1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// HTTP server. See RFC 2616.
6
7package http
8
9import (
10	"bufio"
11	"bytes"
12	"context"
13	"crypto/tls"
14	"errors"
15	"fmt"
16	"io"
17	"io/ioutil"
18	"log"
19	"net"
20	"net/textproto"
21	"net/url"
22	"os"
23	"path"
24	"runtime"
25	"strconv"
26	"strings"
27	"sync"
28	"sync/atomic"
29	"time"
30
31	"golang_org/x/net/lex/httplex"
32)
33
34// Errors used by the HTTP server.
35var (
36	// ErrBodyNotAllowed is returned by ResponseWriter.Write calls
37	// when the HTTP method or response code does not permit a
38	// body.
39	ErrBodyNotAllowed = errors.New("http: request method or response status code does not allow body")
40
41	// ErrHijacked is returned by ResponseWriter.Write calls when
42	// the underlying connection has been hijacked using the
43	// Hijacker interface. A zero-byte write on a hijacked
44	// connection will return ErrHijacked without any other side
45	// effects.
46	ErrHijacked = errors.New("http: connection has been hijacked")
47
48	// ErrContentLength is returned by ResponseWriter.Write calls
49	// when a Handler set a Content-Length response header with a
50	// declared size and then attempted to write more bytes than
51	// declared.
52	ErrContentLength = errors.New("http: wrote more than the declared Content-Length")
53
54	// Deprecated: ErrWriteAfterFlush is no longer used.
55	ErrWriteAfterFlush = errors.New("unused")
56)
57
58// A Handler responds to an HTTP request.
59//
60// ServeHTTP should write reply headers and data to the ResponseWriter
61// and then return. Returning signals that the request is finished; it
62// is not valid to use the ResponseWriter or read from the
63// Request.Body after or concurrently with the completion of the
64// ServeHTTP call.
65//
66// Depending on the HTTP client software, HTTP protocol version, and
67// any intermediaries between the client and the Go server, it may not
68// be possible to read from the Request.Body after writing to the
69// ResponseWriter. Cautious handlers should read the Request.Body
70// first, and then reply.
71//
72// Except for reading the body, handlers should not modify the
73// provided Request.
74//
75// If ServeHTTP panics, the server (the caller of ServeHTTP) assumes
76// that the effect of the panic was isolated to the active request.
77// It recovers the panic, logs a stack trace to the server error log,
78// and either closes the network connection or sends an HTTP/2
79// RST_STREAM, depending on the HTTP protocol. To abort a handler so
80// the client sees an interrupted response but the server doesn't log
81// an error, panic with the value ErrAbortHandler.
82type Handler interface {
83	ServeHTTP(ResponseWriter, *Request)
84}
85
86// A ResponseWriter interface is used by an HTTP handler to
87// construct an HTTP response.
88//
89// A ResponseWriter may not be used after the Handler.ServeHTTP method
90// has returned.
91type ResponseWriter interface {
92	// Header returns the header map that will be sent by
93	// WriteHeader. The Header map also is the mechanism with which
94	// Handlers can set HTTP trailers.
95	//
96	// Changing the header map after a call to WriteHeader (or
97	// Write) has no effect unless the modified headers are
98	// trailers.
99	//
100	// There are two ways to set Trailers. The preferred way is to
101	// predeclare in the headers which trailers you will later
102	// send by setting the "Trailer" header to the names of the
103	// trailer keys which will come later. In this case, those
104	// keys of the Header map are treated as if they were
105	// trailers. See the example. The second way, for trailer
106	// keys not known to the Handler until after the first Write,
107	// is to prefix the Header map keys with the TrailerPrefix
108	// constant value. See TrailerPrefix.
109	//
110	// To suppress implicit response headers (such as "Date"), set
111	// their value to nil.
112	Header() Header
113
114	// Write writes the data to the connection as part of an HTTP reply.
115	//
116	// If WriteHeader has not yet been called, Write calls
117	// WriteHeader(http.StatusOK) before writing the data. If the Header
118	// does not contain a Content-Type line, Write adds a Content-Type set
119	// to the result of passing the initial 512 bytes of written data to
120	// DetectContentType.
121	//
122	// Depending on the HTTP protocol version and the client, calling
123	// Write or WriteHeader may prevent future reads on the
124	// Request.Body. For HTTP/1.x requests, handlers should read any
125	// needed request body data before writing the response. Once the
126	// headers have been flushed (due to either an explicit Flusher.Flush
127	// call or writing enough data to trigger a flush), the request body
128	// may be unavailable. For HTTP/2 requests, the Go HTTP server permits
129	// handlers to continue to read the request body while concurrently
130	// writing the response. However, such behavior may not be supported
131	// by all HTTP/2 clients. Handlers should read before writing if
132	// possible to maximize compatibility.
133	Write([]byte) (int, error)
134
135	// WriteHeader sends an HTTP response header with the provided
136	// status code.
137	//
138	// If WriteHeader is not called explicitly, the first call to Write
139	// will trigger an implicit WriteHeader(http.StatusOK).
140	// Thus explicit calls to WriteHeader are mainly used to
141	// send error codes.
142	//
143	// The provided code must be a valid HTTP 1xx-5xx status code.
144	// Only one header may be written. Go does not currently
145	// support sending user-defined 1xx informational headers,
146	// with the exception of 100-continue response header that the
147	// Server sends automatically when the Request.Body is read.
148	WriteHeader(statusCode int)
149}
150
151// The Flusher interface is implemented by ResponseWriters that allow
152// an HTTP handler to flush buffered data to the client.
153//
154// The default HTTP/1.x and HTTP/2 ResponseWriter implementations
155// support Flusher, but ResponseWriter wrappers may not. Handlers
156// should always test for this ability at runtime.
157//
158// Note that even for ResponseWriters that support Flush,
159// if the client is connected through an HTTP proxy,
160// the buffered data may not reach the client until the response
161// completes.
162type Flusher interface {
163	// Flush sends any buffered data to the client.
164	Flush()
165}
166
167// The Hijacker interface is implemented by ResponseWriters that allow
168// an HTTP handler to take over the connection.
169//
170// The default ResponseWriter for HTTP/1.x connections supports
171// Hijacker, but HTTP/2 connections intentionally do not.
172// ResponseWriter wrappers may also not support Hijacker. Handlers
173// should always test for this ability at runtime.
174type Hijacker interface {
175	// Hijack lets the caller take over the connection.
176	// After a call to Hijack the HTTP server library
177	// will not do anything else with the connection.
178	//
179	// It becomes the caller's responsibility to manage
180	// and close the connection.
181	//
182	// The returned net.Conn may have read or write deadlines
183	// already set, depending on the configuration of the
184	// Server. It is the caller's responsibility to set
185	// or clear those deadlines as needed.
186	//
187	// The returned bufio.Reader may contain unprocessed buffered
188	// data from the client.
189	//
190	// After a call to Hijack, the original Request.Body must
191	// not be used.
192	Hijack() (net.Conn, *bufio.ReadWriter, error)
193}
194
195// The CloseNotifier interface is implemented by ResponseWriters which
196// allow detecting when the underlying connection has gone away.
197//
198// This mechanism can be used to cancel long operations on the server
199// if the client has disconnected before the response is ready.
200type CloseNotifier interface {
201	// CloseNotify returns a channel that receives at most a
202	// single value (true) when the client connection has gone
203	// away.
204	//
205	// CloseNotify may wait to notify until Request.Body has been
206	// fully read.
207	//
208	// After the Handler has returned, there is no guarantee
209	// that the channel receives a value.
210	//
211	// If the protocol is HTTP/1.1 and CloseNotify is called while
212	// processing an idempotent request (such a GET) while
213	// HTTP/1.1 pipelining is in use, the arrival of a subsequent
214	// pipelined request may cause a value to be sent on the
215	// returned channel. In practice HTTP/1.1 pipelining is not
216	// enabled in browsers and not seen often in the wild. If this
217	// is a problem, use HTTP/2 or only use CloseNotify on methods
218	// such as POST.
219	CloseNotify() <-chan bool
220}
221
222var (
223	// ServerContextKey is a context key. It can be used in HTTP
224	// handlers with context.WithValue to access the server that
225	// started the handler. The associated value will be of
226	// type *Server.
227	ServerContextKey = &contextKey{"http-server"}
228
229	// LocalAddrContextKey is a context key. It can be used in
230	// HTTP handlers with context.WithValue to access the address
231	// the local address the connection arrived on.
232	// The associated value will be of type net.Addr.
233	LocalAddrContextKey = &contextKey{"local-addr"}
234)
235
236// A conn represents the server side of an HTTP connection.
237type conn struct {
238	// server is the server on which the connection arrived.
239	// Immutable; never nil.
240	server *Server
241
242	// cancelCtx cancels the connection-level context.
243	cancelCtx context.CancelFunc
244
245	// rwc is the underlying network connection.
246	// This is never wrapped by other types and is the value given out
247	// to CloseNotifier callers. It is usually of type *net.TCPConn or
248	// *tls.Conn.
249	rwc net.Conn
250
251	// remoteAddr is rwc.RemoteAddr().String(). It is not populated synchronously
252	// inside the Listener's Accept goroutine, as some implementations block.
253	// It is populated immediately inside the (*conn).serve goroutine.
254	// This is the value of a Handler's (*Request).RemoteAddr.
255	remoteAddr string
256
257	// tlsState is the TLS connection state when using TLS.
258	// nil means not TLS.
259	tlsState *tls.ConnectionState
260
261	// werr is set to the first write error to rwc.
262	// It is set via checkConnErrorWriter{w}, where bufw writes.
263	werr error
264
265	// r is bufr's read source. It's a wrapper around rwc that provides
266	// io.LimitedReader-style limiting (while reading request headers)
267	// and functionality to support CloseNotifier. See *connReader docs.
268	r *connReader
269
270	// bufr reads from r.
271	bufr *bufio.Reader
272
273	// bufw writes to checkConnErrorWriter{c}, which populates werr on error.
274	bufw *bufio.Writer
275
276	// lastMethod is the method of the most recent request
277	// on this connection, if any.
278	lastMethod string
279
280	curReq atomic.Value // of *response (which has a Request in it)
281
282	curState atomic.Value // of ConnState
283
284	// mu guards hijackedv
285	mu sync.Mutex
286
287	// hijackedv is whether this connection has been hijacked
288	// by a Handler with the Hijacker interface.
289	// It is guarded by mu.
290	hijackedv bool
291}
292
293func (c *conn) hijacked() bool {
294	c.mu.Lock()
295	defer c.mu.Unlock()
296	return c.hijackedv
297}
298
299// c.mu must be held.
300func (c *conn) hijackLocked() (rwc net.Conn, buf *bufio.ReadWriter, err error) {
301	if c.hijackedv {
302		return nil, nil, ErrHijacked
303	}
304	c.r.abortPendingRead()
305
306	c.hijackedv = true
307	rwc = c.rwc
308	rwc.SetDeadline(time.Time{})
309
310	buf = bufio.NewReadWriter(c.bufr, bufio.NewWriter(rwc))
311	if c.r.hasByte {
312		if _, err := c.bufr.Peek(c.bufr.Buffered() + 1); err != nil {
313			return nil, nil, fmt.Errorf("unexpected Peek failure reading buffered byte: %v", err)
314		}
315	}
316	c.setState(rwc, StateHijacked)
317	return
318}
319
320// This should be >= 512 bytes for DetectContentType,
321// but otherwise it's somewhat arbitrary.
322const bufferBeforeChunkingSize = 2048
323
324// chunkWriter writes to a response's conn buffer, and is the writer
325// wrapped by the response.bufw buffered writer.
326//
327// chunkWriter also is responsible for finalizing the Header, including
328// conditionally setting the Content-Type and setting a Content-Length
329// in cases where the handler's final output is smaller than the buffer
330// size. It also conditionally adds chunk headers, when in chunking mode.
331//
332// See the comment above (*response).Write for the entire write flow.
333type chunkWriter struct {
334	res *response
335
336	// header is either nil or a deep clone of res.handlerHeader
337	// at the time of res.WriteHeader, if res.WriteHeader is
338	// called and extra buffering is being done to calculate
339	// Content-Type and/or Content-Length.
340	header Header
341
342	// wroteHeader tells whether the header's been written to "the
343	// wire" (or rather: w.conn.buf). this is unlike
344	// (*response).wroteHeader, which tells only whether it was
345	// logically written.
346	wroteHeader bool
347
348	// set by the writeHeader method:
349	chunking bool // using chunked transfer encoding for reply body
350}
351
352var (
353	crlf       = []byte("\r\n")
354	colonSpace = []byte(": ")
355)
356
357func (cw *chunkWriter) Write(p []byte) (n int, err error) {
358	if !cw.wroteHeader {
359		cw.writeHeader(p)
360	}
361	if cw.res.req.Method == "HEAD" {
362		// Eat writes.
363		return len(p), nil
364	}
365	if cw.chunking {
366		_, err = fmt.Fprintf(cw.res.conn.bufw, "%x\r\n", len(p))
367		if err != nil {
368			cw.res.conn.rwc.Close()
369			return
370		}
371	}
372	n, err = cw.res.conn.bufw.Write(p)
373	if cw.chunking && err == nil {
374		_, err = cw.res.conn.bufw.Write(crlf)
375	}
376	if err != nil {
377		cw.res.conn.rwc.Close()
378	}
379	return
380}
381
382func (cw *chunkWriter) flush() {
383	if !cw.wroteHeader {
384		cw.writeHeader(nil)
385	}
386	cw.res.conn.bufw.Flush()
387}
388
389func (cw *chunkWriter) close() {
390	if !cw.wroteHeader {
391		cw.writeHeader(nil)
392	}
393	if cw.chunking {
394		bw := cw.res.conn.bufw // conn's bufio writer
395		// zero chunk to mark EOF
396		bw.WriteString("0\r\n")
397		if trailers := cw.res.finalTrailers(); trailers != nil {
398			trailers.Write(bw) // the writer handles noting errors
399		}
400		// final blank line after the trailers (whether
401		// present or not)
402		bw.WriteString("\r\n")
403	}
404}
405
406// A response represents the server side of an HTTP response.
407type response struct {
408	conn             *conn
409	req              *Request // request for this response
410	reqBody          io.ReadCloser
411	cancelCtx        context.CancelFunc // when ServeHTTP exits
412	wroteHeader      bool               // reply header has been (logically) written
413	wroteContinue    bool               // 100 Continue response was written
414	wants10KeepAlive bool               // HTTP/1.0 w/ Connection "keep-alive"
415	wantsClose       bool               // HTTP request has Connection "close"
416
417	w  *bufio.Writer // buffers output in chunks to chunkWriter
418	cw chunkWriter
419
420	// handlerHeader is the Header that Handlers get access to,
421	// which may be retained and mutated even after WriteHeader.
422	// handlerHeader is copied into cw.header at WriteHeader
423	// time, and privately mutated thereafter.
424	handlerHeader Header
425	calledHeader  bool // handler accessed handlerHeader via Header
426
427	written       int64 // number of bytes written in body
428	contentLength int64 // explicitly-declared Content-Length; or -1
429	status        int   // status code passed to WriteHeader
430
431	// close connection after this reply.  set on request and
432	// updated after response from handler if there's a
433	// "Connection: keep-alive" response header and a
434	// Content-Length.
