1// Copyright 2011 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as
6// defined in FIPS 186-3.
7//
8// This implementation  derives the nonce from an AES-CTR CSPRNG keyed by
9// ChopMD(256, SHA2-512(priv.D || entropy || hash)). The CSPRNG key is IRO by
10// a result of Coron; the AES-CTR stream is IRO under standard assumptions.
11package ecdsa
12
13// References:
14//   [NSA]: Suite B implementer's guide to FIPS 186-3,
15//     http://www.nsa.gov/ia/_files/ecdsa.pdf
16//   [SECG]: SECG, SEC1
17//     http://www.secg.org/sec1-v2.pdf
18
19import (
20	"crypto"
21	"crypto/aes"
22	"crypto/cipher"
23	"crypto/elliptic"
24	"crypto/sha512"
25	"encoding/asn1"
26	"errors"
27	"io"
28	"math/big"
29)
30
31// A invertible implements fast inverse mod Curve.Params().N
32type invertible interface {
33	// Inverse returns the inverse of k in GF(P)
34	Inverse(k *big.Int) *big.Int
35}
36
37// combinedMult implements fast multiplication S1*g + S2*p (g - generator, p - arbitrary point)
38type combinedMult interface {
39	CombinedMult(bigX, bigY *big.Int, baseScalar, scalar []byte) (x, y *big.Int)
40}
41
42const (
43	aesIV = "IV for ECDSA CTR"
44)
45
46// PublicKey represents an ECDSA public key.
47type PublicKey struct {
48	elliptic.Curve
49	X, Y *big.Int
50}
51
52// PrivateKey represents an ECDSA private key.
53type PrivateKey struct {
54	PublicKey
55	D *big.Int
56}
57
58type ecdsaSignature struct {
59	R, S *big.Int
60}
61
62// Public returns the public key corresponding to priv.
63func (priv *PrivateKey) Public() crypto.PublicKey {
64	return &priv.PublicKey
65}
66
67// Sign signs digest with priv, reading randomness from rand. The opts argument
68// is not currently used but, in keeping with the crypto.Signer interface,
69// should be the hash function used to digest the message.
70//
71// This method implements crypto.Signer, which is an interface to support keys
72// where the private part is kept in, for example, a hardware module. Common
73// uses should use the Sign function in this package directly.
74func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) {
75	r, s, err := Sign(rand, priv, digest)
76	if err != nil {
77		return nil, err
78	}
79
80	return asn1.Marshal(ecdsaSignature{r, s})
81}
82
83var one = new(big.Int).SetInt64(1)
84
85// randFieldElement returns a random element of the field underlying the given
86// curve using the procedure given in [NSA] A.2.1.
87func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) {
88	params := c.Params()
89	b := make([]byte, params.BitSize/8+8)
90	_, err = io.ReadFull(rand, b)
91	if err != nil {
92		return
93	}
94
95	k = new(big.Int).SetBytes(b)
96	n := new(big.Int).Sub(params.N, one)
97	k.Mod(k, n)
98	k.Add(k, one)
99	return
100}
101
102// GenerateKey generates a public and private key pair.
103func GenerateKey(c elliptic.Curve, rand io.Reader) (*PrivateKey, error) {
104	k, err := randFieldElement(c, rand)
105	if err != nil {
106		return nil, err
107	}
108
109	priv := new(PrivateKey)
110	priv.PublicKey.Curve = c
111	priv.D = k
112	priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes())
113	return priv, nil
114}
115
116// hashToInt converts a hash value to an integer. There is some disagreement
117// about how this is done. [NSA] suggests that this is done in the obvious
118// manner, but [SECG] truncates the hash to the bit-length of the curve order
119// first. We follow [SECG] because that's what OpenSSL does. Additionally,
120// OpenSSL right shifts excess bits from the number if the hash is too large
121// and we mirror that too.
122func hashToInt(hash []byte, c elliptic.Curve) *big.Int {
123	orderBits := c.Params().N.BitLen()
124	orderBytes := (orderBits + 7) / 8
125	if len(hash) > orderBytes {
126		hash = hash[:orderBytes]
127	}
128
129	ret := new(big.Int).SetBytes(hash)
130	excess := len(hash)*8 - orderBits
131	if excess > 0 {
132		ret.Rsh(ret, uint(excess))
133	}
134	return ret
135}
136
137// fermatInverse calculates the inverse of k in GF(P) using Fermat's method.
138// This has better constant-time properties than Euclid's method (implemented
139// in math/big.Int.ModInverse) although math/big itself isn't strictly
140// constant-time so it's not perfect.
