1// Copyright 2014 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Memory allocator.
6//
7// This was originally based on tcmalloc, but has diverged quite a bit.
8// http://goog-perftools.sourceforge.net/doc/tcmalloc.html
9
10// The main allocator works in runs of pages.
11// Small allocation sizes (up to and including 32 kB) are
12// rounded to one of about 70 size classes, each of which
13// has its own free set of objects of exactly that size.
14// Any free page of memory can be split into a set of objects
15// of one size class, which are then managed using a free bitmap.
16//
17// The allocator's data structures are:
18//
19//	fixalloc: a free-list allocator for fixed-size off-heap objects,
20//		used to manage storage used by the allocator.
21//	mheap: the malloc heap, managed at page (8192-byte) granularity.
22//	mspan: a run of pages managed by the mheap.
23//	mcentral: collects all spans of a given size class.
24//	mcache: a per-P cache of mspans with free space.
25//	mstats: allocation statistics.
26//
27// Allocating a small object proceeds up a hierarchy of caches:
28//
29//	1. Round the size up to one of the small size classes
30//	   and look in the corresponding mspan in this P's mcache.
31//	   Scan the mspan's free bitmap to find a free slot.
32//	   If there is a free slot, allocate it.
33//	   This can all be done without acquiring a lock.
34//
35//	2. If the mspan has no free slots, obtain a new mspan
36//	   from the mcentral's list of mspans of the required size
37//	   class that have free space.
38//	   Obtaining a whole span amortizes the cost of locking
39//	   the mcentral.
40//
41//	3. If the mcentral's mspan list is empty, obtain a run
42//	   of pages from the mheap to use for the mspan.
43//
44//	4. If the mheap is empty or has no page runs large enough,
45//	   allocate a new group of pages (at least 1MB) from the
46//	   operating system. Allocating a large run of pages
47//	   amortizes the cost of talking to the operating system.
48//
49// Sweeping an mspan and freeing objects on it proceeds up a similar
50// hierarchy:
51//
52//	1. If the mspan is being swept in response to allocation, it
53//	   is returned to the mcache to satisfy the allocation.
54//
55//	2. Otherwise, if the mspan still has allocated objects in it,
56//	   it is placed on the mcentral free list for the mspan's size
57//	   class.
58//
59//	3. Otherwise, if all objects in the mspan are free, the mspan
60//	   is now "idle", so it is returned to the mheap and no longer
61//	   has a size class.
62//	   This may coalesce it with adjacent idle mspans.
63//
64//	4. If an mspan remains idle for long enough, return its pages
65//	   to the operating system.
66//
67// Allocating and freeing a large object uses the mheap
68// directly, bypassing the mcache and mcentral.
69//
70// Free object slots in an mspan are zeroed only if mspan.needzero is
71// false. If needzero is true, objects are zeroed as they are
72// allocated. There are various benefits to delaying zeroing this way:
73//
74//	1. Stack frame allocation can avoid zeroing altogether.
75//
76//	2. It exhibits better temporal locality, since the program is
77//	   probably about to write to the memory.
78//
79//	3. We don't zero pages that never get reused.
80
81package runtime
82
83import (
84	"runtime/internal/sys"
85	"unsafe"
86)
87
88// C function to get the end of the program's memory.
89func getEnd() uintptr
90
91// For gccgo, use go:linkname to rename compiler-called functions to
92// themselves, so that the compiler will export them.
93//
94//go:linkname newobject runtime.newobject
95
96// Functions called by C code.
97//go:linkname mallocgc runtime.mallocgc
98
99const (
100	debugMalloc = false
101
102	maxTinySize   = _TinySize
103	tinySizeClass = _TinySizeClass
104	maxSmallSize  = _MaxSmallSize
105
106	pageShift = _PageShift
107	pageSize  = _PageSize
108	pageMask  = _PageMask
109	// By construction, single page spans of the smallest object class
110	// have the most objects per span.
111	maxObjsPerSpan = pageSize / 8
112
113	mSpanInUse = _MSpanInUse
114
115	concurrentSweep = _ConcurrentSweep
116
117	_PageSize = 1 << _PageShift
118	_PageMask = _PageSize - 1
119
120	// _64bit = 1 on 64-bit systems, 0 on 32-bit systems
121	_64bit = 1 << (^uintptr(0) >> 63) / 2
122
123	// Tiny allocator parameters, see "Tiny allocator" comment in malloc.go.
124	_TinySize      = 16
125	_TinySizeClass = int8(2)
126
127	_FixAllocChunk  = 16 << 10               // Chunk size for FixAlloc
128	_MaxMHeapList   = 1 << (20 - _PageShift) // Maximum page length for fixed-size list in MHeap.
129	_HeapAllocChunk = 1 << 20                // Chunk size for heap growth
130
131	// Per-P, per order stack segment cache size.
132	_StackCacheSize = 32 * 1024
133
134	// Number of orders that get caching. Order 0 is FixedStack
135	// and each successive order is twice as large.
136	// We want to cache 2KB, 4KB, 8KB, and 16KB stacks. Larger stacks
137	// will be allocated directly.