435	closeAfterReply bool
436
437	// requestBodyLimitHit is set by requestTooLarge when
438	// maxBytesReader hits its max size. It is checked in
439	// WriteHeader, to make sure we don't consume the
440	// remaining request body to try to advance to the next HTTP
441	// request. Instead, when this is set, we stop reading
442	// subsequent requests on this connection and stop reading
443	// input from it.
444	requestBodyLimitHit bool
445
446	// trailers are the headers to be sent after the handler
447	// finishes writing the body. This field is initialized from
448	// the Trailer response header when the response header is
449	// written.
450	trailers []string
451
452	handlerDone atomicBool // set true when the handler exits
453
454	// Buffers for Date, Content-Length, and status code
455	dateBuf   [len(TimeFormat)]byte
456	clenBuf   [10]byte
457	statusBuf [3]byte
458
459	// closeNotifyCh is the channel returned by CloseNotify.
460	// TODO(bradfitz): this is currently (for Go 1.8) always
461	// non-nil. Make this lazily-created again as it used to be?
462	closeNotifyCh  chan bool
463	didCloseNotify int32 // atomic (only 0->1 winner should send)
464}
465
466// TrailerPrefix is a magic prefix for ResponseWriter.Header map keys
467// that, if present, signals that the map entry is actually for
468// the response trailers, and not the response headers. The prefix
469// is stripped after the ServeHTTP call finishes and the values are
470// sent in the trailers.
471//
472// This mechanism is intended only for trailers that are not known
473// prior to the headers being written. If the set of trailers is fixed
474// or known before the header is written, the normal Go trailers mechanism
475// is preferred:
476//    https://golang.org/pkg/net/http/#ResponseWriter
477//    https://golang.org/pkg/net/http/#example_ResponseWriter_trailers
478const TrailerPrefix = "Trailer:"
479
480// finalTrailers is called after the Handler exits and returns a non-nil
481// value if the Handler set any trailers.
482func (w *response) finalTrailers() Header {
483	var t Header
484	for k, vv := range w.handlerHeader {
485		if strings.HasPrefix(k, TrailerPrefix) {
486			if t == nil {
487				t = make(Header)
488			}
489			t[strings.TrimPrefix(k, TrailerPrefix)] = vv
490		}
491	}
492	for _, k := range w.trailers {
493		if t == nil {
494			t = make(Header)
495		}
496		for _, v := range w.handlerHeader[k] {
497			t.Add(k, v)
498		}
499	}
500	return t
501}
502
503type atomicBool int32
504
505func (b *atomicBool) isSet() bool { return atomic.LoadInt32((*int32)(b)) != 0 }
506func (b *atomicBool) setTrue()    { atomic.StoreInt32((*int32)(b), 1) }
507
508// declareTrailer is called for each Trailer header when the
509// response header is written. It notes that a header will need to be
510// written in the trailers at the end of the response.
511func (w *response) declareTrailer(k string) {
512	k = CanonicalHeaderKey(k)
513	switch k {
514	case "Transfer-Encoding", "Content-Length", "Trailer":
515		// Forbidden by RFC 2616 14.40.
516		return
517	}
518	w.trailers = append(w.trailers, k)
519}
520
521// requestTooLarge is called by maxBytesReader when too much input has
522// been read from the client.
523func (w *response) requestTooLarge() {
524	w.closeAfterReply = true
525	w.requestBodyLimitHit = true
526	if !w.wroteHeader {
527		w.Header().Set("Connection", "close")
528	}
529}
530
531// needsSniff reports whether a Content-Type still needs to be sniffed.
532func (w *response) needsSniff() bool {
533	_, haveType := w.handlerHeader["Content-Type"]
534	return !w.cw.wroteHeader && !haveType && w.written < sniffLen
535}
536
537// writerOnly hides an io.Writer value's optional ReadFrom method
538// from io.Copy.
539type writerOnly struct {
540	io.Writer
541}
542
543func srcIsRegularFile(src io.Reader) (isRegular bool, err error) {
544	switch v := src.(type) {
545	case *os.File:
546		fi, err := v.Stat()
547		if err != nil {
548			return false, err
549		}
550		return fi.Mode().IsRegular(), nil
551	case *io.LimitedReader:
552		return srcIsRegularFile(v.R)
553	default:
554		return
555	}
556}
557
558// ReadFrom is here to optimize copying from an *os.File regular file
559// to a *net.TCPConn with sendfile.
560func (w *response) ReadFrom(src io.Reader) (n int64, err error) {
561	// Our underlying w.conn.rwc is usually a *TCPConn (with its
562	// own ReadFrom method). If not, or if our src isn't a regular
563	// file, just fall back to the normal copy method.
564	rf, ok := w.conn.rwc.(io.ReaderFrom)
565	regFile, err := srcIsRegularFile(src)
566	if err != nil {
567		return 0, err
568	}
569	if !ok || !regFile {
570		bufp := copyBufPool.Get().(*[]byte)
571		defer copyBufPool.Put(bufp)
572		return io.CopyBuffer(writerOnly{w}, src, *bufp)
573	}
574
575	// sendfile path:
576
577	if !w.wroteHeader {
578		w.WriteHeader(StatusOK)
579	}
580
581	if w.needsSniff() {
582		n0, err := io.Copy(writerOnly{w}, io.LimitReader(src, sniffLen))
583		n += n0
584		if err != nil {
585			return n, err
586		}
587	}
588
589	w.w.Flush()  // get rid of any previous writes
590	w.cw.flush() // make sure Header is written; flush data to rwc
591
592	// Now that cw has been flushed, its chunking field is guaranteed initialized.
593	if !w.cw.chunking && w.bodyAllowed() {
594		n0, err := rf.ReadFrom(src)
595		n += n0
596		w.written += n0
597		return n, err
598	}
599
600	n0, err := io.Copy(writerOnly{w}, src)
601	n += n0
602	return n, err
603}
604
605// debugServerConnections controls whether all server connections are wrapped
606// with a verbose logging wrapper.
607const debugServerConnections = false
608
609// Create new connection from rwc.
610func (srv *Server) newConn(rwc net.Conn) *conn {
611	c := &conn{
612		server: srv,
613		rwc:    rwc,
614	}
615	if debugServerConnections {
616		c.rwc = newLoggingConn("server", c.rwc)
617	}
618	return c
619}
620
621type readResult struct {
622	n   int
623	err error
624	b   byte // byte read, if n == 1
625}
626
627// connReader is the io.Reader wrapper used by *conn. It combines a
628// selectively-activated io.LimitedReader (to bound request header
629// read sizes) with support for selectively keeping an io.Reader.Read
630// call blocked in a background goroutine to wait for activity and
631// trigger a CloseNotifier channel.
632type connReader struct {
633	conn *conn
634
635	mu      sync.Mutex // guards following
636	hasByte bool
637	byteBuf [1]byte
638	cond    *sync.Cond
639	inRead  bool
640	aborted bool  // set true before conn.rwc deadline is set to past
641	remain  int64 // bytes remaining
642}
643
644func (cr *connReader) lock() {
645	cr.mu.Lock()
646	if cr.cond == nil {
647		cr.cond = sync.NewCond(&cr.mu)
648	}
649}
650
651func (cr *connReader) unlock() { cr.mu.Unlock() }
652
653func (cr *connReader) startBackgroundRead() {
654	cr.lock()
655	defer cr.unlock()
656	if cr.inRead {
657		panic("invalid concurrent Body.Read call")
658	}
659	if cr.hasByte {
660		return
661	}
662	cr.inRead = true
663	cr.conn.rwc.SetReadDeadline(time.Time{})
664	go cr.backgroundRead()
665}
666
667func (cr *connReader) backgroundRead() {
668	n, err := cr.conn.rwc.Read(cr.byteBuf[:])
669	cr.lock()
670	if n == 1 {
671		cr.hasByte = true
672		// We were at EOF already (since we wouldn't be in a
673		// background read otherwise), so this is a pipelined
674		// HTTP request.
675		cr.closeNotifyFromPipelinedRequest()
676	}
677	if ne, ok := err.(net.Error); ok && cr.aborted && ne.Timeout() {
678		// Ignore this error. It's the expected error from
679		// another goroutine calling abortPendingRead.
680	} else if err != nil {
681		cr.handleReadError(err)
682	}
683	cr.aborted = false
684	cr.inRead = false
685	cr.unlock()
686	cr.cond.Broadcast()
687}
688
689func (cr *connReader) abortPendingRead() {
690	cr.lock()
691	defer cr.unlock()
692	if !cr.inRead {
693		return
694	}
695	cr.aborted = true
696	cr.conn.rwc.SetReadDeadline(aLongTimeAgo)
697	for cr.inRead {
698		cr.cond.Wait()
699	}
700	cr.conn.rwc.SetReadDeadline(time.Time{})
701}
702
703func (cr *connReader) setReadLimit(remain int64) { cr.remain = remain }
704func (cr *connReader) setInfiniteReadLimit()     { cr.remain = maxInt64 }
705func (cr *connReader) hitReadLimit() bool        { return cr.remain <= 0 }
706
707// may be called from multiple goroutines.
708func (cr *connReader) handleReadError(err error) {
709	cr.conn.cancelCtx()
710	cr.closeNotify()
711}
712
713// closeNotifyFromPipelinedRequest simply calls closeNotify.
714//
715// This method wrapper is here for documentation. The callers are the
716// cases where we send on the closenotify channel because of a
717// pipelined HTTP request, per the previous Go behavior and
718// documentation (that this "MAY" happen).
719//
720// TODO: consider changing this behavior and making context
721// cancelation and closenotify work the same.
722func (cr *connReader) closeNotifyFromPipelinedRequest() {
723	cr.closeNotify()
724}
725
726// may be called from multiple goroutines.
727func (cr *connReader) closeNotify() {
728	res, _ := cr.conn.curReq.Load().(*response)
729	if res != nil {
730		if atomic.CompareAndSwapInt32(&res.didCloseNotify, 0, 1) {
731			res.closeNotifyCh <- true
732		}
733	}
734}
735
736func (cr *connReader) Read(p []byte) (n int, err error) {
737	cr.lock()
738	if cr.inRead {
739		cr.unlock()
740		if cr.conn.hijacked() {
741			panic("invalid Body.Read call. After hijacked, the original Request must not be used")
742		}
743		panic("invalid concurrent Body.Read call")
744	}
745	if cr.hitReadLimit() {
746		cr.unlock()
747		return 0, io.EOF
748	}
749	if len(p) == 0 {
750		cr.unlock()
751		return 0, nil
752	}
753	if int64(len(p)) > cr.remain {
754		p = p[:cr.remain]
755	}
756	if cr.hasByte {
757		p[0] = cr.byteBuf[0]
758		cr.hasByte = false
759		cr.unlock()
760		return 1, nil
761	}
762	cr.inRead = true
763	cr.unlock()
764	n, err = cr.conn.rwc.Read(p)
765
766	cr.lock()
767	cr.inRead = false
768	if err != nil {
769		cr.handleReadError(err)
770	}
771	cr.remain -= int64(n)
772	cr.unlock()
773
774	cr.cond.Broadcast()
775	return n, err
776}
777
778var (
779	bufioReaderPool   sync.Pool
780	bufioWriter2kPool sync.Pool
781	bufioWriter4kPool sync.Pool
782)
783
784var copyBufPool = sync.Pool{
785	New: func() interface{} {
786		b := make([]byte, 32*1024)
787		return &b
788	},
789}
790
791func bufioWriterPool(size int) *sync.Pool {
792	switch size {
793	case 2 << 10:
794		return &bufioWriter2kPool
795	case 4 << 10:
796		return &bufioWriter4kPool
797	}
798	return nil
799}
800
801func newBufioReader(r io.Reader) *bufio.Reader {
802	if v := bufioReaderPool.Get(); v != nil {
803		br := v.(*bufio.Reader)
804		br.Reset(r)
805		return br
806	}
807	// Note: if this reader size is ever changed, update
808	// TestHandlerBodyClose's assumptions.
809	return bufio.NewReader(r)
810}
811
812func putBufioReader(br *bufio.Reader) {
813	br.Reset(nil)
814	bufioReaderPool.Put(br)
815}
816
817func newBufioWriterSize(w io.Writer, size int) *bufio.Writer {
818	pool := bufioWriterPool(size)
819	if pool != nil {
820		if v := pool.Get(); v != nil {
821			bw := v.(*bufio.Writer)
822			bw.Reset(w)
823			return bw
824		}
825	}
826	return bufio.NewWriterSize(w, size)
827}
828
829func putBufioWriter(bw *bufio.Writer) {
830	bw.Reset(nil)
831	if pool := bufioWriterPool(bw.Available()); pool != nil {
832		pool.Put(bw)
833	}
834}
835
836// DefaultMaxHeaderBytes is the maximum permitted size of the headers
837// in an HTTP request.
838// This can be overridden by setting Server.MaxHeaderBytes.
839const DefaultMaxHeaderBytes = 1 << 20 // 1 MB
840
841func (srv *Server) maxHeaderBytes() int {
842	if srv.MaxHeaderBytes > 0 {
843		return srv.MaxHeaderBytes
844	}
845	return DefaultMaxHeaderBytes
846}
847
848func (srv *Server) initialReadLimitSize() int64 {
849	return int64(srv.maxHeaderBytes()) + 4096 // bufio slop
850}
851
852// wrapper around io.ReadCloser which on first read, sends an
853// HTTP/1.1 100 Continue header
854type expectContinueReader struct {
855	resp       *response
856	readCloser io.ReadCloser
857	closed     bool
858	sawEOF     bool
859}
860
861func (ecr *expectContinueReader) Read(p []byte) (n int, err error) {
862	if ecr.closed {
863		return 0, ErrBodyReadAfterClose
864	}
865	if !ecr.resp.wroteContinue && !ecr.resp.conn.hijacked() {
866		ecr.resp.wroteContinue = true
867		ecr.resp.conn.bufw.WriteString("HTTP/1.1 100 Continue\r\n\r\n")
868		ecr.resp.conn.bufw.Flush()
869	}
870	n, err = ecr.readCloser.Read(p)
871	if err == io.EOF {
872		ecr.sawEOF = true
873	}
874	return
875}
876
877func (ecr *expectContinueReader) Close() error {
878	ecr.closed = true
879	return ecr.readCloser.Close()
880}
881
882// TimeFormat is the time format to use when generating times in HTTP
883// headers. It is like time.RFC1123 but hard-codes GMT as the time
884// zone. The time being formatted must be in UTC for Format to
885// generate the correct format.
886//
887// For parsing this time format, see ParseTime.
