uint32(t.filetab)
194	t.filetab = t.filetab[:t.nfiletab*4]
195
196	t.go12 = 1 // so far so good
197}
198
199// go12Funcs returns a slice of Funcs derived from the Go 1.2 pcln table.
200func (t *LineTable) go12Funcs() []Func {
201	// Assume it is malformed and return nil on error.
202	defer func() {
203		recover()
204	}()
205
206	n := len(t.functab) / int(t.ptrsize) / 2
207	funcs := make([]Func, n)
208	for i := range funcs {
209		f := &funcs[i]
210		f.Entry = t.uintptr(t.functab[2*i*int(t.ptrsize):])
211		f.End = t.uintptr(t.functab[(2*i+2)*int(t.ptrsize):])
212		info := t.Data[t.uintptr(t.functab[(2*i+1)*int(t.ptrsize):]):]
213		f.LineTable = t
214		f.FrameSize = int(t.binary.Uint32(info[t.ptrsize+2*4:]))
215		f.Sym = &Sym{
216			Value:  f.Entry,
217			Type:   'T',
218			Name:   t.string(t.binary.Uint32(info[t.ptrsize:])),
219			GoType: 0,
220			Func:   f,
221		}
222	}
223	return funcs
224}
225
226// findFunc returns the func corresponding to the given program counter.
227func (t *LineTable) findFunc(pc uint64) []byte {
228	if pc < t.uintptr(t.functab) || pc >= t.uintptr(t.functab[len(t.functab)-int(t.ptrsize):]) {
229		return nil
230	}
231
232	// The function table is a list of 2*nfunctab+1 uintptrs,
233	// alternating program counters and offsets to func structures.
234	f := t.functab
235	nf := t.nfunctab
236	for nf > 0 {
237		m := nf / 2
238		fm := f[2*t.ptrsize*m:]
239		if t.uintptr(fm) <= pc && pc < t.uintptr(fm[2*t.ptrsize:]) {
240			return t.Data[t.uintptr(fm[t.ptrsize:]):]
241		} else if pc < t.uintptr(fm) {
242			nf = m
243		} else {
244			f = f[(m+1)*2*t.ptrsize:]
245			nf -= m + 1
246		}
247	}
248	return nil
249}
250
251// readvarint reads, removes, and returns a varint from *pp.
252func (t *LineTable) readvarint(pp *[]byte) uint32 {
253	var v, shift uint32
254	p := *pp
255	for shift = 0; ; shift += 7 {
256		b := p[0]
257		p = p[1:]
258		v |= (uint32(b) & 0x7F) << shift
259		if b&0x80 == 0 {
260			break
261		}
262	}
263	*pp = p
264	return v
265}
266
267// string returns a Go string found at off.
268func (t *LineTable) string(off uint32) string {
269	for i := off; ; i++ {
270		if t.Data[i] == 0 {
271			return string(t.Data[off:i])
272		}
273	}
274}
275
276// step advances to the next pc, value pair in the encoded table.
277func (t *LineTable) step(p *[]byte, pc *uint64, val *int32, first bool) bool {
278	uvdelta := t.readvarint(p)
279	if uvdelta == 0 && !first {
280		return false
281	}
282	if uvdelta&1 != 0 {
283		uvdelta = ^(uvdelta >> 1)
284	} else {
285		uvdelta >>= 1
286	}
287	vdelta := int32(uvdelta)
288	pcdelta := t.readvarint(p) * t.quantum
289	*pc += uint64(pcdelta)
290	*val += vdelta
291	return true
292}
293
294// pcvalue reports the value associated with the target pc.
295// off is the offset to the beginning of the pc-value table,
296// and entry is the start PC for the corresponding function.
297func (t *LineTable) pcvalue(off uint32, entry, targetpc uint64) int32 {
298	p := t.Data[off:]
299
300	val := int32(-1)
301	pc := entry
302	for t.step(&p, &pc, &val, pc == entry) {
303		if targetpc < pc {
304			return val
305		}
306	}
307	return -1
308}
309
310// findFileLine scans one function in the binary looking for a
311// program counter in the given file on the given line.
312// It does so by running the pc-value tables mapping program counter
313// to file number. Since most functions come from a single file, these
314// are usually short and quick to scan. If a file match is found, then the
315// code goes to the expense of looking for a simultaneous line number match.