138	// Since FixedStack is different on different systems, we
139	// must vary NumStackOrders to keep the same maximum cached size.
140	//   OS               | FixedStack | NumStackOrders
141	//   -----------------+------------+---------------
142	//   linux/darwin/bsd | 2KB        | 4
143	//   windows/32       | 4KB        | 3
144	//   windows/64       | 8KB        | 2
145	//   plan9            | 4KB        | 3
146	_NumStackOrders = 4 - sys.PtrSize/4*sys.GoosWindows - 1*sys.GoosPlan9
147
148	// Number of bits in page to span calculations (4k pages).
149	// On Windows 64-bit we limit the arena to 32GB or 35 bits.
150	// Windows counts memory used by page table into committed memory
151	// of the process, so we can't reserve too much memory.
152	// See https://golang.org/issue/5402 and https://golang.org/issue/5236.
153	// On other 64-bit platforms, we limit the arena to 512GB, or 39 bits.
154	// On 32-bit, we don't bother limiting anything, so we use the full 32-bit address.
155	// The only exception is mips32 which only has access to low 2GB of virtual memory.
156	// On Darwin/arm64, we cannot reserve more than ~5GB of virtual memory,
157	// but as most devices have less than 4GB of physical memory anyway, we
158	// try to be conservative here, and only ask for a 2GB heap.
159	_MHeapMap_TotalBits = (_64bit*sys.GoosWindows)*35 + (_64bit*(1-sys.GoosWindows)*(1-sys.GoosDarwin*sys.GoarchArm64))*39 + sys.GoosDarwin*sys.GoarchArm64*31 + (1-_64bit)*(32-(sys.GoarchMips+sys.GoarchMipsle))
160	_MHeapMap_Bits      = _MHeapMap_TotalBits - _PageShift
161
162	// _MaxMem is the maximum heap arena size minus 1.
163	//
164	// On 32-bit, this is also the maximum heap pointer value,
165	// since the arena starts at address 0.
166	_MaxMem = 1<<_MHeapMap_TotalBits - 1
167
168	// Max number of threads to run garbage collection.
169	// 2, 3, and 4 are all plausible maximums depending
170	// on the hardware details of the machine. The garbage
171	// collector scales well to 32 cpus.
172	_MaxGcproc = 32
173
174	// minLegalPointer is the smallest possible legal pointer.
175	// This is the smallest possible architectural page size,
176	// since we assume that the first page is never mapped.
177	//
178	// This should agree with minZeroPage in the compiler.
179	minLegalPointer uintptr = 4096
180)
181
182// physPageSize is the size in bytes of the OS's physical pages.
183// Mapping and unmapping operations must be done at multiples of
184// physPageSize.
185//
186// This must be set by the OS init code (typically in osinit) before
187// mallocinit.
188var physPageSize uintptr
189
190// OS-defined helpers:
191//
192// sysAlloc obtains a large chunk of zeroed memory from the
193// operating system, typically on the order of a hundred kilobytes
194// or a megabyte.
195// NOTE: sysAlloc returns OS-aligned memory, but the heap allocator
196// may use larger alignment, so the caller must be careful to realign the
197// memory obtained by sysAlloc.
198//
199// SysUnused notifies the operating system that the contents
200// of the memory region are no longer needed and can be reused
201// for other purposes.
202// SysUsed notifies the operating system that the contents
203// of the memory region are needed again.
204//
205// SysFree returns it unconditionally; this is only used if
206// an out-of-memory error has been detected midway through
207// an allocation. It is okay if SysFree is a no-op.
208//
209// SysReserve reserves address space without allocating memory.
210// If the pointer passed to it is non-nil, the caller wants the
211// reservation there, but SysReserve can still choose another
212// location if that one is unavailable. On some systems and in some
213// cases SysReserve will simply check that the address space is
214// available and not actually reserve it. If SysReserve returns
215// non-nil, it sets *reserved to true if the address space is
216// reserved, false if it has merely been checked.
217// NOTE: SysReserve returns OS-aligned memory, but the heap allocator
218// may use larger alignment, so the caller must be careful to realign the
219// memory obtained by sysAlloc.
220//
221// SysMap maps previously reserved address space for use.
222// The reserved argument is true if the address space was really
223// reserved, not merely checked.
224//
225// SysFault marks a (already sysAlloc'd) region to fault
226// if accessed. Used only for debugging the runtime.
227
228func mallocinit() {
229	if class_to_size[_TinySizeClass] != _TinySize {
230		throw("bad TinySizeClass")
231	}
232
233	// Not used for gccgo.
234	// testdefersizes()
235
236	// Copy class sizes out for statistics table.
237	for i := range class_to_size {
238		memstats.by_size[i].size = uint32(class_to_size[i])
239	}
240
241	// Check physPageSize.
242	if physPageSize == 0 {
243		// The OS init code failed to fetch the physical page size.