888const TimeFormat = "Mon, 02 Jan 2006 15:04:05 GMT"
889
890// appendTime is a non-allocating version of []byte(t.UTC().Format(TimeFormat))
891func appendTime(b []byte, t time.Time) []byte {
892	const days = "SunMonTueWedThuFriSat"
893	const months = "JanFebMarAprMayJunJulAugSepOctNovDec"
894
895	t = t.UTC()
896	yy, mm, dd := t.Date()
897	hh, mn, ss := t.Clock()
898	day := days[3*t.Weekday():]
899	mon := months[3*(mm-1):]
900
901	return append(b,
902		day[0], day[1], day[2], ',', ' ',
903		byte('0'+dd/10), byte('0'+dd%10), ' ',
904		mon[0], mon[1], mon[2], ' ',
905		byte('0'+yy/1000), byte('0'+(yy/100)%10), byte('0'+(yy/10)%10), byte('0'+yy%10), ' ',
906		byte('0'+hh/10), byte('0'+hh%10), ':',
907		byte('0'+mn/10), byte('0'+mn%10), ':',
908		byte('0'+ss/10), byte('0'+ss%10), ' ',
909		'G', 'M', 'T')
910}
911
912var errTooLarge = errors.New("http: request too large")
913
914// Read next request from connection.
915func (c *conn) readRequest(ctx context.Context) (w *response, err error) {
916	if c.hijacked() {
917		return nil, ErrHijacked
918	}
919
920	var (
921		wholeReqDeadline time.Time // or zero if none
922		hdrDeadline      time.Time // or zero if none
923	)
924	t0 := time.Now()
925	if d := c.server.readHeaderTimeout(); d != 0 {
926		hdrDeadline = t0.Add(d)
927	}
928	if d := c.server.ReadTimeout; d != 0 {
929		wholeReqDeadline = t0.Add(d)
930	}
931	c.rwc.SetReadDeadline(hdrDeadline)
932	if d := c.server.WriteTimeout; d != 0 {
933		defer func() {
934			c.rwc.SetWriteDeadline(time.Now().Add(d))
935		}()
936	}
937
938	c.r.setReadLimit(c.server.initialReadLimitSize())
939	if c.lastMethod == "POST" {
940		// RFC 2616 section 4.1 tolerance for old buggy clients.
941		peek, _ := c.bufr.Peek(4) // ReadRequest will get err below
942		c.bufr.Discard(numLeadingCRorLF(peek))
943	}
944	req, err := readRequest(c.bufr, keepHostHeader)
945	if err != nil {
946		if c.r.hitReadLimit() {
947			return nil, errTooLarge
948		}
949		return nil, err
950	}
951
952	if !http1ServerSupportsRequest(req) {
953		return nil, badRequestError("unsupported protocol version")
954	}
955
956	c.lastMethod = req.Method
957	c.r.setInfiniteReadLimit()
958
959	hosts, haveHost := req.Header["Host"]
960	isH2Upgrade := req.isH2Upgrade()
961	if req.ProtoAtLeast(1, 1) && (!haveHost || len(hosts) == 0) && !isH2Upgrade && req.Method != "CONNECT" {
962		return nil, badRequestError("missing required Host header")
963	}
964	if len(hosts) > 1 {
965		return nil, badRequestError("too many Host headers")
966	}
967	if len(hosts) == 1 && !httplex.ValidHostHeader(hosts[0]) {
968		return nil, badRequestError("malformed Host header")
969	}
970	for k, vv := range req.Header {
971		if !httplex.ValidHeaderFieldName(k) {
972			return nil, badRequestError("invalid header name")
973		}
974		for _, v := range vv {
975			if !httplex.ValidHeaderFieldValue(v) {
976				return nil, badRequestError("invalid header value")
977			}
978		}
979	}
980	delete(req.Header, "Host")
981
982	ctx, cancelCtx := context.WithCancel(ctx)
983	req.ctx = ctx
984	req.RemoteAddr = c.remoteAddr
985	req.TLS = c.tlsState
986	if body, ok := req.Body.(*body); ok {
987		body.doEarlyClose = true
988	}
989
990	// Adjust the read deadline if necessary.
991	if !hdrDeadline.Equal(wholeReqDeadline) {
992		c.rwc.SetReadDeadline(wholeReqDeadline)
993	}
994
995	w = &response{
996		conn:          c,
997		cancelCtx:     cancelCtx,
998		req:           req,
999		reqBody:       req.Body,
1000		handlerHeader: make(Header),
1001		contentLength: -1,
1002		closeNotifyCh: make(chan bool, 1),
1003
1004		// We populate these ahead of time so we're not
1005		// reading from req.Header after their Handler starts
1006		// and maybe mutates it (Issue 14940)
1007		wants10KeepAlive: req.wantsHttp10KeepAlive(),
1008		wantsClose:       req.wantsClose(),
1009	}
1010	if isH2Upgrade {
1011		w.closeAfterReply = true
1012	}
1013	w.cw.res = w
1014	w.w = newBufioWriterSize(&w.cw, bufferBeforeChunkingSize)
1015	return w, nil
1016}
1017
1018// http1ServerSupportsRequest reports whether Go's HTTP/1.x server
1019// supports the given request.
1020func http1ServerSupportsRequest(req *Request) bool {
1021	if req.ProtoMajor == 1 {
1022		return true
1023	}
1024	// Accept "PRI * HTTP/2.0" upgrade requests, so Handlers can
1025	// wire up their own HTTP/2 upgrades.
1026	if req.ProtoMajor == 2 && req.ProtoMinor == 0 &&
1027		req.Method == "PRI" && req.RequestURI == "*" {
1028		return true
1029	}
1030	// Reject HTTP/0.x, and all other HTTP/2+ requests (which
1031	// aren't encoded in ASCII anyway).
1032	return false
1033}
1034
1035func (w *response) Header() Header {
1036	if w.cw.header == nil && w.wroteHeader && !w.cw.wroteHeader {
1037		// Accessing the header between logically writing it
1038		// and physically writing it means we need to allocate
1039		// a clone to snapshot the logically written state.
1040		w.cw.header = w.handlerHeader.clone()
1041	}
1042	w.calledHeader = true
1043	return w.handlerHeader
1044}
1045
1046// maxPostHandlerReadBytes is the max number of Request.Body bytes not
1047// consumed by a handler that the server will read from the client
1048// in order to keep a connection alive. If there are more bytes than
1049// this then the server to be paranoid instead sends a "Connection:
1050// close" response.
1051//
1052// This number is approximately what a typical machine's TCP buffer
1053// size is anyway.  (if we have the bytes on the machine, we might as
1054// well read them)
1055const maxPostHandlerReadBytes = 256 << 10
1056
1057func checkWriteHeaderCode(code int) {
1058	// Issue 22880: require valid WriteHeader status codes.
1059	// For now we only enforce that it's three digits.
1060	// In the future we might block things over 599 (600 and above aren't defined
1061	// at http://httpwg.org/specs/rfc7231.html#status.codes)
1062	// and we might block under 200 (once we have more mature 1xx support).
1063	// But for now any three digits.
1064	//
1065	// We used to send "HTTP/1.1 000 0" on the wire in responses but there's
1066	// no equivalent bogus thing we can realistically send in HTTP/2,
1067	// so we'll consistently panic instead and help people find their bugs
1068	// early. (We can't return an error from WriteHeader even if we wanted to.)
1069	if code < 100 || code > 999 {
1070		panic(fmt.Sprintf("invalid WriteHeader code %v", code))
1071	}
1072}
1073
1074func (w *response) WriteHeader(code int) {
1075	if w.conn.hijacked() {
1076		w.conn.server.logf("http: response.WriteHeader on hijacked connection")
1077		return
1078	}
1079	if w.wroteHeader {
1080		w.conn.server.logf("http: multiple response.WriteHeader calls")
1081		return
1082	}
1083	checkWriteHeaderCode(code)
1084	w.wroteHeader = true
1085	w.status = code
1086
1087	if w.calledHeader && w.cw.header == nil {
1088		w.cw.header = w.handlerHeader.clone()
1089	}
1090
1091	if cl := w.handlerHeader.get("Content-Length"); cl != "" {
1092		v, err := strconv.ParseInt(cl, 10, 64)
1093		if err == nil && v >= 0 {
1094			w.contentLength = v
1095		} else {
1096			w.conn.server.logf("http: invalid Content-Length of %q", cl)
1097			w.handlerHeader.Del("Content-Length")
1098		}
1099	}
1100}
1101
1102// extraHeader is the set of headers sometimes added by chunkWriter.writeHeader.
1103// This type is used to avoid extra allocations from cloning and/or populating
1104// the response Header map and all its 1-element slices.
1105type extraHeader struct {
1106	contentType      string
1107	connection       string
1108	transferEncoding string
1109	date             []byte // written if not nil
1110	contentLength    []byte // written if not nil
1111}
1112
1113// Sorted the same as extraHeader.Write's loop.
1114var extraHeaderKeys = [][]byte{
1115	[]byte("Content-Type"),
1116	[]byte("Connection"),
1117	[]byte("Transfer-Encoding"),
1118}
1119
1120var (
1121	headerContentLength = []byte("Content-Length: ")
1122	headerDate          = []byte("Date: ")
1123)
1124
1125// Write writes the headers described in h to w.
1126//
1127// This method has a value receiver, despite the somewhat large size
1128// of h, because it prevents an allocation. The escape analysis isn't
1129// smart enough to realize this function doesn't mutate h.
1130func (h extraHeader) Write(w *bufio.Writer) {
1131	if h.date != nil {
1132		w.Write(headerDate)
1133		w.Write(h.date)
1134		w.Write(crlf)
1135	}
1136	if h.contentLength != nil {
1137		w.Write(headerContentLength)
1138		w.Write(h.contentLength)
1139		w.Write(crlf)
1140	}
1141	for i, v := range []string{h.contentType, h.connection, h.transferEncoding} {
1142		if v != "" {
1143			w.Write(extraHeaderKeys[i])
1144			w.Write(colonSpace)
1145			w.WriteString(v)
1146			w.Write(crlf)
1147		}
1148	}
1149}
1150
1151// writeHeader finalizes the header sent to the client and writes it
1152// to cw.res.conn.bufw.
1153//
1154// p is not written by writeHeader, but is the first chunk of the body
1155// that will be written. It is sniffed for a Content-Type if none is
1156// set explicitly. It's also used to set the Content-Length, if the
1157// total body size was small and the handler has already finished
1158// running.
1159func (cw *chunkWriter) writeHeader(p []byte) {
1160	if cw.wroteHeader {
1161		return
1162	}
1163	cw.wroteHeader = true
1164
1165	w := cw.res
1166	keepAlivesEnabled := w.conn.server.doKeepAlives()
1167	isHEAD := w.req.Method == "HEAD"
1168
1169	// header is written out to w.conn.buf below. Depending on the
1170	// state of the handler, we either own the map or not. If we
1171	// don't own it, the exclude map is created lazily for
1172	// WriteSubset to remove headers. The setHeader struct holds
1173	// headers we need to add.
1174	header := cw.header
1175	owned := header != nil
1176	if !owned {
1177		header = w.handlerHeader
1178	}
1179	var excludeHeader map[string]bool
1180	delHeader := func(key string) {
1181		if owned {
1182			header.Del(key)
1183			return
1184		}
1185		if _, ok := header[key]; !ok {
1186			return
1187		}
1188		if excludeHeader == nil {
1189			excludeHeader = make(map[string]bool)
1190		}
1191		excludeHeader[key] = true
1192	}
1193	var setHeader extraHeader
1194
1195	// Don't write out the fake "Trailer:foo" keys. See TrailerPrefix.
1196	trailers := false
1197	for k := range cw.header {
1198		if strings.HasPrefix(k, TrailerPrefix) {
1199			if excludeHeader == nil {
1200				excludeHeader = make(map[string]bool)
1201			}
1202			excludeHeader[k] = true
1203			trailers = true
1204		}
1205	}
1206	for _, v := range cw.header["Trailer"] {
1207		trailers = true
1208		foreachHeaderElement(v, cw.res.declareTrailer)
1209	}
1210
1211	te := header.get("Transfer-Encoding")
1212	hasTE := te != ""
1213
1214	// If the handler is done but never sent a Content-Length
1215	// response header and this is our first (and last) write, set
1216	// it, even to zero. This helps HTTP/1.0 clients keep their
1217	// "keep-alive" connections alive.
1218	// Exceptions: 304/204/1xx responses never get Content-Length, and if
1219	// it was a HEAD request, we don't know the difference between
1220	// 0 actual bytes and 0 bytes because the handler noticed it
1221	// was a HEAD request and chose not to write anything. So for
1222	// HEAD, the handler should either write the Content-Length or
1223	// write non-zero bytes. If it's actually 0 bytes and the
1224	// handler never looked at the Request.Method, we just don't
1225	// send a Content-Length header.
1226	// Further, we don't send an automatic Content-Length if they
1227	// set a Transfer-Encoding, because they're generally incompatible.
1228	if w.handlerDone.isSet() && !trailers && !hasTE && bodyAllowedForStatus(w.status) && header.get("Content-Length") == "" && (!isHEAD || len(p) > 0) {
1229		w.contentLength = int64(len(p))
1230		setHeader.contentLength = strconv.AppendInt(cw.res.clenBuf[:0], int64(len(p)), 10)
1231	}
1232
1233	// If this was an HTTP/1.0 request with keep-alive and we sent a
1234	// Content-Length back, we can make this a keep-alive response ...
1235	if w.wants10KeepAlive && keepAlivesEnabled {
1236		sentLength := header.get("Content-Length") != ""
1237		if sentLength && header.get("Connection") == "keep-alive" {
1238			w.closeAfterReply = false
1239		}
1240	}
1241
1242	// Check for an explicit (and valid) Content-Length header.
1243	hasCL := w.contentLength != -1
1244
1245	if w.wants10KeepAlive && (isHEAD || hasCL || !bodyAllowedForStatus(w.status)) {
1246		_, connectionHeaderSet := header["Connection"]
1247		if !connectionHeaderSet {
1248			setHeader.connection = "keep-alive"
1249		}
1250	} else if !w.req.ProtoAtLeast(1, 1) || w.wantsClose {
1251		w.closeAfterReply = true
1252	}
1253
1254	if header.get("Connection") == "close" || !keepAlivesEnabled {
1255		w.closeAfterReply = true
1256	}
1257
1258	// If the client wanted a 100-continue but we never sent it to
1259	// them (or, more strictly: we never finished reading their
1260	// request body), don't reuse this connection because it's now
1261	// in an unknown state: we might be sending this response at
1262	// the same time the client is now sending its request body
1263	// after a timeout.  (Some HTTP clients send Expect:
1264	// 100-continue but knowing that some servers don't support
1265	// it, the clients set a timer and send the body later anyway)
1266	// If we haven't seen EOF, we can't skip over the unread body
1267	// because we don't know if the next bytes on the wire will be
1268	// the body-following-the-timer or the subsequent request.
1269	// See Issue 11549.
1270	if ecr, ok := w.req.Body.(*expectContinueReader); ok && !ecr.sawEOF {
1271		w.closeAfterReply = true
1272	}
1273
1274	// Per RFC 2616, we should consume the request body before
1275	// replying, if the handler hasn't already done so. But we
1276	// don't want to do an unbounded amount of reading here for
1277	// DoS reasons, so we only try up to a threshold.
1278	// TODO(bradfitz): where does RFC 2616 say that? See Issue 15527
1279	// about HTTP/1.x Handlers concurrently reading and writing, like
1280	// HTTP/2 handlers can do. Maybe this code should be relaxed?
1281	if w.req.ContentLength != 0 && !w.closeAfterReply {
1282		var discard, tooBig bool
1283
1284		switch bdy := w.req.Body.(type) {
1285		case *expectContinueReader:
1286			if bdy.resp.wroteContinue {
1287				discard = true
1288			}
1289		case *body:
1290			bdy.mu.Lock()
1291			switch {
1292			case bdy.closed:
1293				if !bdy.sawEOF {
1294					// Body was closed in handler with non-EOF error.