316func (t *LineTable) findFileLine(entry uint64, filetab, linetab uint32, filenum, line int32) uint64 {
317	if filetab == 0 || linetab == 0 {
318		return 0
319	}
320
321	fp := t.Data[filetab:]
322	fl := t.Data[linetab:]
323	fileVal := int32(-1)
324	filePC := entry
325	lineVal := int32(-1)
326	linePC := entry
327	fileStartPC := filePC
328	for t.step(&fp, &filePC, &fileVal, filePC == entry) {
329		if fileVal == filenum && fileStartPC < filePC {
330			// fileVal is in effect starting at fileStartPC up to
331			// but not including filePC, and it's the file we want.
332			// Run the PC table looking for a matching line number
333			// or until we reach filePC.
334			lineStartPC := linePC
335			for linePC < filePC && t.step(&fl, &linePC, &lineVal, linePC == entry) {
336				// lineVal is in effect until linePC, and lineStartPC < filePC.
337				if lineVal == line {
338					if fileStartPC <= lineStartPC {
339						return lineStartPC
340					}
341					if fileStartPC < linePC {
342						return fileStartPC
343					}
344				}
345				lineStartPC = linePC
346			}
347		}
348		fileStartPC = filePC
349	}
350	return 0
351}
352
353// go12PCToLine maps program counter to line number for the Go 1.2 pcln table.
354func (t *LineTable) go12PCToLine(pc uint64) (line int) {
355	defer func() {
356		if recover() != nil {
357			line = -1
358		}
359	}()
360
361	f := t.findFunc(pc)
362	if f == nil {
363		return -1
364	}
365	entry := t.uintptr(f)
366	linetab := t.binary.Uint32(f[t.ptrsize+5*4:])
367	return int(t.pcvalue(linetab, entry, pc))
368}
369
370// go12PCToFile maps program counter to file name for the Go 1.2 pcln table.
371func (t *LineTable) go12PCToFile(pc uint64) (file string) {
372	defer func() {
373		if recover() != nil {
374			file = ""
375		}
376	}()
377
378	f := t.findFunc(pc)
379	if f == nil {
380		return ""
381	}
382	entry := t.uintptr(f)
383	filetab := t.binary.Uint32(f[t.ptrsize+4*4:])
384	fno := t.pcvalue(filetab, entry, pc)
385	if fno <= 0 {
386		return ""
387	}
388	return t.string(t.binary.Uint32(t.filetab[4*fno:]))
389}
390
391// go12LineToPC maps a (file, line) pair to a program counter for the Go 1.2 pcln table.
392func (t *LineTable) go12LineToPC(file string, line int) (pc uint64) {
393	defer func() {
394		if recover() != nil {
395			pc = 0
396		}
397	}()
398
399	t.initFileMap()
400	filenum := t.fileMap[file]
401	if filenum == 0 {
402		return 0
403	}
404
405	// Scan all functions.
406	// If this turns out to be a bottleneck, we could build a map[int32][]int32
407	// mapping file number to a list of functions with code from that file.
408	for i := uint32(0); i < t.nfunctab; i++ {
409		f := t.Data[t.uintptr(t.functab[2*t.ptrsize*i+t.ptrsize:]):]
410		entry := t.uintptr(f)
411		filetab := t.binary.Uint32(f[t.ptrsize+4*4:])
412		linetab := t.binary.Uint32(f[t.ptrsize+5*4:])
413		pc := t.findFileLine(entry, filetab, linetab, int32(filenum), int32(line))
414		if pc != 0 {
415			return pc
416		}
417	}
418	return 0
419}
420
421// initFileMap initializes the map from file name to file number.
422func (t *LineTable) initFileMap() {
423	t.mu.Lock()
424	defer t.mu.Unlock()
425
426	if t.fileMap != nil {
427		return
428	}
429	m := make(map[string]uint32)
430
431	for i := uint32(1); i < t.nfiletab; i++ {
432		s := t.string(t.binary.Uint32(t.filetab[4*i:]))
433		m[s] = i
434	}
435	t.fileMap = m
436}
437
438// go12MapFiles adds to m a key for every file in the Go 1.2 LineTable.
439// Every key maps to obj. That's not a very interesting map, but it provides
440// a way for callers to obtain the list of files in the program.
441func (t *LineTable) go12MapFiles(m map[string]*Obj, obj *Obj) {
442	defer func() {
443		recover()
444	}()
445
446	t.initFileMap()
447	for file := range t.fileMap {
448		m[file] = obj
449	}
450}
451