244		throw("failed to get system page size")
245	}
246	if physPageSize < minPhysPageSize {
247		print("system page size (", physPageSize, ") is smaller than minimum page size (", minPhysPageSize, ")\n")
248		throw("bad system page size")
249	}
250	if physPageSize&(physPageSize-1) != 0 {
251		print("system page size (", physPageSize, ") must be a power of 2\n")
252		throw("bad system page size")
253	}
254
255	// The auxiliary regions start at p and are laid out in the
256	// following order: spans, bitmap, arena.
257	var p, pSize uintptr
258	var reserved bool
259
260	// The spans array holds one *mspan per _PageSize of arena.
261	var spansSize uintptr = (_MaxMem + 1) / _PageSize * sys.PtrSize
262	spansSize = round(spansSize, _PageSize)
263	// The bitmap holds 2 bits per word of arena.
264	var bitmapSize uintptr = (_MaxMem + 1) / (sys.PtrSize * 8 / 2)
265	bitmapSize = round(bitmapSize, _PageSize)
266
267	// Set up the allocation arena, a contiguous area of memory where
268	// allocated data will be found.
269	if sys.PtrSize == 8 {
270		// On a 64-bit machine, allocate from a single contiguous reservation.
271		// 512 GB (MaxMem) should be big enough for now.
272		//
273		// The code will work with the reservation at any address, but ask
274		// SysReserve to use 0x0000XXc000000000 if possible (XX=00...7f).
275		// Allocating a 512 GB region takes away 39 bits, and the amd64
276		// doesn't let us choose the top 17 bits, so that leaves the 9 bits
277		// in the middle of 0x00c0 for us to choose. Choosing 0x00c0 means
278		// that the valid memory addresses will begin 0x00c0, 0x00c1, ..., 0x00df.
279		// In little-endian, that's c0 00, c1 00, ..., df 00. None of those are valid
280		// UTF-8 sequences, and they are otherwise as far away from
281		// ff (likely a common byte) as possible. If that fails, we try other 0xXXc0
282		// addresses. An earlier attempt to use 0x11f8 caused out of memory errors
283		// on OS X during thread allocations.  0x00c0 causes conflicts with
284		// AddressSanitizer which reserves all memory up to 0x0100.
285		// These choices are both for debuggability and to reduce the
286		// odds of a conservative garbage collector (as is still used in gccgo)
287		// not collecting memory because some non-pointer block of memory
288		// had a bit pattern that matched a memory address.
289		//
290		// Actually we reserve 544 GB (because the bitmap ends up being 32 GB)
291		// but it hardly matters: e0 00 is not valid UTF-8 either.
292		//
293		// If this fails we fall back to the 32 bit memory mechanism
294		//
295		// However, on arm64, we ignore all this advice above and slam the
296		// allocation at 0x40 << 32 because when using 4k pages with 3-level
297		// translation buffers, the user address space is limited to 39 bits
298		// On darwin/arm64, the address space is even smaller.
299		// On AIX, mmap adresses range starts at 0x0700000000000000 for 64-bit
300		// processes. The new address space allocator starts at 0x0A00000000000000.
301		arenaSize := round(_MaxMem, _PageSize)
302		pSize = bitmapSize + spansSize + arenaSize + _PageSize
303		for i := 0; i <= 0x7f; i++ {
304			switch {
305			case GOARCH == "arm64" && GOOS == "darwin":
306				p = uintptr(i)<<40 | uintptrMask&(0x0013<<28)
307			case GOARCH == "arm64":
308				p = uintptr(i)<<40 | uintptrMask&(0x0040<<32)
309			case GOOS == "aix":
310				if i == 0 {
311					p = uintptrMask&(1<<42) | uintptrMask&(0xa0<<52)
312				} else {
313					p = uintptr(i)<<42 | uintptrMask&(0x70<<52)
314				}
315			default:
316				p = uintptr(i)<<40 | uintptrMask&(0x00c0<<32)
317			}
318			p = uintptr(sysReserve(unsafe.Pointer(p), pSize, &reserved))
319			if p != 0 {
320				break
321			}
322		}
323	}
324
325	if p == 0 {
326		// On a 32-bit machine, we can't typically get away
327		// with a giant virtual address space reservation.
328		// Instead we map the memory information bitmap
329		// immediately after the data segment, large enough
330		// to handle the entire 4GB address space (256 MB),
331		// along with a reservation for an initial arena.
332		// When that gets used up, we'll start asking the kernel
333		// for any memory anywhere.
334
335		// We want to start the arena low, but if we're linked
336		// against C code, it's possible global constructors
337		// have called malloc and adjusted the process' brk.
338		// Query the brk so we can avoid trying to map the
339		// arena over it (which will cause the kernel to put
340		// the arena somewhere else, likely at a high
341		// address).
342		procBrk := sbrk0()
343
344		// If we fail to allocate, try again with a smaller arena.
345		// This is necessary on Android L where we share a process
346		// with ART, which reserves virtual memory aggressively.
347		// In the worst case, fall back to a 0-sized initial arena,
348		// in the hope that subsequent reservations will succeed.