1295					w.closeAfterReply = true
1296				}
1297			case bdy.unreadDataSizeLocked() >= maxPostHandlerReadBytes:
1298				tooBig = true
1299			default:
1300				discard = true
1301			}
1302			bdy.mu.Unlock()
1303		default:
1304			discard = true
1305		}
1306
1307		if discard {
1308			_, err := io.CopyN(ioutil.Discard, w.reqBody, maxPostHandlerReadBytes+1)
1309			switch err {
1310			case nil:
1311				// There must be even more data left over.
1312				tooBig = true
1313			case ErrBodyReadAfterClose:
1314				// Body was already consumed and closed.
1315			case io.EOF:
1316				// The remaining body was just consumed, close it.
1317				err = w.reqBody.Close()
1318				if err != nil {
1319					w.closeAfterReply = true
1320				}
1321			default:
1322				// Some other kind of error occurred, like a read timeout, or
1323				// corrupt chunked encoding. In any case, whatever remains
1324				// on the wire must not be parsed as another HTTP request.
1325				w.closeAfterReply = true
1326			}
1327		}
1328
1329		if tooBig {
1330			w.requestTooLarge()
1331			delHeader("Connection")
1332			setHeader.connection = "close"
1333		}
1334	}
1335
1336	code := w.status
1337	if bodyAllowedForStatus(code) {
1338		// If no content type, apply sniffing algorithm to body.
1339		_, haveType := header["Content-Type"]
1340		if !haveType && !hasTE && len(p) > 0 {
1341			setHeader.contentType = DetectContentType(p)
1342		}
1343	} else {
1344		for _, k := range suppressedHeaders(code) {
1345			delHeader(k)
1346		}
1347	}
1348
1349	if _, ok := header["Date"]; !ok {
1350		setHeader.date = appendTime(cw.res.dateBuf[:0], time.Now())
1351	}
1352
1353	if hasCL && hasTE && te != "identity" {
1354		// TODO: return an error if WriteHeader gets a return parameter
1355		// For now just ignore the Content-Length.
1356		w.conn.server.logf("http: WriteHeader called with both Transfer-Encoding of %q and a Content-Length of %d",
1357			te, w.contentLength)
1358		delHeader("Content-Length")
1359		hasCL = false
1360	}
1361
1362	if w.req.Method == "HEAD" || !bodyAllowedForStatus(code) {
1363		// do nothing
1364	} else if code == StatusNoContent {
1365		delHeader("Transfer-Encoding")
1366	} else if hasCL {
1367		delHeader("Transfer-Encoding")
1368	} else if w.req.ProtoAtLeast(1, 1) {
1369		// HTTP/1.1 or greater: Transfer-Encoding has been set to identity, and no
1370		// content-length has been provided. The connection must be closed after the
1371		// reply is written, and no chunking is to be done. This is the setup
1372		// recommended in the Server-Sent Events candidate recommendation 11,
1373		// section 8.
1374		if hasTE && te == "identity" {
1375			cw.chunking = false
1376			w.closeAfterReply = true
1377		} else {
1378			// HTTP/1.1 or greater: use chunked transfer encoding
1379			// to avoid closing the connection at EOF.
1380			cw.chunking = true
1381			setHeader.transferEncoding = "chunked"
1382			if hasTE && te == "chunked" {
1383				// We will send the chunked Transfer-Encoding header later.
1384				delHeader("Transfer-Encoding")
1385			}
1386		}
1387	} else {
1388		// HTTP version < 1.1: cannot do chunked transfer
1389		// encoding and we don't know the Content-Length so
1390		// signal EOF by closing connection.
1391		w.closeAfterReply = true
1392		delHeader("Transfer-Encoding") // in case already set
1393	}
1394
1395	// Cannot use Content-Length with non-identity Transfer-Encoding.
1396	if cw.chunking {
1397		delHeader("Content-Length")
1398	}
1399	if !w.req.ProtoAtLeast(1, 0) {
1400		return
1401	}
1402
1403	if w.closeAfterReply && (!keepAlivesEnabled || !hasToken(cw.header.get("Connection"), "close")) {
1404		delHeader("Connection")
1405		if w.req.ProtoAtLeast(1, 1) {
1406			setHeader.connection = "close"
1407		}
1408	}
1409
1410	writeStatusLine(w.conn.bufw, w.req.ProtoAtLeast(1, 1), code, w.statusBuf[:])
1411	cw.header.WriteSubset(w.conn.bufw, excludeHeader)
1412	setHeader.Write(w.conn.bufw)
1413	w.conn.bufw.Write(crlf)
1414}
1415
1416// foreachHeaderElement splits v according to the "#rule" construction
1417// in RFC 2616 section 2.1 and calls fn for each non-empty element.
1418func foreachHeaderElement(v string, fn func(string)) {
1419	v = textproto.TrimString(v)
1420	if v == "" {
1421		return
1422	}
1423	if !strings.Contains(v, ",") {
1424		fn(v)
1425		return
1426	}
1427	for _, f := range strings.Split(v, ",") {
1428		if f = textproto.TrimString(f); f != "" {
1429			fn(f)
1430		}
1431	}
1432}
1433
1434// writeStatusLine writes an HTTP/1.x Status-Line (RFC 2616 Section 6.1)
1435// to bw. is11 is whether the HTTP request is HTTP/1.1. false means HTTP/1.0.
1436// code is the response status code.
1437// scratch is an optional scratch buffer. If it has at least capacity 3, it's used.
1438func writeStatusLine(bw *bufio.Writer, is11 bool, code int, scratch []byte) {
1439	if is11 {
1440		bw.WriteString("HTTP/1.1 ")
1441	} else {
1442		bw.WriteString("HTTP/1.0 ")
1443	}
1444	if text, ok := statusText[code]; ok {
1445		bw.Write(strconv.AppendInt(scratch[:0], int64(code), 10))
1446		bw.WriteByte(' ')
1447		bw.WriteString(text)
1448		bw.WriteString("\r\n")
1449	} else {
1450		// don't worry about performance
1451		fmt.Fprintf(bw, "%03d status code %d\r\n", code, code)
1452	}
1453}
1454
1455// bodyAllowed reports whether a Write is allowed for this response type.
1456// It's illegal to call this before the header has been flushed.
1457func (w *response) bodyAllowed() bool {
1458	if !w.wroteHeader {
1459		panic("")
1460	}
1461	return bodyAllowedForStatus(w.status)
1462}
1463
1464// The Life Of A Write is like this:
1465//
1466// Handler starts. No header has been sent. The handler can either
1467// write a header, or just start writing. Writing before sending a header
1468// sends an implicitly empty 200 OK header.
1469//
1470// If the handler didn't declare a Content-Length up front, we either
1471// go into chunking mode or, if the handler finishes running before
1472// the chunking buffer size, we compute a Content-Length and send that
1473// in the header instead.
1474//
1475// Likewise, if the handler didn't set a Content-Type, we sniff that
1476// from the initial chunk of output.
1477//
1478// The Writers are wired together like:
1479//
1480// 1. *response (the ResponseWriter) ->
1481// 2. (*response).w, a *bufio.Writer of bufferBeforeChunkingSize bytes
1482// 3. chunkWriter.Writer (whose writeHeader finalizes Content-Length/Type)
1483//    and which writes the chunk headers, if needed.
1484// 4. conn.buf, a bufio.Writer of default (4kB) bytes, writing to ->
1485// 5. checkConnErrorWriter{c}, which notes any non-nil error on Write
1486//    and populates c.werr with it if so. but otherwise writes to:
1487// 6. the rwc, the net.Conn.
1488//
1489// TODO(bradfitz): short-circuit some of the buffering when the
1490// initial header contains both a Content-Type and Content-Length.
1491// Also short-circuit in (1) when the header's been sent and not in
1492// chunking mode, writing directly to (4) instead, if (2) has no
1493// buffered data. More generally, we could short-circuit from (1) to
1494// (3) even in chunking mode if the write size from (1) is over some
1495// threshold and nothing is in (2).  The answer might be mostly making
1496// bufferBeforeChunkingSize smaller and having bufio's fast-paths deal
1497// with this instead.
1498func (w *response) Write(data []byte) (n int, err error) {
1499	return w.write(len(data), data, "")
1500}
1501
1502func (w *response) WriteString(data string) (n int, err error) {
1503	return w.write(len(data), nil, data)
1504}
1505
1506// either dataB or dataS is non-zero.
1507func (w *response) write(lenData int, dataB []byte, dataS string) (n int, err error) {
1508	if w.conn.hijacked() {
1509		if lenData > 0 {
1510			w.conn.server.logf("http: response.Write on hijacked connection")
1511		}
1512		return 0, ErrHijacked
1513	}
1514	if !w.wroteHeader {
1515		w.WriteHeader(StatusOK)
1516	}
1517	if lenData == 0 {
1518		return 0, nil
1519	}
1520	if !w.bodyAllowed() {
1521		return 0, ErrBodyNotAllowed
1522	}
1523
1524	w.written += int64(lenData) // ignoring errors, for errorKludge
1525	if w.contentLength != -1 && w.written > w.contentLength {
1526		return 0, ErrContentLength
1527	}
1528	if dataB != nil {
1529		return w.w.Write(dataB)
1530	} else {
1531		return w.w.WriteString(dataS)
1532	}
1533}
1534
1535func (w *response) finishRequest() {
1536	w.handlerDone.setTrue()
1537
1538	if !w.wroteHeader {
1539		w.WriteHeader(StatusOK)
1540	}
1541
1542	w.w.Flush()
1543	putBufioWriter(w.w)
1544	w.cw.close()
1545	w.conn.bufw.Flush()
1546
1547	w.conn.r.abortPendingRead()
1548
1549	// Close the body (regardless of w.closeAfterReply) so we can
1550	// re-use its bufio.Reader later safely.
1551	w.reqBody.Close()
1552
1553	if w.req.MultipartForm != nil {
1554		w.req.MultipartForm.RemoveAll()
1555	}
1556}
1557
1558// shouldReuseConnection reports whether the underlying TCP connection can be reused.
1559// It must only be called after the handler is done executing.
1560func (w *response) shouldReuseConnection() bool {
1561	if w.closeAfterReply {
1562		// The request or something set while executing the
1563		// handler indicated we shouldn't reuse this
1564		// connection.
1565		return false
1566	}
1567
1568	if w.req.Method != "HEAD" && w.contentLength != -1 && w.bodyAllowed() && w.contentLength != w.written {
1569		// Did not write enough. Avoid getting out of sync.
1570		return false
1571	}
1572
1573	// There was some error writing to the underlying connection
1574	// during the request, so don't re-use this conn.
1575	if w.conn.werr != nil {
1576		return false
1577	}
1578
1579	if w.closedRequestBodyEarly() {
1580		return false
1581	}
1582
1583	return true
1584}
1585
1586func (w *response) closedRequestBodyEarly() bool {
1587	body, ok := w.req.Body.(*body)
1588	return ok && body.didEarlyClose()
1589}
1590
1591func (w *response) Flush() {
1592	if !w.wroteHeader {
1593		w.WriteHeader(StatusOK)
1594	}
1595	w.w.Flush()
1596	w.cw.flush()
1597}
1598
1599func (c *conn) finalFlush() {
1600	if c.bufr != nil {
1601		// Steal the bufio.Reader (~4KB worth of memory) and its associated
1602		// reader for a future connection.
1603		putBufioReader(c.bufr)
1604		c.bufr = nil
1605	}
1606
1607	if c.bufw != nil {
1608		c.bufw.Flush()
1609		// Steal the bufio.Writer (~4KB worth of memory) and its associated
1610		// writer for a future connection.
1611		putBufioWriter(c.bufw)
1612		c.bufw = nil
1613	}
1614}
1615
1616// Close the connection.
1617func (c *conn) close() {
1618	c.finalFlush()
1619	c.rwc.Close()
1620}
1621
1622// rstAvoidanceDelay is the amount of time we sleep after closing the
1623// write side of a TCP connection before closing the entire socket.
1624// By sleeping, we increase the chances that the client sees our FIN
1625// and processes its final data before they process the subsequent RST
1626// from closing a connection with known unread data.
1627// This RST seems to occur mostly on BSD systems. (And Windows?)
1628// This timeout is somewhat arbitrary (~latency around the planet).
1629const rstAvoidanceDelay = 500 * time.Millisecond
1630
1631type closeWriter interface {
1632	CloseWrite() error
1633}
1634
1635var _ closeWriter = (*net.TCPConn)(nil)
1636
1637// closeWrite flushes any outstanding data and sends a FIN packet (if
1638// client is connected via TCP), signalling that we're done. We then
1639// pause for a bit, hoping the client processes it before any
1640// subsequent RST.
1641//
1642// See https://golang.org/issue/3595
1643func (c *conn) closeWriteAndWait() {
1644	c.finalFlush()
1645	if tcp, ok := c.rwc.(closeWriter); ok {
1646		tcp.CloseWrite()
1647	}
1648	time.Sleep(rstAvoidanceDelay)
1649}
1650
1651// validNPN reports whether the proto is not a blacklisted Next
1652// Protocol Negotiation protocol. Empty and built-in protocol types
1653// are blacklisted and can't be overridden with alternate
1654// implementations.
1655func validNPN(proto string) bool {
1656	switch proto {
1657	case "", "http/1.1", "http/1.0":
1658		return false
1659	}
1660	return true
1661}
1662
1663func (c *conn) setState(nc net.Conn, state ConnState) {
1664	srv := c.server
1665	switch state {
1666	case StateNew:
1667		srv.trackConn(c, true)
1668	case StateHijacked, StateClosed:
1669		srv.trackConn(c, false)
1670	}
1671	c.curState.Store(connStateInterface[state])
1672	if hook := srv.ConnState; hook != nil {
1673		hook(nc, state)
1674	}
1675}
1676
1677// connStateInterface is an array of the interface{} versions of
1678// ConnState values, so we can use them in atomic.Values later without
1679// paying the cost of shoving their integers in an interface{}.
1680var connStateInterface = [...]interface{}{
1681	StateNew:      StateNew,
1682	StateActive:   StateActive,
1683	StateIdle:     StateIdle,
1684	StateHijacked: StateHijacked,
1685	StateClosed:   StateClosed,
1686}
1687
1688// badRequestError is a literal string (used by in the server in HTML,
1689// unescaped) to tell the user why their request was bad. It should
1690// be plain text without user info or other embedded errors.
1691type badRequestError string
1692
1693func (e badRequestError) Error() string { return "Bad Request: " + string(e) }
1694
1695// ErrAbortHandler is a sentinel panic value to abort a handler.
1696// While any panic from ServeHTTP aborts the response to the client,
1697// panicking with ErrAbortHandler also suppresses logging of a stack
1698// trace to the server's error log.
1699var ErrAbortHandler = errors.New("net/http: abort Handler")
1700
1701// isCommonNetReadError reports whether err is a common error
1702// encountered during reading a request off the network when the
1703// client has gone away or had its read fail somehow. This is used to
1704// determine which logs are interesting enough to log about.