141func fermatInverse(k, N *big.Int) *big.Int {
142	two := big.NewInt(2)
143	nMinus2 := new(big.Int).Sub(N, two)
144	return new(big.Int).Exp(k, nMinus2, N)
145}
146
147var errZeroParam = errors.New("zero parameter")
148
149// Sign signs a hash (which should be the result of hashing a larger message)
150// using the private key, priv. If the hash is longer than the bit-length of the
151// private key's curve order, the hash will be truncated to that length.  It
152// returns the signature as a pair of integers. The security of the private key
153// depends on the entropy of rand.
154func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) {
155	// Get min(log2(q) / 2, 256) bits of entropy from rand.
156	entropylen := (priv.Curve.Params().BitSize + 7) / 16
157	if entropylen > 32 {
158		entropylen = 32
159	}
160	entropy := make([]byte, entropylen)
161	_, err = io.ReadFull(rand, entropy)
162	if err != nil {
163		return
164	}
165
166	// Initialize an SHA-512 hash context; digest ...
167	md := sha512.New()
168	md.Write(priv.D.Bytes()) // the private key,
169	md.Write(entropy)        // the entropy,
170	md.Write(hash)           // and the input hash;
171	key := md.Sum(nil)[:32]  // and compute ChopMD-256(SHA-512),
172	// which is an indifferentiable MAC.
173
174	// Create an AES-CTR instance to use as a CSPRNG.
175	block, err := aes.NewCipher(key)
176	if err != nil {
177		return nil, nil, err
178	}
179
180	// Create a CSPRNG that xors a stream of zeros with
181	// the output of the AES-CTR instance.
182	csprng := cipher.StreamReader{
183		R: zeroReader,
184		S: cipher.NewCTR(block, []byte(aesIV)),
185	}
186
187	// See [NSA] 3.4.1
188	c := priv.PublicKey.Curve
189	N := c.Params().N
190	if N.Sign() == 0 {
191		return nil, nil, errZeroParam
192	}
193	var k, kInv *big.Int
194	for {
195		for {
196			k, err = randFieldElement(c, csprng)
197			if err != nil {
198				r = nil
199				return
200			}
201
202			if in, ok := priv.Curve.(invertible); ok {
203				kInv = in.Inverse(k)
204			} else {
205				kInv = fermatInverse(k, N) // N != 0
206			}
207
208			r, _ = priv.Curve.ScalarBaseMult(k.Bytes())
209			r.Mod(r, N)
210			if r.Sign() != 0 {
211				break
212			}
213		}
214
215		e := hashToInt(hash, c)
216		s = new(big.Int).Mul(priv.D, r)
217		s.Add(s, e)
218		s.Mul(s, kInv)
219		s.Mod(s, N) // N != 0
220		if s.Sign() != 0 {
221			break
222		}
223	}
224
225	return
226}
227
228// Verify verifies the signature in r, s of hash using the public key, pub. Its
229// return value records whether the signature is valid.
230func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool {
231	// See [NSA] 3.4.2
232	c := pub.Curve
233	N := c.Params().N
234
235	if r.Sign() <= 0 || s.Sign() <= 0 {
236		return false
237	}
238	if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 {
239		return false
240	}
241	e := hashToInt(hash, c)
242
243	var w *big.Int
244	if in, ok := c.(invertible); ok {
245		w = in.Inverse(s)
246	} else {
247		w = new(big.Int).ModInverse(s, N)
248	}
249
250	u1 := e.Mul(e, w)
251	u1.Mod(u1, N)
252	u2 := w.Mul(r, w)
253	u2.Mod(u2, N)
254
255	// Check if implements S1*g + S2*p
256	var x, y *big.Int
257	if opt, ok := c.(combinedMult); ok {
258		x, y = opt.CombinedMult(pub.X, pub.Y, u1.Bytes(), u2.Bytes())
259	} else {
260		x1, y1 := c.ScalarBaseMult(u1.Bytes())
261		x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes())
262		x, y = c.Add(x1, y1, x2, y2)
263	}
264
265	if x.Sign() == 0 && y.Sign() == 0 {
266		return false
267	}
268	x.Mod(x, N)
269	return x.Cmp(r) == 0
270}
271
272type zr struct {
273	io.Reader
274}
275
276// Read replaces the contents of dst with zeros.
277func (z *zr) Read(dst []byte) (n int, err error) {
278	for i := range dst {
279		dst[i] = 0
280	}
281	return len(dst), nil
282}
283
284var zeroReader = &zr{}
285