349		arenaSizes := [...]uintptr{
350			512 << 20,
351			256 << 20,
352			128 << 20,
353			0,
354		}
355
356		for _, arenaSize := range &arenaSizes {
357			// SysReserve treats the address we ask for, end, as a hint,
358			// not as an absolute requirement. If we ask for the end
359			// of the data segment but the operating system requires
360			// a little more space before we can start allocating, it will
361			// give out a slightly higher pointer. Except QEMU, which
362			// is buggy, as usual: it won't adjust the pointer upward.
363			// So adjust it upward a little bit ourselves: 1/4 MB to get
364			// away from the running binary image and then round up
365			// to a MB boundary.
366			p = round(getEnd()+(1<<18), 1<<20)
367			pSize = bitmapSize + spansSize + arenaSize + _PageSize
368			if p <= procBrk && procBrk < p+pSize {
369				// Move the start above the brk,
370				// leaving some room for future brk
371				// expansion.
372				p = round(procBrk+(1<<20), 1<<20)
373			}
374			p = uintptr(sysReserve(unsafe.Pointer(p), pSize, &reserved))
375			if p != 0 {
376				break
377			}
378		}
379		if p == 0 {
380			throw("runtime: cannot reserve arena virtual address space")
381		}
382	}
383
384	// PageSize can be larger than OS definition of page size,
385	// so SysReserve can give us a PageSize-unaligned pointer.
386	// To overcome this we ask for PageSize more and round up the pointer.
387	p1 := round(p, _PageSize)
388	pSize -= p1 - p
389
390	spansStart := p1
391	p1 += spansSize
392	mheap_.bitmap = p1 + bitmapSize
393	p1 += bitmapSize
394	if sys.PtrSize == 4 {
395		// Set arena_start such that we can accept memory
396		// reservations located anywhere in the 4GB virtual space.
397		mheap_.arena_start = 0
398	} else {
399		mheap_.arena_start = p1
400	}
401	mheap_.arena_end = p + pSize
402	mheap_.arena_used = p1
403	mheap_.arena_alloc = p1
404	mheap_.arena_reserved = reserved
405
406	if mheap_.arena_start&(_PageSize-1) != 0 {
407		println("bad pagesize", hex(p), hex(p1), hex(spansSize), hex(bitmapSize), hex(_PageSize), "start", hex(mheap_.arena_start))
408		throw("misrounded allocation in mallocinit")
409	}
410
411	// Initialize the rest of the allocator.
412	mheap_.init(spansStart, spansSize)
413	_g_ := getg()
414	_g_.m.mcache = allocmcache()
415}
416
417// sysAlloc allocates the next n bytes from the heap arena. The
418// returned pointer is always _PageSize aligned and between
419// h.arena_start and h.arena_end. sysAlloc returns nil on failure.
420// There is no corresponding free function.
421func (h *mheap) sysAlloc(n uintptr) unsafe.Pointer {
422	// strandLimit is the maximum number of bytes to strand from
423	// the current arena block. If we would need to strand more
424	// than this, we fall back to sysAlloc'ing just enough for
425	// this allocation.
426	const strandLimit = 16 << 20
427
428	if n > h.arena_end-h.arena_alloc {
429		// If we haven't grown the arena to _MaxMem yet, try
430		// to reserve some more address space.
431		p_size := round(n+_PageSize, 256<<20)
432		new_end := h.arena_end + p_size // Careful: can overflow
433		if h.arena_end <= new_end && new_end-h.arena_start-1 <= _MaxMem {
434			// TODO: It would be bad if part of the arena
435			// is reserved and part is not.
436			var reserved bool
437			p := uintptr(sysReserve(unsafe.Pointer(h.arena_end), p_size, &reserved))
438			if p == 0 {
439				// TODO: Try smaller reservation
440				// growths in case we're in a crowded
441				// 32-bit address space.
442				goto reservationFailed
443			}
444			// p can be just about anywhere in the address
445			// space, including before arena_end.
446			if p == h.arena_end {
447				// The new block is contiguous with
448				// the current block. Extend the
449				// current arena block.
450				h.arena_end = new_end
451				h.arena_reserved = reserved
452			} else if h.arena_start <= p && p+p_size-h.arena_start-1 <= _MaxMem && h.arena_end-h.arena_alloc < strandLimit {
453				// We were able to reserve more memory
454				// within the arena space, but it's
455				// not contiguous with our previous
456				// reservation. It could be before or
457				// after our current arena_used.
458				//
459				// Keep everything page-aligned.
460				// Our pages are bigger than hardware pages.
461				h.arena_end = p + p_size
462				p = round(p, _PageSize)
463				h.arena_alloc = p
464				h.arena_reserved = reserved
465			} else {
466				// We got a mapping, but either
467				//
468				// 1) It's not in the arena, so we
469				// can't use it. (This should never
470				// happen on 32-bit.)
471				//
472				// 2) We would need to discard too
473				// much of our current arena block to
474				// use it.
475				//
476				// We haven't added this allocation to
477				// the stats, so subtract it from a
478				// fake stat (but avoid underflow).
479				//
480				// We'll fall back to a small sysAlloc.
481				stat := uint64(p_size)
482				sysFree(unsafe.Pointer(p), p_size, &stat)
483			}
484		}
485	}
486
487	if n <= h.arena_end-h.arena_alloc {
488		// Keep taking from our reservation.