1705func isCommonNetReadError(err error) bool {
1706	if err == io.EOF {
1707		return true
1708	}
1709	if neterr, ok := err.(net.Error); ok && neterr.Timeout() {
1710		return true
1711	}
1712	if oe, ok := err.(*net.OpError); ok && oe.Op == "read" {
1713		return true
1714	}
1715	return false
1716}
1717
1718// Serve a new connection.
1719func (c *conn) serve(ctx context.Context) {
1720	c.remoteAddr = c.rwc.RemoteAddr().String()
1721	ctx = context.WithValue(ctx, LocalAddrContextKey, c.rwc.LocalAddr())
1722	defer func() {
1723		if err := recover(); err != nil && err != ErrAbortHandler {
1724			const size = 64 << 10
1725			buf := make([]byte, size)
1726			buf = buf[:runtime.Stack(buf, false)]
1727			c.server.logf("http: panic serving %v: %v\n%s", c.remoteAddr, err, buf)
1728		}
1729		if !c.hijacked() {
1730			c.close()
1731			c.setState(c.rwc, StateClosed)
1732		}
1733	}()
1734
1735	if tlsConn, ok := c.rwc.(*tls.Conn); ok {
1736		if d := c.server.ReadTimeout; d != 0 {
1737			c.rwc.SetReadDeadline(time.Now().Add(d))
1738		}
1739		if d := c.server.WriteTimeout; d != 0 {
1740			c.rwc.SetWriteDeadline(time.Now().Add(d))
1741		}
1742		if err := tlsConn.Handshake(); err != nil {
1743			c.server.logf("http: TLS handshake error from %s: %v", c.rwc.RemoteAddr(), err)
1744			return
1745		}
1746		c.tlsState = new(tls.ConnectionState)
1747		*c.tlsState = tlsConn.ConnectionState()
1748		if proto := c.tlsState.NegotiatedProtocol; validNPN(proto) {
1749			if fn := c.server.TLSNextProto[proto]; fn != nil {
1750				h := initNPNRequest{tlsConn, serverHandler{c.server}}
1751				fn(c.server, tlsConn, h)
1752			}
1753			return
1754		}
1755	}
1756
1757	// HTTP/1.x from here on.
1758
1759	ctx, cancelCtx := context.WithCancel(ctx)
1760	c.cancelCtx = cancelCtx
1761	defer cancelCtx()
1762
1763	c.r = &connReader{conn: c}
1764	c.bufr = newBufioReader(c.r)
1765	c.bufw = newBufioWriterSize(checkConnErrorWriter{c}, 4<<10)
1766
1767	for {
1768		w, err := c.readRequest(ctx)
1769		if c.r.remain != c.server.initialReadLimitSize() {
1770			// If we read any bytes off the wire, we're active.
1771			c.setState(c.rwc, StateActive)
1772		}
1773		if err != nil {
1774			const errorHeaders = "\r\nContent-Type: text/plain; charset=utf-8\r\nConnection: close\r\n\r\n"
1775
1776			if err == errTooLarge {
1777				// Their HTTP client may or may not be
1778				// able to read this if we're
1779				// responding to them and hanging up
1780				// while they're still writing their
1781				// request. Undefined behavior.
1782				const publicErr = "431 Request Header Fields Too Large"
1783				fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr)
1784				c.closeWriteAndWait()
1785				return
1786			}
1787			if isCommonNetReadError(err) {
1788				return // don't reply
1789			}
1790
1791			publicErr := "400 Bad Request"
1792			if v, ok := err.(badRequestError); ok {
1793				publicErr = publicErr + ": " + string(v)
1794			}
1795
1796			fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr)
1797			return
1798		}
1799
1800		// Expect 100 Continue support
1801		req := w.req
1802		if req.expectsContinue() {
1803			if req.ProtoAtLeast(1, 1) && req.ContentLength != 0 {
1804				// Wrap the Body reader with one that replies on the connection
1805				req.Body = &expectContinueReader{readCloser: req.Body, resp: w}
1806			}
1807		} else if req.Header.get("Expect") != "" {
1808			w.sendExpectationFailed()
1809			return
1810		}
1811
1812		c.curReq.Store(w)
1813
1814		if requestBodyRemains(req.Body) {
1815			registerOnHitEOF(req.Body, w.conn.r.startBackgroundRead)
1816		} else {
1817			if w.conn.bufr.Buffered() > 0 {
1818				w.conn.r.closeNotifyFromPipelinedRequest()
1819			}
1820			w.conn.r.startBackgroundRead()
1821		}
1822
1823		// HTTP cannot have multiple simultaneous active requests.[*]
1824		// Until the server replies to this request, it can't read another,
1825		// so we might as well run the handler in this goroutine.
1826		// [*] Not strictly true: HTTP pipelining. We could let them all process
1827		// in parallel even if their responses need to be serialized.
1828		// But we're not going to implement HTTP pipelining because it
1829		// was never deployed in the wild and the answer is HTTP/2.
1830		serverHandler{c.server}.ServeHTTP(w, w.req)
1831		w.cancelCtx()
1832		if c.hijacked() {
1833			return
1834		}
1835		w.finishRequest()
1836		if !w.shouldReuseConnection() {
1837			if w.requestBodyLimitHit || w.closedRequestBodyEarly() {
1838				c.closeWriteAndWait()
1839			}
1840			return
1841		}
1842		c.setState(c.rwc, StateIdle)
1843		c.curReq.Store((*response)(nil))
1844
1845		if !w.conn.server.doKeepAlives() {
1846			// We're in shutdown mode. We might've replied
1847			// to the user without "Connection: close" and
1848			// they might think they can send another
1849			// request, but such is life with HTTP/1.1.
1850			return
1851		}
1852
1853		if d := c.server.idleTimeout(); d != 0 {
1854			c.rwc.SetReadDeadline(time.Now().Add(d))
1855			if _, err := c.bufr.Peek(4); err != nil {
1856				return
1857			}
1858		}
1859		c.rwc.SetReadDeadline(time.Time{})
1860	}
1861}
1862
1863func (w *response) sendExpectationFailed() {
1864	// TODO(bradfitz): let ServeHTTP handlers handle
1865	// requests with non-standard expectation[s]? Seems
1866	// theoretical at best, and doesn't fit into the
1867	// current ServeHTTP model anyway. We'd need to
1868	// make the ResponseWriter an optional
1869	// "ExpectReplier" interface or something.
1870	//
1871	// For now we'll just obey RFC 2616 14.20 which says
1872	// "If a server receives a request containing an
1873	// Expect field that includes an expectation-
1874	// extension that it does not support, it MUST
1875	// respond with a 417 (Expectation Failed) status."
1876	w.Header().Set("Connection", "close")
1877	w.WriteHeader(StatusExpectationFailed)
1878	w.finishRequest()
1879}
1880
1881// Hijack implements the Hijacker.Hijack method. Our response is both a ResponseWriter
1882// and a Hijacker.
1883func (w *response) Hijack() (rwc net.Conn, buf *bufio.ReadWriter, err error) {
1884	if w.handlerDone.isSet() {
1885		panic("net/http: Hijack called after ServeHTTP finished")
1886	}
1887	if w.wroteHeader {
1888		w.cw.flush()
1889	}
1890
1891	c := w.conn
1892	c.mu.Lock()
1893	defer c.mu.Unlock()
1894
1895	// Release the bufioWriter that writes to the chunk writer, it is not
1896	// used after a connection has been hijacked.
1897	rwc, buf, err = c.hijackLocked()
1898	if err == nil {
1899		putBufioWriter(w.w)
1900		w.w = nil
1901	}
1902	return rwc, buf, err
1903}
1904
1905func (w *response) CloseNotify() <-chan bool {
1906	if w.handlerDone.isSet() {
1907		panic("net/http: CloseNotify called after ServeHTTP finished")
1908	}
1909	return w.closeNotifyCh
1910}
1911
1912func registerOnHitEOF(rc io.ReadCloser, fn func()) {
1913	switch v := rc.(type) {
1914	case *expectContinueReader:
1915		registerOnHitEOF(v.readCloser, fn)
1916	case *body:
1917		v.registerOnHitEOF(fn)
1918	default:
1919		panic("unexpected type " + fmt.Sprintf("%T", rc))
1920	}
1921}
1922
1923// requestBodyRemains reports whether future calls to Read
1924// on rc might yield more data.
1925func requestBodyRemains(rc io.ReadCloser) bool {
1926	if rc == NoBody {
1927		return false
1928	}
1929	switch v := rc.(type) {
1930	case *expectContinueReader:
1931		return requestBodyRemains(v.readCloser)
1932	case *body:
1933		return v.bodyRemains()
1934	default:
1935		panic("unexpected type " + fmt.Sprintf("%T", rc))
1936	}
1937}
1938
1939// The HandlerFunc type is an adapter to allow the use of
1940// ordinary functions as HTTP handlers. If f is a function
1941// with the appropriate signature, HandlerFunc(f) is a
1942// Handler that calls f.
1943type HandlerFunc func(ResponseWriter, *Request)
1944
1945// ServeHTTP calls f(w, r).
1946func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) {
1947	f(w, r)
1948}
1949
1950// Helper handlers
1951
1952// Error replies to the request with the specified error message and HTTP code.
1953// It does not otherwise end the request; the caller should ensure no further
1954// writes are done to w.
1955// The error message should be plain text.
1956func Error(w ResponseWriter, error string, code int) {
1957	w.Header().Set("Content-Type", "text/plain; charset=utf-8")
1958	w.Header().Set("X-Content-Type-Options", "nosniff")
1959	w.WriteHeader(code)
1960	fmt.Fprintln(w, error)
1961}
1962
1963// NotFound replies to the request with an HTTP 404 not found error.
1964func NotFound(w ResponseWriter, r *Request) { Error(w, "404 page not found", StatusNotFound) }
1965
1966// NotFoundHandler returns a simple request handler
1967// that replies to each request with a ``404 page not found'' reply.
1968func NotFoundHandler() Handler { return HandlerFunc(NotFound) }
1969
1970// StripPrefix returns a handler that serves HTTP requests
1971// by removing the given prefix from the request URL's Path
1972// and invoking the handler h. StripPrefix handles a
1973// request for a path that doesn't begin with prefix by
1974// replying with an HTTP 404 not found error.
1975func StripPrefix(prefix string, h Handler) Handler {
1976	if prefix == "" {
1977		return h
1978	}
1979	return HandlerFunc(func(w ResponseWriter, r *Request) {
1980		if p := strings.TrimPrefix(r.URL.Path, prefix); len(p) < len(r.URL.Path) {
1981			r2 := new(Request)
1982			*r2 = *r
1983			r2.URL = new(url.URL)
1984			*r2.URL = *r.URL
1985			r2.URL.Path = p
1986			h.ServeHTTP(w, r2)
1987		} else {
1988			NotFound(w, r)
1989		}
1990	})
1991}
1992
1993// Redirect replies to the request with a redirect to url,
1994// which may be a path relative to the request path.
1995//
1996// The provided code should be in the 3xx range and is usually
1997// StatusMovedPermanently, StatusFound or StatusSeeOther.
1998func Redirect(w ResponseWriter, r *Request, url string, code int) {
1999	// parseURL is just url.Parse (url is shadowed for godoc).
2000	if u, err := parseURL(url); err == nil {
2001		// If url was relative, make absolute by
2002		// combining with request path.
2003		// The browser would probably do this for us,
2004		// but doing it ourselves is more reliable.
2005
2006		// NOTE(rsc): RFC 2616 says that the Location
2007		// line must be an absolute URI, like
2008		// "http://www.google.com/redirect/",
2009		// not a path like "/redirect/".
2010		// Unfortunately, we don't know what to
2011		// put in the host name section to get the
2012		// client to connect to us again, so we can't
2013		// know the right absolute URI to send back.
2014		// Because of this problem, no one pays attention
2015		// to the RFC; they all send back just a new path.
2016		// So do we.
2017		if u.Scheme == "" && u.Host == "" {
2018			oldpath := r.URL.Path
2019			if oldpath == "" { // should not happen, but avoid a crash if it does
2020				oldpath = "/"
2021			}
2022
2023			// no leading http://server
2024			if url == "" || url[0] != '/' {
2025				// make relative path absolute
2026				olddir, _ := path.Split(oldpath)
2027				url = olddir + url
2028			}
2029
2030			var query string
2031			if i := strings.Index(url, "?"); i != -1 {
2032				url, query = url[:i], url[i:]
2033			}
2034
2035			// clean up but preserve trailing slash
2036			trailing := strings.HasSuffix(url, "/")
2037			url = path.Clean(url)
2038			if trailing && !strings.HasSuffix(url, "/") {
2039				url += "/"
2040			}
2041			url += query
2042		}
2043	}
2044
2045	w.Header().Set("Location", hexEscapeNonASCII(url))
2046	if r.Method == "GET" || r.Method == "HEAD" {
2047		w.Header().Set("Content-Type", "text/html; charset=utf-8")
2048	}
2049	w.WriteHeader(code)
2050
2051	// RFC 2616 recommends that a short note "SHOULD" be included in the
2052	// response because older user agents may not understand 301/307.
2053	// Shouldn't send the response for POST or HEAD; that leaves GET.
2054	if r.Method == "GET" {
2055		note := "<a href=\"" + htmlEscape(url) + "\">" + statusText[code] + "</a>.\n"
2056		fmt.Fprintln(w, note)
2057	}
2058}
2059
2060// parseURL is just url.Parse. It exists only so that url.Parse can be called
2061// in places where url is shadowed for godoc. See https://golang.org/cl/49930.
2062var parseURL = url.Parse
2063
2064var htmlReplacer = strings.NewReplacer(
2065	"&", "&amp;",
2066	"<", "&lt;",
2067	">", "&gt;",
2068	// "&#34;" is shorter than "&quot;".
2069	`"`, "&#34;",
2070	// "&#39;" is shorter than "&apos;" and apos was not in HTML until HTML5.
2071	"'", "&#39;",
2072)
2073
2074func htmlEscape(s string) string {
2075	return htmlReplacer.Replace(s)
2076}
2077
2078// Redirect to a fixed URL
2079type redirectHandler struct {
2080	url  string
2081	code int
2082}
2083
2084func (rh *redirectHandler) ServeHTTP(w ResponseWriter, r *Request) {
2085	Redirect(w, r, rh.url, rh.code)
2086}
2087
2088// RedirectHandler returns a request handler that redirects
2089// each request it receives to the given url using the given
2090// status code.
2091//
2092// The provided code should be in the 3xx range and is usually
2093// StatusMovedPermanently, StatusFound or StatusSeeOther.
2094func RedirectHandler(url string, code int) Handler {
2095	return &redirectHandler{url, code}
2096}
2097
2098// ServeMux is an HTTP request multiplexer.
2099// It matches the URL of each incoming request against a list of registered
2100// patterns and calls the handler for the pattern that
2101// most closely matches the URL.
2102//
2103// Patterns name fixed, rooted paths, like "/favicon.ico",
2104// or rooted subtrees, like "/images/" (note the trailing slash).
2105// Longer patterns take precedence over shorter ones, so that
2106// if there are handlers registered for both "/images/"
2107// and "/images/thumbnails/", the latter handler will be
2108// called for paths beginning "/images/thumbnails/" and the
2109// former will receive requests for any other paths in the
2110// "/images/" subtree.