489		p := h.arena_alloc
490		sysMap(unsafe.Pointer(p), n, h.arena_reserved, &memstats.heap_sys)
491		h.arena_alloc += n
492		if h.arena_alloc > h.arena_used {
493			h.setArenaUsed(h.arena_alloc, true)
494		}
495
496		if p&(_PageSize-1) != 0 {
497			throw("misrounded allocation in MHeap_SysAlloc")
498		}
499		return unsafe.Pointer(p)
500	}
501
502reservationFailed:
503	// If using 64-bit, our reservation is all we have.
504	if sys.PtrSize != 4 {
505		return nil
506	}
507
508	// On 32-bit, once the reservation is gone we can
509	// try to get memory at a location chosen by the OS.
510	p_size := round(n, _PageSize) + _PageSize
511	p := uintptr(sysAlloc(p_size, &memstats.heap_sys))
512	if p == 0 {
513		return nil
514	}
515
516	if p < h.arena_start || p+p_size-h.arena_start > _MaxMem {
517		// This shouldn't be possible because _MaxMem is the
518		// whole address space on 32-bit.
519		top := uint64(h.arena_start) + _MaxMem
520		print("runtime: memory allocated by OS (", hex(p), ") not in usable range [", hex(h.arena_start), ",", hex(top), ")\n")
521		sysFree(unsafe.Pointer(p), p_size, &memstats.heap_sys)
522		return nil
523	}
524
525	p += -p & (_PageSize - 1)
526	if p+n > h.arena_used {
527		h.setArenaUsed(p+n, true)
528	}
529
530	if p&(_PageSize-1) != 0 {
531		throw("misrounded allocation in MHeap_SysAlloc")
532	}
533	return unsafe.Pointer(p)
534}
535
536// base address for all 0-byte allocations
537var zerobase uintptr
538
539// nextFreeFast returns the next free object if one is quickly available.
540// Otherwise it returns 0.
541func nextFreeFast(s *mspan) gclinkptr {
542	theBit := sys.Ctz64(s.allocCache) // Is there a free object in the allocCache?
543	if theBit < 64 {
544		result := s.freeindex + uintptr(theBit)
545		if result < s.nelems {
546			freeidx := result + 1
547			if freeidx%64 == 0 && freeidx != s.nelems {
548				return 0
549			}
550			s.allocCache >>= uint(theBit + 1)
551			s.freeindex = freeidx
552			s.allocCount++
553			return gclinkptr(result*s.elemsize + s.base())
554		}
555	}
556	return 0
557}
558
559// nextFree returns the next free object from the cached span if one is available.
560// Otherwise it refills the cache with a span with an available object and
561// returns that object along with a flag indicating that this was a heavy
562// weight allocation. If it is a heavy weight allocation the caller must
563// determine whether a new GC cycle needs to be started or if the GC is active
564// whether this goroutine needs to assist the GC.
565func (c *mcache) nextFree(spc spanClass) (v gclinkptr, s *mspan, shouldhelpgc bool) {
566	s = c.alloc[spc]
567	shouldhelpgc = false
568	freeIndex := s.nextFreeIndex()
569	if freeIndex == s.nelems {
570		// The span is full.
571		if uintptr(s.allocCount) != s.nelems {
572			println("runtime: s.allocCount=", s.allocCount, "s.nelems=", s.nelems)
573			throw("s.allocCount != s.nelems && freeIndex == s.nelems")
574		}
575		systemstack(func() {
576			c.refill(spc)
577		})
578		shouldhelpgc = true
579		s = c.alloc[spc]
580
581		freeIndex = s.nextFreeIndex()
582	}
583
584	if freeIndex >= s.nelems {
585		throw("freeIndex is not valid")
586	}
587
588	v = gclinkptr(freeIndex*s.elemsize + s.base())
589	s.allocCount++
590	if uintptr(s.allocCount) > s.nelems {
591		println("s.allocCount=", s.allocCount, "s.nelems=", s.nelems)
592		throw("s.allocCount > s.nelems")
593	}
594	return
595}
596
597// Allocate an object of size bytes.
598// Small objects are allocated from the per-P cache's free lists.
599// Large objects (> 32 kB) are allocated straight from the heap.
600func mallocgc(size uintptr, typ *_type, needzero bool) unsafe.Pointer {
601	if gcphase == _GCmarktermination {
602		throw("mallocgc called with gcphase == _GCmarktermination")
603	}
604
605	if size == 0 {
606		return unsafe.Pointer(&zerobase)
607	}
608
609	if debug.sbrk != 0 {
610		align := uintptr(16)
611		if typ != nil {
612			align = uintptr(typ.align)
613		}
614		return persistentalloc(size, align, &memstats.other_sys)
615	}
616
617	// When using gccgo, when a cgo or SWIG function has an
618	// interface return type and the function returns a
619	// non-pointer, memory allocation occurs after syscall.Cgocall
620	// but before syscall.CgocallDone. Treat this allocation as a
621	// callback.