2111//
2112// Note that since a pattern ending in a slash names a rooted subtree,
2113// the pattern "/" matches all paths not matched by other registered
2114// patterns, not just the URL with Path == "/".
2115//
2116// If a subtree has been registered and a request is received naming the
2117// subtree root without its trailing slash, ServeMux redirects that
2118// request to the subtree root (adding the trailing slash). This behavior can
2119// be overridden with a separate registration for the path without
2120// the trailing slash. For example, registering "/images/" causes ServeMux
2121// to redirect a request for "/images" to "/images/", unless "/images" has
2122// been registered separately.
2123//
2124// Patterns may optionally begin with a host name, restricting matches to
2125// URLs on that host only. Host-specific patterns take precedence over
2126// general patterns, so that a handler might register for the two patterns
2127// "/codesearch" and "codesearch.google.com/" without also taking over
2128// requests for "http://www.google.com/".
2129//
2130// ServeMux also takes care of sanitizing the URL request path,
2131// redirecting any request containing . or .. elements or repeated slashes
2132// to an equivalent, cleaner URL.
2133type ServeMux struct {
2134	mu    sync.RWMutex
2135	m     map[string]muxEntry
2136	hosts bool // whether any patterns contain hostnames
2137}
2138
2139type muxEntry struct {
2140	h       Handler
2141	pattern string
2142}
2143
2144// NewServeMux allocates and returns a new ServeMux.
2145func NewServeMux() *ServeMux { return new(ServeMux) }
2146
2147// DefaultServeMux is the default ServeMux used by Serve.
2148var DefaultServeMux = &defaultServeMux
2149
2150var defaultServeMux ServeMux
2151
2152// Does path match pattern?
2153func pathMatch(pattern, path string) bool {
2154	if len(pattern) == 0 {
2155		// should not happen
2156		return false
2157	}
2158	n := len(pattern)
2159	if pattern[n-1] != '/' {
2160		return pattern == path
2161	}
2162	return len(path) >= n && path[0:n] == pattern
2163}
2164
2165// Return the canonical path for p, eliminating . and .. elements.
2166func cleanPath(p string) string {
2167	if p == "" {
2168		return "/"
2169	}
2170	if p[0] != '/' {
2171		p = "/" + p
2172	}
2173	np := path.Clean(p)
2174	// path.Clean removes trailing slash except for root;
2175	// put the trailing slash back if necessary.
2176	if p[len(p)-1] == '/' && np != "/" {
2177		np += "/"
2178	}
2179	return np
2180}
2181
2182// stripHostPort returns h without any trailing ":<port>".
2183func stripHostPort(h string) string {
2184	// If no port on host, return unchanged
2185	if strings.IndexByte(h, ':') == -1 {
2186		return h
2187	}
2188	host, _, err := net.SplitHostPort(h)
2189	if err != nil {
2190		return h // on error, return unchanged
2191	}
2192	return host
2193}
2194
2195// Find a handler on a handler map given a path string.
2196// Most-specific (longest) pattern wins.
2197func (mux *ServeMux) match(path string) (h Handler, pattern string) {
2198	// Check for exact match first.
2199	v, ok := mux.m[path]
2200	if ok {
2201		return v.h, v.pattern
2202	}
2203
2204	// Check for longest valid match.
2205	var n = 0
2206	for k, v := range mux.m {
2207		if !pathMatch(k, path) {
2208			continue
2209		}
2210		if h == nil || len(k) > n {
2211			n = len(k)
2212			h = v.h
2213			pattern = v.pattern
2214		}
2215	}
2216	return
2217}
2218
2219// redirectToPathSlash determines if the given path needs appending "/" to it.
2220// This occurs when a handler for path + "/" was already registered, but
2221// not for path itself. If the path needs appending to, it creates a new
2222// URL, setting the path to u.Path + "/" and returning true to indicate so.
2223func (mux *ServeMux) redirectToPathSlash(host, path string, u *url.URL) (*url.URL, bool) {
2224	if !mux.shouldRedirect(host, path) {
2225		return u, false
2226	}
2227	path = path + "/"
2228	u = &url.URL{Path: path, RawQuery: u.RawQuery}
2229	return u, true
2230}
2231
2232// shouldRedirect reports whether the given path and host should be redirected to
2233// path+"/". This should happen if a handler is registered for path+"/" but
2234// not path -- see comments at ServeMux.
2235func (mux *ServeMux) shouldRedirect(host, path string) bool {
2236	p := []string{path, host + path}
2237
2238	for _, c := range p {
2239		if _, exist := mux.m[c]; exist {
2240			return false
2241		}
2242	}
2243
2244	n := len(path)
2245	if n == 0 {
2246		return false
2247	}
2248	for _, c := range p {
2249		if _, exist := mux.m[c+"/"]; exist {
2250			return path[n-1] != '/'
2251		}
2252	}
2253
2254	return false
2255}
2256
2257// Handler returns the handler to use for the given request,
2258// consulting r.Method, r.Host, and r.URL.Path. It always returns
2259// a non-nil handler. If the path is not in its canonical form, the
2260// handler will be an internally-generated handler that redirects
2261// to the canonical path. If the host contains a port, it is ignored
2262// when matching handlers.
2263//
2264// The path and host are used unchanged for CONNECT requests.
2265//
2266// Handler also returns the registered pattern that matches the
2267// request or, in the case of internally-generated redirects,
2268// the pattern that will match after following the redirect.
2269//
2270// If there is no registered handler that applies to the request,
2271// Handler returns a ``page not found'' handler and an empty pattern.
2272func (mux *ServeMux) Handler(r *Request) (h Handler, pattern string) {
2273
2274	// CONNECT requests are not canonicalized.
2275	if r.Method == "CONNECT" {
2276		// If r.URL.Path is /tree and its handler is not registered,
2277		// the /tree -> /tree/ redirect applies to CONNECT requests
2278		// but the path canonicalization does not.
2279		if u, ok := mux.redirectToPathSlash(r.URL.Host, r.URL.Path, r.URL); ok {
2280			return RedirectHandler(u.String(), StatusMovedPermanently), u.Path
2281		}
2282
2283		return mux.handler(r.Host, r.URL.Path)
2284	}
2285
2286	// All other requests have any port stripped and path cleaned
2287	// before passing to mux.handler.
2288	host := stripHostPort(r.Host)
2289	path := cleanPath(r.URL.Path)
2290
2291	// If the given path is /tree and its handler is not registered,
2292	// redirect for /tree/.
2293	if u, ok := mux.redirectToPathSlash(host, path, r.URL); ok {
2294		return RedirectHandler(u.String(), StatusMovedPermanently), u.Path
2295	}
2296
2297	if path != r.URL.Path {
2298		_, pattern = mux.handler(host, path)
2299		url := *r.URL
2300		url.Path = path
2301		return RedirectHandler(url.String(), StatusMovedPermanently), pattern
2302	}
2303
2304	return mux.handler(host, r.URL.Path)
2305}
2306
2307// handler is the main implementation of Handler.
2308// The path is known to be in canonical form, except for CONNECT methods.
2309func (mux *ServeMux) handler(host, path string) (h Handler, pattern string) {
2310	mux.mu.RLock()
2311	defer mux.mu.RUnlock()
2312
2313	// Host-specific pattern takes precedence over generic ones
2314	if mux.hosts {
2315		h, pattern = mux.match(host + path)
2316	}
2317	if h == nil {
2318		h, pattern = mux.match(path)
2319	}
2320	if h == nil {
2321		h, pattern = NotFoundHandler(), ""
2322	}
2323	return
2324}
2325
2326// ServeHTTP dispatches the request to the handler whose
2327// pattern most closely matches the request URL.
2328func (mux *ServeMux) ServeHTTP(w ResponseWriter, r *Request) {
2329	if r.RequestURI == "*" {
2330		if r.ProtoAtLeast(1, 1) {
2331			w.Header().Set("Connection", "close")
2332		}
2333		w.WriteHeader(StatusBadRequest)
2334		return
2335	}
2336	h, _ := mux.Handler(r)
2337	h.ServeHTTP(w, r)
2338}
2339
2340// Handle registers the handler for the given pattern.
2341// If a handler already exists for pattern, Handle panics.
2342func (mux *ServeMux) Handle(pattern string, handler Handler) {
2343	mux.mu.Lock()
2344	defer mux.mu.Unlock()
2345
2346	if pattern == "" {
2347		panic("http: invalid pattern")
2348	}
2349	if handler == nil {
2350		panic("http: nil handler")
2351	}
2352	if _, exist := mux.m[pattern]; exist {
2353		panic("http: multiple registrations for " + pattern)
2354	}
2355
2356	if mux.m == nil {
2357		mux.m = make(map[string]muxEntry)
2358	}
2359	mux.m[pattern] = muxEntry{h: handler, pattern: pattern}
2360
2361	if pattern[0] != '/' {
2362		mux.hosts = true
2363	}
2364}
2365
2366// HandleFunc registers the handler function for the given pattern.
2367func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
2368	mux.Handle(pattern, HandlerFunc(handler))
2369}
2370
2371// Handle registers the handler for the given pattern
2372// in the DefaultServeMux.
2373// The documentation for ServeMux explains how patterns are matched.
2374func Handle(pattern string, handler Handler) { DefaultServeMux.Handle(pattern, handler) }
2375
2376// HandleFunc registers the handler function for the given pattern
2377// in the DefaultServeMux.
2378// The documentation for ServeMux explains how patterns are matched.
2379func HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
2380	DefaultServeMux.HandleFunc(pattern, handler)
2381}
2382
2383// Serve accepts incoming HTTP connections on the listener l,
2384// creating a new service goroutine for each. The service goroutines
2385// read requests and then call handler to reply to them.
2386// Handler is typically nil, in which case the DefaultServeMux is used.
2387func Serve(l net.Listener, handler Handler) error {
2388	srv := &Server{Handler: handler}
2389	return srv.Serve(l)
2390}
2391
2392// ServeTLS accepts incoming HTTPS connections on the listener l,
2393// creating a new service goroutine for each. The service goroutines
2394// read requests and then call handler to reply to them.
2395//
2396// Handler is typically nil, in which case the DefaultServeMux is used.
2397//
2398// Additionally, files containing a certificate and matching private key
2399// for the server must be provided. If the certificate is signed by a
2400// certificate authority, the certFile should be the concatenation
2401// of the server's certificate, any intermediates, and the CA's certificate.
2402func ServeTLS(l net.Listener, handler Handler, certFile, keyFile string) error {
2403	srv := &Server{Handler: handler}
2404	return srv.ServeTLS(l, certFile, keyFile)
2405}
2406
2407// A Server defines parameters for running an HTTP server.
2408// The zero value for Server is a valid configuration.
2409type Server struct {
2410	Addr    string  // TCP address to listen on, ":http" if empty
2411	Handler Handler // handler to invoke, http.DefaultServeMux if nil
2412
2413	// TLSConfig optionally provides a TLS configuration for use
2414	// by ServeTLS and ListenAndServeTLS. Note that this value is
2415	// cloned by ServeTLS and ListenAndServeTLS, so it's not
2416	// possible to modify the configuration with methods like
2417	// tls.Config.SetSessionTicketKeys. To use
2418	// SetSessionTicketKeys, use Server.Serve with a TLS Listener
2419	// instead.
2420	TLSConfig *tls.Config
2421
2422	// ReadTimeout is the maximum duration for reading the entire
2423	// request, including the body.
2424	//
2425	// Because ReadTimeout does not let Handlers make per-request
2426	// decisions on each request body's acceptable deadline or
2427	// upload rate, most users will prefer to use
2428	// ReadHeaderTimeout. It is valid to use them both.
2429	ReadTimeout time.Duration
2430
2431	// ReadHeaderTimeout is the amount of time allowed to read
2432	// request headers. The connection's read deadline is reset
2433	// after reading the headers and the Handler can decide what
2434	// is considered too slow for the body.
2435	ReadHeaderTimeout time.Duration
2436
2437	// WriteTimeout is the maximum duration before timing out
2438	// writes of the response. It is reset whenever a new
2439	// request's header is read. Like ReadTimeout, it does not
2440	// let Handlers make decisions on a per-request basis.
2441	WriteTimeout time.Duration
2442
2443	// IdleTimeout is the maximum amount of time to wait for the
2444	// next request when keep-alives are enabled. If IdleTimeout
2445	// is zero, the value of ReadTimeout is used. If both are
2446	// zero, ReadHeaderTimeout is used.
2447	IdleTimeout time.Duration
2448
2449	// MaxHeaderBytes controls the maximum number of bytes the
2450	// server will read parsing the request header's keys and
2451	// values, including the request line. It does not limit the
2452	// size of the request body.
2453	// If zero, DefaultMaxHeaderBytes is used.
2454	MaxHeaderBytes int
2455
2456	// TLSNextProto optionally specifies a function to take over
2457	// ownership of the provided TLS connection when an NPN/ALPN
2458	// protocol upgrade has occurred. The map key is the protocol
2459	// name negotiated. The Handler argument should be used to
2460	// handle HTTP requests and will initialize the Request's TLS
2461	// and RemoteAddr if not already set. The connection is
2462	// automatically closed when the function returns.
2463	// If TLSNextProto is not nil, HTTP/2 support is not enabled
2464	// automatically.
2465	TLSNextProto map[string]func(*Server, *tls.Conn, Handler)
2466
2467	// ConnState specifies an optional callback function that is
2468	// called when a client connection changes state. See the
2469	// ConnState type and associated constants for details.
2470	ConnState func(net.Conn, ConnState)
2471
2472	// ErrorLog specifies an optional logger for errors accepting
2473	// connections, unexpected behavior from handlers, and
2474	// underlying FileSystem errors.
2475	// If nil, logging is done via the log package's standard logger.
2476	ErrorLog *log.Logger
2477
2478	disableKeepAlives int32     // accessed atomically.
2479	inShutdown        int32     // accessed atomically (non-zero means we're in Shutdown)
2480	nextProtoOnce     sync.Once // guards setupHTTP2_* init
2481	nextProtoErr      error     // result of http2.ConfigureServer if used
2482
2483	mu         sync.Mutex
2484	listeners  map[net.Listener]struct{}
2485	activeConn map[*conn]struct{}
2486	doneChan   chan struct{}
2487	onShutdown []func()
2488}
2489
2490func (s *Server) getDoneChan() <-chan struct{} {
2491	s.mu.Lock()
2492	defer s.mu.Unlock()
2493	return s.getDoneChanLocked()
2494}
2495
2496func (s *Server) getDoneChanLocked() chan struct{} {
2497	if s.doneChan == nil {
2498		s.doneChan = make(chan struct{})
2499	}
2500	return s.doneChan
2501}
2502
2503func (s *Server) closeDoneChanLocked() {
2504	ch := s.getDoneChanLocked()
2505	select {
2506	case <-ch:
2507		// Already closed. Don't close again.
2508	default:
2509		// Safe to close here. We're the only closer, guarded
2510		// by s.mu.
2511		close(ch)
2512	}
2513}
2514
2515// Close immediately closes all active net.Listeners and any
2516// connections in state StateNew, StateActive, or StateIdle. For a
2517// graceful shutdown, use Shutdown.
2518//
2519// Close does not attempt to close (and does not even know about)
2520// any hijacked connections, such as WebSockets.
2521//
2522// Close returns any error returned from closing the Server's
2523// underlying Listener(s).
2524func (srv *Server) Close() error {
2525	srv.mu.Lock()
2526	defer srv.mu.Unlock()
2527	srv.closeDoneChanLocked()
2528	err := srv.closeListenersLocked()
2529	for c := range srv.activeConn {
2530		c.rwc.Close()
2531		delete(srv.activeConn, c)
2532	}
2533	return err
2534}
2535
2536// shutdownPollInterval is how often we poll for quiescence
2537// during Server.Shutdown. This is lower during tests, to
2538// speed up tests.
2539// Ideally we could find a solution that doesn't involve polling,
2540// but which also doesn't have a high runtime cost (and doesn't
2541// involve any contentious mutexes), but that is left as an
2542// exercise for the reader.
2543var shutdownPollInterval = 500 * time.Millisecond
2544
2545// Shutdown gracefully shuts down the server without interrupting any
2546// active connections. Shutdown works by first closing all open
2547// listeners, then closing all idle connections, and then waiting
2548// indefinitely for connections to return to idle and then shut down.
2549// If the provided context expires before the shutdown is complete,
2550// Shutdown returns the context's error, otherwise it returns any
2551// error returned from closing the Server's underlying Listener(s).
2552//
2553// When Shutdown is called, Serve, ListenAndServe, and
2554// ListenAndServeTLS immediately return ErrServerClosed. Make sure the
2555// program doesn't exit and waits instead for Shutdown to return.
2556//
2557// Shutdown does not attempt to close nor wait for hijacked
2558// connections such as WebSockets. The caller of Shutdown should
2559// separately notify such long-lived connections of shutdown and wait
2560// for them to close, if desired. See RegisterOnShutdown for a way to
2561// register shutdown notification functions.
2562func (srv *Server) Shutdown(ctx context.Context) error {
2563	atomic.AddInt32(&srv.inShutdown, 1)
2564	defer atomic.AddInt32(&srv.inShutdown, -1)
2565
2566	srv.mu.Lock()
2567	lnerr := srv.closeListenersLocked()
2568	srv.closeDoneChanLocked()
2569	for _, f := range srv.onShutdown {
2570		go f()
2571	}
2572	srv.mu.Unlock()
2573
2574	ticker := time.NewTicker(shutdownPollInterval)
2575	defer ticker.Stop()
2576	for {
2577		if srv.closeIdleConns() {
2578			return lnerr
2579		}
2580		select {
2581		case <-ctx.Done():
2582			return ctx.Err()
2583		case <-ticker.C:
2584		}
2585	}
2586}
2587
2588// RegisterOnShutdown registers a function to call on Shutdown.
2589// This can be used to gracefully shutdown connections that have
2590// undergone NPN/ALPN protocol upgrade or that have been hijacked.
2591// This function should start protocol-specific graceful shutdown,
2592// but should not wait for shutdown to complete.
2593func (srv *Server) RegisterOnShutdown(f func()) {
2594	srv.mu.Lock()
2595	srv.onShutdown = append(srv.onShutdown, f)
2596	srv.mu.Unlock()
2597}
2598
2599// closeIdleConns closes all idle connections and reports whether the
2600// server is quiescent.
2601func (s *Server) closeIdleConns() bool {
2602	s.mu.Lock()
2603	defer s.mu.Unlock()
2604	quiescent := true
2605	for c := range s.activeConn {
2606		st, ok := c.curState.Load().(ConnState)
2607		if !ok || st != StateIdle {
2608			quiescent = false
2609			continue
2610		}
2611		c.rwc.Close()
2612		delete(s.activeConn, c)
2613	}
2614	return quiescent
2615}
2616
2617func (s *Server) closeListenersLocked() error {
2618	var err error
2619	for ln := range s.listeners {
2620		if cerr := ln.Close(); cerr != nil && err == nil {
2621			err = cerr
2622		}
2623		delete(s.listeners, ln)
2624	}
2625	return err
2626}
2627
2628// A ConnState represents the state of a client connection to a server.
2629// It's used by the optional Server.ConnState hook.
2630type ConnState int
2631
2632const (
2633	// StateNew represents a new connection that is expected to
2634	// send a request immediately. Connections begin at this
2635	// state and then transition to either StateActive or
2636	// StateClosed.
2637	StateNew ConnState = iota
2638
2639	// StateActive represents a connection that has read 1 or more
2640	// bytes of a request. The Server.ConnState hook for
2641	// StateActive fires before the request has entered a handler
2642	// and doesn't fire again until the request has been
2643	// handled. After the request is handled, the state
2644	// transitions to StateClosed, StateHijacked, or StateIdle.
2645	// For HTTP/2, StateActive fires on the transition from zero
2646	// to one active request, and only transitions away once all
2647	// active requests are complete. That means that ConnState
2648	// cannot be used to do per-request work; ConnState only notes
2649	// the overall state of the connection.
2650	StateActive
2651
2652	// StateIdle represents a connection that has finished
2653	// handling a request and is in the keep-alive state, waiting
2654	// for a new request. Connections transition from StateIdle
2655	// to either StateActive or StateClosed.
2656	StateIdle
2657
2658	// StateHijacked represents a hijacked connection.
2659	// This is a terminal state. It does not transition to StateClosed.
2660	StateHijacked
2661
2662	// StateClosed represents a closed connection.
2663	// This is a terminal state. Hijacked connections do not
2664	// transition to StateClosed.
2665	StateClosed
2666)
2667
2668var stateName = map[ConnState]string{
2669	StateNew:      "new",
2670	StateActive:   "active",
2671	StateIdle:     "idle",
2672	StateHijacked: "hijacked",
2673	StateClosed:   "closed",
2674}
2675
2676func (c ConnState) String() string {
2677	return stateName[c]
2678}
2679
2680// serverHandler delegates to either the server's Handler or
2681// DefaultServeMux and also handles "OPTIONS *" requests.
2682type serverHandler struct {
2683	srv *Server
2684}
2685
2686func (sh serverHandler) ServeHTTP(rw ResponseWriter, req *Request) {
2687	handler := sh.srv.Handler
2688	if handler == nil {
2689		handler = DefaultServeMux
2690	}
2691	if req.RequestURI == "*" && req.Method == "OPTIONS" {
2692		handler = globalOptionsHandler{}
2693	}
2694	handler.ServeHTTP(rw, req)
2695}
2696
2697// ListenAndServe listens on the TCP network address srv.Addr and then
2698// calls Serve to handle requests on incoming connections.
2699// Accepted connections are configured to enable TCP keep-alives.
2700// If srv.Addr is blank, ":http" is used.
2701// ListenAndServe always returns a non-nil error.
2702func (srv *Server) ListenAndServe() error {
2703	addr := srv.Addr
2704	if addr == "" {
2705		addr = ":http"
2706	}
2707	ln, err := net.Listen("tcp", addr)
2708	if err != nil {
2709		return err
2710	}
2711	return srv.Serve(tcpKeepAliveListener{ln.(*net.TCPListener)})
2712}
2713
2714var testHookServerServe func(*Server, net.Listener) // used if non-nil
2715
2716// shouldDoServeHTTP2 reports whether Server.Serve should configure
2717// automatic HTTP/2. (which sets up the srv.TLSNextProto map)
2718func (srv *Server) shouldConfigureHTTP2ForServe() bool {
2719	if srv.TLSConfig == nil {
2720		// Compatibility with Go 1.6:
2721		// If there's no TLSConfig, it's possible that the user just
2722		// didn't set it on the http.Server, but did pass it to
2723		// tls.NewListener and passed that listener to Serve.
2724		// So we should configure HTTP/2 (to set up srv.TLSNextProto)
2725		// in case the listener returns an "h2" *tls.Conn.
2726		return true
2727	}
2728	// The user specified a TLSConfig on their http.Server.
2729	// In this, case, only configure HTTP/2 if their tls.Config
2730	// explicitly mentions "h2". Otherwise http2.ConfigureServer
2731	// would modify the tls.Config to add it, but they probably already
2732	// passed this tls.Config to tls.NewListener. And if they did,
2733	// it's too late anyway to fix it. It would only be potentially racy.
2734	// See Issue 15908.
2735	return strSliceContains(srv.TLSConfig.NextProtos, http2NextProtoTLS)
2736}
2737
2738// ErrServerClosed is returned by the Server's Serve, ServeTLS, ListenAndServe,
2739// and ListenAndServeTLS methods after a call to Shutdown or Close.
2740var ErrServerClosed = errors.New("http: Server closed")
2741
2742// Serve accepts incoming connections on the Listener l, creating a
2743// new service goroutine for each. The service goroutines read requests and
2744// then call srv.Handler to reply to them.
2745//
2746// For HTTP/2 support, srv.TLSConfig should be initialized to the
2747// provided listener's TLS Config before calling Serve. If
2748// srv.TLSConfig is non-nil and doesn't include the string "h2" in
2749// Config.NextProtos, HTTP/2 support is not enabled.
2750//
2751// Serve always returns a non-nil error. After Shutdown or Close, the
2752// returned error is ErrServerClosed.
2753func (srv *Server) Serve(l net.Listener) error {
2754	defer l.Close()
2755	if fn := testHookServerServe; fn != nil {
2756		fn(srv, l)
2757	}
2758	var tempDelay time.Duration // how long to sleep on accept failure
2759
2760	if err := srv.setupHTTP2_Serve(); err != nil {
2761		return err
2762	}
2763
2764	srv.trackListener(l, true)
2765	defer srv.trackListener(l, false)
2766
2767	baseCtx := context.Background() // base is always background, per Issue 16220
2768	ctx := context.WithValue(baseCtx, ServerContextKey, srv)
2769	for {
2770		rw, e := l.Accept()
2771		if e != nil {
2772			select {
2773			case <-srv.getDoneChan():
2774				return ErrServerClosed
2775			default:
2776			}
2777			if ne, ok := e.(net.Error); ok && ne.Temporary() {
2778				if tempDelay == 0 {
2779					tempDelay = 5 * time.Millisecond
2780				} else {
2781					tempDelay *= 2
2782				}
2783				if max := 1 * time.Second; tempDelay > max {
2784					tempDelay = max
2785				}
2786				srv.logf("http: Accept error: %v; retrying in %v", e, tempDelay)
2787				time.Sleep(tempDelay)
2788				continue
2789			}
2790			return e
2791		}
2792		tempDelay = 0
2793		c := srv.newConn(rw)
2794		c.setState(c.rwc, StateNew) // before Serve can return
2795		go c.serve(ctx)
2796	}
2797}
2798
2799// ServeTLS accepts incoming connections on the Listener l, creating a
2800// new service goroutine for each. The service goroutines read requests and
2801// then call srv.Handler to reply to them.
2802//
2803// Additionally, files containing a certificate and matching private key for
2804// the server must be provided if neither the Server's TLSConfig.Certificates
2805// nor TLSConfig.GetCertificate are populated.. If the certificate is signed by
2806// a certificate authority, the certFile should be the concatenation of the
2807// server's certificate, any intermediates, and the CA's certificate.
2808//
2809// For HTTP/2 support, srv.TLSConfig should be initialized to the
2810// provided listener's TLS Config before calling ServeTLS. If
2811// srv.TLSConfig is non-nil and doesn't include the string "h2" in
2812// Config.NextProtos, HTTP/2 support is not enabled.
2813//
2814// ServeTLS always returns a non-nil error. After Shutdown or Close, the
2815// returned error is ErrServerClosed.
2816func (srv *Server) ServeTLS(l net.Listener, certFile, keyFile string) error {
2817	// Setup HTTP/2 before srv.Serve, to initialize srv.TLSConfig
2818	// before we clone it and create the TLS Listener.
2819	if err := srv.setupHTTP2_ServeTLS(); err != nil {
2820		return err
2821	}
2822
2823	config := cloneTLSConfig(srv.TLSConfig)
2824	if !strSliceContains(config.NextProtos, "http/1.1") {
2825		config.NextProtos = append(config.NextProtos, "http/1.1")
2826	}
2827
2828	configHasCert := len(config.Certificates) > 0 || config.GetCertificate != nil
2829	if !configHasCert || certFile != "" || keyFile != "" {
2830		var err error
2831		config.Certificates = make([]tls.Certificate, 1)
2832		config.Certificates[0], err = tls.LoadX509KeyPair(certFile, keyFile)
2833		if err != nil {
2834			return err
2835		}
2836	}
2837
2838	tlsListener := tls.NewListener(l, config)
2839	return srv.Serve(tlsListener)
2840}
2841
2842func (s *Server) trackListener(ln net.Listener, add bool) {
2843	s.mu.Lock()
2844	defer s.mu.Unlock()
2845	if s.listeners == nil {
2846		s.listeners = make(map[net.Listener]struct{})
2847	}
2848	if add {
2849		// If the *Server is being reused after a previous
2850		// Close or Shutdown, reset its doneChan:
2851		if len(s.listeners) == 0 && len(s.activeConn) == 0 {
2852			s.doneChan = nil
2853		}
2854		s.listeners[ln] = struct{}{}
2855	} else {
2856		delete(s.listeners, ln)
2857	}
2858}
2859
2860func (s *Server) trackConn(c *conn, add bool) {
2861	s.mu.Lock()
2862	defer s.mu.Unlock()
2863	if s.activeConn == nil {
2864		s.activeConn = make(map[*conn]struct{})
2865	}
2866	if add {
2867		s.activeConn[c] = struct{}{}
2868	} else {
2869		delete(s.activeConn, c)
2870	}
2871}
2872
2873func (s *Server) idleTimeout() time.Duration {
2874	if s.IdleTimeout != 0 {
2875		return s.IdleTimeout
2876	}
2877	return s.ReadTimeout
2878}
2879
2880func (s *Server) readHeaderTimeout() time.Duration {
2881	if s.ReadHeaderTimeout != 0 {
2882		return s.ReadHeaderTimeout
2883	}
2884	return s.ReadTimeout
2885}
2886
2887func (s *Server) doKeepAlives() bool {
2888	return atomic.LoadInt32(&s.disableKeepAlives) == 0 && !s.shuttingDown()
2889}
2890
2891func (s *Server) shuttingDown() bool {
2892	return atomic.LoadInt32(&s.inShutdown) != 0
2893}
2894
2895// SetKeepAlivesEnabled controls whether HTTP keep-alives are enabled.
2896// By default, keep-alives are always enabled. Only very
2897// resource-constrained environments or servers in the process of
2898// shutting down should disable them.
2899func (srv *Server) SetKeepAlivesEnabled(v bool) {
2900	if v {
2901		atomic.StoreInt32(&srv.disableKeepAlives, 0)
2902		return
2903	}
2904	atomic.StoreInt32(&srv.disableKeepAlives, 1)
2905
2906	// Close idle HTTP/1 conns:
2907	srv.closeIdleConns()
2908
2909	// Close HTTP/2 conns, as soon as they become idle, but reset
2910	// the chan so future conns (if the listener is still active)
2911	// still work and don't get a GOAWAY immediately, before their
2912	// first request:
2913	srv.mu.Lock()
2914	defer srv.mu.Unlock()
2915	srv.closeDoneChanLocked() // closes http2 conns
2916	srv.doneChan = nil
2917}
2918
2919func (s *Server) logf(format string, args ...interface{}) {
2920	if s.ErrorLog != nil {
2921		s.ErrorLog.Printf(format, args...)