622	incallback := false
623	if gomcache() == nil && getg().m.ncgo > 0 {
624		exitsyscall(0)
625		incallback = true
626	}
627
628	// assistG is the G to charge for this allocation, or nil if
629	// GC is not currently active.
630	var assistG *g
631	if gcBlackenEnabled != 0 {
632		// Charge the current user G for this allocation.
633		assistG = getg()
634		if assistG.m.curg != nil {
635			assistG = assistG.m.curg
636		}
637		// Charge the allocation against the G. We'll account
638		// for internal fragmentation at the end of mallocgc.
639		assistG.gcAssistBytes -= int64(size)
640
641		if assistG.gcAssistBytes < 0 {
642			// This G is in debt. Assist the GC to correct
643			// this before allocating. This must happen
644			// before disabling preemption.
645			gcAssistAlloc(assistG)
646		}
647	}
648
649	// Set mp.mallocing to keep from being preempted by GC.
650	mp := acquirem()
651	if mp.mallocing != 0 {
652		throw("malloc deadlock")
653	}
654	if mp.gsignal == getg() {
655		throw("malloc during signal")
656	}
657	mp.mallocing = 1
658
659	shouldhelpgc := false
660	dataSize := size
661	c := gomcache()
662	var x unsafe.Pointer
663	noscan := typ == nil || typ.kind&kindNoPointers != 0
664	if size <= maxSmallSize {
665		if noscan && size < maxTinySize {
666			// Tiny allocator.
667			//
668			// Tiny allocator combines several tiny allocation requests
669			// into a single memory block. The resulting memory block
670			// is freed when all subobjects are unreachable. The subobjects
671			// must be noscan (don't have pointers), this ensures that
672			// the amount of potentially wasted memory is bounded.
673			//
674			// Size of the memory block used for combining (maxTinySize) is tunable.
675			// Current setting is 16 bytes, which relates to 2x worst case memory
676			// wastage (when all but one subobjects are unreachable).
677			// 8 bytes would result in no wastage at all, but provides less
678			// opportunities for combining.
679			// 32 bytes provides more opportunities for combining,
680			// but can lead to 4x worst case wastage.
681			// The best case winning is 8x regardless of block size.
682			//
683			// Objects obtained from tiny allocator must not be freed explicitly.
684			// So when an object will be freed explicitly, we ensure that
685			// its size >= maxTinySize.
686			//
687			// SetFinalizer has a special case for objects potentially coming
688			// from tiny allocator, it such case it allows to set finalizers
689			// for an inner byte of a memory block.
690			//
691			// The main targets of tiny allocator are small strings and
692			// standalone escaping variables. On a json benchmark
693			// the allocator reduces number of allocations by ~12% and
694			// reduces heap size by ~20%.
695			off := c.tinyoffset
696			// Align tiny pointer for required (conservative) alignment.
697			if size&7 == 0 {
698				off = round(off, 8)
699			} else if size&3 == 0 {
700				off = round(off, 4)
701			} else if size&1 == 0 {
702				off = round(off, 2)
703			}
704			if off+size <= maxTinySize && c.tiny != 0 {
705				// The object fits into existing tiny block.
706				x = unsafe.Pointer(c.tiny + off)
707				c.tinyoffset = off + size
708				c.local_tinyallocs++
709				mp.mallocing = 0
710				releasem(mp)
711				if incallback {
712					entersyscall(0)
713				}
714				return x
715			}
716			// Allocate a new maxTinySize block.
717			span := c.alloc[tinySpanClass]
718			v := nextFreeFast(span)
719			if v == 0 {
720				v, _, shouldhelpgc = c.nextFree(tinySpanClass)
721			}
722			x = unsafe.Pointer(v)
723			(*[2]uint64)(x)[0] = 0
724			(*[2]uint64)(x)[1] = 0
725			// See if we need to replace the existing tiny block with the new one
726			// based on amount of remaining free space.
727			if size < c.tinyoffset || c.tiny == 0 {
728				c.tiny = uintptr(x)
729				c.tinyoffset = size
730			}
731			size = maxTinySize
732		} else {
733			var sizeclass uint8
734			if size <= smallSizeMax-8 {
735				sizeclass = size_to_class8[(size+smallSizeDiv-1)/smallSizeDiv]
736			} else {
737				sizeclass = size_to_class128[(size-smallSizeMax+largeSizeDiv-1)/largeSizeDiv]
738			}
739			size = uintptr(class_to_size[sizeclass])
740			spc := makeSpanClass(sizeclass, noscan)
741			span := c.alloc[spc]
742			v := nextFreeFast(span)
743			if v == 0 {
744				v, span, shouldhelpgc = c.nextFree(spc)
745			}
746			x = unsafe.Pointer(v)
747			if needzero && span.needzero != 0 {
748				memclrNoHeapPointers(unsafe.Pointer(v), size)
749			}
750		}
751	} else {
752		var s *mspan
753		shouldhelpgc = true
754		systemstack(func() {
755			s = largeAlloc(size, needzero, noscan)
756		})
757		s.freeindex = 1
758		s.allocCount = 1
759		x = unsafe.Pointer(s.base())
760		size = s.elemsize
761	}
762
763	var scanSize uintptr
764	if !noscan {
765		heapBitsSetType(uintptr(x), size, dataSize, typ)
766		if dataSize > typ.size {
767			// Array allocation. If there are any
768			// pointers, GC has to scan to the last
769			// element.