2922	} else {
2923		log.Printf(format, args...)
2924	}
2925}
2926
2927// logf prints to the ErrorLog of the *Server associated with request r
2928// via ServerContextKey. If there's no associated server, or if ErrorLog
2929// is nil, logging is done via the log package's standard logger.
2930func logf(r *Request, format string, args ...interface{}) {
2931	s, _ := r.Context().Value(ServerContextKey).(*Server)
2932	if s != nil && s.ErrorLog != nil {
2933		s.ErrorLog.Printf(format, args...)
2934	} else {
2935		log.Printf(format, args...)
2936	}
2937}
2938
2939// ListenAndServe listens on the TCP network address addr
2940// and then calls Serve with handler to handle requests
2941// on incoming connections.
2942// Accepted connections are configured to enable TCP keep-alives.
2943// Handler is typically nil, in which case the DefaultServeMux is
2944// used.
2945//
2946// A trivial example server is:
2947//
2948//	package main
2949//
2950//	import (
2951//		"io"
2952//		"net/http"
2953//		"log"
2954//	)
2955//
2956//	// hello world, the web server
2957//	func HelloServer(w http.ResponseWriter, req *http.Request) {
2958//		io.WriteString(w, "hello, world!\n")
2959//	}
2960//
2961//	func main() {
2962//		http.HandleFunc("/hello", HelloServer)
2963//		log.Fatal(http.ListenAndServe(":12345", nil))
2964//	}
2965//
2966// ListenAndServe always returns a non-nil error.
2967func ListenAndServe(addr string, handler Handler) error {
2968	server := &Server{Addr: addr, Handler: handler}
2969	return server.ListenAndServe()
2970}
2971
2972// ListenAndServeTLS acts identically to ListenAndServe, except that it
2973// expects HTTPS connections. Additionally, files containing a certificate and
2974// matching private key for the server must be provided. If the certificate
2975// is signed by a certificate authority, the certFile should be the concatenation
2976// of the server's certificate, any intermediates, and the CA's certificate.
2977//
2978// A trivial example server is:
2979//
2980//	import (
2981//		"log"
2982//		"net/http"
2983//	)
2984//
2985//	func handler(w http.ResponseWriter, req *http.Request) {
2986//		w.Header().Set("Content-Type", "text/plain")
2987//		w.Write([]byte("This is an example server.\n"))
2988//	}
2989//
2990//	func main() {
2991//		http.HandleFunc("/", handler)
2992//		log.Printf("About to listen on 10443. Go to https://127.0.0.1:10443/")
2993//		err := http.ListenAndServeTLS(":10443", "cert.pem", "key.pem", nil)
2994//		log.Fatal(err)
2995//	}
2996//
2997// One can use generate_cert.go in crypto/tls to generate cert.pem and key.pem.
2998//
2999// ListenAndServeTLS always returns a non-nil error.
3000func ListenAndServeTLS(addr, certFile, keyFile string, handler Handler) error {
3001	server := &Server{Addr: addr, Handler: handler}
3002	return server.ListenAndServeTLS(certFile, keyFile)
3003}
3004
3005// ListenAndServeTLS listens on the TCP network address srv.Addr and
3006// then calls Serve to handle requests on incoming TLS connections.
3007// Accepted connections are configured to enable TCP keep-alives.
3008//
3009// Filenames containing a certificate and matching private key for the
3010// server must be provided if neither the Server's TLSConfig.Certificates
3011// nor TLSConfig.GetCertificate are populated. If the certificate is
3012// signed by a certificate authority, the certFile should be the
3013// concatenation of the server's certificate, any intermediates, and
3014// the CA's certificate.
3015//
3016// If srv.Addr is blank, ":https" is used.
3017//
3018// ListenAndServeTLS always returns a non-nil error.
3019func (srv *Server) ListenAndServeTLS(certFile, keyFile string) error {
3020	addr := srv.Addr
3021	if addr == "" {
3022		addr = ":https"
3023	}
3024
3025	ln, err := net.Listen("tcp", addr)
3026	if err != nil {
3027		return err
3028	}
3029
3030	defer ln.Close()
3031
3032	return srv.ServeTLS(tcpKeepAliveListener{ln.(*net.TCPListener)}, certFile, keyFile)
3033}
3034
3035// setupHTTP2_ServeTLS conditionally configures HTTP/2 on
3036// srv and returns whether there was an error setting it up. If it is
3037// not configured for policy reasons, nil is returned.
3038func (srv *Server) setupHTTP2_ServeTLS() error {
3039	srv.nextProtoOnce.Do(srv.onceSetNextProtoDefaults)
3040	return srv.nextProtoErr
3041}
3042
3043// setupHTTP2_Serve is called from (*Server).Serve and conditionally
3044// configures HTTP/2 on srv using a more conservative policy than
3045// setupHTTP2_ServeTLS because Serve may be called
3046// concurrently.
3047//
3048// The tests named TestTransportAutomaticHTTP2* and
3049// TestConcurrentServerServe in server_test.go demonstrate some
3050// of the supported use cases and motivations.
3051func (srv *Server) setupHTTP2_Serve() error {
3052	srv.nextProtoOnce.Do(srv.onceSetNextProtoDefaults_Serve)
3053	return srv.nextProtoErr
3054}
3055
3056func (srv *Server) onceSetNextProtoDefaults_Serve() {
3057	if srv.shouldConfigureHTTP2ForServe() {
3058		srv.onceSetNextProtoDefaults()
3059	}
3060}
3061
3062// onceSetNextProtoDefaults configures HTTP/2, if the user hasn't
3063// configured otherwise. (by setting srv.TLSNextProto non-nil)
3064// It must only be called via srv.nextProtoOnce (use srv.setupHTTP2_*).
3065func (srv *Server) onceSetNextProtoDefaults() {
3066	if strings.Contains(os.Getenv("GODEBUG"), "http2server=0") {
3067		return
3068	}
3069	// Enable HTTP/2 by default if the user hasn't otherwise
3070	// configured their TLSNextProto map.
3071	if srv.TLSNextProto == nil {
3072		conf := &http2Server{
3073			NewWriteScheduler: func() http2WriteScheduler { return http2NewPriorityWriteScheduler(nil) },
3074		}
3075		srv.nextProtoErr = http2ConfigureServer(srv, conf)
3076	}
3077}
3078
3079// TimeoutHandler returns a Handler that runs h with the given time limit.
3080//
3081// The new Handler calls h.ServeHTTP to handle each request, but if a
3082// call runs for longer than its time limit, the handler responds with
3083// a 503 Service Unavailable error and the given message in its body.
3084// (If msg is empty, a suitable default message will be sent.)
3085// After such a timeout, writes by h to its ResponseWriter will return
3086// ErrHandlerTimeout.
3087//
3088// TimeoutHandler buffers all Handler writes to memory and does not
3089// support the Hijacker or Flusher interfaces.
3090func TimeoutHandler(h Handler, dt time.Duration, msg string) Handler {
3091	return &timeoutHandler{
3092		handler: h,
3093		body:    msg,
3094		dt:      dt,
3095	}
3096}
3097
3098// ErrHandlerTimeout is returned on ResponseWriter Write calls
3099// in handlers which have timed out.
3100var ErrHandlerTimeout = errors.New("http: Handler timeout")
3101
3102type timeoutHandler struct {
3103	handler Handler
3104	body    string
3105	dt      time.Duration
3106
3107	// When set, no context will be created and this context will
3108	// be used instead.
3109	testContext context.Context
3110}
3111
3112func (h *timeoutHandler) errorBody() string {
3113	if h.body != "" {
3114		return h.body
3115	}
3116	return "<html><head><title>Timeout</title></head><body><h1>Timeout</h1></body></html>"
3117}
3118
3119func (h *timeoutHandler) ServeHTTP(w ResponseWriter, r *Request) {
3120	ctx := h.testContext
3121	if ctx == nil {
3122		var cancelCtx context.CancelFunc
3123		ctx, cancelCtx = context.WithTimeout(r.Context(), h.dt)
3124		defer cancelCtx()
3125	}
3126	r = r.WithContext(ctx)
3127	done := make(chan struct{})
3128	tw := &timeoutWriter{
3129		w: w,
3130		h: make(Header),
3131	}
3132	panicChan := make(chan interface{}, 1)
3133	go func() {
3134		defer func() {
3135			if p := recover(); p != nil {
3136				panicChan <- p
3137			}
3138		}()
3139		h.handler.ServeHTTP(tw, r)
3140		close(done)
3141	}()
3142	select {
3143	case p := <-panicChan:
3144		panic(p)
3145	case <-done:
3146		tw.mu.Lock()
3147		defer tw.mu.Unlock()
3148		dst := w.Header()
3149		for k, vv := range tw.h {
3150			dst[k] = vv
3151		}
3152		if !tw.wroteHeader {
3153			tw.code = StatusOK
3154		}
3155		w.WriteHeader(tw.code)
3156		w.Write(tw.wbuf.Bytes())
3157	case <-ctx.Done():
3158		tw.mu.Lock()
3159		defer tw.mu.Unlock()
3160		w.WriteHeader(StatusServiceUnavailable)
3161		io.WriteString(w, h.errorBody())
3162		tw.timedOut = true
3163		return
3164	}
3165}
3166
3167type timeoutWriter struct {
3168	w    ResponseWriter
3169	h    Header
3170	wbuf bytes.Buffer
3171
3172	mu          sync.Mutex
3173	timedOut    bool
3174	wroteHeader bool
3175	code        int
3176}
3177
3178func (tw *timeoutWriter) Header() Header { return tw.h }
3179
3180func (tw *timeoutWriter) Write(p []byte) (int, error) {
3181	tw.mu.Lock()
3182	defer tw.mu.Unlock()
3183	if tw.timedOut {
3184		return 0, ErrHandlerTimeout
3185	}
3186	if !tw.wroteHeader {
3187		tw.writeHeader(StatusOK)
3188	}
3189	return tw.wbuf.Write(p)
3190}
3191
3192func (tw *timeoutWriter) WriteHeader(code int) {
3193	checkWriteHeaderCode(code)
3194	tw.mu.Lock()
3195	defer tw.mu.Unlock()
3196	if tw.timedOut || tw.wroteHeader {
3197		return
3198	}
3199	tw.writeHeader(code)
3200}
3201
3202func (tw *timeoutWriter) writeHeader(code int) {
3203	tw.wroteHeader = true
3204	tw.code = code
3205}
3206
3207// tcpKeepAliveListener sets TCP keep-alive timeouts on accepted
3208// connections. It's used by ListenAndServe and ListenAndServeTLS so
3209// dead TCP connections (e.g. closing laptop mid-download) eventually
3210// go away.
3211type tcpKeepAliveListener struct {
3212	*net.TCPListener
3213}
3214
3215func (ln tcpKeepAliveListener) Accept() (net.Conn, error) {
3216	tc, err := ln.AcceptTCP()
3217	if err != nil {
3218		return nil, err
3219	}
3220	tc.SetKeepAlive(true)
3221	tc.SetKeepAlivePeriod(3 * time.Minute)
3222	return tc, nil
3223}
3224
3225// globalOptionsHandler responds to "OPTIONS *" requests.
3226type globalOptionsHandler struct{}
3227
3228func (globalOptionsHandler) ServeHTTP(w ResponseWriter, r *Request) {
3229	w.Header().Set("Content-Length", "0")
3230	if r.ContentLength != 0 {
3231		// Read up to 4KB of OPTIONS body (as mentioned in the
3232		// spec as being reserved for future use), but anything
3233		// over that is considered a waste of server resources
3234		// (or an attack) and we abort and close the connection,
3235		// courtesy of MaxBytesReader's EOF behavior.
3236		mb := MaxBytesReader(w, r.Body, 4<<10)
3237		io.Copy(ioutil.Discard, mb)
3238	}
3239}
3240
3241// initNPNRequest is an HTTP handler that initializes certain
3242// uninitialized fields in its *Request. Such partially-initialized
3243// Requests come from NPN protocol handlers.
3244type initNPNRequest struct {
3245	c *tls.Conn
3246	h serverHandler
3247}
3248
3249func (h initNPNRequest) ServeHTTP(rw ResponseWriter, req *Request) {
3250	if req.TLS == nil {
3251		req.TLS = &tls.ConnectionState{}
3252		*req.TLS = h.c.ConnectionState()
3253	}
3254	if req.Body == nil {
3255		req.Body = NoBody
3256	}
3257	if req.RemoteAddr == "" {
3258		req.RemoteAddr = h.c.RemoteAddr().String()
3259	}
3260	h.h.ServeHTTP(rw, req)
3261}
3262
3263// loggingConn is used for debugging.
3264type loggingConn struct {
3265	name string
3266	net.Conn
3267}
3268
3269var (
3270	uniqNameMu   sync.Mutex
3271	uniqNameNext = make(map[string]int)
3272)
3273
3274func newLoggingConn(baseName string, c net.Conn) net.Conn {
3275	uniqNameMu.Lock()
3276	defer uniqNameMu.Unlock()
3277	uniqNameNext[baseName]++
3278	return &loggingConn{
3279		name: fmt.Sprintf("%s-%d", baseName, uniqNameNext[baseName]),
3280		Conn: c,
3281	}
3282}
3283
3284func (c *loggingConn) Write(p []byte) (n int, err error) {
3285	log.Printf("%s.Write(%d) = ....", c.name, len(p))
3286	n, err = c.Conn.Write(p)
3287	log.Printf("%s.Write(%d) = %d, %v", c.name, len(p), n, err)
3288	return
3289}
3290
3291func (c *loggingConn) Read(p []byte) (n int, err error) {
3292	log.Printf("%s.Read(%d) = ....", c.name, len(p))
3293	n, err = c.Conn.Read(p)
3294	log.Printf("%s.Read(%d) = %d, %v", c.name, len(p), n, err)
3295	return
3296}
3297
3298func (c *loggingConn) Close() (err error) {
3299	log.Printf("%s.Close() = ...", c.name)
3300	err = c.Conn.Close()
3301	log.Printf("%s.Close() = %v", c.name, err)
3302	return
3303}
3304
3305// checkConnErrorWriter writes to c.rwc and records any write errors to c.werr.
3306// It only contains one field (and a pointer field at that), so it
3307// fits in an interface value without an extra allocation.
3308type checkConnErrorWriter struct {
3309	c *conn
3310}
3311
3312func (w checkConnErrorWriter) Write(p []byte) (n int, err error) {
3313	n, err = w.c.rwc.Write(p)
3314	if err != nil && w.c.werr == nil {
3315		w.c.werr = err
3316		w.c.cancelCtx()
3317	}
3318	return
3319}
3320
3321func numLeadingCRorLF(v []byte) (n int) {
3322	for _, b := range v {
3323		if b == '\r' || b == '\n' {
3324			n++
3325			continue
3326		}
3327		break
3328	}
3329	return
3330
3331}
3332
3333func strSliceContains(ss []string, s string) bool {
3334	for _, v := range ss {
3335		if v == s {
3336			return true
3337		}
3338	}
3339	return false
3340}
3341