770			if typ.ptrdata != 0 {
771				scanSize = dataSize - typ.size + typ.ptrdata
772			}
773		} else {
774			scanSize = typ.ptrdata
775		}
776		c.local_scan += scanSize
777	}
778
779	// Ensure that the stores above that initialize x to
780	// type-safe memory and set the heap bits occur before
781	// the caller can make x observable to the garbage
782	// collector. Otherwise, on weakly ordered machines,
783	// the garbage collector could follow a pointer to x,
784	// but see uninitialized memory or stale heap bits.
785	publicationBarrier()
786
787	// Allocate black during GC.
788	// All slots hold nil so no scanning is needed.
789	// This may be racing with GC so do it atomically if there can be
790	// a race marking the bit.
791	if gcphase != _GCoff {
792		gcmarknewobject(uintptr(x), size, scanSize)
793	}
794
795	if raceenabled {
796		racemalloc(x, size)
797	}
798
799	if msanenabled {
800		msanmalloc(x, size)
801	}
802
803	mp.mallocing = 0
804	releasem(mp)
805
806	if debug.allocfreetrace != 0 {
807		tracealloc(x, size, typ)
808	}
809
810	if rate := MemProfileRate; rate > 0 {
811		if size < uintptr(rate) && int32(size) < c.next_sample {
812			c.next_sample -= int32(size)
813		} else {
814			mp := acquirem()
815			profilealloc(mp, x, size)
816			releasem(mp)
817		}
818	}
819
820	if assistG != nil {
821		// Account for internal fragmentation in the assist
822		// debt now that we know it.
823		assistG.gcAssistBytes -= int64(size - dataSize)
824	}
825
826	if shouldhelpgc {
827		if t := (gcTrigger{kind: gcTriggerHeap}); t.test() {
828			gcStart(gcBackgroundMode, t)
829		}
830	}
831
832	// Check preemption, since unlike gc we don't check on every call.
833	if getg().preempt {
834		checkPreempt()
835	}
836
837	if incallback {
838		entersyscall(0)
839	}
840
841	return x
842}
843
844func largeAlloc(size uintptr, needzero bool, noscan bool) *mspan {
845	// print("largeAlloc size=", size, "\n")
846
847	if size+_PageSize < size {
848		throw("out of memory")
849	}
850	npages := size >> _PageShift
851	if size&_PageMask != 0 {
852		npages++
853	}
854
855	// Deduct credit for this span allocation and sweep if
856	// necessary. mHeap_Alloc will also sweep npages, so this only
857	// pays the debt down to npage pages.
858	deductSweepCredit(npages*_PageSize, npages)
859
860	s := mheap_.alloc(npages, makeSpanClass(0, noscan), true, needzero)
861	if s == nil {
862		throw("out of memory")
863	}
864	s.limit = s.base() + size
865	heapBitsForSpan(s.base()).initSpan(s)
866	return s
867}
868
869// implementation of new builtin
870// compiler (both frontend and SSA backend) knows the signature
871// of this function
872func newobject(typ *_type) unsafe.Pointer {
873	return mallocgc(typ.size, typ, true)
874}
875
876//go:linkname reflect_unsafe_New reflect.unsafe_New
877func reflect_unsafe_New(typ *_type) unsafe.Pointer {
878	return newobject(typ)
879}
880
881// newarray allocates an array of n elements of type typ.
882func newarray(typ *_type, n int) unsafe.Pointer {
883	if n == 1 {
884		return mallocgc(typ.size, typ, true)
885	}
886	if n < 0 || uintptr(n) > maxSliceCap(typ.size) {
887		panic(plainError("runtime: allocation size out of range"))
888	}
889	return mallocgc(typ.size*uintptr(n), typ, true)
890}
891
892//go:linkname reflect_unsafe_NewArray reflect.unsafe_NewArray
893func reflect_unsafe_NewArray(typ *_type, n int) unsafe.Pointer {
894	return newarray(typ, n)
895}
896
897func profilealloc(mp *m, x unsafe.Pointer, size uintptr) {
898	mp.mcache.next_sample = nextSample()
899	mProf_Malloc(x, size)
900}
901
902// nextSample returns the next sampling point for heap profiling. The goal is
903// to sample allocations on average every MemProfileRate bytes, but with a
904// completely random distribution over the allocation timeline; this
905// corresponds to a Poisson process with parameter MemProfileRate. In Poisson
906// processes, the distance between two samples follows the exponential
907// distribution (exp(MemProfileRate)), so the best return value is a random
908// number taken from an exponential distribution whose mean is MemProfileRate.
909func nextSample() int32 {
910	if GOOS == "plan9" {
911		// Plan 9 doesn't support floating point in note handler.
912		if g := getg(); g == g.m.gsignal {
913			return nextSampleNoFP()
914		}
915	}
916
917	return fastexprand(MemProfileRate)
918}
919
920// fastexprand returns a random number from an exponential distribution with
921// the specified mean.
922func fastexprand(mean int) int32 {
923	// Avoid overflow. Maximum possible step is
924	// -ln(1/(1<<randomBitCount)) * mean, approximately 20 * mean.
925	switch {
926	case mean > 0x7000000:
927		mean = 0x7000000
928	case mean == 0:
929		return 0
930	}
931
932	// Take a random sample of the exponential distribution exp(-mean*x).
933	// The probability distribution function is mean*exp(-mean*x), so the CDF is
934	// p = 1 - exp(-mean*x), so
935	// q = 1 - p == exp(-mean*x)
936	// log_e(q) = -mean*x
937	// -log_e(q)/mean = x
938	// x = -log_e(q) * mean
939	// x = log_2(q) * (-log_e(2)) * mean    ; Using log_2 for efficiency
940	const randomBitCount = 26
941	q := fastrand()%(1<<randomBitCount) + 1
942	qlog := fastlog2(float64(q)) - randomBitCount
943	if qlog > 0 {
944		qlog = 0
945	}
946	const minusLog2 = -0.6931471805599453 // -ln(2)
947	return int32(qlog*(minusLog2*float64(mean))) + 1
948}
949
950// nextSampleNoFP is similar to nextSample, but uses older,
951// simpler code to avoid floating point.
952func nextSampleNoFP() int32 {
953	// Set first allocation sample size.
954	rate := MemProfileRate
955	if rate > 0x3fffffff { // make 2*rate not overflow
956		rate = 0x3fffffff
957	}
958	if rate != 0 {
959		return int32(fastrand() % uint32(2*rate))
960	}
961	return 0
962}
963
964type persistentAlloc struct {
965	base *notInHeap
966	off  uintptr
967}
968
969var globalAlloc struct {
970	mutex
971	persistentAlloc
972}
973
974// Wrapper around sysAlloc that can allocate small chunks.
975// There is no associated free operation.
976// Intended for things like function/type/debug-related persistent data.
977// If align is 0, uses default align (currently 8).
978// The returned memory will be zeroed.
979//
980// Consider marking persistentalloc'd types go:notinheap.
981func persistentalloc(size, align uintptr, sysStat *uint64) unsafe.Pointer {
982	var p *notInHeap
983	systemstack(func() {
984		p = persistentalloc1(size, align, sysStat)
985	})
986	return unsafe.Pointer(p)
987}
988
989// Must run on system stack because stack growth can (re)invoke it.
990// See issue 9174.
991//go:systemstack
992func persistentalloc1(size, align uintptr, sysStat *uint64) *notInHeap {
993	const (
994		chunk    = 256 << 10
995		maxBlock = 64 << 10 // VM reservation granularity is 64K on windows
996	)
997
998	if size == 0 {
999		throw("persistentalloc: size == 0")
1000	}
1001	if align != 0 {
1002		if align&(align-1) != 0 {
1003			throw("persistentalloc: align is not a power of 2")
1004		}
1005		if align > _PageSize {
1006			throw("persistentalloc: align is too large")
1007		}
1008	} else {
1009		align = 8
1010	}
1011
1012	if size >= maxBlock {
1013		return (*notInHeap)(sysAlloc(size, sysStat))
1014	}
1015
1016	mp := acquirem()
1017	var persistent *persistentAlloc
1018	if mp != nil && mp.p != 0 {
1019		persistent = &mp.p.ptr().palloc
1020	} else {
1021		lock(&globalAlloc.mutex)
1022		persistent = &globalAlloc.persistentAlloc
1023	}
1024	persistent.off = round(persistent.off, align)
1025	if persistent.off+size > chunk || persistent.base == nil {
1026		persistent.base = (*notInHeap)(sysAlloc(chunk, &memstats.other_sys))
1027		if persistent.base == nil {
1028			if persistent == &globalAlloc.persistentAlloc {
1029				unlock(&globalAlloc.mutex)
1030			}
1031			throw("runtime: cannot allocate memory")
1032		}
1033		persistent.off = 0
1034	}
1035	p := persistent.base.add(persistent.off)
1036	persistent.off += size
1037	releasem(mp)
1038	if persistent == &globalAlloc.persistentAlloc {
1039		unlock(&globalAlloc.mutex)
1040	}
1041
1042	if sysStat != &memstats.other_sys {
1043		mSysStatInc(sysStat, size)
1044		mSysStatDec(&memstats.other_sys, size)
1045	}
1046	return p
1047}
1048
1049// notInHeap is off-heap memory allocated by a lower-level allocator
1050// like sysAlloc or persistentAlloc.
1051//
1052// In general, it's better to use real types marked as go:notinheap,
1053// but this serves as a generic type for situations where that isn't
1054// possible (like in the allocators).
1055//
1056// TODO: Use this as the return type of sysAlloc, persistentAlloc, etc?
1057//
1058//go:notinheap
1059type notInHeap struct{}
1060
1061func (p *notInHeap) add(bytes uintptr) *notInHeap {
1062	return (*notInHeap)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) + bytes))
1063}
1064